Cototal enumeration degrees

Alexandra A. Soskova ${ }^{1}$

Sofia University

joint work with Andrews, Ganchev, Kuyper, Lempp, Miller and M.
Soskova
Siena University Logic Seminar
${ }^{1}$ Supported by Bulgarian National Science Fund DN 02/16/19.12.2016 and Sofia University Science Fund, 80-10-147/20.04.2017

The enumeration degrees

Definition

$A \leq_{e} B$ if there is a c.e. set W, such that

$$
A=W(B)=\{x \mid \exists D(\langle x, D\rangle \in W \& D \subseteq B)\}
$$

The enumeration degrees

Definition

$A \leq_{e} B$ if there is a c.e. set W, such that

$$
A=W(B)=\{x \mid \exists D(\langle x, D\rangle \in W \& D \subseteq B)\}
$$

- $A \equiv{ }_{e} B$ if $A \leq_{e} B$ and $B \leq_{e} A$.

The enumeration degrees

Definition

$A \leq_{e} B$ if there is a c.e. set W, such that

$$
A=W(B)=\{x \mid \exists D(\langle x, D\rangle \in W \& D \subseteq B)\}
$$

- $A \equiv_{e} B$ if $A \leq_{e} B$ and $B \leq_{e} A$.
- The enumeration degree of a set A is $d_{e}(A)=\left\{B \mid A \equiv_{e} B\right\}$.

The enumeration degrees

Definition

$A \leq_{e} B$ if there is a c.e. set W, such that

$$
A=W(B)=\{x \mid \exists D(\langle x, D\rangle \in W \& D \subseteq B)\}
$$

- $A \equiv_{e} B$ if $A \leq_{e} B$ and $B \leq_{e} A$.
- The enumeration degree of a set A is $d_{e}(A)=\left\{B \mid A \equiv_{e} B\right\}$.
- $d_{e}(A) \leq d_{e}(B)$ iff $A \leq_{e} B$.

The enumeration degrees

Definition

$A \leq_{e} B$ if there is a c.e. set W, such that

$$
A=W(B)=\{x \mid \exists D(\langle x, D\rangle \in W \& D \subseteq B)\}
$$

- $A \equiv_{e} B$ if $A \leq_{e} B$ and $B \leq_{e} A$.
- The enumeration degree of a set A is $d_{e}(A)=\left\{B \mid A \equiv_{e} B\right\}$.
- $d_{e}(A) \leq d_{e}(B)$ iff $A \leq_{e} B$.
- The least element: $\mathbf{0}_{\mathbf{e}}=d_{e}(\emptyset)$, the set of all c.e. sets.

The enumeration degrees

Definition

$A \leq_{e} B$ if there is a c.e. set W, such that

$$
A=W(B)=\{x \mid \exists D(\langle x, D\rangle \in W \& D \subseteq B)\}
$$

- $A \equiv_{e} B$ if $A \leq_{e} B$ and $B \leq_{e} A$.
- The enumeration degree of a set A is $d_{e}(A)=\left\{B \mid A \equiv_{e} B\right\}$.
- $d_{e}(A) \leq d_{e}(B)$ iff $A \leq_{e} B$.
- The least element: $\mathbf{0}_{\mathbf{e}}=d_{e}(\emptyset)$, the set of all c.e. sets.
- The least upper bound: $d_{e}(A) \vee d_{e}(B)=d_{e}(A \oplus B)$.

The enumeration degrees

Definition

$A \leq_{e} B$ if there is a c.e. set W, such that

$$
A=W(B)=\{x \mid \exists D(\langle x, D\rangle \in W \& D \subseteq B)\}
$$

- $A \equiv_{e} B$ if $A \leq_{e} B$ and $B \leq_{e} A$.
- The enumeration degree of a set A is $d_{e}(A)=\left\{B \mid A \equiv_{e} B\right\}$.
- $d_{e}(A) \leq d_{e}(B)$ iff $A \leq_{e} B$.
- The least element: $\mathbf{0}_{\mathbf{e}}=d_{e}(\emptyset)$, the set of all c.e. sets.
- The least upper bound: $d_{e}(A) \vee d_{e}(B)=d_{e}(A \oplus B)$.
- The enumeration jump: $d_{e}(A)^{\prime}=d_{e}\left(K_{A} \oplus \overline{K_{A}}\right)$, where $K_{A}=\left\{\langle e, x\rangle \mid x \in W_{e}(A)\right\}$.

Selman's theorem

Equivalently, $A \leq_{e} B$ if there is a single Turing functional which uniformly, given any enumeration of B, outputs an enumeration of A.

Selman's theorem

Equivalently, $A \leq_{e} B$ if there is a single Turing functional which uniformly, given any enumeration of B, outputs an enumeration of A.

Definition
Given a set A, let $\mathcal{E}(A)$ denote the collection of all Turing degrees computing enumerations of A, called the enumeration cone of A.

Theorem (Selman)
A is enumeration reducible to B if and only if $\mathcal{E}(B) \subseteq \mathcal{E}(A)$.

