Structural properties of the cototal enumeration degrees

Alexandra A. Soskova¹

Sofia University

joint work with Uri Andrews, Hristo Ganchev, Rutger Kuyper, Steffen Lempp, Joseph Miller and Mariya Soskova Logic Colloquium 2017, Stockholm

¹Supported by Bulgarian National Science Fund DN 02/16/19.12.2016 and Sofia University Science Fund, 80-10-147/20.04.2017

The enumeration degrees

Definition

 $A \leq_{e} B$ if there is a c.e. set W, such that

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

Equivalently, $A \leq_e B$ if there is a single Turing functional which uniformly, given any enumeration of *B*, outputs an enumeration of *A*.

The enumeration degrees

Definition

 $A \leq_{e} B$ if there is a c.e. set *W*, such that

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

Equivalently, $A \leq_e B$ if there is a single Turing functional which uniformly, given any enumeration of *B*, outputs an enumeration of *A*.

• The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}.$

•
$$d_e(A) \leq d_e(B)$$
 iff $A \leq_e B$.

- The least element: $\mathbf{0}_{\mathbf{e}} = d_e(\emptyset)$, the set of all c.e. sets.
- The least upper bound: $d_e(A) \lor d_e(B) = d_e(A \oplus B)$.
- The enumeration jump: $d_e(A)' = d_e(K_A \oplus \overline{K_A})$, where $K_A = \{ \langle e, x \rangle \mid x \in W_e(A) \}.$

< 回 > < 回 > < 回 >

What connects \mathcal{D}_T and \mathcal{D}_e

Proposition

$A \leq_T B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$

Definition

A set *A* is *total* if $\overline{A} \leq_e A$, or equivalently $A \equiv_e A \oplus \overline{A}$. An enumeration degree is *total* if it contains a total set.

What connects \mathcal{D}_T and \mathcal{D}_e

Proposition

$A \leq_T B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$

Definition

A set *A* is *total* if $\overline{A} \leq_e A$, or equivalently $A \equiv_e A \oplus \overline{A}$. An enumeration degree is *total* if it contains a total set.

Within the enumeration degrees, the total degrees are an embedded copy of the Turing degrees \mathcal{D}_T via $\iota : A \to A \oplus \overline{A}$. The embedding ι preserves the order, the least upper bound and the jump operation.

Total and cototal

Definition

A set *A* is *cototal* if $A \leq_e \overline{A}$. A degree **a** is cototal if it contains a cototal set.

For every set A the set $A \oplus \overline{A}$ is cototal. So, every total e-dergree is cototal.

Total and cototal

Definition

A set *A* is *cototal* if $A \leq_{e} \overline{A}$. A degree **a** is cototal if it contains a cototal set.

For every set *A* the set $A \oplus \overline{A}$ is cototal.

So, every total e-dergree is cototal.

The cototal enumeration degrees form a proper substructure of \mathcal{D}_e closed under least upper bound and the enumeration jump operator.

Total and cototal

Definition

A set *A* is *cototal* if $A \leq_{e} \overline{A}$. A degree **a** is cototal if it contains a cototal set.

For every set *A* the set $A \oplus \overline{A}$ is cototal.

So, every total e-dergree is cototal.

The cototal enumeration degrees form a proper substructure of \mathcal{D}_e closed under least upper bound and the enumeration jump operator.

- The name "total": for any total function f, the set
 G(f) = {⟨n,f(n)⟩ | n ∈ ω} is a total set.
- Equivalently, given a total function f, the graph-complement $\overline{G(f)}$ is cototal.
- If an enumeration degree contains a set of the form $\overline{G(f)}$, then we call it *graph-cototal*.
- So every total enumeration degree is graph-cototal, and every graph-cototal is cototal.

イロト イロト イヨト イヨト

Definition

• A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.

Definition

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.

Definition

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.
- The language of *X* is the set

 $L_X = \{ \sigma \in 2^{<\omega} \mid \exists \alpha \in X(\sigma \text{ is a subword of } \alpha) \}.$

Definition

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.
- The language of *X* is the set

 $L_X = \{ \sigma \in 2^{<\omega} \mid \exists \alpha \in X(\sigma \text{ is a subword of } \alpha) \}.$

• $\overline{L_X}$ is called the set of forbidden words.

