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Abstract. In the present paper we continue the study of the properties
of the spectra of structures as sets of degrees initiated in [11]. Here we
consider the relationships between the spectra and the jump spectra.
Our first result is that every jump spectrum is also a spectrum. The
main result sounds like a Jump inversion theorem. Namely, we show
that if a spectrum A is contained in the set of the jumps of the degrees
in some spectrum B then there exists a spectrum C such that C ⊆ B and
A is equal to the set of the jumps of the degrees in C.
Key words: Turing degrees; degree spectra; forcing; Marker’s exten-
sions; enumerations.

1 Introduction

Let A = (A;R1, . . . , Rs) be a countable structure, where the set A is infinite,
each Ri ⊆ Ari and the equality = is among R1, . . . , Rs.

The notion of a degree spectrum of a countable structure is introduced by
Richter [9] and further studied by Ash, Downey, Jockush and Knight [1,
3, 5].

An enumeration f of A is a total mapping of N onto A.
Given a set R ⊆ Aa and an enumeration f of A, let

f−1(R) = {〈x1, . . . , xa〉 | (f(x1), . . . , f(xa)) ∈ R}.

Let f−1(A) = f−1(R1)⊕ . . .⊕ f−1(Rs).

Definition 1. The degree spectrum of A is the set

DS(A) = {dT(f−1(A)) | f is an enumeration of A} .

Here by dT(B) we denote the Turing degree of the set B.
We shall use the following two simple properties of the degree spectra, proved

in [11]:
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Proposition 2. Let f be an arbitrary enumeration of A. Then there exists an
injective enumeration g of A such that g−1(A) ≤T f

−1(A).

Definition 3. A set of Turing degrees A is closed upwards if for all Turing
degrees a and b, a ∈ A & a ≤ b⇒ b ∈ A.

Proposition 4. For every structure A the degree spectrum DS(A) is closed up-
wards.

Let us point out that our notion of degree spectrum differs slightly from the
one introduced in [9] where the degree spectrum of a structure is defined to be
the set of all Turing degrees dT(f−1(A)) for injective enumerations f of A. The
benefit of considering arbitrary enumerations is that in this way we ensure that
the degree spectrum of every structure is closed upwards, which is not always
true if we consider only injective enumerations.

Definition 5. The jump spectrum of A is the set DS1(A) = {a′ | a ∈ DS(A)}.

In the present paper we prove two results about the relationships between
jump spectra and spectra of structures. The first result states that every jump
spectrum is a spectrum. Our second result is a jump inversion theorem for the
degree spectra. We prove that if A and B are structures and DS(A) ⊆ DS1(B)
then there exists a structure C such that DS(C) ⊆ DS(B) and DS1(C) = DS(A).

The structure C is constructed as a Marker’s extension [7] of A, an idea
influenced by the results of Goncharov and Khoussainov [4].

Some applications are presented in the last part of the paper.

2 Every Jump Spectrum is a Spectrum

In this section we show that for every structure A there exists a structure B
such that DS1(A) = DS(B). The structure B is constructed in two stages. First,
we define the least acceptable extension A∗ of A which we call Moschovakis’
extension of A. Roughly speaking A∗ is an extension of A with additional cod-
ing machinery. Using this coding machinery we define the set KA which is an
analogue of Kleene’s set K. Finally we set B = (A∗,KA).

2.1 Moschovakis’ Extension of the Structure A

Let A = (A;R1, . . . , Rs) be a countable structure and let equality be among
the predicates R1, . . . , Rs. Following Moschkovakis [8] the least acceptable
extension of the structure A is defined as follows.

Let 0 be an object which does not belong to A and Π be a pairing operation
chosen so that neither 0 nor any element of A is an ordered pair. Let A∗ be the
least set containing all elements of A0 = A ∪ {0} and closed under Π.

We associate an element n∗ of A∗ with each natural number n by induction:

0∗ = 0;
(n+ 1)∗ = Π(0, n∗).



The set of all elements n∗ defined above will be denoted by N∗.
Let L and R be the functions on A∗ satisfying the following conditions:

L(0) = R(0) = 0;
(∀t ∈ A)(L(t) = R(t) = 1∗);
(∀s, t ∈ A∗)(L(Π(s, t)) = s & R(Π(s, t)) = t).

The pairing function allows us to code finite sequences of elements: let
Π1(t1) = t1, Πn+1(t1, t2, . . . , tn+1) = Π(t1, Πn(t2, . . . , tn+1)) for every
t1, t2, . . . , tn+1 ∈ A∗.

For each predicate Ri of the structure A define the respective predicate R∗i
on A∗ by

R∗i (t) ⇐⇒ (∃a1 ∈ A) . . . (∃ari ∈ A)(t = Πri(a1, . . . , ari) & Ri(a1, . . . , ari)).

Definition 6. Moschovakis’ extension of A is the structure

A∗ = (A∗;A0, R
∗
1, . . . , R

∗
s , GΠ , GL, GR,=),

where GΠ , GLand GR are the graphs of Π, L and R respectively.

Lemma 7. Let f be an enumeration of A. There exists an enumeration f∗ of
A∗ such that (f∗)−1(A∗) ≡T f

−1(A).

Proof. Let J(x, y) = 2x+1.(2y+ 1) be an effective coding of the ordered pairs of
natural numbers. Denote by induction J1(x1) = x1 and Jn+1(x1, x2, . . . , xn+1) =
J(x1, Jn(x2, . . . , xn+1)) for any x1, x2, . . . , xn+1 ∈ N. And let l and r be com-
putable functions satisfying the equalities:

l(0) = r(0) = 0,
l(2x+ 1) = r(2x+ 1) = 2 = J(0, 0),
l(J(x, y)) = x & r(J(x, y)) = y.

Define f∗ by means of the following inductive definition:

f∗(0) = 0∗,
f∗(2x+ 1) = f(x),
f∗(J(x, y)) = Π(f∗(x), f∗(y)).

Clearly f∗ is an enumeration of A∗. It is easy to see that (f∗)−1(A0) =
{2x + 1 | x ∈ N} ∪ {0}, (f∗)−1(GΠ) = {〈x, y〉 : (x, y) ∈ GJ}, (f∗)−1(GL) =
{〈x, y〉 : (x, y) ∈ Gl} and (f∗)−1(GR) = {〈x, y〉 : (x, y) ∈ Gr}.

