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1. Introduction

In the classical Euclidean geometry the notion of point is taken as one of the
basic primitive notions. In contrast the region-based theory of space (RBTS) has
as primitives the more realistic notion of region as an abstraction of physical body,
together with some basic relations and operations on regions. Some of these rela-
tions are mereological - part-of (z < y), overlap (zOy), its dual underlap (xay)
Other relations are topological - contact (xCy), nontangential part-of (z < y),
dual contact (:CCA'y) and some others definable by means of the contact and part-of
relations. This is one of the reasons that the extension of mereology with these
new relations is commonly called mereotopology. There is no clear difference in the
literature between RBTS and mereotopology, and by some authors RBTS is related
rather to the so called mereogeometry, while mereotopology is considered only as
a kind of point-free topology, considering mainly topological properties of things.
The origin of RBTS goes back to Whitehead [46] and de Laguna [28]. According
to Whitehead points, as well as the other primitive notions in Euclidean geometry
like lines and planes, do not have separate existence in reality and because of this
are not appropriate for primitive notions; but points have to be definable by the
other primitive notions.

Survey papers about RBTS are [40, 5, 17, 32] (see also the handbook [1] and
[4] for some logics of space). Surveys concerning various applications are [6, 7] and
the book [20] (see also special issues of Fundamenta Informaticee[9] and the Journal
of Applied Nonclassical Logics [3]). RBTS has applications in computer science
because of its more simple way of representing qualitative spatial information and
it initiated a special field in Knowledge Representation (KR) called Qualitative
Spatial Representation and Reasoning (QSRR). One of the most popular systems
in QSRR is the Region Connection Calculus (RCC) introduced in [33].

The notion of contact algebra is one of the main tools in RBTS. This notion
appears in the literature under different names and formulations as an extension of
Boolean algebra with some mereotopological relations [43, 35, 41, 42, 5, 13, 8,
10]. The simplest system, called just contact algebra was introduced in [8] as an
extension of Boolean algebra B = (B,0,1,-,+,*) with a binary relation C called
contact and satisfying several simple axioms:

(C1) If aCb, then a # 0 and b # 0,
(C2) If aCb and a < ¢ and b < d, then ¢Cd,
(C3) If aC'(b+ ¢), then aCb or aClc,
(C4) If aCb, then bCa,
(C5) If a- b # 0, then aCb.
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The elements of the Boolean algebra are called regions and are considered
analogs of physical bodies. Boolean operations are considered as operations for
constructing new regions from given ones. The unit element 1 symbolizes the
region containing as its parts all regions, and the zero region 0 symbolizes the
empty region. The contact relation is used also to define some other important
mereotopological relations like non-tangential inclusion, dual contact and others.

The standard model of Boolean algebra is the algebra of subsets of a given
universe. This model cannot express all kinds of contact, for example, the external
contact in which the regions share only a boundary point. Because of this standard
models of contact algebras are topological and are the contact algebras of regular
closed sets in a given topological space.

Non-tangential inclusion and dual contact are defined by the operation of
Boolean complementation. But there are some problems related to the motiva-
tion of this operation. A question arises: if the region a represents a physical body,
then what kind of body represents a*? To avoid this problem, we can drop the
operation of complement and replace the Boolean part of a contact algebra with
distributive lattice. First steps in this direction were made in [11, 12], introduc-
ing the notion of distributive contact lattice. In a distributive contact lattice the
only mereotopological relation is the contact relation. In the first part of the first
chapter we extend the language of distributive contact lattices by considering as
non-definable primitives the relations of contact, nontangential inclusion and dual
contact. We obtain an axiomatization of the theory consisting of the formulas in the
language £(0,1;+,;<,C, 6, <) true in all contact algebras. The structures in £,
satisfying the axioms in question, are called extended distributive contact lattices
(EDC-lattices). A representation theorem is proved, stating that each EDC-lattice
can be isomorphically embedded into a contact algebra. Relations of EDC-lattices
with other mereotopological systems are also considered: EDC-lattices are rela-
tional mereotopological systems in the sense of [29], and the well known RCC-8
system of mereotopological relations is definable in the language of EDC-lattices.