Definition

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.
- The language of X is the set
 L_X = {σ ∈ 2^{<ω} | ∃α ∈ X(σ is a subword of α)}.
- $\overline{L_X}$ is called the set of forbidden words.
- If X is minimal and $\sigma \in L_X$ then σ is a subword of every element α of X. So every element of X can enumerate the set L_X .

Definition

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.
- The language of X is the set
 L_X = {σ ∈ 2^{<ω} | ∃α ∈ X(σ is a subword of α)}.
- $\overline{L_X}$ is called the set of forbidden words.
- If X is minimal and $\sigma \in L_X$ then σ is a subword of every element α of X. So every element of X can enumerate the set L_X .
- **2** If we can enumerate L_X then we can compute a member of *X*.
- So The Turing degrees that compute elements of *X* are exactly the degrees that contain enumerations of L_X . So $L_X \equiv_e X$.

< 回 > < 回 > < 回 >

Definition

- A subshift is a closed subset $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.
- The language of X is the set
 L_X = {σ ∈ 2^{<ω} | ∃α ∈ X(σ is a subword of α)}.
- $\overline{L_X}$ is called the set of forbidden words.
- If X is minimal and $\sigma \in L_X$ then σ is a subword of every element α of X. So every element of X can enumerate the set L_X .
- 2 If we can enumerate L_X then we can compute a member of X.
- So The Turing degrees that compute elements of *X* are exactly the degrees that contain enumerations of L_X . So $L_X \equiv_e X$.
- (Jaendel) If we can enumerate the set of forbidden words $\overline{L_X}$ then we can enumerate L_X . So, $L_X \leq_e \overline{L_X}$.
- (McCarthy) If A is cototal, then $A \equiv_e L_X$ for some minimal subshift X.

Maximal independent sets

Definition

Let $G = (\mathbb{N}, E)$ be a graph and $S \subseteq \mathbb{N}$.

- S is an *independent set* for G if $i \neq j$ are in S then $(i,j) \notin E$.
- An independent set is *maximal* if it has no proper independent superset,
 i.e. for every element i ∉ S there is a j ∈ S such that (i, j) ∈ E.

Maximal independent sets

Definition

Let $G = (\mathbb{N}, E)$ be a graph and $S \subseteq \mathbb{N}$.

- S is an *independent set* for G if $i \neq j$ are in S then $(i,j) \notin E$.
- An independent set is *maximal* if it has no proper independent superset,
 i.e. for every element i ∉ S there is a j ∈ S such that (i, j) ∈ E.

If *S* is a maximal independent set for *G*, then *S* can enumerate its complement: $i \in \overline{S}$ iff there is a $j \neq i$ such that $(i, j) \in E$ and $j \in S$.

Maximal independent sets

Definition

Let $G = (\mathbb{N}, E)$ be a graph and $S \subseteq \mathbb{N}$.

- S is an *independent set* for G if $i \neq j$ are in S then $(i,j) \notin E$.
- An independent set is *maximal* if it has no proper independent superset,
 i.e. for every element i ∉ S there is a j ∈ S such that (i, j) ∈ E.

If *S* is a maximal independent set for *G*, then *S* can enumerate its complement: $i \in \overline{S}$ iff there is a $j \neq i$ such that $(i, j) \in E$ and $j \in S$.

Theorem

Every cototal degree contains the complement of maximal independent set for $\omega^{<\omega}$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Definition

A \mathcal{K} -pair is a pair of sets $\{A, B\}$ for which there is a c.e. set W such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Definition

A \mathcal{K} -pair is a pair of sets $\{A, B\}$ for which there is a c.e. set W such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Proposition (Kalimullin)

Let $\{A, B\}$ be a \mathcal{K} -pair. If A and B are not c.e. then:

- $A \leq_e \overline{B} \text{ and } \overline{A} \leq_e \emptyset' \oplus B.$
- **2** $B \leq_e \overline{A}$ and $\overline{B} \leq_e \emptyset' \oplus A$.

Definition

A \mathcal{K} -pair is a pair of sets $\{A, B\}$ for which there is a c.e. set W such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Proposition (Kalimullin)

Let $\{A, B\}$ be a \mathcal{K} -pair. If A and B are not c.e. then:

- $A \leq_e \overline{B} \text{ and } \overline{A} \leq_e \emptyset' \oplus B.$
- **2** $B \leq_e \overline{A}$ and $\overline{B} \leq_e \emptyset' \oplus A$.

