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Abstract structures

Let 2l = (A; Ry, ..., Rx) be a countable abstract structure.

@ An enumeration f of 2l is a bijection from N onto A.

@ (X)) ={(xy...xa) : (f(x1),...,f(xa)) € X} for any X C A2.

o () =f""(Ry) ®---®f'(R) is the positive atomic diagram of
an isomorphic copy of 2.

We always consider 2 = (A; Ry, Ry ..., Ry, Ry).
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Abstract structures

Let 2l = (A; Ry, ..., Rx) be a countable abstract structure.
@ An enumeration f of 2l is a bijection from N onto A.
@ (X)) ={(xy...xa) : (f(x1),...,f(xa)) € X} for any X C A2.
o 1) =f"(Ry) @ - @ 1(Rx) is the positive atomic diagram of
an isomorphic copy of 2.

We always consider 2 = (A; Ry, Ry ..., Ry, Ry).

Definition
For every X C A and f, g enumerations of A let

EL% = {(x,y) | f(x) = g(y) € X}.

Alexandra A. Soskova, Stefan V. Vatev and AlSome applications of Marker's extensions for ¢ 2/18



Relatively intrinsically c.e. in 2 sets

Definition
A set R C Ais relatively intrinsically c.e. in 2 if and only if f~'(R) is
c.e. in f~1(2) for every enumeration f of 2.

Theorem (Ash, Knight, Manasse, Slaman, Chisholm)

A set R C A is relatively intrinsically c.e. in 2l if and only if R is
definable in A by means of a computable infinitary ¥§ formula with
parameters.
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Equivalent structures
Definition
We call two structures 2 and 95 equivalent: 2( = B if they have the

same relatively intrinsically c.e. subsets of the common part of the
domains of 2 and 8.
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Equivalent structures
Definition
We call two structures 2 and 95 equivalent: 2( = B if they have the

same relatively intrinsically c.e. subsets of the common part of the
domains of f and ‘8.

Definition
Given a sequence of structures 20 = {2}, the n-th polynomial of 2 is
a structure P,(2l) defined inductively:

® Po(2) = Ao,

@ Ppi1(A) = Po(AY & Anyy.

Here the jump of a structure is appropriately defined.
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Equivalent structures
Definition
We call two structures 2 and 95 equivalent: 2( = B if they have the

same relatively intrinsically c.e. subsets of the common part of the
domains of 2 and 8.

Definition
Given a sequence of structures 20 = {2}, the n-th polynomial of 2 is
a structure P,(2l) defined inductively:

o Po(2A) = Ao,

@ Ppi1(A) = Po(AY & Anyy.

Here the jump of a structure is appropriately defined.
Theorem

For every sequence of structures 2, there exists a structure M such
that for every n we have Pn(2) = M.
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Sequences of sets of natural numbers

Theorem (Selman)

Let X, Y CN. X < Yifandonly ifforeveryZ C N, ifY isc.e.inZ
then X isc.e.inZ.
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Sequences of sets of natural numbers

Theorem (Selman)

Let X, Y CN. X < Yifandonly ifforeveryZ C N, ifY isc.e.inZ
then X isc.e.inZ.

Definition
A sequence of sets of natural numbers ) = {Y,}n<. is c.€. in a set
Z C Nif for every n, Y, is c.e. in Z(") uniformly in n.
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Sequences of sets of natural numbers

Theorem (Selman)

Let X, Y CN. X < Yifandonly ifforeveryZ C N, ifY isc.e.inZ
then X isc.e.inZ.

Definition
A sequence of sets of natural numbers ) = {Y,}n<. is c.€. in a set
Z C Nif for every n, Y, is c.e. in Z(") uniformly in n.

Definition

Given a set X of natural numbers and a sequence ) of sets of natural
numbers, let X <, Y if for all sets Z C N,

Yis c.e. in Z implies X is £2_, in Z;
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The relation <,

Ash presents a characterization of “<,” using computable infinitary
propositional sentences. Soskov and Kovachev give another
characterization in terms of enumeration reducibility.

Definition

Let X = {Xh}n<w. The jump sequence P(X) = {Pn(X)}n<w Of X is
defined by induction:
(i) Po(X) = Xo;

(il) Ppi1(X) = Pn(X) & Xps1.
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The relation <,

Ash presents a characterization of “<,” using computable infinitary
propositional sentences. Soskov and Kovachev give another
characterization in terms of enumeration reducibility.
Definition
Let X = {Xh}n<w. The jump sequence P(X) = {Pn(X)}n<w Of X is
defined by induction:

(i) Po(X) = Xo;

(il) Ppi1(X) = Pn(X) & Xps1.

Theorem (Soskov)
X <pYifandonly if X <g Pn(Y).
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Sequences of structures
Now consider a sequence of structures 20 = {,},<.,, Wwhere
an - (An, R?, Rg, e qun) Let A - Un An.
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Sequences of structures

Now consider a sequence of structures 2 = {2} n<.,, Where
Ap = (An; R, RY,... R ). Let A=, An.