Fix a natural number i, 1 ≤ i ≤ s. Then

〈x1, . . . , xri〉 ∈ f−1(Ri) ⇐⇒ (f(x1), . . . , f(xri)) ∈ Ri ⇐⇒
(f∗(2x1 + 1), . . . , f∗(2xri + 1)) ∈ Ri ⇐⇒
Πri(f

∗(2x1 + 1), . . . , f∗(2xri + 1))) ∈ R∗i ⇐⇒
Jri(2x1 + 1, . . . , 2xri + 1) ∈ (f∗)−1(R∗i ).



Finally, let R1 be the equality on A. Then

〈x, y〉 ∈ (f∗)−1(=) ⇐⇒ [ (x, y ∈ (f∗)−1(A) & 〈x/2, y/2〉 ∈ f−1(R1))∨
(x = y = 0)∨
(x = J(x1, x2) & y = J(y1, y2) &
〈x1, y1〉 ∈ (f∗)−1(=) & 〈x2, y2〉 ∈ (f∗)−1(=))].

Clearly

〈x, y〉 ∈ f−1(R1) ⇐⇒ 〈2x+ 1, 2y + 1〉 ∈ (f∗)−1(=).

So (f∗)−1(=) ≡T f
−1(R1).

Combining all above, we get that (f∗)−1(A∗) ≡T f
−1(A).

From now on given an enumeration f of the structure A, by f∗ we shall
denote the enumeration of A∗ defined in the lemma above.

Proposition 8. DS(A) = DS(A∗).

Proof. Let a ∈ DS(A) and let f be an enumeration of A witnessing this, i.e.
f−1(A) ∈ a. Then (f∗)−1(A∗) ≡T f

−1(A) and hence a ∈ DS(A∗).

Now let a ∈ DS(A∗) and let h be an enumeration of A∗ with h−1(A∗) ∈
a. By Proposition 2, there exists an injective enumeration g of A∗ such that
g−1(A∗) ≤T h

−1(A∗). Our goal is to construct an enumeration f of A such that
f−1(A) ≤T g

−1(A∗). Then by Proposition 4 we would get that a ∈ DS(A).

Let 0# = g−1(0∗). Then the set g−1(A) = g−1(A0) \ {0#} is computable in
g−1(A∗). Fix an element z0 ∈ g−1(A) and let

m(0) = z0;
m(i+ 1) = µz ∈ g−1(A)[(∀k ≤ i)(m(k) 6= z)].

Note that m ≤T g
−1(A∗) is a bijective enumeration of g−1(A). Let

J(x, y) = g−1(Π(g(x), g(y))).

Clearly J is computable in g−1(A∗). As usual set J1(x) = x and

Jn+1(x1, . . . , xn+1) = J(x1, Jn(x2, . . . , xn+1)).

Set f = λx.g(m(x)). Clearly f is an injective enumeration of the structure
A. Consider a predicate Ri of A. Then

f−1(Ri) = {〈x1, . . . , xri〉 : Jri(m(x1), . . . ,m(xri)) ∈ g−1(R∗i )}

and hence f−1(Ri) is computable in g−1(A∗).

Thus f−1(A) ≤T g
−1(A∗).



2.2 The set KA

Let f be an enumeration of A. Given natural numbers e and x let

f |= Fe(x) ⇐⇒ x ∈W f−1(A)
e

and let
f |= ¬Fe(x) ⇐⇒ f 6|= Fe(x).

We shall connect with the modelling relation ”|=” a forcing with conditions
all finite mappings of N into A ordered in the usual way. We shall call these
finite mappings finite parts. The finite parts will be denoted by the letters δ, τ .

Given a finite part δ and R̄ ⊆ An, let δ−1(R̄) be the finite function on the
natural numbers taking values in {0, 1} such that

δ−1(R̄)(u) ' 1 ⇐⇒ (∃x1, . . . xn ∈ dom(δ))(u = 〈x1, . . . , xn〉 &
(δ(x1), . . . , δ(xn)) ∈ R̄) and
δ−1(R̄)(u) ' 0 ⇐⇒ (∃x1, . . . xn ∈ dom(δ))(u = 〈x1, . . . , xn〉 &
(δ(x1), . . . , δ(xn)) 6∈ R̄).

(1)

By δ−1(A) we shall denote the finite function δ−1(R1)⊕ . . .⊕ δ−1(Rs).
If α is a partial function and e ∈ N, then by Wα

e we shall denote the set
of all x such that the computation {e}α(x) halts successfully. We shall assume
that if during a computation the oracle α is called with an argument outside it’s
domain, then the computation halts unsuccessfully.

Definition 9. For any e, x ∈ N and for every finite part δ, define the forcing
relations δ  Fe(x) and δ  ¬Fe(x) as follows:

δ  Fe(x) ⇐⇒ x ∈W δ−1(A)
e

δ  ¬Fe(x) ⇐⇒ (∀τ ⊇ δ)(τ 6 Fe(x)).

The following two properties of the forcing relation are obvious:

(F1) δ  (¬)Fe(x) & δ ⊆ τ ⇒ τ  (¬)Fe(x).
(F2) For every enumeration f of A,

f |= Fe(x) ⇐⇒ (∃τ ⊆ f)(τ  Fe(x)).

Definition 10. An enumeration f of A is generic if for every e, x ∈ N:

(∃τ ⊆ f)(τ  Fe(x) ∨ τ  ¬Fe(x)).

Clearly for every generic enumeration f of A for all e, x ∈ N ,

f |= ¬Fe(x) ⇐⇒ (∃τ ⊆ f)(τ  ¬Fe(x)).

With each finite part τ 6= ∅ such that dom(τ) = {x1, . . . , xn} and τ(x1) =
s1, . . . , τ(xn) = sn, we associate the element τ∗ = Πn(Π(x∗1, s1), . . . ,Π(x∗n, sn))
of A∗. Let τ∗ = 0 if τ = ∅.



Define KA = {Π3(δ∗, e∗, x∗) | (∃τ ⊇ δ)(τ  Fe(x)) & e∗, x∗ ∈ N∗}.
Let

A∗K = (A∗;A0, R
∗
1, . . . , R

∗
s , GΠ , GL, GR,=,KA).

The following proposition follows directly from Lemma 7.

Proposition 11. Let f be an enumeration of A. Then

(f∗)−1(A∗K) ≡T f
−1(A)⊕ (f∗)−1(KA).