What connects \mathcal{D}_{T} and \mathcal{D}_{e}

Proposition

$$
A \leq_{T} B \Leftrightarrow A \oplus \bar{A} \leq_{e} B \oplus \bar{B} .
$$

What connects \mathcal{D}_{T} and \mathcal{D}_{e}

Proposition

$$
A \leq_{T} B \Leftrightarrow A \oplus \bar{A} \leq_{e} B \oplus \bar{B} .
$$

A set A is total if its positive membership information already suffices to determine its negative membership information, i.e. if $\bar{A} \leq_{e} A$. An enumeration degree is total if it contains a total set.

What connects \mathcal{D}_{T} and \mathcal{D}_{e}

Proposition

$$
A \leq_{T} B \Leftrightarrow A \oplus \bar{A} \leq_{e} B \oplus \bar{B} .
$$

A set A is total if its positive membership information already suffices to determine its negative membership information, i.e. if $\bar{A} \leq_{e} A$. An enumeration degree is total if it contains a total set.

Within the enumeration degrees, the total degrees are an embedded copy of the Turing degrees \mathcal{D}_{T} via $\iota: A \rightarrow A \oplus \bar{A}$. The embedding ι preserves the order, the least upper bound and the jump operation.

Total and cototal

Definition
A set A is cototal if $A \leq_{e} \bar{A}$. A degree \mathbf{a} is cototal if it contains a cototal set.
For every set A the set $A \oplus \bar{A}$ is cototal. So, every total e-dergree is cototal.

Total and cototal

Definition

A set A is cototal if $A \leq_{e} \bar{A}$. A degree \mathbf{a} is cototal if it contains a cototal set.
For every set A the set $A \oplus \bar{A}$ is cototal.
So, every total e-dergree is cototal.
The cototal enumeration degrees form a proper substructure of \mathcal{D}_{e} closed under least upper bound and the enumeration jump operator.

- The name "total" is coming of the following fact: given a total function f, the set $G(f)=\{\langle n, f(n)\rangle \mid n \in \omega\}$ is a total set.
- Equivalently, given a total function f, the graph-complement $\overline{G(f)}$ is cototal.
- If an enumeration degree contains a set of the form $\overline{G(f)}$, then we call it graph-cototal.
- So every total enumeration degree is graph-cototal, and every graph-cototal is cototal.

Motivation from symbolic dynamics by Emmanuel Jeandel

Definition

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a \alpha \in X$ then $\alpha \in X$.

Motivation from symbolic dynamics by Emmanuel Jeandel

Definition

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a \alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.

Motivation from symbolic dynamics by Emmanuel Jeandel

Definition

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a \alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.
- The language of X is the set

$$
L_{X}=\left\{\sigma \in 2^{<\omega} \mid \exists \alpha \in X(\sigma \text { is a subword of } \alpha)\right\} .
$$

Motivation from symbolic dynamics by Emmanuel Jeandel

Definition

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a \alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.
- The language of X is the set $L_{X}=\left\{\sigma \in 2^{<\omega} \mid \exists \alpha \in X(\sigma\right.$ is a subword of $\left.\alpha)\right\}$.
- $\overline{L_{X}}$ is the set of forbidden words.

Motivation from symbolic dynamics by Emmanuel Jeandel

 Definition- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a \alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.
- The language of X is the set $L_{X}=\left\{\sigma \in 2^{<\omega} \mid \exists \alpha \in X(\sigma\right.$ is a subword of $\left.\alpha)\right\}$.
- $\overline{L_{X}}$ is the set of forbidden words.
(1) If X is minimal and $\sigma \in L_{X}$ then for every $\alpha \in X, \sigma$ is a subword of α. So every element of X can enumerate the set L_{X}.

Motivation from symbolic dynamics by Emmanuel Jeandel

 Definition- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a \alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.
- The language of X is the set $L_{X}=\left\{\sigma \in 2^{<\omega} \mid \exists \alpha \in X(\sigma\right.$ is a subword of $\left.\alpha)\right\}$.
- $\overline{L_{X}}$ is the set of forbidden words.
(1) If X is minimal and $\sigma \in L_{X}$ then for every $\alpha \in X, \sigma$ is a subword of α. So every element of X can enumerate the set L_{X}.
(2) If we can enumerate L_{X} then we can compute a member of X.
(3) The Turing degrees that compute elements of X are exactly the degrees that contain enumerations of L_{X}.

Motivation from symbolic dynamics by Emmanuel Jeandel

 Definition- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a \alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.
- The language of X is the set $L_{X}=\left\{\sigma \in 2^{<\omega} \mid \exists \alpha \in X(\sigma\right.$ is a subword of $\left.\alpha)\right\}$.
- $\overline{L_{X}}$ is the set of forbidden words.
(1) If X is minimal and $\sigma \in L_{X}$ then for every $\alpha \in X, \sigma$ is a subword of α. So every element of X can enumerate the set L_{X}.
(2) If we can enumerate L_{X} then we can compute a member of X.
(3) The Turing degrees that compute elements of X are exactly the degrees that contain enumerations of L_{X}.
(9) (Jaendel) If we can enumerate the set of forbidden words $\overline{L_{X}}$ then we can enumerate L_{X}. So, $L_{X} \leq_{e} \overline{L_{X}}$.
(3) (McCarthy) If A is cototal, then $A \equiv_{e} L_{X}$ for some minimal subshift X.

