Cototal enumeration degrees

Alexandra A. Soskova¹

Sofia University

joint work with Andrews, Ganchev, Kuyper, Lempp, Miller and M. Soskova
Siena University Logic Seminar

¹Supported by Bulgarian National Science Fund DN 02/16 /19.12.2016 and Sofia University Science Fund, 80-10-147/20.04.2017

Definition

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

• $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.

Definition

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.

Definition

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.

Definition

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- The least element: $\mathbf{0}_{\mathbf{e}} = d_e(\emptyset)$, the set of all c.e. sets.

Definition

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- The least element: $\mathbf{0}_{\mathbf{e}} = d_e(\emptyset)$, the set of all c.e. sets.
- The least upper bound: $d_e(A) \vee d_e(B) = d_e(A \oplus B)$.

Definition

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- The least element: $\mathbf{0}_{\mathbf{e}} = d_e(\emptyset)$, the set of all c.e. sets.
- The least upper bound: $d_e(A) \vee d_e(B) = d_e(A \oplus B)$.
- The enumeration jump: $d_e(A)' = d_e(K_A \oplus \overline{K_A})$, where $K_A = \{\langle e, x \rangle \mid x \in W_e(A)\}$.

Selman's theorem

Equivalently, $A \leq_e B$ if there is a single Turing functional which uniformly, given any enumeration of B, outputs an enumeration of A.

Selman's theorem

Equivalently, $A \leq_e B$ if there is a single Turing functional which uniformly, given any enumeration of B, outputs an enumeration of A.

Definition

Given a set A, let $\mathcal{E}(A)$ denote the collection of all Turing degrees computing enumerations of A, called the enumeration cone of A.

Theorem (Selman)

A is enumeration reducible to B if and only if $\mathcal{E}(B) \subseteq \mathcal{E}(A)$.

What connects \mathcal{D}_T and \mathcal{D}_e

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

What connects \mathcal{D}_T and \mathcal{D}_e

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

A set A is total if its positive membership information already suffices to determine its negative membership information, i.e. if $\overline{A} \leq_e A$. An enumeration degree is total if it contains a total set.

What connects \mathcal{D}_T and \mathcal{D}_e

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

A set A is *total* if its positive membership information already suffices to determine its negative membership information, i.e. if $\overline{A} \leq_e A$. An enumeration degree is *total* if it contains a total set.

Within the enumeration degrees, the total degrees are an embedded copy of the Turing degrees \mathcal{D}_T via $\iota:A\to A\oplus \overline{A}$. The embedding ι preserves the order, the least upper bound and the jump operation.

Total and cototal

Definition

A set A is *cototal* if $A \leq_e \overline{A}$. A degree **a** is cototal if it contains a cototal set.

For every set A the set $A \oplus \overline{A}$ is cototal.

So, every total e-dergree is cototal.

Total and cototal

Definition

A set A is *cototal* if $A \leq_e \overline{A}$. A degree **a** is cototal if it contains a cototal set.

For every set A the set $A \oplus \overline{A}$ is cototal.

So, every total e-dergree is cototal.

The cototal enumeration degrees form a proper substructure of \mathcal{D}_e closed under least upper bound and the enumeration jump operator.

- The name "total" is coming of the following fact: given a total function f, the set $G(f) = \{\langle n, f(n) \rangle \mid n \in \omega \}$ is a total set.
- Equivalently, given a total function f, the graph-complement $\overline{G(f)}$ is cototal.
- ullet If an enumeration degree contains a set of the form G(f), then we call it graph-cototal.
- So every total enumeration degree is graph-cototal, and every graph-cototal is cototal.

Definition

• A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.
- The language of X is the set $L_X = \{ \sigma \in 2^{<\omega} \mid \exists \alpha \in X (\sigma \text{ is a subword of } \alpha) \}.$

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.
- The language of X is the set $L_X = \{ \sigma \in 2^{<\omega} \mid \exists \alpha \in X (\sigma \text{ is a subword of } \alpha) \}.$
- $\overline{L_X}$ is the set of forbidden words.