Proposition

If $\{A, B\}$ is a nontrivial \mathcal{K} -pair then $A \oplus B$ is cototal.

Definition

A \mathcal{K} -pair is a pair of sets $\{A, B\}$ for which there is a c.e. set W such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Proposition (Kalimullin)

Let $\{A, B\}$ be a \mathcal{K} -pair. If A and B are not c.e. then:

- $A \leq_e \overline{B} \text{ and } \overline{A} \leq_e \emptyset' \oplus B.$
- **2** $B \leq_e \overline{A}$ and $\overline{B} \leq_e \emptyset' \oplus A$.

Proposition

If $\{A, B\}$ *is a nontrivial* \mathcal{K} *-pair then* $A \oplus B$ *is cototal.*

Proof: $A \oplus B \leq_e \overline{B} \oplus \overline{A} \equiv_e \overline{A \oplus B}$.

伺き くきき くきき

Continuous degrees

J. Miller introduced the continuous degrees \mathcal{D}_r to compare the complexity of points in computable metric spaces. A point *x* in a computable metric space can be described by a sequence of "rational" points that limit to it. For two points *x*; *y* we say that $x \leq_r y$ if every description of *y* computes a description of *x*. The continuous degrees embed into \mathcal{D}_e . In fact, $D_T \subset \mathcal{D}_e \subset \mathcal{D}_e$.

Definition (J. Miller)

An e-degree is *continuous* if it contains a set of the form $A = \bigoplus_{i < \omega} (\{q \mid q < \alpha_i\} \oplus \{q \mid q > \alpha_i\})$, where $\{\alpha_i\}_{i < \omega}$ is a sequence of real numbers.

Continuous degrees

J. Miller introduced the continuous degrees \mathcal{D}_r to compare the complexity of points in computable metric spaces. A point *x* in a computable metric space can be described by a sequence of "rational" points that limit to it. For two points *x*; *y* we say that $x \leq_r y$ if every description of *y* computes a description of *x*. The continuous degrees embed into \mathcal{D}_e . In fact, $D_T \subset \mathcal{D}_e$.

Definition (J. Miller)

An e-degree is *continuous* if it contains a set of the form $A = \bigoplus_{i < \omega} (\{q \mid q < \alpha_i\} \oplus \{q \mid q > \alpha_i\})$, where $\{\alpha_i\}_{i < \omega}$ is a sequence of real numbers.

Proposition

Continuous degrees are cototal.

 $\overline{A} \equiv_e B = \bigoplus_{i < \omega} (\{q \mid q \le \alpha_i\} \oplus \{q \mid q \ge \alpha_i\}).$ Kihara and Pauly extend Miller's idea to points in arbitrary represented topological spaces.

Recall that $\overline{K_A} = \bigoplus_e \overline{\Gamma_e(A)}$.

イロト イポト イヨト イヨト

Recall that
$$\overline{K_A} = \bigoplus_e \overline{\Gamma_e(A)}$$
.

Proposition

If $A \leq_e B$ then $\overline{K_A} \leq_1 \overline{K_B}$.

A D b A A b A

3 × 4 3 ×

Recall that $\overline{K_A} = \bigoplus_e \overline{\Gamma_e(A)}$.

Proposition

If $A \leq_e B$ then $\overline{K_A} \leq_1 \overline{K_B}$.

Definition

The skip of *A* is the set $A^{\Diamond} = \overline{K_A}$. The skip of a degree **a** is $\mathbf{a}^{\Diamond} = d_e(A^{\Diamond})$.

< 回 > < 回 > < 回 >

Recall that $\overline{K_A} = \bigoplus_e \overline{\Gamma_e(A)}$.

Proposition

If $A \leq_e B$ then $\overline{K_A} \leq_1 \overline{K_B}$.

Definition

The skip of *A* is the set $A^{\Diamond} = \overline{K_A}$. The skip of a degree **a** is $\mathbf{a}^{\Diamond} = d_e(A^{\Diamond})$.

Proposition

A degree **a** is cototal if and only if $\mathbf{a} \leq \mathbf{a}^{\Diamond}$ if and only if $\mathbf{a}^{\Diamond} = \mathbf{a}'$.