Three definitions

Definition

A set A is cototal if $A \leq_{e} \bar{A}$. A degree a is cototal if it contains a cototal set.

Three definitions

Definition

A set A is cototal if $A \leq_{e} \bar{A}$. A degree a is cototal if it contains a cototal set.

Definition

A set A is graph-cototal if $A \equiv_{e} \overline{G_{f}}$ for some total function f. A degree a is graph-cototal if it contains a graph-cototal set.

Three definitions

Definition

A set A is cototal if $A \leq_{e} \bar{A}$. A degree a is cototal if it contains a cototal set.

Definition

A set A is graph-cototal if $A \equiv_{e} \overline{G_{f}}$ for some total function f. A degree a is graph-cototal if it contains a graph-cototal set.

Definition
A set A is weakly cototal if there is a set $A \equiv_{e} B$, such that \bar{B} is total.

Three definitions

Definition

A set A is cototal if $A \leq_{e} \bar{A}$. A degree a is cototal if it contains a cototal set.

Definition

A set A is graph-cototal if $A \equiv_{e} \overline{G_{f}}$ for some total function f. A degree a is graph-cototal if it contains a graph-cototal set.

Definition

A set A is weakly cototal if there is a set $A \equiv_{e} B$, such that \bar{B} is total.
It is clear that every cototal degree is weakly cototal, since if $A \leq_{e} \bar{A}$, then \bar{A} is a total set.

$$
\text { total } \Rightarrow \text { graph-cototal } \Rightarrow \text { cototal } \Rightarrow \text { weakly cototal. }
$$

Σ_{2}^{0} e-degrees

Proposition

Σ_{2}^{0} e-degrees are (graph-)cototal.
Let A be Σ_{2}^{0}. Consider the set $K_{A}=\bigoplus_{e<\omega} \Gamma_{e}(A)$. Then $A \equiv_{e} K_{A}$ and

$$
\overline{K_{A}}=\bigoplus_{e<\omega} \overline{\Gamma_{e}(A)} \geq_{e} \bar{K} \geq_{e} A \equiv_{e} K_{A} .
$$

Corollary
Graph-cototal does not imply total.

Unique correct axiom

Proposition

- There are Π_{2}^{0}-sets that do not even have cototal enumeration degree.
- But every Π_{2}^{0}-set has weakly cototal degree. $A \equiv_{e} A \oplus K \Rightarrow \overline{A \oplus K} \equiv_{e} \bar{A} \oplus \bar{K} \equiv_{e} \bar{K} \in \mathbf{0}_{e}^{\prime}$
- There are Δ_{3}^{0}-sets that are not even weakly cototal.

Theorem

An e-degree \mathbf{a} is graph-cototal if and only if a contains a cototal set A, such that for some enumeration operator Γ, we have that $A=\Gamma(\bar{A})$ and for every $n \in A$ there is a unique axiom $\langle n, D\rangle \in \Gamma$ such that $D \subseteq A$.

Goal:
Cototal does not imply graph-cototal.

Maximal independent sets

Definition

Let $G=(\mathbb{N}, E)$ be a graph and $S \subseteq \mathbb{N}$.
(1) S is an independent set for G if $i \neq j$ are in S then $(i, j) \notin E$.
(2) An independent set is maximal if it has no proper independent superset, i.e. for every element $i \notin S$ there is a $j \in S$ such that $(i, j) \in E$.

Maximal independent sets

Definition

Let $G=(\mathbb{N}, E)$ be a graph and $S \subseteq \mathbb{N}$.
(1) S is an independent set for G if $i \neq j$ are in S then $(i, j) \notin E$.
(2) An independent set is maximal if it has no proper independent superset, i.e. for every element $i \notin S$ there is a $j \in S$ such that $(i, j) \in E$.

If S is a maximal independent set for G, then S can enumerate its complement: $i \in \bar{S}$ iff there is a $j \neq i$ such that $(i, j) \in E$ and $j \in S$.

Maximal independent sets

Definition

Let $G=(\mathbb{N}, E)$ be a graph and $S \subseteq \mathbb{N}$.
(1) S is an independent set for G if $i \neq j$ are in S then $(i, j) \notin E$.
(2) An independent set is maximal if it has no proper independent superset, i.e. for every element $i \notin S$ there is a $j \in S$ such that $(i, j) \in E$.

If S is a maximal independent set for G, then S can enumerate its complement: $i \in \bar{S}$ iff there is a $j \neq i$ such that $(i, j) \in E$ and $j \in S$.

Theorem

Every cototal degree contains the complement of maximal independent set for $\omega^{<\omega}$.

Theorem
There is a cototal dregee which is not graph-cototal.

Maximal antichains

Proposition

If C is a maximal antichain on $\omega^{<\omega}$, then $\bar{C} \leq_{e} C$, i.e. \bar{C} is cototal.
To determine if a string $\sigma \in \omega^{<\omega}$ is in \bar{C}, we wait for some element comparable but not equal to σ to enter C. Since C is an antichain, we only identify elements of \bar{C} in this way. And by maximality, if $\sigma \in \bar{C}$ then something comparable but not equal to σ must eventually enter C.