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.
- The language of X is the set $L_X = \{ \sigma \in 2^{<\omega} \mid \exists \alpha \in X (\sigma \text{ is a subword of } \alpha) \}.$
- $\overline{L_X}$ is the set of forbidden words.
- If X is minimal and $\sigma \in L_X$ then for every $\alpha \in X$, σ is a subword of α . So every element of X can enumerate the set L_X .

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.
- The language of X is the set $L_X = \{ \sigma \in 2^{<\omega} \mid \exists \alpha \in X (\sigma \text{ is a subword of } \alpha) \}.$
- \bullet $\overline{L_X}$ is the set of forbidden words.
- If X is minimal and $\sigma \in L_X$ then for every $\alpha \in X$, σ is a subword of α . So every element of X can enumerate the set L_X .
- ② If we can enumerate L_X then we can compute a member of X.
- **3** The Turing degrees that compute elements of X are exactly the degrees that contain enumerations of L_X .

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.
- The language of X is the set $L_X = \{ \sigma \in 2^{<\omega} \mid \exists \alpha \in X (\sigma \text{ is a subword of } \alpha) \}.$
- \bullet $\overline{L_X}$ is the set of forbidden words.
- If X is minimal and $\sigma \in L_X$ then for every $\alpha \in X$, σ is a subword of α . So every element of X can enumerate the set L_X .
- ② If we can enumerate L_X then we can compute a member of X.
- **3** The Turing degrees that compute elements of X are exactly the degrees that contain enumerations of L_X .
- **③** (Jaendel) If we can enumerate the set of forbidden words $\overline{L_X}$ then we can enumerate L_X . So, $L_X \leq_e \overline{L_X}$.
- **(McCarthy)** If A is cototal, then $A \equiv_e L_X$ for some minimal subshift X.

Definition

A set A is *cototal* if $A \leq_e \overline{A}$. A degree **a** is cototal if it contains a cototal set.

Definition

A set A is *cototal* if $A \leq_e \overline{A}$. A degree **a** is cototal if it contains a cototal set.

Definition

A set A is graph-cototal if $A \equiv_e \overline{G_f}$ for some total function f. A degree a is graph-cototal if it contains a graph-cototal set.

Definition

A set A is *cototal* if $A \leq_e \overline{A}$. A degree **a** is cototal if it contains a cototal set.

Definition

A set A is graph-cototal if $A \equiv_e \overline{G_f}$ for some total function f. A degree a is graph-cototal if it contains a graph-cototal set.

Definition

A set A is weakly cototal if there is a set $A \equiv_e B$, such that \overline{B} is total.

Definition

A set A is *cototal* if $A \leq_e \overline{A}$. A degree **a** is cototal if it contains a cototal set.

Definition

A set A is graph-cototal if $A \equiv_e \overline{G_f}$ for some total function f. A degree a is graph-cototal if it contains a graph-cototal set.

Definition

A set A is weakly cototal if there is a set $A \equiv_e B$, such that \overline{B} is total.

It is clear that every cototal degree is weakly cototal, since if $A \leq_e \overline{A}$, then \overline{A} is a total set.

total \Rightarrow graph-cototal \Rightarrow cototal \Rightarrow weakly cototal.

Σ_2^0 e-degrees

Proposition

 Σ_2^0 e-degrees are (graph-)cototal.

Let A be Σ_2^0 . Consider the set $K_A = \bigoplus_{e < \omega} \Gamma_e(A)$. Then $A \equiv_e K_A$ and

$$\overline{K_A} = \bigoplus_{e \in G} \overline{\Gamma_e(A)} \ge_e \overline{K} \ge_e A \equiv_e K_A.$$

Corollary

Graph-cototal does not imply total.

Unique correct axiom

Proposition

- There are Π_2^0 -sets that do not even have cototal enumeration degree.
- But every Π_2^0 -set has weakly cototal degree. $A \equiv_e A \oplus K \Rightarrow \overline{A \oplus K} \equiv_e \overline{A} \oplus \overline{K} \equiv_e \overline{K} \in \mathbf{0}'_e$
- There are Δ_3^0 -sets that are not even weakly cototal.

Theorem

An e-degree $\bf a$ is graph-cototal if and only if $\bf a$ contains a cototal set A, such that for some enumeration operator Γ , we have that $A=\Gamma(\overline{A})$ and for every $n\in A$ there is a unique axiom $\langle n,D\rangle\in\Gamma$ such that $D\subseteq A$.

