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The enumeration degrees

Definition
A ≤e B if there is a c.e. set W, such that

A = W(B) = {x | ∃D(〈x,D〉 ∈ W & D ⊆ B)} .

Equivalently, A ≤e B if there is a single Turing functional which uniformly,
given any enumeration of B, outputs an enumeration of A.

The enumeration degree of a set A is de(A) = {B | A ≡e B}.
de(A) ≤ de(B) iff A ≤e B.

The least element: 0e = de(∅), the set of all c.e. sets.

The least upper bound: de(A) ∨ de(B) = de(A⊕ B).

The enumeration jump: de(A)′ = de(KA ⊕ KA), where
KA = {〈e, x〉 | x ∈ We(A)}.
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What connects DT and De

Proposition

A ≤T B⇔ A⊕ A ≤e B⊕ B.

Definition
A set A is total if A ≤e A, or equivalently A ≡e A⊕ A. An enumeration degree
is total if it contains a total set.

Within the enumeration degrees, the total degrees are an embedded copy of
the Turing degrees DT via ι : A→ A⊕ A. The embedding ι preserves the
order, the least upper bound and the jump operation.
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Total and cototal

Definition
A set A is cototal if A ≤e A. A degree a is cototal if it contains a cototal set.

For every set A the set A⊕ A is cototal.
So, every total e-dergree is cototal.

The cototal enumeration degrees form a proper substructure of De closed
under least upper bound and the enumeration jump operator.

The name “total” : for any total function f , the set
G(f ) = {〈n, f (n)〉 | n ∈ ω} is a total set.

Equivalently, given a total function f , the graph-complement G(f ) is
cototal.

If an enumeration degree contains a set of the form G(f ), then we call it
graph-cototal.

So every total enumeration degree is graph-cototal, and every
graph-cototal is cototal.
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Motivation from symbolic dynamics
Definition

A subshift is a closed subset X ⊆ 2ω such that if aα ∈ X then α ∈ X.

X is minimal if there is no Y ⊂ X, such that Y is a subshift.

The language of X is the set
LX = {σ ∈ 2<ω | ∃α ∈ X(σ is a subword of α)}.
LX is called the set of forbidden words.

1 If X is minimal and σ ∈ LX then σ is a subword of every element α of X.
So every element of X can enumerate the set LX .

2 If we can enumerate LX then we can compute a member of X.
3 The Turing degrees that compute elements of X are exactly the degrees

that contain enumerations of LX . So LX ≡e X.
4 (Jaendel) If we can enumerate the set of forbidden words LX then we can

enumerate LX . So, LX ≤e LX .
5 (McCarthy) If A is cototal, then A ≡e LX for some minimal subshift X.
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Maximal independent sets

Definition
Let G = (N,E) be a graph and S ⊆ N.

1 S is an independent set for G if i 6= j are in S then (i, j) /∈ E.
2 An independent set is maximal if it has no proper independent superset,

i.e. for every element i /∈ S there is a j ∈ S such that (i, j) ∈ E.

If S is a maximal independent set for G, then S can enumerate its complement:
i ∈ S iff there is a j 6= i such that (i, j) ∈ E and j ∈ S.

Theorem
Every cototal degree contains the complement of maximal independent set for
ω<ω.
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Joins of nontrivial K-pairs

Definition
A K-pair is a pair of sets {A,B} for which there is a c.e. set W such that
A× B ⊆ W and A× B ⊆ W.

Proposition (Kalimullin)
Let {A,B} be a K-pair. If A and B are not c.e. then:

1 A ≤e B and A ≤e ∅′ ⊕ B.
2 B ≤e A and B ≤e ∅′ ⊕ A.

Proposition
If {A,B} is a nontrivial K-pair then A⊕ B is cototal.

Proof: A⊕ B ≤e B⊕ A ≡e A⊕ B.
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Continuous degrees
J. Miller introduced the continuous degrees Dr to compare the complexity of
points in computable metric spaces. A point x in a computable metric space
can be described by a sequence of “rational” points that limit to it. For two
points x; y we say that x ≤r y if every description of y computes a description
of x. The continuous degrees embed into De. In fact, DT ⊂ Dr ⊂ De.

Definition (J. Miller)
An e-degree is continuous if it contains a set of the form
A =

⊕
i<ω({q | q < αi} ⊕ {q | q > αi}), where {αi}i<ω is a sequence of real

numbers.

Proposition
Continuous degrees are cototal.

A ≡e B =
⊕

i<ω({q | q ≤ αi} ⊕ {q | q ≥ αi}).
Kihara and Pauly extend Miller’s idea to points in arbitrary represented
topological spaces.
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The skip operator

Recall that KA =
⊕

e Γe(A).

Proposition

If A ≤e B then KA ≤1 KB.

Definition
The skip of A is the set A♦ = KA. The skip of a degree a is a♦ = de(A♦).

Proposition

A degree a is cototal if and only if a ≤ a♦ if and only if a♦ = a′.

⇒ A ≤e A ≤e A♦

⇐ KA ≡e A ≤e A♦ = KA.
Recall that A′ = KA ⊕ KA.
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Skip inversion

Theorem
Let S ≥e ∅′. There is a set A such that A♦ ≡e S.

We build A so that:
1 S ≤e A.
2 KA ≤e S.

We first build a table Â with one empty box in each column as a set c.e. in ∅′.
The set of empty boxes will be computable from ∅′.
Then A = Â ∪

{
〈n, s〉 | n ∈ S

}
. So we have S ≤e A⊕ ∅′.

And we build the set A such that S ≡e A ≤e A♦ ≤e A⊕ ∅′.

Alexandra A. Soskova ( Sofia University) Structural properties of the cototal enumeration degrees 10 / 20



Skip inversion

Theorem
Let S ≥e ∅′. There is a set A such that A♦ ≡e S.