Theorem (McCarthy)
Every cototal degree contains the complement of a maximal antichain in $\omega^{<\omega}$.

Maximal antichains

Proposition

If C is a maximal antichain on $\omega^{<\omega}$, then $\bar{C} \leq_{e} C$, i.e. \bar{C} is cototal.
To determine if a string $\sigma \in \omega^{<\omega}$ is in \bar{C}, we wait for some element comparable but not equal to σ to enter C. Since C is an antichain, we only identify elements of \bar{C} in this way. And by maximality, if $\sigma \in \bar{C}$ then something comparable but not equal to σ must eventually enter C.
Theorem (McCarthy)
Every cototal degree contains the complement of a maximal antichain in $\omega^{<\omega}$.

Definition (Montalban)

A tree $T \subseteq 2^{<\omega}$ is e-pointed if it has no dead ends and every infinite path $f \in[T]$ enumerates T.

Theorem (McCarthy)
An e-degree is cototal if and only if it contains a (uniformly) e-pointed tree.

Joins of nontrivial \mathcal{K}-pairs

Definition

A \mathcal{K}-pair is a pair of sets $\{A, B\}$ for which there is a c.e. set W such that $A \times B \subseteq W$ and $\bar{A} \times \bar{B} \subseteq \bar{W}$.

Joins of nontrivial \mathcal{K}-pairs

Definition

A \mathcal{K}-pair is a pair of sets $\{A, B\}$ for which there is a c.e. set W such that $A \times B \subseteq W$ and $\bar{A} \times \bar{B} \subseteq \bar{W}$.

Proposition (Kalimullin)

Let $\{A, B\}$ be a \mathcal{K}-pair. If A and B are not c.e. then:
(1) $A \leq_{e} \bar{B}$ and $\bar{A} \leq_{e} \emptyset^{\prime} \oplus B$.
(2) $B \leq_{e} \bar{A}$ and $\bar{B} \leq_{e} \emptyset^{\prime} \oplus A$.

Joins of nontrivial \mathcal{K}-pairs

Definition
A \mathcal{K}-pair is a pair of sets $\{A, B\}$ for which there is a c.e. set W such that $A \times B \subseteq W$ and $\bar{A} \times \bar{B} \subseteq \bar{W}$.

Proposition (Kalimullin)

Let $\{A, B\}$ be a \mathcal{K}-pair. If A and B are not c.e. then:
(1) $A \leq_{e} \bar{B}$ and $\bar{A} \leq_{e} \emptyset^{\prime} \oplus B$.
(2) $B \leq_{e} \bar{A}$ and $\bar{B} \leq_{e} \emptyset^{\prime} \oplus A$.

Proposition
If $\{A, B\}$ is a nontrivial \mathcal{K}-pair then $A \oplus B$ is cototal.

Joins of nontrivial \mathcal{K}-pairs

Definition
A \mathcal{K}-pair is a pair of sets $\{A, B\}$ for which there is a c.e. set W such that $A \times B \subseteq W$ and $\bar{A} \times \bar{B} \subseteq \bar{W}$.

Proposition (Kalimullin)
Let $\{A, B\}$ be a \mathcal{K}-pair. If A and B are not c.e. then:
(1) $A \leq_{e} \bar{B}$ and $\bar{A} \leq_{e} \emptyset^{\prime} \oplus B$.
(2) $B \leq_{e} \bar{A}$ and $\bar{B} \leq_{e} \emptyset^{\prime} \oplus A$.

Proposition
If $\{A, B\}$ is a nontrivial \mathcal{K}-pair then $A \oplus B$ is cototal.
Proof: $A \oplus B \leq_{e} \bar{B} \oplus \bar{A} \equiv_{e} \overline{A \oplus B}$.

Continuous degrees

J. Miller introduced the continuous degrees \mathcal{D}_{r} to compare the complexity of points in computable metric spaces. A point x in a computable metric space can be described by a sequence of "rational" points that limit to it. For two points $x ; y$ we say that $x \leq_{r} y$ if every description of y computes a description of x. The continuous degrees embed into \mathcal{D}_{e}. In fact, $D_{T} \subset \mathcal{D}_{r} \subset \mathcal{D}_{e}$.

Definition (J. Miller)

An e-degree is continuous if it contains a set of the form $A=\bigoplus_{i<\omega}\left(\left\{q \mid q<\alpha_{i}\right\} \oplus\left\{q \mid q>\alpha_{i}\right\}\right)$, where $\left\{\alpha_{i}\right\}_{i<\omega}$ is a sequence of real numbers.

Continuous degrees

J. Miller introduced the continuous degrees \mathcal{D}_{r} to compare the complexity of points in computable metric spaces. A point x in a computable metric space can be described by a sequence of "rational" points that limit to it. For two points $x ; y$ we say that $x \leq_{r} y$ if every description of y computes a description of x. The continuous degrees embed into \mathcal{D}_{e}. In fact, $D_{T} \subset \mathcal{D}_{r} \subset \mathcal{D}_{e}$.