2.3 Every Jump Spectrum is Spectrum

Theorem 12. For every structure A there exists a structure B such that
DS1(A) = DS(B).

Proof. Let B = A∗K defined above. We shall prove that DS1(A) = DS(B). We
divide the proof into two parts.

Proposition 13. DS1(A) ⊆ DS(B).

Proof. Let a ∈ DS1(A) and let g be an enumeration of A such that g−1(A)′ ∈
a. By Proposition 2, there exists an injective enumeration f of A such that
f−1(A) ≤T g−1(A). Since f−1(A)′ ≤T g−1(A)′ and DS(B) is closed upwards,
it is sufficient to show that dT(f−1(A))′ ∈ DS(B). For we shall show that
(f∗)−1(B) ≤T f−1(A)′ and use once more the fact that DS(B) is closed up-
wards.

From the construction of the enumeration f∗ in the proof of Lemma 7 it
follows that f∗ is also injective.

Recall the definition of the subset N∗ = {x∗ : x ∈ N} of A∗. For every natural
number x let x# = (f∗)−1(x∗) and let N# = {x# : x ∈ N} = (f∗)−1(N∗).

Notice that 0# = 0 and (x+ 1)
#

= J(0, x#) and hence N# is a computable
set. Clearly there exist computable functions n1 and n2 such that for all natural
numbers x, n1(x#) = x and n2(x) = x#.

Denote by ∆ the set of all finite parts in A. Clearly for every finite part τ ,
there exists a unique element τ∗ of A∗ defined as in the previous section and a
unique natural number τ# = (f∗)−1(τ∗).

Let ∆∗ = {τ∗ : τ ∈ ∆} and ∆# = {τ# : τ ∈ ∆} = (f∗)−1(∆∗).
It is easy to see that a number τ# belongs to ∆# if and only if τ# = 0 or

for some n ≥ 1 there exist n distinct elements x1
#, . . . , xn

# of N# and n odd
numbers y1, . . . , yn such that

τ# = Jn(J(x1
#, y1), . . . , J(xn

#, yn)).

Therefore the set ∆# is also computable.
Given a τ# = Jn(J(x1

#, y1), . . . , J(xn
#, yn)) ∈ ∆#, let

dom(τ#) = {x1#, . . . , xn#}

and for every xi
# ∈ dom(τ#), set τ#(xi

#) ' yi.



We shall assume that dom(τ#) = ∅ if τ# = 0.
Notice that dom(τ#) = {x# : x ∈ dom(τ)} and for every x ∈ dom(τ),

f∗(τ#(x#)) ' f(τ#(x#)/2) ' τ(x).
Let R̄ ⊆ An and τ ∈ ∆. Recall the definition of the finite function τ−1(R̄)

given in the previous section. Clearly

τ−1(R̄)(u) ' 1 ⇐⇒ (∃x1#, . . . , xn# ∈ dom(τ#))(u = 〈x1, . . . , xn〉 &
〈τ#(x1

#)/2, . . . , τ#(xn
#)/2〉 ∈ f−1(R̄))

(2)

and

τ−1(R̄)(u) ' 0 ⇐⇒ (∃x1#, . . . , xn# ∈ dom(τ#))(u = 〈x1, . . . , xn〉 &
〈τ#(x1

#)/2, . . . , τ#(xn
#)/2〉 6∈ f−1(R̄)).

(3)

By (2) and (3), there exists a computable function ρ such that for every

τ ∈ ∆, τ−1(A) = {ρ(τ#)}f−1(A).
It is easy to see that there exists a computable predicate P such that for all

τ, δ ∈ ∆, P (τ#, δ#) ' 1 ⇐⇒ τ ⊆ δ.
Thus we obtain that

(f∗)−1(KA) = {J3(δ#, e#, x#) : (∃τ ∈ ∆)(δ ⊆ τ & τ  Fe(x))} =

{J3(δ#, e#, x#) : (∃τ# ∈ ∆#)(P (δ#, τ#) ' 1 & x ∈W {ρ(τ
#)}f

−1(A)

e )}.

Hence (f∗)−1(KA) is c.e. in f−1(A). From here it follows that (f∗)−1(KA) ≤T

f−1(A)′. Therefore, by Proposition 11, (f∗)−1(B) ≤T f
−1(A)′.

Now we turn to the proof of the reverse inclusion. We shall need the following
property of the jump spectrum:

Lemma 14. Every jump spectrum is closed upwards.

Proof. Consider a structure A. Let b be a degree, b ≥ a and a ∈ DS1(A).
Then for some c ∈ DS(A), c′ = a. By the relativized jump inversion theorem
of Friedberg, there is a degree d ≥ c such that d′ = b. By Proposition 4,
d ∈ DS(A). Thus b = d′ ∈ DS1(A).

Proposition 15. DS(B) ⊆ DS1(A).

Proof. Let a ∈ DS(B) and m be an enumeration of B such that m−1(B) ∈
a. By Proposition 2, there exists an injective enumeration f of B such that
f−1(B) ≤T m−1(B). We shall construct an enumeration g of the structure A
such that g−1(A)′ ≤T f

−1(B). Then, by Lemma 14, a ∈ DS1(A).
Recall that B = A∗K . Let f−1(A) = A# and f−1(KA) = K#. Clearly the

sets A# and K# are computable in f−1(B). Define the computable in f−1(B)
function J by J(x, y) = f−1(Π(f(x), f(y))). Clearly there exist computable in
f−1(B) functions l and r such that for all x, y ∈ N ,

l(J(x, y)) = x and r(J(x, y)) = y.



Set J1(x1) = x1 and Jn+1(x1, . . . , xn+1) = J(x1, Jn(x2, . . . , xn+1)).
For every natural number x consider the element x∗ of A∗ and let x# =

f−1(x∗). Let N# = {x# : x ∈ N}. Now, we have that N# is computable in
f−1(B) and that there exist computable in f−1(B) functions n1 and n2 such
that for all x ∈ N , n1(x) = x# and n2(x#) = x.

Given a partial mapping h of N in A, by h# we shall denote the unique
mapping of N# in A# satisfying for all natural numbers x the equality:

h#(x#) ' f−1(h(x)).

Clearly for all partial mappings h1 and h2 of N in A,

h1 ⊆ h2 ⇐⇒ h1
# ⊆ h2#.