 $\Rightarrow A \leq_e \overline{A} \leq_e A^{\Diamond}$ $\Leftrightarrow K_A \equiv_e A \leq_e A^{\Diamond} = \overline{K_A}.$ Recall that $A' = K_A \oplus \overline{K_A}.$

(同) (ヨ) (ヨ)

Theorem

Let $S \ge_e \emptyset'$. There is a set A such that $A^{\Diamond} \equiv_e S$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let $S \ge_e \emptyset'$. There is a set A such that $A^{\Diamond} \equiv_e S$.

We build A so that:

$$S \leq_e \overline{A}.$$

$$\ 2 \ \overline{K_A} \leq_e S.$$

A (1) > A (1) > A (1) >

Theorem

Let $S \ge_e \emptyset'$. There is a set A such that $A^{\Diamond} \equiv_e S$.

We build *A* so that:

 $S \leq_e \overline{A}.$

$$\ \ \, \overline{K_A} \leq_e S.$$

We first build a table \hat{A} with one empty box in each column as a set c.e. in \emptyset' .

The set of empty boxes will be computable from \emptyset' .

Then $A = \hat{A} \cup \{ \langle n, s \rangle \mid n \in \overline{S} \}.$

Theorem

Let $S \ge_e \emptyset'$. There is a set A such that $A^{\Diamond} \equiv_e S$.

We build *A* so that:

 $S \leq_e \overline{A}.$

$$\ \ \, \overline{K_A} \leq_e S.$$

We first build a table \hat{A} with one empty box in each column as a set c.e. in \emptyset' .

The set of empty boxes will be computable from \emptyset' .

Then $A = \hat{A} \cup \{ \langle n, s \rangle \mid n \in \overline{S} \}$. So we have $\overline{S} \leq_e A \oplus \emptyset'$. And we build the set *A* such that $S \equiv_e \overline{A} \leq_e A^{\Diamond} \leq_e \overline{A} \oplus \emptyset'$.

We can define the *iterated skip operator* of an enumeration degree **a** by:

- $\mathbf{a}^{\langle 0 \rangle} = \mathbf{a}$
- $\mathbf{a}^{\langle n+1 \rangle} = (\mathbf{a}^{\langle n \rangle})^{\Diamond}.$

This iterated skip can exhibit exotic behavior:

Theorem

For all enumeration degrees, $\mathbf{a} \leq \mathbf{a}^{\Diamond\Diamond}$ and $\mathbf{a}^{\Diamond} \geq \mathbf{0}'$, but not always $\mathbf{a} \leq \mathbf{a}^{\Diamond}$.

 $\overline{A} \leq_1 A^{\Diamond} \Rightarrow A \leq_1 \overline{A^{\Diamond}} \leq_1 A^{\Diamond \Diamond}.$

くぼう くほう くほう

We can define the *iterated skip operator* of an enumeration degree **a** by:

• $\mathbf{a}^{\langle 0 \rangle} = \mathbf{a}$

•
$$\mathbf{a}^{\langle n+1\rangle} = (\mathbf{a}^{\langle n\rangle})^{\Diamond}.$$

This iterated skip can exhibit exotic behavior:

Theorem

For all enumeration degrees, $\mathbf{a} \leq \mathbf{a}^{\Diamond \Diamond}$ and $\mathbf{a}^{\Diamond} \geq \mathbf{0}'$, but not always $\mathbf{a} \leq \mathbf{a}^{\Diamond}$.

 $\overline{A} \leq_1 A^{\Diamond} \Rightarrow A \leq_1 \overline{A^{\Diamond}} \leq_1 A^{\Diamond \Diamond}.$

By Knaster-Tarski's fixed point theorem:

Theorem

There is an enumeration degree **a** *such that* $\mathbf{a} = \mathbf{a}^{\Diamond \Diamond}$ *.*

We can define the *iterated skip operator* of an enumeration degree **a** by:

• $\mathbf{a}^{\langle 0 \rangle} = \mathbf{a}$

•
$$\mathbf{a}^{\langle n+1\rangle} = (\mathbf{a}^{\langle n\rangle})^{\Diamond}.$$

This iterated skip can exhibit exotic behavior:

Theorem

For all enumeration degrees, $\mathbf{a} \leq \mathbf{a}^{\Diamond\Diamond}$ and $\mathbf{a}^{\Diamond} \geq \mathbf{0}'$, but not always $\mathbf{a} \leq \mathbf{a}^{\Diamond}$.