Definition (J. Miller)

An e-degree is continuous if it contains a set of the form
$A=\bigoplus_{i<\omega}\left(\left\{q \mid q<\alpha_{i}\right\} \oplus\left\{q \mid q>\alpha_{i}\right\}\right)$, where $\left\{\alpha_{i}\right\}_{i<\omega}$ is a sequence of real numbers.

Proposition

Continuous degrees are cototal.
$\bar{A} \equiv{ }_{e} B=\bigoplus_{i<\omega}\left(\left\{q \mid q \leq \alpha_{i}\right\} \oplus\left\{q \mid q \geq \alpha_{i}\right\}\right)$.
Kihara and Pauly extend Miller's idea to points in arbitrary represented topological spaces.

The skip operator

Recall that $\overline{K_{A}}=\bigoplus_{e} \overline{\Gamma_{e}(A)}$.

The skip operator

Recall that $\overline{K_{A}}=\bigoplus_{e} \overline{\bar{\Gamma}_{e}(A)}$.
Proposition
If $A \leq_{e} B$ then $\overline{K_{A}} \leq_{1} \overline{K_{B}}$.

The skip operator

Recall that $\overline{K_{A}}=\bigoplus_{e} \overline{\bar{\Gamma}_{e}(A)}$.
Proposition
If $A \leq_{e} B$ then $\overline{K_{A}} \leq_{1} \overline{K_{B}}$.

Definition

The skip of A is the set $A^{\diamond}=\overline{K_{A}}$. The skip of a degree \mathbf{a} is $\mathbf{a}^{\diamond}=d_{e}\left(A^{\diamond}\right)$.

The skip operator

Recall that $\overline{K_{A}}=\bigoplus_{e} \overline{\bar{\Gamma}_{e}(A)}$.
Proposition
If $A \leq_{e} B$ then $\overline{K_{A}} \leq_{1} \overline{{K_{B}}_{B}}$.

Definition

The skip of A is the set $A^{\diamond}=\overline{K_{A}}$. The skip of a degree \mathbf{a} is $\mathbf{a}^{\diamond}=d_{e}\left(A^{\diamond}\right)$.

Proposition

A degree \mathbf{a} is cototal if and only if $\mathbf{a} \leq \mathbf{a}^{\diamond}$ if and only if $\mathbf{a}^{\diamond}=\mathbf{a}^{\prime}$.
$\Rightarrow A \leq_{e} \bar{A} \leq_{e} A^{\diamond}$
$\Leftarrow K_{A} \equiv_{e} A \leq_{e} A^{\diamond}=\overline{K_{A}}$.
Recall that $A^{\prime}=K_{A} \oplus \overline{K_{A}}$.

Skip inversion

Theorem
Let $S \geq_{e} \emptyset^{\prime}$. There is a set A such that $A^{\diamond} \equiv_{e} S$.

Skip inversion

Theorem

Let $S \geq_{e} \emptyset^{\prime}$. There is a set A such that $A^{\diamond} \equiv_{e} S$.
We build A so that:
(1) $S \leq_{e} \bar{A}$.
(2) $\overline{K_{A}} \leq_{e} S$.

Skip inversion

Theorem

Let $S \geq_{e} \emptyset^{\prime}$. There is a set A such that $A^{\diamond} \equiv_{e} S$.
We build A so that:
(1) $S \leq_{e} \bar{A}$.
(2) $\overline{K_{A}} \leq_{e} S$.

We first build a table \hat{A} with one empty box in each column as a set c.e. in \emptyset^{\prime}.
The set of empty boxes will be computable from \emptyset^{\prime}.
Then $A=\hat{A} \cup\{\langle n, s\rangle \mid n \in \bar{S}\}$.

Skip inversion

Theorem

Let $S \geq_{e} \emptyset^{\prime}$. There is a set A such that $A^{\diamond} \equiv_{e} S$.
We build A so that:

- $S \leq_{e} \bar{A}$.
(1) $\overline{K_{A}} \leq_{e} S$.

We first build a table \hat{A} with one empty box in each column as a set c.e. in \emptyset^{\prime}.
The set of empty boxes will be computable from \emptyset^{\prime}.
Then $A=\hat{A} \cup\{\langle n, s\rangle \mid n \in \bar{S}\}$.
Note! $\bar{S} \leq_{e} A \oplus \emptyset^{\prime}$. So if we start out with an S that is not total set but belongs to a total degree then A is not cototal. But $A \equiv_{e} K_{A}$ and $\overline{K_{A}}=A^{\diamond} \equiv_{e} S$ has a total degree and so A is weakly cototal.

Corollary

Weakly cototal does not imply cototal.

Skip iteration

We can define the iterated skip operator of an enumeration degree a by:

- $\mathbf{a}^{\langle 0\rangle}=\mathbf{a}$
- $\mathbf{a}^{\langle n+1\rangle}=\left(\mathbf{a}^{\langle n\rangle}\right)^{\diamond}$.