Part IT of chapter 1 is devoted to the topological representation theory of EDC-
lattices and some of their axiomatic extensions yielding representations in 77 and 75
spaces. Special attention is given to dual dense and dense representations (defined
in Section 4.1) in contact algebras of regular closed and regular open subsets of
topological spaces. The method is an extension of the representation theory of
distributive contact lattices [12] and adaptation of some constructions from the
representation theory of contact algebras [8, 10].

Since the investigations in chapter 1 form a special subfield of mereotopology
based on distributive lattices, we introduce for this subfield a special name - dis-
tributive mereotopology, which is included in the title of the chapter. Having in
mind this terminology, then the subarea of mereotopology based on Boolean al-
gebras should be named Boolean mereotopology. Similar special names for other
subfields of mereotopology depending on the corresponding mereological parts also
can be suggested: for instance the mereotopology considered in [19, 44, 45] is
based on some non-distributive lattices - hence non-distributive mereotopology, and
the mereotopological structures considered, for instance, in [29, 16] are pure re-
lational and without any algebraic lattice-structure in the set of regions - hence
relational mereotopology. Another way of obtaining various new mereotopologies is
considered in [18] by means different generalizations of Boolean complementation.



In [38] is presented a complete quantifier-free axiomatization of several logics
on region-based theory of space, based on contact relation and connectedness pred-
icates ¢ and ¢=", and completeness theorems for the logics in question are proved.
It was shown in [38] that c and ¢=" are definable in contact algebras by the contact
C. The predicates ¢ and ¢=" were studied for the first time in [30, 31] (see also
[40]). The expressiveness and complexity of spatial logics containing ¢ and ¢=" has
been investigated in [23, 24, 25, 26, 27]. In chapter 2 we consider the predicate
¢° - internal connectedness. Let X be a topological space and x € RC(X). Let
c°(x) means that Int(z) is a connected topological space in the subspace topology.
We prove that the predicate internal connectedness cannot be defined in the lan-
guage of contact algebras. Because of this we add to the language a new ternary
predicate symbol - which has the following sense: in the contact algebra of regular
closed sets of some topological space a,b - ¢ iff and C ¢. It turns out that the
predicate ¢® can be defined in the new language. We define extended contact alge-
bras - Boolean algebras with added relations F, C' and ¢°, satisfying some axioms,
and prove that every extended contact algebra can be isomorphically embedded in
the contact algebra of the regular closed subsets of some compact, semiregular, T,
topological space with added relations - and ¢°. So extended contact algebra can
be considered an axiomatization of the theory, consisting of the universal formulas
true in all topological contact algebras with added relations F and ¢°.

In chapter 3 we consider a first-order language without quantifiers correspond-
ing to EDCL. We give completeness theorems with respect to both algebraic and
topological semantics for several logics for this language. It turns out that all
these logics are decidable. We also consider a quantifier-free first-order language
corresponding to ECA and a logic for ECA which is decidable.

Acknowledgements. I thank all members of Department of Mathematical
Logic and Applications at the Faculty of Mathematics and Computer Science of
the Sofia University for their understanding to my health problems which led to
significant delay of my work. I am grateful to all my teachers from this department
for the considerable amounts of knowledge I have obtained from them. I thank my
supervisors Prof. Dimiter Vakarelov and Prof. Tinko Tinchev for their mentorship
and for the interesting mathematical tasks they gave me to solve.