 $\overline{A} \leq_1 A^{\Diamond} \Rightarrow A \leq_1 \overline{A^{\Diamond}} \leq_1 A^{\Diamond \Diamond}.$

By Knaster-Tarski's fixed point theorem:

Theorem

There is an enumeration degree **a** *such that* $\mathbf{a} = \mathbf{a}^{\Diamond \Diamond}$ *.*

 $A\subseteq B\Rightarrow K_A\subseteq K_B$

< 回 > < 回 > < 回 >

We can define the *iterated skip operator* of an enumeration degree **a** by:

• $\mathbf{a}^{\langle 0 \rangle} = \mathbf{a}$

•
$$\mathbf{a}^{\langle n+1\rangle} = (\mathbf{a}^{\langle n\rangle})^{\Diamond}.$$

This iterated skip can exhibit exotic behavior:

Theorem

For all enumeration degrees, $\mathbf{a} \leq \mathbf{a}^{\Diamond\Diamond}$ and $\mathbf{a}^{\Diamond} \geq \mathbf{0}'$, but not always $\mathbf{a} \leq \mathbf{a}^{\Diamond}$.

 $\overline{A} \leq_1 A^{\Diamond} \Rightarrow A \leq_1 \overline{A^{\Diamond}} \leq_1 A^{\Diamond \Diamond}.$

By Knaster-Tarski's fixed point theorem:

Theorem

There is an enumeration degree **a** *such that* $\mathbf{a} = \mathbf{a}^{\Diamond \Diamond}$ *.*

 $A \subseteq B \Rightarrow K_A \subseteq K_B \Rightarrow \overline{K_A} \supseteq \overline{K_B}$

< 回 > < 回 > < 回 >

We can define the *iterated skip operator* of an enumeration degree **a** by:

• $\mathbf{a}^{\langle 0 \rangle} = \mathbf{a}$

•
$$\mathbf{a}^{\langle n+1\rangle} = (\mathbf{a}^{\langle n\rangle})^{\Diamond}.$$

This iterated skip can exhibit exotic behavior:

Theorem

For all enumeration degrees, $\mathbf{a} \leq \mathbf{a}^{\Diamond\Diamond}$ and $\mathbf{a}^{\Diamond} \geq \mathbf{0}'$, but not always $\mathbf{a} \leq \mathbf{a}^{\Diamond}$.

 $\overline{A} \leq_1 A^{\Diamond} \Rightarrow A \leq_1 \overline{A^{\Diamond}} \leq_1 A^{\Diamond \Diamond}.$

By Knaster-Tarski's fixed point theorem:

Theorem

There is an enumeration degree **a** *such that* $\mathbf{a} = \mathbf{a}^{\Diamond \Diamond}$ *.*

$$A \subseteq B \Rightarrow K_A \subseteq K_B \Rightarrow \overline{K_A} \supseteq \overline{K_B} \Rightarrow K_{\overline{K_A}} \supseteq K_{\overline{K_B}}$$

We can define the *iterated skip operator* of an enumeration degree **a** by:

• $\mathbf{a}^{\langle 0 \rangle} = \mathbf{a}$

•
$$\mathbf{a}^{\langle n+1\rangle} = (\mathbf{a}^{\langle n\rangle})^{\Diamond}.$$

This iterated skip can exhibit exotic behavior:

Theorem

For all enumeration degrees, $\mathbf{a} \leq \mathbf{a}^{\Diamond \Diamond}$ and $\mathbf{a}^{\Diamond} \geq \mathbf{0}'$, but not always $\mathbf{a} \leq \mathbf{a}^{\Diamond}$.

 $\overline{A} \leq_1 A^{\Diamond} \Rightarrow A \leq_1 \overline{A^{\Diamond}} \leq_1 A^{\Diamond \Diamond}.$

By Knaster-Tarski's fixed point theorem:

Theorem

There is an enumeration degree **a** *such that* $\mathbf{a} = \mathbf{a}^{\Diamond \Diamond}$ *.*

$$A \subseteq B \Rightarrow K_A \subseteq K_B \Rightarrow \overline{K_A} \supseteq \overline{K_B} \Rightarrow K_{\overline{K_A}} \supseteq K_{\overline{K_B}} \Rightarrow$$

 $\overline{K_{\overline{K_A}}} \subseteq \overline{K_{\overline{K_B}}}.$ Any such enumeration degree lies above all total hyperarithmetic enumeration degrees.