Goal:

Cototal does not imply graph-cototal.

Maximal independent sets

Definition

Let $G = (\mathbb{N}, E)$ be a graph and $S \subseteq \mathbb{N}$.

- S is an independent set for G if $i \neq j$ are in S then $(i, j) \notin E$.
- ② An independent set is *maximal* if it has no proper independent superset, i.e. for every element $i \notin S$ there is a $j \in S$ such that $(i, j) \in E$.

Maximal independent sets

Definition

Let $G = (\mathbb{N}, E)$ be a graph and $S \subseteq \mathbb{N}$.

- S is an independent set for G if $i \neq j$ are in S then $(i, j) \notin E$.
- ② An independent set is *maximal* if it has no proper independent superset, i.e. for every element $i \notin S$ there is a $j \in S$ such that $(i, j) \in E$.

If S is a maximal independent set for G, then S can enumerate its complement: $i \in \overline{S}$ iff there is a $j \neq i$ such that $(i,j) \in E$ and $j \in S$.

Maximal independent sets

Definition

Let $G = (\mathbb{N}, E)$ be a graph and $S \subseteq \mathbb{N}$.

- S is an independent set for G if $i \neq j$ are in S then $(i, j) \notin E$.
- ② An independent set is *maximal* if it has no proper independent superset, i.e. for every element $i \notin S$ there is a $j \in S$ such that $(i, j) \in E$.

If S is a maximal independent set for G, then S can enumerate its complement: $i \in \overline{S}$ iff there is a $j \neq i$ such that $(i, j) \in E$ and $j \in S$.

Theorem

Every cototal degree contains the complement of maximal independent set for $\omega^{<\omega}$.

Theorem

There is a cototal dregee which is not graph-cototal.

Maximal antichains

Proposition

If C is a maximal antichain on $\omega^{<\omega}$, then $\overline{C} \leq_e C$, i.e. \overline{C} is cototal.

To determine if a string $\sigma \in \omega^{<\omega}$ is in \overline{C} , we wait for some element comparable but not equal to σ to enter C. Since C is an antichain, we only identify elements of \overline{C} in this way. And by maximality, if $\sigma \in \overline{C}$ then something comparable but not equal to σ must eventually enter C.

Theorem (McCarthy)

Every cototal degree contains the complement of a maximal antichain in $\omega^{<\omega}$.

Maximal antichains

Proposition

If C is a maximal antichain on $\omega^{<\omega}$, then $\overline{C} \leq_e C$, i.e. \overline{C} is cototal.

To determine if a string $\sigma \in \omega^{<\omega}$ is in \overline{C} , we wait for some element comparable but not equal to σ to enter C. Since C is an antichain, we only identify elements of \overline{C} in this way. And by maximality, if $\sigma \in \overline{C}$ then something comparable but not equal to σ must eventually enter C.

Theorem (McCarthy)

Every cototal degree contains the complement of a maximal antichain in $\omega^{<\omega}$.

Definition (Montalban)

A tree $T\subseteq 2^{<\omega}$ is *e-pointed* if it has no dead ends and every infinite path $f\in [T]$ enumerates T.

Theorem (McCarthy)

An e-degree is cototal if and only if it contains a (uniformly) e-pointed tree.

Joins of nontrivial K-pairs

Definition

A K-pair is a pair of sets $\{A, B\}$ for which there is a c.e. set W such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Joins of nontrivial K-pairs

Definition

A \mathcal{K} -pair is a pair of sets $\{A, B\}$ for which there is a c.e. set W such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Proposition (Kalimullin)

Let $\{A, B\}$ be a \mathcal{K} -pair. If A and B are not c.e. then:

- $\bullet \quad A \leq_e \overline{B} \text{ and } \overline{A} \leq_e \emptyset' \oplus B.$
- \bullet $B \leq_e \overline{A}$ and $\overline{B} \leq_e \emptyset' \oplus A$.

Joins of nontrivial K-pairs

Definition

A \mathcal{K} -pair is a pair of sets $\{A,B\}$ for which there is a c.e. set W such that $A\times B\subseteq W$ and $\overline{A}\times \overline{B}\subseteq \overline{W}$.