CHAPTER 1

Distributive mereotopology: extended distributive
contact lattices

In the first part of this chapter we extend the language of distributive contact
lattices ([11, 12]) by considering as non-definable primitives also the relations of
nontangential inclusion and dual contact. We obtain an axiomatization of the
theory consisting of the formulas in the language £(0,1; +, ; <, C, (7, <) true in all
contact algebras. The structures in £, satisfying the axioms in question, are called
extended distributive contact lattices (EDC-lattices). A representation theorem
is proved, stating that each EDC-lattice can be isomorphically embedded into a
contact algebra. Relations of EDC-lattices with other mereotopological systems
are also considered: EDC-lattices are relational mereotopological systems in the
sense of [29], and the well known RCC-8 system of mereotopological relations is
definable in the language of EDC-lattices.

Part IT of chapter 1 is devoted to the topological representation theory of EDC-
lattices and some of their axiomatic extensions yielding representations in 17 and T5
spaces. Special attention is given to dual dense and dense representations (defined
in Section 4.1) in contact algebras of regular closed and regular open subsets of
topological spaces. The method is an extension of the representation theory of
distributive contact lattices [12] and adaptation of some constructions from the
representation theory of contact algebras [8, 10].

PART I: EXTENDED DISTRIBUTIVE CONTACT LATTICES:
AXIOMATIZATION AND EMBEDDING IN CONTACT ALGEBRAS

1. Extended distributive contact lattices.
Choosing the right axioms

1.1. Contact algebras, distributive contact lattices and extended dis-
tributive contact lattices. As it was mention in the introduction, contact algebra
is a Boolean algebra B = (B, <,0,1,-,+,*,C) with an additional binary relation
C called contact, and satisfying the following axioms:

(C1) If aCb, then a # 0 and b # 0,
(C2) If aCb and a < o’ and b < V', then a'CV,
(C3) If aC'(b+ c¢), then aCb or aCle,
(C4) If aCb, then bCa,
(C5) If a - b # 0, then aCb.

Let us note that on the base of (C4) we have (C3’) (a + b)Cc implies aCc or bCle.

5
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REMARK 1.1. Observe that the above axioms are universal first-order condi-
tions on the language of Boolean algebra with the C-relation and not containing
the Boolean complementation *. This fact says that the axioms of C' will be true
in any distributive sublattice of B. OJ

The Remark 1.1 was one of the formal motivations for the definition of distribu-
tive contact lattice introduced in [11, 12]: the definition is obtained just by replac-
ing the underlying Boolean algebra by a bounded distributive lattice (D, <,0,1,-,+)
and taking for the relation C' the same axioms. This makes possible to consider the
main standard models of contact algebras, namely the algebras of regular closed or
regular open sets of a topological space, also as the main models for distributive
contact lattices, just by ignoring the Boolean complementation * in this models.
This was guaranteed by Theorem 7 from [12] stating that every distributive contact
lattice can be isomorphically embedded into a contact algebra, which fact indicates
also that the choice of the set of axioms for distributive contact lattice is sufficient
for proving this theorem. Since our main goal in the present paper is to obtain a def-
inition of distributive contact lattice extended with relations of dual contact C and
nontangential part-of <, we will follow here the above strategy, namely to choose
universal first-order statements for the relations C, 6‘, < as additional axioms which
are true in arbitrary contact algebras and which guarantee the embedding into a
contact algebra. The obtained algebraic system will be called extended distributive
contact lattice. The next definition is a result of several preliminary experiments
for fulfilling the above program.

DErFINITION 1.1. Extended distributive contact lattice. Let D = (D, <
,0,1,-,+,C, CA', <) be a bounded distributive lattice with three additional relations
C,é,<<, called respectively contact, dual contact and nontangential part-of.
The obtained system, denoted shortly by D = (D, C, 6, <), 1is called extended
distributive contact lattice (EDC-lattice, for short) if it satisfies the axioms
listed below.

Notations: if R is one of the relations <,C), 6’, <&, then its complement is de-
noted by R. We denote by > the converse relation of < and similarly > denotes
the converse relation of <.

Azioms for C alone: The azioms (C1)-(C5) mentioned above.