Iterating the skip

Figure: Iterated skips of a degree

A.

-

∋⊳

Zig-zag

If $\mathbf{a}^{\langle n \rangle}$ is not cototal for every *n*:

Figure: Iterated skips of a degree: the zig-zag

Generic sets

Definition

A set *G* is 1- *generic relative to* $\langle X \rangle$ if and only if for every $W \subseteq 2^{<\omega}$ such that $W \leq_e X$:

$$(\exists \sigma \preceq G) [\sigma \in W \lor (\forall \tau \succeq \sigma) [\tau \notin W]].$$

Proposition

If G is 1-generic relative to $\langle X \rangle$ *then:*

- \overline{G} is 1-generic relative to $\langle X \rangle$.
- $(G \oplus X)^{\Diamond} = \overline{G} \oplus X'.$

伺き くまき くまき

Generic sets

Definition

A set *G* is 1- generic relative to $\langle X \rangle$ if and only if for every $W \subseteq 2^{<\omega}$ such that $W \leq_e X$:

$$(\exists \sigma \preceq G) [\sigma \in W \lor (\forall \tau \succeq \sigma) [\tau \notin W]].$$

Proposition

If G is 1-generic relative to $\langle X \rangle$ *then:*

- \overline{G} is 1-generic relative to $\langle X \rangle$.
- $(G \oplus X)^{\Diamond} = \overline{G} \oplus X'.$

If G is 1-generic relative to $\langle \emptyset^{(n)} \rangle$ for every *n*, then the skips of G and \overline{G} form a double helix.

- If *n* is odd then $G^{\langle n \rangle} \equiv_e \overline{G} \oplus \emptyset^{(n)}$ and $(\overline{G})^{\langle n \rangle} \equiv_e G \oplus \emptyset^{(n)}$.
- If *n* is even then $G^{\langle n \rangle} \equiv_e G \oplus \emptyset^{(n)}$ and $(\overline{G})^{\langle n \rangle} \equiv_e \overline{G} \oplus \emptyset^{(n)}$.

く 伺 と く き と く き とう

Double zig-zag

Figure: Iterated skips of a degrees of an arithmetically generic set and its complement: double zig-zag

Proposition

If $\{A, B\}$ is a non-trivial \mathcal{K} -pair then $A^{\Diamond} \equiv_{e} B \oplus \emptyset'$. If $\{A, B\}$ is a non-trivial \mathcal{K} -pair relative to $\langle X \rangle$ then $(A \oplus X)^{\Diamond} \leq_{e} B \oplus X^{\Diamond}$. The oracle X is of cototal degree iff we have $(A \oplus X)^{\Diamond} \equiv_{e} B \oplus X^{\Diamond}$ for every nontrivial \mathcal{K} -pair relative to $\langle X \rangle$.

Proposition

If $\{A, B\}$ is a non-trivial \mathcal{K} -pair then $A^{\Diamond} \equiv_{e} B \oplus \emptyset'$. If $\{A, B\}$ is a non-trivial \mathcal{K} -pair relative to $\langle X \rangle$ then $(A \oplus X)^{\Diamond} \leq_{e} B \oplus X^{\Diamond}$. The oracle X is of cototal degree iff we have $(A \oplus X)^{\Diamond} \equiv_{e} B \oplus X^{\Diamond}$ for every nontrivial \mathcal{K} -pair relative to $\langle X \rangle$.

If $\{A, B\}$ is a non-trivial \mathcal{K} -pair relative to $\emptyset^{(n)}$ for every *n* then the iterate skips of *A* and *B* form a double zig-zag.

- if *n* is odd then $A^{\langle n \rangle} \equiv_e B \oplus \emptyset^{(n)}$ and $B^{\langle n \rangle} \equiv_e A \oplus \emptyset^{(n)}$, and
- if *n* is even then $A^{\langle n \rangle} \equiv_e A \oplus \emptyset^{(n)}$ and $B^{\langle n \rangle} \equiv_e B \oplus \emptyset^{(n)}$.