This iterated skip can exhibit exotic behavior:

Theorem

For all enumeration degrees, $\mathbf{a} \leq \mathbf{a}^{\diamond \diamond}$ and $\mathbf{a}^{\diamond} \geq \mathbf{0}^{\prime}$, but not always $\mathbf{a} \leq \mathbf{a}^{\diamond}$.
$\bar{A} \leq_{1} A^{\diamond} \Rightarrow A \leq_{1} \overline{A^{\diamond}} \leq_{1} A^{\diamond \diamond}$.

Skip iteration

We can define the iterated skip operator of an enumeration degree a by:

- $\mathbf{a}^{\langle 0\rangle}=\mathbf{a}$
- $\mathbf{a}^{\langle n+1\rangle}=\left(\mathbf{a}^{\langle n\rangle}\right)^{\diamond}$.

This iterated skip can exhibit exotic behavior:

Theorem

For all enumeration degrees, $\mathbf{a} \leq \mathbf{a}^{\diamond \diamond}$ and $\mathbf{a}^{\diamond} \geq \mathbf{0}^{\prime}$, but not always $\mathbf{a} \leq \mathbf{a}^{\diamond}$.
$\bar{A} \leq_{1} A^{\diamond} \Rightarrow A \leq_{1} \overline{A^{\diamond}} \leq_{1} A^{\diamond \diamond}$.
By Knaster-Tarski's fixed point theorem:

Theorem

There is an enumeration degree \mathbf{a} such that $\mathbf{a}=\mathbf{a}^{\diamond \diamond}$.

Skip iteration

We can define the iterated skip operator of an enumeration degree a by:

- $\mathbf{a}^{\langle 0\rangle}=\mathbf{a}$
- $\mathbf{a}^{\langle n+1\rangle}=\left(\mathbf{a}^{\langle n\rangle}\right)^{\diamond}$.

This iterated skip can exhibit exotic behavior:

Theorem

For all enumeration degrees, $\mathbf{a} \leq \mathbf{a}^{\diamond \diamond}$ and $\mathbf{a}^{\diamond} \geq \mathbf{0}^{\prime}$, but not always $\mathbf{a} \leq \mathbf{a}^{\diamond}$.
$\bar{A} \leq_{1} A^{\diamond} \Rightarrow A \leq_{1} \overline{A^{\diamond}} \leq_{1} A^{\diamond \diamond}$.
By Knaster-Tarski's fixed point theorem:

Theorem

There is an enumeration degree \mathbf{a} such that $\mathbf{a}=\mathbf{a}^{\diamond \diamond}$.
$A \subseteq B \Rightarrow K_{A} \subseteq K_{B}$

Skip iteration

We can define the iterated skip operator of an enumeration degree a by:

- $\mathbf{a}^{\langle 0\rangle}=\mathbf{a}$
- $\mathbf{a}^{\langle n+1\rangle}=\left(\mathbf{a}^{\langle n\rangle}\right)^{\diamond}$.

This iterated skip can exhibit exotic behavior:

Theorem

For all enumeration degrees, $\mathbf{a} \leq \mathbf{a}^{\diamond \diamond}$ and $\mathbf{a}^{\diamond} \geq \mathbf{0}^{\prime}$, but not always $\mathbf{a} \leq \mathbf{a}^{\diamond}$.
$\bar{A} \leq_{1} A^{\diamond} \Rightarrow A \leq_{1} \overline{A^{\diamond}} \leq_{1} A^{\diamond \diamond}$.
By Knaster-Tarski's fixed point theorem:

Theorem

There is an enumeration degree \mathbf{a} such that $\mathbf{a}=\mathbf{a}^{\diamond \diamond}$.
$A \subseteq B \Rightarrow K_{A} \subseteq K_{B} \Rightarrow \overline{K_{A}} \supseteq \overline{K_{B}}$

Skip iteration

We can define the iterated skip operator of an enumeration degree a by:

- $\mathbf{a}^{\langle 0\rangle}=\mathbf{a}$
- $\mathbf{a}^{\langle n+1\rangle}=\left(\mathbf{a}^{\langle n\rangle}\right)^{\diamond}$.

This iterated skip can exhibit exotic behavior:

Theorem

For all enumeration degrees, $\mathbf{a} \leq \mathbf{a}^{\diamond \diamond}$ and $\mathbf{a}^{\diamond} \geq \mathbf{0}^{\prime}$, but not always $\mathbf{a} \leq \mathbf{a}^{\diamond}$.
$\bar{A} \leq_{1} A^{\diamond} \Rightarrow A \leq_{1} \overline{A^{\diamond}} \leq_{1} A^{\diamond \diamond}$.
By Knaster-Tarski's fixed point theorem:

Theorem

There is an enumeration degree \mathbf{a} such that $\mathbf{a}=\mathbf{a}^{\diamond \diamond}$.
$A \subseteq B \Rightarrow K_{A} \subseteq K_{B} \Rightarrow \overline{K_{A}} \supseteq \overline{K_{B}} \Rightarrow K_{\overline{K_{A}}} \supseteq K_{\overline{K_{B}}}$

Skip iteration

We can define the iterated skip operator of an enumeration degree a by:

- $\mathbf{a}^{\langle 0\rangle}=\mathbf{a}$
- $\mathbf{a}^{\langle n+1\rangle}=\left(\mathbf{a}^{\langle n\rangle}\right)^{\diamond}$.