Azioms for C alone:

(61) If aab, then a,b # 1,

(C2) If aCb and @/ < a and b/ < b, then a’ab’,

(C3) If aC(b - ¢), then aCb or aClc,

(C4) If aéb, then baa,

(C5) If a+ b # 1, then aCb.
Azioms for < alone:
(1) 0xk0,
(«2)1k1,
(«3) Ifak b, then a <b,
(«4) Ifd <a<gb<l, thend <V,
(«5) Ifakcandb < c, then (a +b) < ¢,
(< 6)
(<7)

C
C
C
C

< 6) Ifc< a and c < b, then ¢ < (a-b),
<N Ifakband (b-c) <dandc < (a+d), then c < d.
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Mized axioms:
(MC1) If aCb and a < ¢, then aC(b-¢),
(MC2) If a@(b ¢) and aCb and (a d)Cb, then dCe,
(MC1) If aCb and ¢ < a, then aC(b + ),
(MC?2) If aC’(b +¢) and aCb and (a + d)Cb, then dCec,
(
(

M < 1) If aCb and (a- ) < b, then ¢ < b,
M < 2) If aCb and b < (a +c), then b < c.

REMARK 1.2. (i) About the axioms. As one can see the list of axioms is
quite long and one can ask about the leading intuition to accept these axioms. We
invite the reader to read again the text after 1.1. Namely, we followed the next 3
principles: (1) the axioms to be first-order sentences true in contact algebras, (2)
the principle of duality to be true (see the next Observation) and (3) the axioms to
be sufficient to prove the embedding theorem of EDC-latices in contact algebras.
The most difficult was the last one. In order to fulfil it we proceeded as follows:
we started to prove the embedding theorem having in mind some construction and
during this process we look for the needed axioms satisfying (1). Then we polished
the obtained set of axioms several times in order to obtain a more elegant set and
accordingly reedited the proof.

(ii) Duality principle. For the language of EDCL we can introduce the
following principle of duality: dual pairs (0,1), (-, +), (<, >), (C,C), (<,>). The
motivation to consider the first three dual pairs comes from the corresponding
notion of duality in lattice theory. But why we consider (C,C), (<,>>) as dual
pairs? The motivation comes from the following facts about duality principle for
operations and relations in Boolean algebras:

If f(ai,...,ay) is a (definable) Boolean operation then its dual f satisfies the

*

equation f(a,...,a,) = f(a},...,ak)*,

If R(ay,...,a,) is a (definable) Boolean relation then its dual R satisfies the
equivalence f{(al, cooyan) < R(ay, ... ak).

For instance the dual of Boolean ordering a < b is a > b which is equivalent
to a* < b*. Extending this observation to the contact relation C' we define its dual
aCb in the contact algebra as a*Cb*. In contact algebras non-tangential part-of has
the following definition a < b <34 aCb*. Then its dual should be a* < b* which
is equivalent to b < a (a > b).

By means of dual pairs for each statement (definition) A of the language we
can define in an obvious way its dual A. For each axiom Az from the list of axioms
of EDCL its dual Az is also an axiom. On the base of this observation the proofs
of dual statements will be omitted. Note, for instance, that each axiom from the
first group (axioms for C alone) is dually equivalent to the corresponding axiom
from the second group (axioms for C alone) and vice versa, the third and fourth
groups of axioms (axioms for < alone and mixed axioms) are closed under duality.
For instance for the mixed axioms we have: axiom (MC1) is dually equivalent to
the axiom (MC1), (MC?2) is dually equivalent to (MC2) and (M < 2) is dually
equivalent to (M < 1). O

1.2. Relational models of EDC-lattices. In order to prove that the axioms
of EDC-lattices are true in contact algebras we will introduce a relational models
of EDCL which are slight modifications of the relational models of contact algebras
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introduced in [10] and called there discrete contact algebras. The model is defined
as follows.