An enumeration f of 2 is a bijection from N — A.

Denote by f~(21) the sequence

{1 (An) @ F-1(R]) - @ F~ (AR, ) ncw-
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Sequences of structures

Now consider a sequence of structures 2 = {2} n<.,, Where
An = (An; R, RS, ... Ry, ). Let A=, An.

An enumeration f of 2 is a bijection from N — A.

Denote by f~'(2) the sequence

{1 (An) @ F-1(R]) - @ F~ (AR, ) ncw-

Definition

For R C Awe say that R <, 2 if for every enumeration f of 2,
~Y(R) <p F~1(20).
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Sequences of structures

Now consider a sequence of structures 2 = {2} n<.,, Where
An = (An; R, RS, ... Ry, ). Let A=, An.

An enumeration f of 2 is a bijection from N — A.

Denote by f~'(2) the sequence

{1 (An) @ F-1(R]) - @ F~ (AR, ) ncw-

Definition

For R C Awe say that R <, 2 if for every enumeration f of 2,
~Y(R) <p F~1(20).

Theorem (Soskov)

For every sequence of structures 2, there exists a structure 9, such
that for each n, the relatively intrinsically ¥ .1 sets in 9 sets coincide
with sets R <, 2.

The structure 9t is the Marker’s extension of the sequence of
structures 2.
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The Moschovakis extension
Let A = (A;R1,...,Rk).
o Let0 ¢ A Set Ay = AU {0}.
@ Let (.,.) be a pairing function: each element of Ay is not a pair.
@ Let A* be the least set containing Ay and closed under (., .).
@ 0" =0, (n+1)* = (0,n*).
The set of all n* we denote by N*.
@ The decoding functions: L({s,t)) = s & R({s,t)) = t,
L(0) = R(0) = 0* (Vte A)[L(t) = R(t) = 17].
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The Moschovakis extension
Let A = (A;R1,...,Rk).
o Let0 ¢ A Set Ay = AU {0}.
@ Let (.,.) be a pairing function: each element of Ay is not a pair.
@ Let A* be the least set containing Ay and closed under (., .).
@ 0" =0, (n+1)* = (0,n*).
The set of all n* we denote by N*.
@ The decoding functions: L({s,t)) = s & R({s,t)) = t,
L(0) = R(0) = 0* (Vte A)[L(t) = R(t) = 17].

Definition
The Moschovakis extension of 2l is the structure

A* = (A% Ag, R},..., R, Gy, GL, Gr)-

9

Ri(t) <= (a1 € A)...(3a, c A)(t=(ay,...,an) &
R,-(a1,...,a,,.)).
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The set K*

A new predicate K* (analogue of Kleene’s set).
For e, x € N and finite part 7, let

7 Ik Fe(X) <3 x € qu(m
T IF =Fe(x) < (Vp 2 7)(p I Fe(X))

K* = {(6%, ", x*) : (31 2 6)(7 IF Fe(X))}.

A — (2[*’ KQ‘), Ql(n+1) — (Ql(n))/
Proposition
For every R C A we have

@ R is relatively intrinsically c.e. on 2! iff R is relatively intrinsically
2o 0nfd.

@ R is relatively intrinsically c.e. on A" iff R is relatively intrinsically
> i1 0nA.

v
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The jump structure 2’
A = (A, KM).

Proposition

For every enumeration f of 2 there exists an enumeration g of 2, such
that

Q@ g'() <r (F ()
Q Ej9isce in(f(A));.

Proposition

For every enumeration g of 2’ there exists an enumeration f of 2, such
that

Q (F'(0))7 <r g (),
Q Ei9isce ing ().
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The nth polynomial of a sequence of structures
Definition
LetA = (A Ry,...,Rx) and B = (B; Py, ..., Py) are structures and

AN B = 1. The join of 20 and B we call the structure
AeB=(AUBABRy,....,R,P1,...,Pn).

Definition
Let 2 = {;}ic., be a sequence of structures with disjoint domains
AN A; =0 for i # j. The nth polynomial of 2l we call the structure
Pn(2L), defined inductively:

Q Po(2) =2

Q Puy1(A) = (Po(A)) & Any1.

Our goal is to prove that if M(2A) is the Marker’s extension of the
sequence 2l then

o
(Vn € N)(M(2)") = Py(2A)).
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The definability in Pp()

If f is an enumeration of 2 denote by f—(2A) the sequence
{f1(An) & F1(RY)--- & F (R, )} <

Denote by AJ = U7, A

Proposition

For every enumeration f of A and each n € N there exists an

—

enumeration g of Py(2l) such that:
Q g '(Po(R)) <1 Pa(f'(A)),
Q Eff is c.e. in Pp(f~1(2)).