Proposition (Kalimullin)

Let $\{A, B\}$ be a \mathcal{K} -pair. If A and B are not c.e. then:

- $B \leq_e \overline{A} \text{ and } \overline{B} \leq_e \emptyset' \oplus A.$

Proposition

If $\{A, B\}$ is a nontrivial \mathcal{K} -pair then $A \oplus B$ is cototal.

Joins of nontrivial K-pairs

Definition

A \mathcal{K} -pair is a pair of sets $\{A,B\}$ for which there is a c.e. set W such that $A\times B\subseteq W$ and $\overline{A}\times \overline{B}\subseteq \overline{W}$.

Proposition (Kalimullin)

Let $\{A, B\}$ be a \mathcal{K} -pair. If A and B are not c.e. then:

- $B \leq_e \overline{A} \text{ and } \overline{B} \leq_e \emptyset' \oplus A.$

Proposition

If $\{A, B\}$ is a nontrivial \mathcal{K} -pair then $A \oplus B$ is cototal.

Proof: $A \oplus B \leq_e \overline{B} \oplus \overline{A} \equiv_e \overline{A \oplus B}$.

Continuous degrees

J. Miller introduced the continuous degrees \mathcal{D}_r to compare the complexity of points in computable metric spaces. A point x in a computable metric space can be described by a sequence of "rational" points that limit to it. For two points x; y we say that $x \leq_r y$ if every description of y computes a description of x. The continuous degrees embed into \mathcal{D}_e . In fact, $\mathcal{D}_T \subset \mathcal{D}_r \subset \mathcal{D}_e$.

Definition (J. Miller)

An e-degree is continuous if it contains a set of the form $A = \bigoplus_{i < \omega} (\{q \mid q < \alpha_i\} \oplus \{q \mid q > \alpha_i\})$, where $\{\alpha_i\}_{i < \omega}$ is a sequence of real numbers.

Continuous degrees

J. Miller introduced the continuous degrees \mathcal{D}_r to compare the complexity of points in computable metric spaces. A point x in a computable metric space can be described by a sequence of "rational" points that limit to it. For two points x; y we say that $x \leq_r y$ if every description of y computes a description of x. The continuous degrees embed into \mathcal{D}_e . In fact, $\mathcal{D}_T \subset \mathcal{D}_r \subset \mathcal{D}_e$.

Definition (J. Miller)

An e-degree is continuous if it contains a set of the form

 $A = \bigoplus_{i < \omega} (\{q \mid q < \alpha_i\} \oplus \{q \mid q > \alpha_i\}),$ where $\{\alpha_i\}_{i < \omega}$ is a sequence of real numbers.

Proposition

Continuous degrees are cototal.

$$\overline{A} \equiv_e B = \bigoplus_{i < \omega} (\{q \mid q \le \alpha_i\} \oplus \{q \mid q \ge \alpha_i\}).$$

Kihara and Pauly extend Miller's idea to points in arbitrary represented topological spaces.

Recall that $\overline{K_A} = \bigoplus_e \overline{\Gamma_e(A)}$.

Recall that
$$\overline{K_A} = \bigoplus_e \overline{\Gamma_e(A)}$$
.

Proposition

If $A \leq_e B$ then $\overline{K_A} \leq_1 \overline{K_B}$.

Recall that $\overline{K_A} = \bigoplus_e \overline{\Gamma_e(A)}$.

Proposition

If $A \leq_e B$ then $\overline{K_A} \leq_1 \overline{K_B}$.

Definition

The skip of A is the set $A^{\Diamond} = \overline{K_A}$. The skip of a degree \mathbf{a} is $\mathbf{a}^{\Diamond} = d_e(A^{\Diamond})$.

Recall that $\overline{K_A} = \bigoplus_e \overline{\Gamma_e(A)}$.

Proposition

If $A \leq_e B$ then $\overline{K_A} \leq_1 \overline{K_B}$.

Definition

The skip of A is the set $A^{\Diamond} = \overline{K_A}$. The skip of a degree \mathbf{a} is $\mathbf{a}^{\Diamond} = d_e(A^{\Diamond})$.