For finite parts τ we shall identify τ# and its code f−1(τ∗). Denote by ∆
the set of all finite parts and let ∆# = {τ# : τ ∈ ∆}. Notice that the set ∆# is
computable in f−1(B).

As in the proof of the previous proposition one can easily see that there
exists a computable in f−1(B) function ρ such for every finite part τ , τ−1(A) =

{ρ(τ#)}f−1(B).
Now we turn to the construction of the enumeration g. We shall construct g

as a generic enumeration such that g# is computable in f−1(B).
The enumeration g will be constructed by stages. At each stage s we shall

define a finite part τs so that τs ⊆ τs+1 and let g =
⋃
s τs.

From the construction it will follow that the function λs.τs
# is computable

in f−1(B) and hence the mapping g# is also computable in f−1(B).
We shall consider two kinds of stages. On stages s = 2r we shall ensure that

the mapping g is total and surjective. On stages s = 2r+ 1 we shall ensure that
g is generic.

Let τ0 = ∅. Suppose that we have already defined τs.
(a) Case s = 2r. Let x be the least natural number such that x# does not

belong to dom(τs
#) and let y be the least natural number in A# which does not

belong to the range of τs
#. Set τs+1(x) = f(y) and τs+1(z) ' τs(z) for z 6= x.

(b) Case s = 2〈e, x〉 + 1. Consider the set X〈e,x〉 = {δ | δ  Fe(x)}. Check
whether there exists a finite part δ ∈ X〈e,x〉 which extends τs. Clearly this is

equivalent to J3(τs
#, e#, x#) ∈ K#.

If the answer is negative then τs  ¬Fe(x). Set τs+1 = τs.
In the case of a positive answer find a δ# such that τs

# ⊆ δ# and

x ∈W {ρ(δ
#)}f

−1(B)

e .

We can do that effectively in f−1(B) by enumerating all triples (δ#, t1, t2), where
τs

# ⊆ δ#, t1, t2 ∈ N and checking for every such triple whether

x ∈W
{ρ(δ#)}f

−1(B)
t2

e,t1 .

Set τs+1 = δ.



End of the construction

By the genericity of g,

x ∈ g−1(A)′ ⇐⇒ g |= Fx(x) ⇐⇒ (∃τ ⊆ g)(τ  Fx(x)) ⇐⇒

(∃τ# ⊆ g#)(x ∈W {ρ(τ
#)}f

−1(B)

x ).

and

x ∈ N \ g−1(A)′ ⇐⇒ g |= ¬Fx(x) ⇐⇒ (∃τ ⊆ g)(τ  ¬Fx(x)) ⇐⇒
(∃τ# ⊆ g#)(J3(τ#, x#, x#) 6∈ K#).

Since g# is computable in f−1(B), we get from here that g−1(A)′ and N \
g−1(A)′ are c.e. in f−1(B) and hence g−1(A)′ ≤T f

−1(B).

The proof of the theorem is concluded.

3 Marker’s Extensions

Marker [7] presented a method of constructing for any n ≥ 1 an ℵ0-categorical
almost strongly minimal theory which is not Σn-axiomatizable. Further Gon-
charov and Khoussainov [4] adapted the construction to the general case
in order to find for any n ≥ 1 examples of ℵ1-categorical computable models as
well as ℵ0-categorical computable models whose theories are Turing equivalent
to ∅(n). We shall give the definition of Marker’s ∃ and ∀ extensions following [4].

Let A = (A;R1, . . . , Rs,=) be a countable structure such that each predicate
Ri has arity ri.

Marker’s ∃-extension of Ri, denoted by R∃i , is defined as follows. Consider
a set Xi with new elements such that Xi = {xi〈a1,...,ari 〉 | Ri(a1, . . . , ari)}. We

shall call the set Xi an ∃-fellow for Ri. We suppose that all sets A, X1,. . . , Xs

are pairwise disjoint.

The predicate R∃i is a predicate of arity ri + 1 such that

R∃i (a1, . . . , ari , x) ⇐⇒ a1, . . . , ari ∈ A & x ∈ Xi & x = xi〈a1,...,ari 〉
.

The property of R∃i is that for every a1, . . . , ari ∈ A

(∃x ∈ Xi)R
∃
i (a1, . . . , ari , x) ⇐⇒ Ri(a1, . . . , ari). (4)

Definition 16. The structure A∃ is defined as follows:

(A ∪
s⋃
i=1

Xi;R
∃
1 , . . . , R

∃
s , X1, . . . , Xs,=),

where each R∃i is the Marker’s ∃-extension of Ri with the ∃-fellow Xi.



Further, Marker’s ∀-extension of R∃i , denoted by R∃∀i , is defined as follows. Con-
sider an infinite set Yi of new elements such that

Yi = {yi〈a1,...,ari ,x〉 : ¬R∃i (a1, . . . , ari , x) & a1, . . . , ari ∈ A, & x ∈ Xi}.

We shall call the set Yi a ∀-fellow for R∃i . We suppose that all sets A, X1,. . . ,
Xs and Y1,. . . , Ys are pairwise disjoint.

The predicate R∃∀i is a predicate of arity ri + 2 such that
1. If R∃∀i (a1, . . . , ari , x, y) then a1, . . . , ari ∈ A, x ∈ Xi and y ∈ Yi;
2. If a1, . . . , ari ∈ A, & x ∈ Xi & y ∈ Yi then

¬R∃∀i (a1, . . . , ari , x, y) ⇐⇒ y = yi〈a1,...,ari ,x〉
.

From the definition of R∃∀i it follows that if a1, . . . , ari ∈ A and x ∈ Xi then

(∀y ∈ Yi)R∃∀i (a1, . . . , ari , x, y) ⇐⇒ R∃i (a1, . . . , ari , x). (5)

Definition 17. The structure A∃∀ is defined as follows

(A ∪
s⋃
i=1

Xi ∪
s⋃
i=1

Yi;R
∃∀
1 , . . . , R∃∀s , X1, . . . , Xs, Y1, . . . , Ys,=),

where Xi is the ∃-fellow for Ri and Yi is the ∀-fellow for R∃i .