Proposition

For every enumeration g of Pn(2) there exists an enumeration f of the
set Aj such that:

Q Py(f1(2A)) <1 g7 (Pa(2)),
(2] Egéf is c.e. in g~ (Pn(2)).
12/18




The connection between <, and Pn(ﬁl)

Theorem

Letne N and R C |Ji_, Ai. The following equivalence is true:
R is relatively intrinsically ¥1 in Pp(2) < R <, 2.
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Marker’s extensions

Let 2 = {An}new, and A=, An. Let R C A™.

=] = = E na
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Marker’s extensions
Let Ql - {an}n<w, and A = Un An. Let R g Am

The n-th Marker’s extension 9t,(R) of R

Let Xo, X1, ... X, be new infinite disjoint countable sets - companions
to Mu(R).

Fix bijections: hy : R — X

h1 :(AmXXO)\GhO—>X1

hnZ(AmXXo ><X1 XXn—1)\Ghn_1 —>Xn

Let M, = G, and Mn(R) = (AU Xo U+~ U Xn; Xo, X1, . . X, Mp).
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The n-th Marker’s extension 9t,(R) of R

Let Xo, X1, ... X, be new infinite disjoint countable sets - companions
to Mu(R).

Fix bijections: hy : R — X

h1 :(AmXXO)\GhO—>X1

hnZ(AmXXo ><X1 XXn—1)\Ghn_1 —>Xn

Let M, = G, and Mn(R) = (AU Xo U+~ U Xn; Xo, X1, . . X, Mp).

If nis even then:
ac R < dxp € Xo[(a, x) € Gp,] —
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Let Ql - {an}n<w, and A = Un An. Let R g Am

The n-th Marker’s extension 9t,(R) of R

Let Xo, X1, ... X, be new infinite disjoint countable sets - companions
to Mu(R).

Fix bijections: hy : R — X
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hnZ(AmXXo ><X1 XXn—1)\Ghn_1 —>Xn

Let M, = G, and Mn(R) = (AU Xo U+~ U Xn; Xo, X1, . . X, Mp).

If nis even then:
ac R < dxp € Xo[(a, x) € Gp,] —

dxg € XoVXx1 € Xq [(é, Xo,X1) ¢ Gh1] <~
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Let Ql - {an}n<w, and A - Un An. Let R g Am

The n-th Marker’s extension 9t,(R) of R

Let Xo, X1, ... X, be new infinite disjoint countable sets - companions
to Mu(R).

Fix bijections: hy : R — X
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Ixg € XoVXx1 € X13xo € XQ[(é, Xo,X1,X2) S Gh2] — ...
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Let Ql - {an}n<w, and A - Un An. Let R g Am

The n-th Marker’s extension 9t,(R) of R

Let Xo, X1, ... X, be new infinite disjoint countable sets - companions
to Mu(R).

Fix bijections: hy : R — X

h1 :(AmXXO)\GhO—>X1
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Marker’s extensions

Let 2 = {An}new, and A=, An.
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Marker’s extensions

Let il == {an}n<w, and A - Un An.

@ For every n construct the n-th Markers’s extensions of A,, RY,
... Rp, with disjoint companions.
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Marker’s extensions

Let il == {Q[n}n<w, and A - Un An.

@ For every n construct the n-th Markers’s extensions of A,, RY,
... Rp, with disjoint companions.

© Forevery nlet Mp(2An) = Mny(An) UMp(RY) U --- UMn(RY,).
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Let 5[ == {Q[n}n<w, and A - Un An.

@ For every n construct the n-th Markers’s extensions of A,, RY,
... Rp, with disjoint companions.

© Forevery nlet Mp(2An) = Mny(An) UMp(RY) U --- UMn(RY,).
@ Set M(2A) to be U, Ma(An) with one additional predicate for A.
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Marker’s extensions

Let 5[ = {Q[n}n<w, and A = Un An.

@ For every n construct the n-th Markers’s extensions of A,, R,
... Rp, with disjoint companions.
@ Forevery nlet My(2An) = Mny(An) UMp(RY) U --- UMn(RY, ).

@ Set M(2A) to be U, Ma(An) with one additional predicate for A.

Theorem (Soskov)

Foreachne N andevery R C A .
R <, 2 iff R is relatively intrinsically ¥ 1 in Mt(2).

Corollary
Pn(2) = M) for every n € N.
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Strong reducibility of structures

Definition
Let 21 and B be countable structures and A C B. The structure 2l is

strong reducible in the structure B : 2 < ‘B if the following conditions
hold:

@ for each enumeration g of B there is an enumeration f of 21, such
that F~1(2A) <t g~ '(B8) and

Q the set E9' isc.e. in g~ (B).

Proposition

IfA < 9B then for all R C A if R is definable by means of an infinitary
Y.§ formula in 2 then R is definable by ¥§ formula in B
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Strong reducibility of structures

Theorem (Terziivanov)

For every sequence of structures A = {;}c.,, where
2A; = (Aj; Ry, - .., Rm, i) with disjoint domains and each n € N,

Pa(2) < m(2A)").

The opposite direction is not true for each sequence of structures.
The question here when the opposite is true?
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