Let (W, R) be a relational system where W is a nonempty set and R is a reflexive
and symmetric relation in W and let a, b be arbitrary subsets of W. Define a contact
relation between a and b as follows

(Def Cr) aCgrb iff 3z € a and Jy € b such that zRy.

Then any Boolean algebra of subsets of W with thus defined contact is a contact
algebra, and moreover, every contact algebra is isomorphic to a contact algebra of
such a kind [10].

We will modify this model for EDCL as follows: instead of Boolean algebras of
sets we consider only families of subsets containing the empty set @ and the set W
and closed under the set-union and set-intersection which are bounded distributive
lattices of sets. Hence we interpret lattice constants and operations as follows:
0=9,1=W,a-b=anb,a+b=aUb. For the contact relation we preserve
the definition (Def Cg). This modification is just a model of distributive contact
lattice studied in [12].

Having in mind the definitions aCb “def a*Cb* and a < b <3ger aCb* in
Boolean contact algebras, we introduce the following definitions for C and < (for
some convenience we present the definition of the negation of <):

(Def éR ) aéRb iff 3z & a and Jy & b such that xRy, and
(Def «Rr) a €g biff 3z € a and Jy & b such that zRy.

LEMMA 1.1. Let (W, R) be a relational system with reflexive and symmetric
relation R and let D be any collection of subsets of W which is a bounded distributive
set-lattice with relations C,a and < defined as above. Then (D, CR,63,<R) is
an EDC-lattice.

PROOF. Routine verification that all axioms of EDC-lattice are true. O

EDC-lattice D = (D, Cg, 53, < g) over arelational system (W, R) will be called
discrete EDC-lattice. If D is a set of all subsets of W then D is called a full discrete
EDClattice.

COROLLARY 1.1. The azioms of the relations C’,@ and < are true in contact
algebras.

PRrROOF. The proof follows by Lemma 1.1 and the fact that every contact al-
gebra can be isomorphically embedded into a discrete contact algebra over some
relational system (W, R) with reflexive and symmetric relation R [10]. O

2. Embedding EDC-lattices into contact algebras

The main aim of this section is the proof of a theorem stating that every
EDC-lattice can be embedded into a full discrete EDC-lattice, which, of course is
a Boolean contact algebra. As a consequence this will show that the axiomatiza-
tion program for EDCL is fulfilled successfully. Since all axioms of EDC-lattice
are universal first-order conditions, the axiomatization can be considered also as
a characterization of the universal fragment of complement-free contact algebras
based on the three relations. We will use in the representation theory a Stone like
technique developed in [36] for the representation theory of distributive lattices.
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2.1. Preliminary facts about filters and ideals in
distributive lattices. We remind the reader of some basic facts about filters and
ideals in distributive lattices, for details see [2, 36].

Let D be a distributive lattice. A subset F' of D is called a filter in D if it
satisfies the following conditions: (f1) 1 € F, (f2) if a € F and a < b then b € F,
(f3) if a,b € F then a.b € F. F is a proper filter if 0 ¢ F', F is a prime filter if it is
a proper filter and a + b € F implies a € F or b € F.

Dually, a subset I of D is an ideal if (i1) 0 € I, (i2) if @ € I and b < a then
bel, (i3)ifa,be€ I then a+0b € I. Iis a proper ideal if 1 ¢ I, I is a prime ideal if
it is a proper ideal and a.b € I implies a € [ or b € I.

We will use later on some of the following facts without explicit mentioning.

Facts 2.1. Let D be a bounded distributive lattice and Let F, Fy, Fy be filters
and 1,11, 1> be ideals.