This iterated skip can exhibit exotic behavior:

Theorem

For all enumeration degrees, $\mathbf{a} \leq \mathbf{a}^{\diamond \diamond}$ and $\mathbf{a}^{\diamond} \geq \mathbf{0}^{\prime}$, but not always $\mathbf{a} \leq \mathbf{a}^{\diamond}$.
$\bar{A} \leq_{1} A^{\diamond} \Rightarrow A \leq_{1} \overline{A^{\diamond}} \leq_{1} A^{\diamond \diamond}$.
By Knaster-Tarski's fixed point theorem:

Theorem

There is an enumeration degree \mathbf{a} such that $\mathbf{a}=\mathbf{a}^{\diamond \diamond}$.
$A \subseteq B \Rightarrow K_{A} \subseteq K_{B} \Rightarrow \overline{K_{A}} \supseteq \overline{K_{B}} \Rightarrow K_{\overline{K_{A}}} \supseteq K_{\overline{K_{B}}} \Rightarrow$
$\overline{K_{\overline{K_{A}}}} \subseteq \overline{K_{\overline{K_{B}}}}$.
Any such enumeration degree lies above all total hyperarithmetic enumeration degrees.

Iterating the skip

Figure: Iterated skips of a degree

Zig-zag
If $\mathbf{a}^{\langle n\rangle}$ is not cototal for every n :

Figure: Iterated skips of a degree: the zig-zag

Generic sets

Definition

Let G and X be sets of natural numbers. G is 1- generic relative to $\langle X\rangle$ if and only if for every $W \subseteq 2^{<\omega}$ such that $W \leq_{e} X$:

$$
(\exists \sigma \preceq G)[\sigma \in W \vee(\forall \tau \succeq \sigma)[\tau \notin W]] .
$$

Proposition

If G is 1 -generic relative to $\langle X\rangle$ then:

- \bar{G} is 1-generic relative to $\langle X\rangle$.
- $(G \oplus X)^{\diamond}=\bar{G} \oplus X^{\prime}$.

Generic sets

Definition

Let G and X be sets of natural numbers. G is 1- generic relative to $\langle X\rangle$ if and only if for every $W \subseteq 2^{<\omega}$ such that $W \leq_{e} X$:

$$
(\exists \sigma \preceq G)[\sigma \in W \vee(\forall \tau \succeq \sigma)[\tau \notin W]] .
$$

Proposition

If G is 1 -generic relative to $\langle X\rangle$ then:

- \bar{G} is 1-generic relative to $\langle X\rangle$.
- $(G \oplus X)^{\diamond}=\bar{G} \oplus X^{\prime}$.

If G is arithmetically generic, i.e. G is 1 -generic relative to $\left\langle\emptyset^{(n)}\right\rangle$, for every n, then the skips of G and \bar{G} form a double helix.

- If n is odd then $G^{\langle n\rangle} \equiv{ }_{e} \bar{G} \oplus \emptyset^{(n)}$ and $(\bar{G})^{\langle n\rangle} \equiv{ }_{e} G \oplus \emptyset^{(n)}$.
- If n is even then $G^{\langle n\rangle} \equiv{ }_{e} G \oplus \emptyset^{(n)}$ and $(\bar{G})^{\langle n\rangle} \equiv{ }_{e} \bar{G} \oplus \emptyset^{(n)}$.

Double zig-zag

Figure: Iterated skips of a degrees of an arithmetically generic set and its complement: double zig-zag

Skips of nontrivial \mathcal{K}-pairs

Proposition

If $\{A, B\}$ is a non-trivial \mathcal{K}-pair then $A^{\diamond} \equiv_{e} B \oplus \emptyset^{\prime}$.
If $\{A, B\}$ is a non-trivial \mathcal{K}-pair relative to $\langle X\rangle$ then $(A \oplus X)^{\diamond} \leq_{e} B \oplus X^{\diamond}$. The oracle X is of cototal degree iff we have equivalence above for every nontrivial \mathcal{K}-pair relative to $\langle X\rangle$.

Skips of nontrivial \mathcal{K}-pairs

Proposition

If $\{A, B\}$ is a non-trivial \mathcal{K}-pair then $A^{\diamond} \equiv_{e} B \oplus \emptyset^{\prime}$.
If $\{A, B\}$ is a non-trivial \mathcal{K}-pair relative to $\langle X\rangle$ then $(A \oplus X)^{\diamond} \leq_{e} B \oplus X^{\diamond}$.
The oracle X is of cototal degree iff we have equivalence above for every nontrivial \mathcal{K}-pair relative to $\langle X\rangle$.

If $\{A, B\}$ is a non-trivial \mathcal{K}-pair relative to $\emptyset^{(n)}$ for every n then the iterate skips of A and B form a double zig-zag.