Proposition

A degree **a** is cototal if and only if $\mathbf{a} \leq \mathbf{a}^{\Diamond}$ if and only if $\mathbf{a}^{\Diamond} = \mathbf{a}'$.

$$\Rightarrow A \leq_e \overline{A} \leq_e A^{\Diamond}$$

$$\Leftarrow K_A \equiv_e A \leq_e A^{\Diamond} = \overline{K_A}.$$

Recall that $A' = K_A \oplus \overline{K_A}$.

Theorem

Let $S \geq_e \emptyset'$. There is a set A such that $A^{\Diamond} \equiv_e S$.

Theorem

Let $S \geq_e \emptyset'$. There is a set A such that $A^{\lozenge} \equiv_e S$.

We build A so that:

Theorem

Let $S \geq_e \emptyset'$. There is a set A such that $A^{\lozenge} \equiv_e S$.

We build A so that:

We first build a table \hat{A} with one empty box in each column as a set c.e. in \emptyset' .

The set of empty boxes will be computable from \emptyset' .

Then
$$A = \hat{A} \cup \{\langle n, s \rangle \mid n \in \overline{S}\}.$$

Theorem

Let $S \geq_e \emptyset'$. There is a set A such that $A^{\lozenge} \equiv_e S$.

We build A so that:

We first build a table \hat{A} with one empty box in each column as a set c.e. in \emptyset' .

The set of empty boxes will be computable from \emptyset' .

Then
$$A = \hat{A} \cup \{\langle n, s \rangle \mid n \in \overline{S}\}.$$

Note! $\overline{S} \leq_e A \oplus \emptyset'$. So if we start out with an S that is not total set but belongs to a total degree then A is not cototal. But $A \equiv_e K_A$ and $\overline{K_A} = A^{\Diamond} \equiv_e S$ has a total degree and so A is weakly cototal.

Corollary

Weakly cototal does not imply cototal.

We can define the *iterated skip operator* of an enumeration degree a by:

- \bullet $\mathbf{a}^{\langle 0 \rangle} = \mathbf{a}$
- $\mathbf{a}^{\langle n+1\rangle} = (\mathbf{a}^{\langle n\rangle})^{\Diamond}$.

This iterated skip can exhibit exotic behavior:

Theorem

For all enumeration degrees, $\mathbf{a} \leq \mathbf{a}^{\Diamond\Diamond}$ and $\mathbf{a}^{\Diamond} \geq \mathbf{0}'$, but not always $\mathbf{a} \leq \mathbf{a}^{\Diamond}$.

$$\overline{A} \leq_1 A^{\Diamond} \Rightarrow A \leq_1 \overline{A^{\Diamond}} \leq_1 A^{\Diamond \Diamond}.$$

We can define the *iterated skip operator* of an enumeration degree a by:

- \bullet $\mathbf{a}^{\langle 0 \rangle} = \mathbf{a}$
- $\mathbf{a}^{\langle n+1\rangle} = (\mathbf{a}^{\langle n\rangle})^{\Diamond}$.

This iterated skip can exhibit exotic behavior:

Theorem

For all enumeration degrees, $\mathbf{a} \leq \mathbf{a}^{\Diamond\Diamond}$ and $\mathbf{a}^{\Diamond} \geq \mathbf{0}'$, but not always $\mathbf{a} \leq \mathbf{a}^{\Diamond}$.

$$\overline{A} \leq_1 A^{\Diamond} \Rightarrow A \leq_1 \overline{A^{\Diamond}} \leq_1 A^{\Diamond \Diamond}.$$

By Knaster-Tarski's fixed point theorem:

Theorem

There is an enumeration degree **a** such that $\mathbf{a} = \mathbf{a}^{\Diamond \Diamond}$.

We can define the iterated skip operator of an enumeration degree a by:

- $\bullet \ \mathbf{a}^{\langle 0 \rangle} = \mathbf{a}$
- $\mathbf{a}^{\langle n+1\rangle} = (\mathbf{a}^{\langle n\rangle})^{\Diamond}$.