(1) The complement of a prime filter is a prime ideal and vice-versa.
(2) [a) ={x € D:a <z} is the smallest filter containing a;
(a] ={z € D :x <a} is the smallest ideal containing a.
(8) RoF,={ceD:(FBacF,be K)(a-b<c)}={a-b:ac Fi,be F}
is the smallest filter containing Fy and F5.
@)@ F={z-y:a<z, yeF}
IL®l, = {C eD: (Ea € Ihb S [2)(6 < a+b)} = {a+b rac Il,b S IQ}
s the smallest ideal containing Iy and I5.
@el={z+y:zx<a, yel}.
In both cases the operation ® is associative and commutative.
(4) la)nI=2 iffag I
If(F®a)NI+# o then (Ix € F)(a-z € 1),
@nNF=g iffag F
IFFN({I®(a]) # @ then 3z € I)(a+x € F).

The following three statements are well known in the representation theory of
distributive lattices.

LEMMA 2.1. Let Fy be a filter, Iy be an Ideal and Fo NIy = &. Then:

(1) Filter-extension Lemma. There ezxists a prime filter F' such that Fy C
Fand FNIly=@.

(2) Ideal-extension Lemma. There exists a prime ideal I such that Iy C I
and FoNI =0.

(3) Separation Lemma for filters and ideals. There ezist a (prime)
filter F' and an (prime) ideal I such that Fo C F, Iy CI, FNI =2, and
FUI=D.

REMARK 2.2. Note that Filter-extension Lemma is dual to the Ideal-extension
Lemma and that each of the three statement easily implies the other two. Normally
they can be proved by application of the Zorn Lemma. The proof, for instance,
of Filter-extension Lemma goes as follows. Apply the Zorn Lemma to the set
M = {G : G is a filter, Fy C G and GN Iy = &} and denote by F one of its
maximal elements. Then it can be proved that F' is a prime filter, and this finishes
the proof. The sketched proof gives, however, an additional property of the filter
F', namely

(Vo & F)(Jy € F)(z -y € lo),
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which added to the formulation of the lemma makes it stronger. Since we will need
later on this stronger version let us prove this property.

Suppose that « € F and consider the filter F®[z). Since F is a maximal element
of M, then F & [z) does not belong to M and consequently F & [z) N [y # &. By
the Fact 2.1, 4, there exists y € F such that z -y € Iy. We formulate this new
statement below as Strong filter-extension Lemma and its dual as Strong ideal-
extension Lemma. We do not know if these two statements for distributive lattices

are new, but we will use them in the representation theorem in the next section.
O

LEMMA 2.2. Let Iy be a filter, Iy be an Ideal and Fy NIy = @. Then:
(1) Strong filter-extension Lemma. There exists a prime filter F such
that Fo CF , Ve € F)(x € Ip) and Vx & F)(Jy € F)(z -y € Ip).
(2) Strong ideal-extension Lemma. There exists a prime ideal I such that
IyCI, Veel)(x g Fy) and Ve g I)(3y € I(z+y € Fp).

2.2. Filters and Ideals in EDC-lattices. In the next two lemmas we list
some constructions of filters and ideals in EDCL which will be used in the repre-
sentation theory of EDC-lattices.

LEMMA 2.3. Let D = (D,C’,a,<<) be an EDC-lattice. Then:
(1) The set I(xCb) = {x € D : xCb} is an ideal,
(2) the set F(zCb) = {z € D : zCb} is a filter,
(8) the set I(x < b) ={x € D:x <K b} is an ideal,
(4) the set F(x > b) ={x € D : x> b} is a filter.

PROOF. 1. By axiom (C1) 0Cb, so 0 € I(zCb). Suppose z € I(zCb) (hence
2Cb) and y < x. Then by axiom (C2) yCb). Let x,y € I(xCb), hence zCb and yCb.
Then by axiom (C3) and (C4) we get (x + y)Cb which shows that z +y € I(zCb),
which ends the proof of this case.

In a similar way one can proof 8. The cases 2. and 4. follow from 1. and 3.
respectively by duality.

(Il

LEMMA 2.4. Let D = (D,C,é,<<) be an EDC-lattice and Let T' be a prime
filter in D. Then:

(1) The set I(zCT) = {z € D : (3y € T)(zCy)} is an ideal,
(2) the set F(zCT) = {x € D : (3y € T)(xCy)} is a filter,

(3) the set (x < T)={zxe€D:(Fyel)(z<y)} is an ideal,
(4) the set F(x >T)={x € D:(Jyel)(x>y)} is a filter.