- if n is odd then $A^{\langle n\rangle} \equiv{ }_{e} B \oplus \emptyset^{(n)}$ and $B^{\langle n\rangle} \equiv_{e} A \oplus \emptyset^{(n)}$, and
- if n is even then $A^{\langle n\rangle} \equiv{ }_{e} A \oplus \emptyset^{(n)}$ and $B^{\langle n\rangle} \equiv_{e} B \oplus \emptyset^{(n)}$.

Skip iterations

Theorem (Ganchev, Sorbi)

For every enumeration degree $\mathbf{x}>\mathbf{0}_{e}$, there is a degree $\mathbf{a} \leq \mathbf{x}$ such that \mathbf{a} is half of a nontrivial \mathcal{K}-pair and such that $\mathbf{a}^{\prime}=\mathbf{x}^{\prime}$.

$$
A^{\prime} \equiv_{e} A \oplus A^{\diamond} \equiv_{e} A \oplus B \oplus \emptyset^{\prime} \equiv_{e} B \oplus B^{\diamond} \equiv_{e} B^{\prime}
$$

Proposition

- If x is high $\left(\mathrm{x}^{\prime}=\mathbf{0}^{\prime \prime}\right)$:

$$
\mathbf{b}^{\diamond}<\mathbf{b}^{\prime}=\mathbf{b}^{\diamond \diamond}<\mathbf{b}^{\prime \prime}=\mathbf{b}^{\langle 3\rangle}<\cdots<\mathbf{b}^{(n)}=\mathbf{b}^{\langle n+1\rangle}<\ldots
$$

Skip iterations

Theorem (Ganchev, Sorbi)

For every enumeration degree $\mathbf{x}>\mathbf{0}_{e}$, there is a degree $\mathbf{a} \leq \mathbf{x}$ such that \mathbf{a} is half of a nontrivial \mathcal{K}-pair and such that $\mathbf{a}^{\prime}=\mathbf{x}^{\prime}$.

$$
A^{\prime} \equiv_{e} A \oplus A^{\diamond} \equiv_{e} A \oplus B \oplus \emptyset^{\prime} \equiv_{e} B \oplus B^{\diamond} \equiv_{e} B^{\prime}
$$

Proposition

- If x is high $\left(\mathrm{x}^{\prime}=\mathbf{0}^{\prime \prime}\right)$:

$$
\mathbf{b}^{\diamond}<\mathbf{b}^{\prime}=\mathbf{b}^{\diamond \diamond}<\mathbf{b}^{\prime \prime}=\mathbf{b}^{\langle 3\rangle}<\cdots<\mathbf{b}^{(n)}=\mathbf{b}^{\langle n+1\rangle}<\ldots
$$

- If x is intermediate:

$$
\mathbf{b}^{\diamond}<\mathbf{b}^{\prime}<\mathbf{b}^{\diamond \diamond}<\mathbf{b}^{\prime \prime}<\mathbf{b}^{\langle 3\rangle}<\cdots<\mathbf{b}^{(n)}<\mathbf{b}^{\langle n+1\rangle}<\ldots
$$

The cototal degrees are dense

Corollary
The relation

$$
S K=\left\{\left(\mathbf{a}, \mathbf{a}^{\diamond}\right) \mid \mathbf{a} \text { is half of a nontrivial } \mathcal{K} \text {-pair }\right\}
$$

is first-order definable in \mathcal{D}_{e}.

The cototal degrees are dense

Corollary
The relation

$$
S K=\left\{\left(\mathbf{a}, \mathbf{a}^{\diamond}\right) \mid \mathbf{a} \text { is half of a nontrivial } \mathcal{K} \text {-pair }\right\}
$$

is first-order definable in \mathcal{D}_{e}.
Question: Is the skip operator definable in \mathcal{D}_{e} ?

Good e-degrees

Definition (Lachlan, Shore)
A uniformly computable sequence of finite sets $\left\{A_{s}\right\}_{s<\omega}$ is a good approximation to a set A if:
$G 1(\forall n)(\exists s)\left(A \upharpoonright n \subseteq A_{s} \subseteq A\right)$
$G 2(\forall n)(\exists s)(\forall t>s)\left(A_{t} \subseteq A \Rightarrow A \upharpoonright n \subseteq A_{t}\right)$.
An enumeration degree is good if it contains a set with a good approximation.

- Good e-degrees cannot be tops of empty intervals.
- Total enumeration degrees and enumeration degrees of n-c.e.a. sets are good.

The cototal degrees are dense

Theorem (Harris; Miller, M. Soskova)
The good enumeration degrees are exactly the cototal enumeration degrees.
If A has a good approximation then

$$
A \leq_{e}\left\{\langle x, s\rangle \mid(\forall t>s)\left(A_{t} \subseteq A \Rightarrow x \in A\right)\right\} \leq_{e} A^{\diamond}
$$

Every uniformly e-pointed tree has a good approximation.
Theorem (Miller, M. Soskova)
The cototal enumeration degrees are dense.
If $V<_{e} U$ are cototal and U has a good approximation they build Θ such that $\Theta(U)$ is the complement of a maximal independent set and

$$
V<_{e} \Theta(U) \oplus V<_{e} U
$$