This iterated skip can exhibit exotic behavior:

Theorem

For all enumeration degrees, $\mathbf{a} \leq \mathbf{a}^{\Diamond\Diamond}$ and $\mathbf{a}^{\Diamond} \geq \mathbf{0}'$, but not always $\mathbf{a} \leq \mathbf{a}^{\Diamond}$.

$$\overline{A} \leq_1 A^{\Diamond} \Rightarrow A \leq_1 \overline{A^{\Diamond}} \leq_1 A^{\Diamond \Diamond}.$$

By Knaster-Tarski's fixed point theorem:

Theorem

There is an enumeration degree **a** such that $\mathbf{a} = \mathbf{a}^{\Diamond \Diamond}$.

$$A \subseteq B \Rightarrow K_A \subseteq K_B$$

We can define the *iterated skip operator* of an enumeration degree a by:

- $\bullet \ \mathbf{a}^{\langle 0 \rangle} = \mathbf{a}$
- $\mathbf{a}^{\langle n+1\rangle} = (\mathbf{a}^{\langle n\rangle})^{\Diamond}$.

This iterated skip can exhibit exotic behavior:

Theorem

For all enumeration degrees, $\mathbf{a} \leq \mathbf{a}^{\Diamond\Diamond}$ and $\mathbf{a}^{\Diamond} \geq \mathbf{0}'$, but not always $\mathbf{a} \leq \mathbf{a}^{\Diamond}$.

$$\overline{A} \leq_1 A^{\Diamond} \Rightarrow A \leq_1 \overline{A^{\Diamond}} \leq_1 A^{\Diamond \Diamond}.$$

By Knaster-Tarski's fixed point theorem:

Theorem

There is an enumeration degree \mathbf{a} such that $\mathbf{a} = \mathbf{a}^{\Diamond \Diamond}$.

$$A \subseteq B \Rightarrow K_A \subseteq K_B \Rightarrow \overline{K_A} \supseteq \overline{K_B}$$

We can define the iterated skip operator of an enumeration degree a by:

- $\bullet \ \mathbf{a}^{\langle 0 \rangle} = \mathbf{a}$
- $\mathbf{a}^{\langle n+1\rangle} = (\mathbf{a}^{\langle n\rangle})^{\Diamond}$.

This iterated skip can exhibit exotic behavior:

Theorem

For all enumeration degrees, $\mathbf{a} \leq \mathbf{a}^{\Diamond\Diamond}$ and $\mathbf{a}^{\Diamond} \geq \mathbf{0}'$, but not always $\mathbf{a} \leq \mathbf{a}^{\Diamond}$.

$$\overline{A} \leq_1 A^{\Diamond} \Rightarrow A \leq_1 \overline{A^{\Diamond}} \leq_1 A^{\Diamond \Diamond}.$$

By Knaster-Tarski's fixed point theorem:

Theorem

There is an enumeration degree **a** such that $\mathbf{a} = \mathbf{a}^{\Diamond \Diamond}$.

$$A \subseteq B \Rightarrow K_A \subseteq K_B \Rightarrow \overline{K_A} \supseteq \overline{K_B} \Rightarrow K_{\overline{K_A}} \supseteq K_{\overline{K_B}}$$

We can define the *iterated skip operator* of an enumeration degree a by:

- \bullet $\mathbf{a}^{\langle 0 \rangle} = \mathbf{a}$
- $\mathbf{a}^{\langle n+1\rangle} = (\mathbf{a}^{\langle n\rangle})^{\Diamond}$.

This iterated skip can exhibit exotic behavior:

Theorem

For all enumeration degrees, $\mathbf{a} \leq \mathbf{a}^{\Diamond\Diamond}$ and $\mathbf{a}^{\Diamond} \geq \mathbf{0}'$, but not always $\mathbf{a} \leq \mathbf{a}^{\Diamond}$.

$$\overline{A} \leq_1 A^{\Diamond} \Rightarrow A \leq_1 \overline{A^{\Diamond}} \leq_1 A^{\Diamond \Diamond}.$$

By Knaster-Tarski's fixed point theorem:

Theorem

There is an enumeration degree **a** such that $\mathbf{a} = \mathbf{a}^{\Diamond \Diamond}$.

$$A \subseteq B \Rightarrow K_A \subseteq K_B \Rightarrow \overline{K_A} \supseteq \overline{K_B} \Rightarrow K_{\overline{K_A}} \supseteq K_{\overline{K_B}} \Rightarrow \overline{K_{\overline{K_A}}} \subseteq \overline{K_{\overline{K_B}}}.$$

Any such enumeration degree lies above all total hyperarithmetic enumeration degrees.