We build A so that:
1 S ≤e A.
2 KA ≤e S.
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{
〈n, s〉 | n ∈ S

}
.

So we have S ≤e A⊕ ∅′.
And we build the set A such that S ≡e A ≤e A♦ ≤e A⊕ ∅′.

Alexandra A. Soskova ( Sofia University) Structural properties of the cototal enumeration degrees 10 / 20



Skip inversion

Theorem
Let S ≥e ∅′. There is a set A such that A♦ ≡e S.

We build A so that:
1 S ≤e A.
2 KA ≤e S.
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Skip iteration
We can define the iterated skip operator of an enumeration degree a by:

a〈0〉 = a
a〈n+1〉 = (a〈n〉)♦.

This iterated skip can exhibit exotic behavior:

Theorem
For all enumeration degrees, a ≤ a♦♦ and a♦ ≥ 0′, but not always a ≤ a♦.

A ≤1 A♦ ⇒ A ≤1 A♦ ≤1 A♦♦.

By Knaster-Tarski’s fixed point theorem:

Theorem
There is an enumeration degree a such that a = a♦♦.

A ⊆ B⇒ KA ⊆ KB ⇒ KA ⊇ KB ⇒ KKA
⊇ KKB

⇒
KKA
⊆ KKB

.
Any such enumeration degree lies above all total hyperarithmetic enumeration
degrees.
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Any such enumeration degree lies above all total hyperarithmetic enumeration
degrees.
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Iterating the skip

0e

a

0′e

a♦
0′e

a♦♦
0′′′e

a〈3〉
...

Figure: Iterated skips of a degree

Alexandra A. Soskova ( Sofia University) Structural properties of the cototal enumeration degrees 12 / 20



Zig-zag
If a〈n〉 is not cototal for every n:

a

a♦

a♦♦

a〈3〉

Figure: Iterated skips of a degree: the zig-zag
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Generic sets

Definition
A set G is 1- generic relative to 〈X〉 if and only if for every W ⊆ 2<ω such
that W ≤e X:

(∃σ � G)[σ ∈ W ∨ (∀τ � σ)[τ /∈ W]].

Proposition
If G is 1-generic relative to 〈X〉 then:

G is 1-generic relative to 〈X〉.
(G⊕ X)♦ = G⊕ X′.

If G is 1-generic relative to 〈∅(n)〉 for every n, then the skips of G and G form
a double helix.

If n is odd then G〈n〉 ≡e G⊕ ∅(n) and (G)〈n〉 ≡e G⊕ ∅(n).
If n is even then G〈n〉 ≡e G⊕ ∅(n) and (G)〈n〉 ≡e G⊕ ∅(n).
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Double zig-zag

g

g♦

g♦♦

g〈3〉

g

g♦

g♦♦

g〈3〉

Figure: Iterated skips of a degrees of an arithmetically generic set and its
complement: double zig-zag
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Skips of nontrivial K-pairs

Proposition

If {A,B} is a non-trivial K-pair then A♦ ≡e B⊕ ∅′.
If {A,B} is a non-trivial K-pair relative to 〈X〉 then (A⊕ X)♦ ≤e B⊕ X♦.
The oracle X is of cototal degree iff we have (A⊕ X)♦ ≡e B⊕ X♦ for every
nontrivial K-pair relative to 〈X〉.

If {A,B} is a non-trivial K-pair relative to ∅(n) for every n then the iterate
skips of A and B form a double zig-zag.

if n is odd then A〈n〉 ≡e B⊕ ∅(n) and B〈n〉 ≡e A⊕ ∅(n), and

if n is even then A〈n〉 ≡e A⊕ ∅(n) and B〈n〉 ≡e B⊕ ∅(n).
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Skip iterations

Theorem (Ganchev, Sorbi)
For every enumeration degree x > 0e, there is a degree a ≤ x such that a is
half of a nontrivial K-pair and such that a′ = x′.

A′ ≡e A⊕ A♦ ≡e A⊕ B⊕ ∅′ ≡e B⊕ B♦ ≡e B′.

Proposition
If x is high (x′ = 0′′):

b♦ < b′ = b♦♦ < b′′ = b〈3〉 < · · · < b(n) = b〈n+1〉 < . . .

If x is intermediate:

b♦ < b′ < b♦♦ < b′′ < b〈3〉 < · · · < b(n) < b〈n+1〉 < . . .
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The cototal degrees are dense

Corollary
The relation

SK =
{

(a, a♦) | a is half of a nontrivial K-pair
}

is first-order definable in De.

Question: Is the skip operator definable in De?
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Good e-degrees

Definition (Lachlan, Shore)
A uniformly computable sequence of finite sets {As}s<ω is a good
approximation to a set A if:
G1(∀n)(∃s)(A � n ⊆ As ⊆ A)
G2(∀n)(∃s)(∀t > s)(At ⊆ A⇒ A � n ⊆ At).

An enumeration degree is good if it contains a set with a good approximation.

Good e-degrees cannot be tops of empty intervals.

Total enumeration degrees and enumeration degrees of n-c.e.a. sets are
good.
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The cototal degrees are dense

Theorem (Harris; Miller, M. Soskova)
The good enumeration degrees are exactly the cototal enumeration degrees.

If A has a good approximation then

A ≤e {〈x, s〉 | (∀t > s)(At ⊆ A⇒ x ∈ A)} ≤e A♦.

Every uniformly e-pointed tree has a good approximation.

Theorem (Miller, M. Soskova)
The cototal enumeration degrees are dense.

If V <e U are cototal and U has a good approximation they build Θ such that
Θ(U) is the complement of a maximal independent set and

V <e Θ(U)⊕ V <e U.
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