The structure A∃∀ has the following properties:

Proposition 18. 1. Let a1, . . . , ari ∈ A. Then:
(a) Ri(a1, . . . , ari) ⇐⇒ (∃x ∈ Xi)(∀y ∈ Yi)R∃∀i (a1, . . . , ari , x, y);
(b) If Ri(a1, . . . , ari) then there exists a unique x ∈ Xi such that

(∀y ∈ Yi)R∃∀i (a1, . . . , ari , x, y);
2. For each sequence a1, . . . , ari ∈ A and x ∈ Xi there exists at most one y ∈ Yi

such that ¬R∃∀i (a1, . . . , ari , x, y);
3. For each y ∈ Yi there exists a unique sequence a1, . . . , ari ∈ A and x ∈ Xi

such that ¬R∃∀i (a1, . . . , ari , x, y);
4. For each x ∈ Xi there exists a unique sequence a1, . . . , ari ∈ A such that for

all y ∈ Yi the predicate R∃∀i (a1, . . . , ari , x, y) is true.

Proof. 1. (a)(⇒) Let Ri(a1, . . . , ari). Then by (4) there exists x ∈ Xi such that
R∃i (a1, . . . , ari , x) (in fact x = xi〈a1,...,ari 〉

). By (5) it follows that for every y ∈ Yi
R∃∀i (a1, . . . , ari , x, y).

(⇐) Let x ∈ Xi and R∃∀i (a1, . . . , ari , x, y) for all y ∈ Yi. Then by (5)
R∃i (a1, . . . , ari , x) and hence by (4) Ri(a1, . . . , ari).

1. (b) Follows from the definition of Xi and (5).
2. Follows from (5) and the definition of Yi.
3. Follows from the definition of Yi.
4. Let x ∈ Xi. Then x = xi〈a1,...,ari 〉

for some a1, . . . , ari from A such that

Ri(a1, . . . , ari). Hence R∃i (a1, . . . , ari , x). Then, by (5), there is no y ∈ Yi such
that ¬R∃∀i (a1, . . . , ari , x, y). Clearly for every sequence b1, . . . , bri ∈ A not equal
to a1, . . . , ari , R

∃
i (b1, . . . , bri , x) is false and hence for y = yi〈b1,...,bri ,x〉

the predi-

cate R∃∀i (b1, . . . , bri , x, y) is false.



4 Join of Two Structures

Let A = (A;R1, . . . , Rs,=) and B = (B;P1, . . . , Pt,=) be countable structures
in the languages L1 and L2 respectively. Suppose that L1 ∩ L2 = {=} and
A ∩B = ∅. Let L = L1 ∪ L2 ∪ {A,B}, where A and B are unary predicates.

Definition 19. The join of the structures A and B is the structure A ⊕B =
(A ∪B;R1, . . . , Rs, P1, . . . , Pt, A,B,=) in the language L, where

(a) the predicate A is true only over the elements of A and similarly B is
true only over the elements of B;

(b) each predicate Ri is defined on the elements of A as in the structure A
and false if some of the arguments of Ri are not in A and similarly each predicate
Pj is defined as in the structure B over the elements of B and false if some of
the arguments of Pj are not in B.

Lemma 20. Let A and B be countable structures and C = A⊕B. Then DS(C) ⊆
DS(A) and DS(C) ⊆ DS(B).

Proof. We shall prove that DS(C) ⊆ DS(A). The proof of DS(C) ⊆ DS(B) is
similar.

Let f be an enumeration of C. Fix z0 ∈ f−1(A). Define

m(0) = z0;
m(i+ 1) = µz ∈ f−1(A)[(∀k ≤ i)(〈m(k), z〉 6∈ f−1(=))].

Set h = λx.f(m(x)). Note that m ≤T f
−1(C) and the enumeration h of A is

injective and hence h−1(=) is computable. Moreover

〈x1, . . . , xri〉 ∈ h−1(Ri) ⇐⇒ Ri(f(m(x1)), . . . , f(m(xri)))
⇐⇒ 〈m(x1), . . . ,m(xri)〉 ∈ f−1(Ri).

Thus h−1(Ri) ≤T f
−1(C).

Then h−1(A) ≤T f−1(C). Since DS(A) is closed upwards, dT(f−1(C)) ∈
DS(A).

5 Representation of Σ0
2(D) Sets

Let D ⊆ N. A set M ⊆ N is in Σ0
2(D) if there exists a computable in D predicate

Q such that
n ∈M ⇐⇒ ∃a∀bQ(n, a, b) .

Definition 21. [4] If M ∈ Σ0
2(D) then M is one-to-one representable if there

exists a computable in D predicate Q with the following properties:

1. n ∈M ⇐⇒ ∃a∀bQ(n, a, b);
2. n ∈M ⇐⇒ there exists a unique a such that ∀bQ(n, a, b);
3. for every pair 〈n, a〉 there is at most one b such that ¬Q(n, a, b);
4. for every b there is a unique pair 〈n, a〉 such that ¬Q(n, a, b);



5. for every a there exists a unique n such that ∀bQ(n, a, b).

The predicate Q from the above definition is called an one-to-one representation
of M . Goncharov and Khoussainov [4] proved the following lemma:

Lemma 22. If M is a co-infinite Σ0
2(D) subset of N and there is an infinite

computable in D subset S of M such that M \ S is infinite, then M has an
one-to-one representation.

Remark 23. We will use the lemma in the next section in the proof of Theo-
rem 25. In order to satisfy the conditions of the lemma we need the following
technical explanations.

Let A = (A;R1, . . . , Rs,=) be a countable structure. Recall that the set A is
infinite. We can easily find a structure A# with the same degree spectrum as A
and such that for every injective enumeration f# of A# and for each predicate

R of A# the set f#
−1

(R) is co-infinite and there is a computable infinite subset

S of f#
−1

(R) such that f#
−1

(R) \ S is infinite.
One way to do this is the following. We add to the domain A of the structure

A two new elements say “T” and “F”. For each r-ary predicate R of A define a
(r + 1)-ary predicate R# as follows:

R#(a1, . . . , ar, b) =

 true if T ∈ {a1, . . . , ar, b};
false if F ∈ {a1, . . . , ar, b} & T 6∈ {a1, . . . , ar, b};
R(a1, . . . , ar) if F ,T 6∈ {a1, . . . , ar, b}.

Let A# = (A ∪ {T, F};R1
#, . . . , Rs

#,=).

Lemma 24. DS(A) = DS(A#) and for every injective enumeration f# of A#

and each nontrivial predicate Ri
# the set f#

−1
(Ri

#) is co-infinite and there is

a computable infinite set S ⊆ f#−1(Ri
#) such that f#

−1
(Ri

#) \ S is infinite.