Iterating the skip

Figure: Iterated skips of a degree

Zig-zag

If $\mathbf{a}^{\langle n \rangle}$ is not cototal for every n:

Figure: Iterated skips of a degree: the zig-zag

Generic sets

Definition

Let G and X be sets of natural numbers. G is 1- generic relative to $\langle X \rangle$ if and only if for every $W \subseteq 2^{<\omega}$ such that $W \leq_e X$:

$$(\exists \sigma \preceq G)[\sigma \in W \lor (\forall \tau \succeq \sigma)[\tau \notin W]].$$

Proposition

If G is 1-generic relative to $\langle X \rangle$ then:

- \overline{G} is 1-generic relative to $\langle X \rangle$.
- $\bullet \ (G \oplus X)^{\Diamond} = \overline{G} \oplus X'.$

Generic sets

Definition

Let G and X be sets of natural numbers. G is 1- generic relative to $\langle X \rangle$ if and only if for every $W \subseteq 2^{<\omega}$ such that $W \leq_e X$:

$$(\exists \sigma \leq G)[\sigma \in W \vee (\forall \tau \succeq \sigma)[\tau \notin W]].$$

Proposition

If G is 1-generic relative to $\langle X \rangle$ then:

- \overline{G} is 1-generic relative to $\langle X \rangle$.
- $\bullet \ (G \oplus X)^{\Diamond} = \overline{G} \oplus X'.$

If G is arithmetically generic, i.e. G is 1-generic relative to $\langle \emptyset^{(n)} \rangle$, for every n, then the skips of G and \overline{G} form a double helix.

- If n is odd then $G^{\langle n \rangle} \equiv_e \overline{G} \oplus \emptyset^{(n)}$ and $(\overline{G})^{\langle n \rangle} \equiv_e G \oplus \emptyset^{(n)}$.
- $\bullet \ \ \text{If n is even then $G^{\langle n \rangle} \equiv_e G \oplus \emptyset^{(n)}$ and $(\overline{G})^{\langle n \rangle} \equiv_e \overline{G} \oplus \emptyset^{(n)}.$ }$

Double zig-zag

Figure: Iterated skips of a degrees of an arithmetically generic set and its complement: double zig-zag

Skips of nontrivial K-pairs

Proposition

If $\{A,B\}$ is a non-trivial \mathcal{K} -pair then $A^{\Diamond} \equiv_e B \oplus \emptyset'$. If $\{A,B\}$ is a non-trivial \mathcal{K} -pair relative to $\langle X \rangle$ then $(A \oplus X)^{\Diamond} \leq_e B \oplus X^{\Diamond}$. The oracle X is of cototal degree iff we have equivalence above for every nontrivial \mathcal{K} -pair relative to $\langle X \rangle$.

Skips of nontrivial K-pairs

Proposition

If $\{A,B\}$ is a non-trivial \mathcal{K} -pair then $A^{\Diamond} \equiv_e B \oplus \emptyset'$. If $\{A,B\}$ is a non-trivial \mathcal{K} -pair relative to $\langle X \rangle$ then $(A \oplus X)^{\Diamond} \leq_e B \oplus X^{\Diamond}$. The oracle X is of cototal degree iff we have equivalence above for every nontrivial \mathcal{K} -pair relative to $\langle X \rangle$.

If $\{A, B\}$ is a non-trivial \mathcal{K} -pair relative to $\emptyset^{(n)}$ for every n then the iterate skips of A and B form a double zig-zag.

- if n is odd then $A^{\langle n \rangle} \equiv_e B \oplus \emptyset^{(n)}$ and $B^{\langle n \rangle} \equiv_e A \oplus \emptyset^{(n)}$, and
- if n is even then $A^{\langle n \rangle} \equiv_e A \oplus \emptyset^{(n)}$ and $B^{\langle n \rangle} \equiv_e B \oplus \emptyset^{(n)}$.