ProoF. Note that the Lemma remains true if we replace I' by a filter and T'
by an ideal.

1. The proof that I(zCT) satisfies the conditions (i1) and (i2) from the def-
inition of ideal is easy. For the condition (i3) suppose x1,7o € I(zCT). Then
Jy1,92 € T such that 21Cy; and z2Cys, Since T is a filter then y = 7, - o € T.
Since y < y; and y < y», then by axiom (C2) we get z;Cy and 2,Cy. Then
applying (C3’) we obtain (z1 + 22)Cy, which shows that x1 + 2o € I(xCT).

In a similar way one can prove 8. The proofs of 2 and 4 follow by duality from
1 and 3, taking into account that I is a prime ideal.

(]
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2.3. Relational representation theorem for EDC-lattices. Throughout
this section we assume that D = (D7C,6,<<) is an EDC-lattice and let PF(D)
and PI(D) denote the set of prime filters of D and the set of prime ideals of D.
Let h(a) = {T" € PF(D) : a € T} be the well known Stone embedding mapping.
We shall construct a canonical relational structure (W€, R¢) related to D putting
We¢ = PF(D) and defining the canonical relation R¢ for I'; A € PF(D) as follows:

TRA 40 (Va,b € D)((a € T,b € A = aCb)&(a € T,b & A — aCb)&(a €
IbgA—akb&laglbe A—b&Ka))

For some technical reasons and in order to use duality we introduce also the
dual canonical structure (/V[7°'7}A{C) putting We = PI(D) and for T'yA € PI(D),
TR°A <405 TRA.

Our aim is to show that the Stone mapping h is an embedding from D into
the EDC-lattice over (W€, R¢) (see Section 1.1). First we need several technical
lemmas.

LEMMA 2.5. The canonical relations R® and R¢ are reflexive and symmetric.

PrOOF. ( For R°) Symmetry is obvious by the definition of R® and axioms
(C4) and (@4) In order to prove that TR°T" supposea € "'and b € I". Thena-b €T
and since I is a prime filter, then a.b # 0. Then by axiom (C5) we obtain aCb,
which proves the first conjunct of the definition of R¢. For the second conjunct
suppose that a € T and b ¢ T', then, since I' is a prime filter, a + b ¢ " and hence
a+ b # 1. Then by axiom (65) we get aCbh. For the third conjunct suppose a € I’
and b ¢ T', which implies that a € b. Then by axiom (< 3) we obtain a &« b. The
proof of the last conjunct is similar.

(For R¢) - by the definition of R°.

LEMMA 2.6. (i) aCb iff (3T',A € PF(D))(a €T and b € A and TR°A).
(i) a € b iff AT, A € PF(D))(a €T and b ¢ A and TR°A).

Proor. (i) Note that the proof is quite technical, so we will present it with
full details. The reasons for this are twofold: first to help the reader to follow it
more easily, and second, to skip the details in a similar proofs.

(<) Ifa €T and b € A and TR°A), then by the definition of R® we obtain
aCb.

(=) Suppose aCb.

The proof will go on several steps.

Step 1: construction of I'. Consider the ideal I(zCb) = {x € D : Cb} (Lemma
2.3). Since aCb, a ¢ {x € D : zCb}. Then [a) N {z € D : 2Cb} = @ and [a) is a
filter (see Facts 2.1). By the Strong filter-extension lemma (see Lemma 2.2) there
exists a prime filter ' such that [a) C T and (Vx € T')(z ¢ {z € D : 2Cb} and
(Vr ¢ T)3y € T)(z -y € {x € D : xCb}. From here we conclude that I' satisfies
the following three properties:

(#0) a €T,
(#1) If z € T, then zCb, and
(#2) If z ¢ T, then there exists y € " such that (x - y)Cb.