Proof. For each injective enumeration f of A we construct an enumeration f#

of A# as follows: f#(0) = T, f#(1) = F and f#(x+ 2) = f(x). Then

〈x1, . . . , xri , z〉 ∈ f#
−1

(Ri
#) ⇐⇒ (0 ∈ {x1, . . . , xri , z})∨

(0, 1 6∈ {x1, . . . , xri , z} & 〈x1 − 2, . . . , xri − 2〉 ∈ f−1(Ri)).

It is obvious that f#
−1

(Ri
#) ≤T f

−1(Ri). Moreover let c 6= 0, 1.

〈x1, . . . , xri〉 ∈ f−1(Ri) ⇐⇒ 〈x1 + 2, . . . , xri + 2, c〉 ∈ f#−1(Ri
#).

So f#
−1

(Ri
#) ≡T f

−1(Ri).
For each injective enumeration f# of A# we construct an injective enumer-

ation f of A as follows. Let tt = f#
−1

(T ), ff = f#
−1

(F ) and a ∈ f#−1(A).

m(0) = a;
m(i+ 1) = µz[(∀k ≤ i)(z 6= m(k) & z 6= tt & z 6= ff ].



Set f = λx.f#(m(x)). Then

〈x1, . . . , xri〉 ∈ f−1(Ri) ⇐⇒ 〈m(x1), . . . ,m(xri), a〉 ∈ f#
−1

(Ri
#).

〈x1, . . . , xri , z〉 ∈ f#
−1

(Ri
#) ⇐⇒ (tt ∈ {x1, . . . , xri , z})∨

(tt, ff 6∈ {x1, . . . , xri , z} & 〈m−1(x1), . . . ,m−1(xri)〉 ∈ f−1(Ri)).

So f−1(Ri) ≡T f
#−1(Ri

#).
In order to see that DS(A) ⊆ DS(A#) let a ∈ DS(A) and let h be an enumer-

ation of A, h−1(A) ∈ a. By Proposition 2, there exists an injective enumeration
f of A such that f−1(A) ≤T h−1(A). Then let f# be the enumeration of A#

constructed above and so f−1(A) ≡T f
#−1(A#). Then by Proposition 4 we have

that a ∈ DS(A#). The proof of DS(A#) ⊆ DS(A) is similar.

For each injective enumeration f# of A# the set f#
−1

(Ri
#) is co-infinite

since the set {〈x1, . . . , xri , z〉 | ff ∈ {x1, . . . , xri , z} & tt 6∈ {x1, . . . , xri , z}} is

infinite, here tt = f#
−1

(T ), ff = f#
−1

(F ). There is an infinite computable

subset S = {〈x1, . . . , xri , z〉 | tt ∈ {x1, . . . , xri , z}} of f#
−1

(Ri
#). Moreover

f#
−1

(Ri
#) \ S is infinite. Let a1, . . . , ari ∈ A such that Ri(a1, . . . , ari). The

set {〈f#−1(a1), . . . , f#
−1

(ari), z〉 | z ∈ N & z 6∈ {tt, ff}} ⊆ f#
−1

(Ri
#) \ S is

infinite.
Note that actually the set f#

−1
(¬Ri#) is also co-infinite and there is an

infinite computable subset P of f#
−1

(¬Ri#), so that f#
−1

(¬Ri#)\P is infinite.

6 The Jump Inversion Theorem

Theorem 25. Let A and B be structures such that DS(A) ⊆ DS1(B). Then
there exists a structure C such that DS(C) ⊆ DS(B) and DS1(C) = DS(A).

Proof. Let A = (A;R1, . . . , Rs,=). For every predicate Ri consider a new pred-
icate Rci which is equal to the negation of Ri, i.e.

Rci (a1, . . . , ari) ⇐⇒ ¬Ri(a1, . . . , ari),

for every a1, . . . , ari ∈ A.
By Lemma 24 we may suppose that for every injective enumeration f of A

and each nontrivial predicate Ri the sets f−1(Ri) and f−1(Rci ) are co-infinite
and there are computable infinite sets S ⊆ f−1(Ri) and P ⊆ f−1(Rci ) such that
f−1(Ri) \ S and f−1(Rci ) \ P are infinite.

We extend the structure A including the negations of the predicates as fol-
lows:

Ā = (A;R1, R
c
1, . . . , Rs, R

c
s,=).

We will denote the new structure by Ā = (A; R̄1, R̄2, . . . , R̄2s−1, R̄2s,=), where
R̄2i−1 = Ri and R̄2i = Rci for i = 1, . . . , s.

It is clear that DS(A) = DS(Ā) since for each enumeration f of A we have
that f−1(A) ≡T f

−1(Ā).



Consider now the structure Ā∃∀. Let Xj be the ∃-fellow of R̄j and Yj be the
∀-fellow of R̄∃j , j = 1, . . . , 2s.

Without loss of generality we may assume that the structures
B = (B;P1, . . . , Pt,=) and Ā∃∀ are disjoint.

Let C = B ⊕ Ā∃∀. By Lemma 20, DS(C) ⊆ DS(B). We shall prove that
DS1(C) = DS(Ā).

We start with the proof of the inclusion DS1(C) ⊆ DS(Ā).
Let c ∈ DS1(C) and let g be an enumeration of C such that c = dT(g−1(C))′.

By Proposition 2 there is an injective enumeration h of C such that h−1(C) ≤T

g−1(C). We shall construct an enumeration f of Ā such that f−1(Ā) ≤T h
−1(C)′

and hence f−1(Ā) ≤T g
−1(C)′. Then by Proposition 4, c ∈ DS(Ā).

We have

z ∈ h−1(A) ⇐⇒ (∀j ≤ 2s)(z 6∈ h−1(Xj) & z 6∈ h−1(Yj)) & z 6∈ h−1(B).

Thus h−1(A) ≤T h
−1(C).