Theorem (Ganchev, Sorbi)

For every enumeration degree $\mathbf{x} > \mathbf{0}_e$, there is a degree $\mathbf{a} \leq \mathbf{x}$ such that \mathbf{a} is half of a nontrivial \mathcal{K} -pair and such that $\mathbf{a}' = \mathbf{x}'$.

$$A' \equiv_e A \oplus A^{\Diamond} \equiv_e A \oplus B \oplus \emptyset' \equiv_e B \oplus B^{\Diamond} \equiv_e B'.$$

Proposition

• If x is high (x' = 0''):

$$\mathbf{b}^{\lozenge} < \mathbf{b}' = \mathbf{b}^{\lozenge\lozenge\lozenge} < \mathbf{b}'' = \mathbf{b}^{\langle3\rangle} < \dots < \mathbf{b}^{(n)} = \mathbf{b}^{\langle n+1\rangle} < \dots$$

Theorem (Ganchev, Sorbi)

For every enumeration degree $\mathbf{x} > \mathbf{0}_e$, there is a degree $\mathbf{a} \leq \mathbf{x}$ such that \mathbf{a} is half of a nontrivial \mathcal{K} -pair and such that $\mathbf{a}' = \mathbf{x}'$.

$$A' \equiv_e A \oplus A^{\Diamond} \equiv_e A \oplus B \oplus \emptyset' \equiv_e B \oplus B^{\Diamond} \equiv_e B'.$$

Proposition

• If x is high (x' = 0''):

$$\mathbf{b}^{\lozenge} < \mathbf{b}' = \mathbf{b}^{\lozenge\lozenge\lozenge} < \mathbf{b}'' = \mathbf{b}^{\langle3\rangle} < \dots < \mathbf{b}^{(n)} = \mathbf{b}^{\langle n+1\rangle} < \dots$$

• If x is intermediate:

$$\mathbf{b}^{\lozenge} < \mathbf{b}' < \mathbf{b}^{\lozenge\lozenge\lozenge} < \mathbf{b}'' < \mathbf{b}^{\lozenge\lozenge\lozenge} < \cdots < \mathbf{b}^{(n)} < \mathbf{b}^{\langle n+1 \rangle} < \dots$$

The cototal degrees are dense

Corollary

The relation

$$SK = \left\{ (\mathbf{a}, \mathbf{a}^{\lozenge}) \mid \mathbf{a} \text{ is half of a nontrivial } \mathcal{K}\text{-pair } \right\}$$

is first-order definable in \mathcal{D}_e .

The cototal degrees are dense

Corollary

The relation

$$SK = \left\{ (\mathbf{a}, \mathbf{a}^{\lozenge}) \mid \mathbf{a} \text{ is half of a nontrivial } \mathcal{K}\text{-pair } \right\}$$

is first-order definable in \mathcal{D}_e .

Question: Is the skip operator definable in \mathcal{D}_e ?

Good e-degrees

Definition (Lachlan, Shore)

A uniformly computable sequence of finite sets $\{A_s\}_{s<\omega}$ is a good approximation to a set A if:

$$G1(\forall n)(\exists s)(A \upharpoonright n \subseteq A_s \subseteq A)$$

$$G2(\forall n)(\exists s)(\forall t > s)(A_t \subseteq A \Rightarrow A \upharpoonright n \subseteq A_t).$$

An enumeration degree is *good* if it contains a set with a good approximation.

- Good e-degrees cannot be tops of empty intervals.
- Total enumeration degrees and enumeration degrees of *n*-c.e.a. sets are good.

The cototal degrees are dense

Theorem (Harris; Miller, M. Soskova)

The good enumeration degrees are exactly the cototal enumeration degrees.

If A has a good approximation then

$$A \leq_e \{\langle x, s \rangle \mid (\forall t > s)(A_t \subseteq A \Rightarrow x \in A)\} \leq_e A^{\lozenge}.$$

Every uniformly e-pointed tree has a good approximation.

Theorem (Miller, M. Soskova)

The cototal enumeration degrees are dense.

If $V<_e U$ are cototal and U has a good approximation they build Θ such that $\Theta(U)$ is the complement of a maximal independent set and

$$V <_e \Theta(U) \oplus V <_e U$$
.