Theorem (Ganchev, Sorbi)

For every enumeration degree $\mathbf{x} > \mathbf{0}_e$, there is a degree $\mathbf{a} \leq \mathbf{x}$ such that \mathbf{a} is half of a nontrivial \mathcal{K} -pair and such that $\mathbf{a}' = \mathbf{x}'$.

$$A' \equiv_e A \oplus A^{\Diamond} \equiv_e A \oplus B \oplus \emptyset' \equiv_e B \oplus B^{\Diamond} \equiv_e B'.$$

Proposition

• If
$$\mathbf{x}$$
 is high $(\mathbf{x}' = \mathbf{0}'')$:

$$\mathbf{b}^{\Diamond} < \mathbf{b}' = \mathbf{b}^{\Diamond\Diamond} < \mathbf{b}'' = \mathbf{b}^{\langle3\rangle} < \dots < \mathbf{b}^{(n)} = \mathbf{b}^{\langle n+1 \rangle} < \dots$$

< **A** → <

.⊒ . ►

Theorem (Ganchev, Sorbi)

For every enumeration degree $\mathbf{x} > \mathbf{0}_e$, there is a degree $\mathbf{a} \leq \mathbf{x}$ such that \mathbf{a} is half of a nontrivial \mathcal{K} -pair and such that $\mathbf{a}' = \mathbf{x}'$.

$$A' \equiv_e A \oplus A^{\Diamond} \equiv_e A \oplus B \oplus \emptyset' \equiv_e B \oplus B^{\Diamond} \equiv_e B'.$$

Proposition

• If
$$\mathbf{x}$$
 is high $(\mathbf{x}' = \mathbf{0}'')$:

$$\mathbf{b}^{\Diamond} < \mathbf{b}' = \mathbf{b}^{\Diamond \Diamond} < \mathbf{b}'' = \mathbf{b}^{\langle 3 \rangle} < \dots < \mathbf{b}^{\langle n \rangle} = \mathbf{b}^{\langle n+1 \rangle} < \dots$$

• If **x** is intermediate:

$$\mathbf{b}^{\Diamond} < \mathbf{b}' < \mathbf{b}^{\Diamond \Diamond} < \mathbf{b}'' < \mathbf{b}^{\langle 3 \rangle} < \dots < \mathbf{b}^{\langle n \rangle} < \mathbf{b}^{\langle n+1 \rangle} < \dots$$

• □ ▶ • • □ ▶ • • □ ▶ • •

The cototal degrees are dense

Corollary

The relation

$$SK = \left\{ (\mathbf{a}, \mathbf{a}^{\Diamond}) \mid \mathbf{a} \text{ is half of a nontrivial } \mathcal{K}\text{-pair} \right\}$$

is first-order definable in \mathcal{D}_e .

< A

∃ > .

The cototal degrees are dense

Corollary

The relation

$$SK = \left\{ (\mathbf{a}, \mathbf{a}^{\Diamond}) \mid \mathbf{a} \text{ is half of a nontrivial } \mathcal{K}\text{-pair} \right\}$$

is first-order definable in \mathcal{D}_e .

Question: Is the skip operator definable in \mathcal{D}_e ?

∃ ▶ ∢

Good e-degrees

Definition (Lachlan, Shore)

A uniformly computable sequence of finite sets $\{A_s\}_{s<\omega}$ is a good approximation to a set A if: $G1(\forall n)(\exists s)(A \upharpoonright n \subseteq A_s \subseteq A)$ $G2(\forall n)(\exists s)(\forall t > s)(A_t \subseteq A \Rightarrow A \upharpoonright n \subseteq A_t).$

An enumeration degree is *good* if it contains a set with a good approximation.

- Good e-degrees cannot be tops of empty intervals.
- Total enumeration degrees and enumeration degrees of *n*-c.e.a. sets are good.

< 回 > < 回 > < 回 >

The cototal degrees are dense

Theorem (Harris; Miller, M. Soskova)

The good enumeration degrees are exactly the cototal enumeration degrees.

If A has a good approximation then

$$A \leq_e \{ \langle x, s \rangle \mid (\forall t > s) (A_t \subseteq A \Rightarrow x \in A) \} \leq_e A^{\Diamond}.$$

Every uniformly e-pointed tree has a good approximation.

Theorem (Miller, M. Soskova)

The cototal enumeration degrees are dense.

If $V <_e U$ are cototal and U has a good approximation they build Θ such that $\Theta(U)$ is the complement of a maximal independent set and

 $V <_e \Theta(U) \oplus V <_e U.$

< 回 > < 回 > < 回 >