Fix x0 ∈ h−1(A). Let
m(0) = x0; m(i+ 1) = µz ∈ h−1(A)[(∀k ≤ i)(m(k) 6= z)].
Clearly m ≤T h

−1(C).
Set f = λa.h(m(a)). Note that the enumeration f is injective.
Let R be an r-ary predicate of Ā, X be the ∃-fellow of R and Y be the

∀-fellow of R∃.
By Proposition 18, we have

〈a1, . . . , ar〉 ∈ f−1(R) ⇐⇒ R(f(a1), . . . , f(ar)) ⇐⇒
(∃a ∈ X)(∀b ∈ Y )R∃∀(f(a1), . . . , f(ar), a, b) ⇐⇒
(∃x ∈ h−1(X))(∀y ∈ h−1(Y ))R∃∀(h(m(a1)), . . . , h(m(ar)), h(x), h(y)) ⇐⇒
(∃x ∈ h−1(X))(∀y ∈ h−1(Y ))(〈m(a1), . . . ,m(ar), x, y〉 ∈ h−1(R∃∀)) ⇐⇒
(∃x)(∀y)(〈m(a1), . . . ,m(ar), x, y〉 ∈ h−1(R∃∀) & x ∈ h−1(X) & y ∈ h−1(Y )).

Hence f−1(R) ∈ Σ0
2(h−1(C)).

Consider now the complement predicate Rc and let and Xc be the ∃-fellow
for Rc and Y c be the ∀-fellow for (Rc)∃. We have again:

〈a1, . . . , ar〉 ∈ f−1(Rc) ⇐⇒ Rc(f(a1), . . . , f(ar)) ⇐⇒
(∃a ∈ Xc)(∀b ∈ Y c)(Rc)∃∀(f(a1), . . . , f(ar), a, b) ⇐⇒
(∃x ∈ h−1(Xc))(∀y ∈ h−1(Y c))(〈m(a1), . . . ,m(ar), x, y〉 ∈ h−1(Rc)∃∀).

Thus f−1(Rc) ∈ Σ0
2(h−1(C)). Therefore f−1(R) ∈ ∆0

2(h−1(C)) and hence

f−1(R) ≤T h
−1(C)′.

So, f−1(Ā) ≤T h
−1(C)′.

Now we turn to the proof of the reverse inclusion DS(Ā) ⊆ DS1(C).
Let a ∈ DS(Ā) and let n be an enumeration of Ā such that a = dT(n−1(Ā)).

By Proposition 2, there is an injective enumeration f of Ā such that f−1(Ā) ≤T

n−1(Ā). We are going to construct an enumeration h of C such that h−1(C)′ ≤T



f−1(Ā). Since, by Lemma 14, DS1(C) is closed upwards we shall obtain that
a ∈ DS1(C).

Recall that DS(Ā) = DS(A) ⊆ DS1(B) and dT(f−1(Ā)) ∈ DS(Ā). Then there
is an enumeration g of B such that f−1(Ā) ≡T (g−1(B))′. Set D = g−1(B).
Consider the predicate R̄j . Let R̄j be r-ary. Since f−1(Ā) ≤T D′, we have that
f−1(R̄j) ≤T D′. Then f−1(R̄j) ∈ Σ0

2(D). Set Mj = f−1(R̄j). The enumeration
f is injective and hence the set Mj is co-infinite and there is a computable
infinite set S ⊆ Mj such that Mj \ S is infinite. So Mj satisfies all conditions
from Lemma 22. Then by Lemma 22 there exists a computable in D predicate
Qj which is a one-to-one representation of Mj . Then

1. 〈n1, . . . , nr〉 ∈Mj ⇐⇒ there exists a unique a such that
(∀b)Qj(〈n1, . . . , nr〉, a, b);

2. for every b let r(b) = 〈〈n1, . . . , nr〉, a〉 be the unique pair such that

¬Qj(〈n1, . . . , nr〉, a, b);

3. for every a let l(a) = 〈n1, . . . , nr〉 be the unique 〈n1, . . . , nr〉 such that
∀bQj(〈n1, . . . , nr〉, a, b).

Let N1 = {〈1, n〉 | n ∈ N}, N2 = {〈2, j, a〉 | j ≤ 2s & a ∈ N} and N3 =

{〈3, j, b〉 | j ≤ 2s & b ∈ N}. Set N0 = N \ (
⋃3
i=1 Ni). Consider a computable

bijection m from N onto N0.
The definition of the enumeration h of C is the following:
h(m(n)) = g(n);
h(〈1, n〉) = f(n);
h(〈2, j, a〉) = xj〈f(n1),...,f(nr)〉, if l(a) = 〈n1, . . . , nr〉;
h(〈3, j, b〉) = yj〈f(n1),...,f(nr),h(〈2,j,a〉)〉, if r(b) = 〈〈n1, . . . , nr〉, a〉.
Recall that Xj = {xj〈a1,...,ar〉 | R̄j(a1, . . . , ar)} is the ∃-fellow for R̄j and

Yj = {yj〈a1,...,ar,x〉 | ¬R̄
∃
j (a1, . . . , ar, x)} is the ∀-fellow for R̄∃j .

From the choice of Yj it follows that

¬Qj(〈n1, . . . , nr〉, a, b) ⇐⇒ r(b) = 〈〈n1, . . . , nr〉, a〉
⇐⇒ h(〈3, j, b〉) = yj〈f(n1),...,f(nr),h(〈2,j,a〉)〉
⇐⇒ ¬R̄∃∀j (f(n1), . . . , f(nr), h(〈2, j, a〉), h(〈3, j, b〉)).

An then

Qj(〈n1, . . . , nr〉, a, b) ⇐⇒ R̄∃∀j (〈f(n1), . . . , f(nr), h(〈2, j, a〉), h(〈3, j, b〉)).

Define

R̄∃∀,hj (〈〈1, n1〉, . . . , 〈1, nr〉, 〈2, j, a〉, 〈3, j, b〉〉) ⇐⇒ Qj(〈n1, . . . , nr〉, a, b) .

It follows that R̄∃∀,hj ≤T D. Moreover

R̄∃∀,hj (〈〈1, n1〉, . . . , 〈1, nr 〉, 〈2, j, a〉, 〈3, j, b〉〉) ⇐⇒
R̄∃∀j (h(〈1, n1〉), . . . , h(〈1, nr〉)), h(〈2, j, a〉), h(〈3, j, b〉))



So R̄∃∀,hj = h−1(R̄∃∀j ) and hence h−1(R̄∃∀j ) ≤T D.

The sets h−1(A) = N1, h−1(Xj) = {〈2, j, a〉 | a ∈ N} , h−1(Yj) = {〈3, j, b〉 |
b ∈ N} are computable. Then h−1(Ā∃∀) ≤T D.

Note that

R̄j(f(n1), . . . , f(nr)) ⇐⇒ 〈n1, . . . , nr〉 ∈ f−1(R̄j)
⇐⇒ (∃a)(∀b)Qj(〈n1, . . . , nr〉, a, b)
⇐⇒ (∃a)(∀b)R̄∃∀,hj (〈〈1, n1〉 . . . 〈1, nr〉, 〈2, j, a〉, 〈3, j, b〉〉)
⇐⇒ (∃x ∈ Xj)(∀y ∈ Yj)R̄∃∀j (f(n1), . . . , f(nr), x, y).

For every predicate Pj of B it holds that
h−1(Pj) = {〈m(n1), . . . ,m(npj )〉 | 〈n1, . . . , npj 〉 ∈ g−1(Pj)} and h−1(B) = N0.
It is obvious that h−1(B) ≤T D = g−1(B).

The pullback of the equality is defined over the elements which are pullbacks
of elements of B as g−1(=). Over the other elements the equality is defined in
the usual way. So, h−1(=) is the set:

{〈x, y〉 | (〈m−1(x),m−1(y)〉 ∈ g−1(=) & x, y ∈ N0) ∨ (x = y & x, y 6∈ N0)}.

Then h−1(=) ≤T D. Thus h−1(B⊕ Ā∃∀) = h−1(C) ≤T D = g−1(B). Using that
g−1(B)′ ≡T f

−1(Ā), we get from here that h−1(C)′ ≤T f
−1(Ā).

7 Some Applications

The jump inversion theorem proved in the previous section can be easily gener-
alized in the following way.

Definition 26. Given a structure A and n ≥ 0, let the nth jump spectrum
DSn(A) be the set {a(n) : a ∈ DS(A)}.

Clearly DS0(A) = DS(A) and DSn+1(A) = {a′ : a ∈ DSn(A)}. Using this
and Theorem 12, one can easily see by induction on n that for every n there
exists a structure A(n) such that DSn(A) = DS(A(n)).

Theorem 27. Let A and B be structures such that DS(A) ⊆ DSn(B). Then
there exists a structure C such that DS(C) ⊆ DS(B) and DSn(C) = DS(A).

Proof. Induction on n. The assertion is obvious for n = 0. Suppose that it is
true for some n. Let DS(A) ⊆ DSn+1(B). Consider a structure B(n) such that
DS(B(n)) = DSn(B). Clearly DS(A) ⊆ DS1(B(n)) and hence by Theorem 25
there exists a structure C∗ such that DS(C∗) ⊆ DS(B(n)) and DS1(C∗) = DS(A).
By the induction hypothesis, there exists a structure C such that DS(C) ⊆ DS(B)
and DSn(C) = DS(C∗). Then DSn+1(C) = DS1(C∗) = DS(A).

Definition 28. A degree a is said to be the nth jump degree of a structure A if
a is the least element of DSn(A).



Notice that if a is the nth jump degree of A then for all k, a(k) is the (n+k)th
jump degree of A. Hence if a structure A possesses a nth jump degree then it
possesses (n+ k)th jump degrees for all k.

With respect to the jump degrees of A it does not matter whether we consider
arbitrary enumerations of A or only injective enumerations of A. Indeed, by
Proposition 2, if a is the least element of the spectrum of A then a = dT(f−1(A))
for some injective enumeration f .

The definitions above can be naturally generalized for all recursive ordinals
α. In [3] Downey and Knight proved with a fairly complicated construction
that for every recursive ordinal α there exists a linear order A such that A has
αth jump degree equal to 0α but for all β < α, there is no βth jump degree of
A.

Here we shall present a construction which allows us to obtain for every
natural number n examples of structures which have (n + 1)th jump degree
equal to 0(n+1) but do not have kth jump degree for k ≤ n.

The idea of this construction is the following. Suppose that we have a struc-
ture A satisfying the following conditions:

(C1) DS(A) ⊆ {a : 0(n) ≤ a}.
(C2) DS(A) has no least element.
(C3) A has a first jump degree equal to 0(n+1).

Let B = (N ; =) be a structure such that DS(B) is equal to the set of all
Turing degrees. Clearly DS(A) ⊆ DSn(B). By Theorem 27, there exists a struc-
ture C such that DSn(C) = DS(A). Therefore C does not have a nth jump
degree and hence it has no kth jump degree for k ≤ n. On the other hand
DSn+1(C) = DS1(A) and hence the (n+ 1)th jump degree of C is 0(n+1).

Now we provide an example of a structure satisfying the conditions (C1) –
(C3).

We shall need the following fact about the degree spectra of the subgroups
of the additive group Q of the rational numbers, i.e. of the torsion free Abelian
groups of rank 1. Details can be found in [2] and [11].

Given a set A of natural numbers and z ∈ N , let

Wz(A) = {x : (∃v)(〈x, v〉 ∈Wz & Dv ⊆ A)}, .

where Dv denotes the finite set with canonical code v.
We say that A ≤e B if A = Wz(B) for some z. Notice that if A ≤e B and B is

c.e. in C, then A is c.e. in C. Furthermore if A is c.e. in B, then A ≤e B⊕(N \B).
For every set A of natural numbers let Je(A) = {x : x ∈ Wx(A)}. The set

Je(A) is called the enumeration jump of A.
Fact.[2, 11] For every set A of natural numbers there exists a group GA ⊆ Q

satisfying the following conditions:

1. DS(GA) = {dT(X) : A is c.e. in X}.
2. dT(Je(A)) is the first jump degree of GA.

By a relativization of the Jump inversion theorem of McEvoy [6], we obtain
that there exists a set A such that



1. ∅(n) ⊕ (N \ ∅(n)) <e A;
2. (∀X)(X ⊕ (N \X) ≤e A⇒ X ≤T ∅(n));
3. ∅(n+1) ≡T Je(A).

Now consider GA. Let dT(X) ∈ DS(GA). Then A is c.e. in X and hence
∅(n) ⊕N \ ∅(n) is c.e. in X. Then ∅(n) ≤T X. So, GA satisfies (C1). Clearly GA
satisfies (C3).

Assume that dT(X) is the least element of DS(GA). Then, by Selman’s The-
orem [10], X ⊕ (N \X) ≤e A and hence X ≤T ∅(n). Thus A is c.e. ∅(n). From
here it follows that A ≤e ∅(n)⊕(N \∅(n)). A contradiction. So, GA satisfies (C2).
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