Step 2: construction of A. This will be done in two sub-steps.
Step 2.1 Consider the filters and ideals definable by T" as in Lemma 2.4
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I(zCT) = {z € D: (3y € T)(aCy)}, F(zCT) = {x € D : By € T)(aCy)}, I(z <
T={zeD:(FyeN(z<y)},and Flz>T)={zeD:Fyel)(z >y} In
order to apply the Separation Lemma we will prove the following condition:
(#3) (F(z>T) @ F(zCT) ® [b)) N (I(zCT) @ I(z < T)) = 2.
Suppose that (#3) is not true, then for some ¢t € D we have
(1)t € F(z >T) & F(zCT) & [b) and
(2) teI(zCT) @ I(x < T).
It follows from (2) that 3k, ko such that
(3) k1 € I(x < T) and
(4) kg € I(zCT) and
(5) t = k1 + k2. (Here we use Facts 2.1 (3).)
It follows from (1) that 3ky, ks, k¢ € D such that

(6)

(7) ks € F(zCT) and

(8) kg € [b) and

(9) t = kg - ks - ke (Here we use Facts 2.1 (3).)
From (5) and (9) we get

(10) k1 + ko = kq - k5 - ke.

It follows from (3), (4), (6) and (7) that

Jz; €T such that k; < 21,

dzo € I' such that kgél‘g,

Let x = 21 + x4. Since T is an ideal, we obtain by (11) and (14) that
(15) z € T and x ¢ T'. Then by (#2) we get
(16) 3y € I such that (z - y)Cb.

Let z = x5 - x5 - y. Then by (12), (13) and (16) we obtain that
(17) z €T
and by (#1) that
(18)zCb.

From z; < z and (11) by axiom (< 4) we get

From x4 < z and (14) by axiom (5’2) we obtain
(20) ksCx.

From z < 3 and (12) by axiom (C2) we get

From z < z3 and (13) by axiom (< 4) we obtain
(22) z K ky.

We shall show that the following holds
(23) 2C(b- k).

Suppose for the sake of contradiction that zC(b- k). From b- k1 < ky and (19)
by axiom (< 4) we get (b-k1) < x. From this fact and zC(b- k1) by axiom (MC1)
we obtain (b-k1)C(z-x). But we also have b-ky < b, z-x < y-x, so by axiom (C2)
we get bC(y - x) - a contradiction with (16).

The following condition holds
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To prove this suppose for the sake of contradiction that zC(b - k3). We also
have b - k2 < ko, so by axiom (C2) we get 2Cky - a contradiction with (21).
Suppose that zC(b- (k1 + k2)). By axiom (C3) we have zC'(b- k1) or zC(b- k)
- a contradiction with (23) and (24). Consequently zC(b - (k1 + ko)) and by (10)
we obtain Za(b . ]{14 . ki5 . /{16) But b < k‘@ (fI‘OIIl (8)), sob- k‘4 . k‘5 . k‘@ =b- k’4 . k’5.
Consequently
(25) 2C(b - ky - k).
From (18) and (22) by axiom (MC1) we get
(26) zC(b - ky).
We shall show that the following condition holds
(27) (z-2)C(b- ky)
For to prove this suppose the contrary (z-z)C(b-ks). We also have z-z < y -z,
b- ks < b, so by axiom (C2) we get (y-z)Cb - a contradiction with (16).
From (25), (26) and (27) by axiom (MC2) we obtain 2Cks - a contradiction
with (20). Consequently (#3) is true.
Step 2.2: the construction of A. Applying the Filter extension Lemma to
(#3) we obtain a prime filter A (and this is just the required A) such that:
(1) Fla>T)={zeD:(Fyel)(z>y} CA,
(2) F(zCT) ={z € D: (Iy e T)(2Cy)} C A,
(3) be A,
(4) I(zCT)NA = 2,
(5) Iz <T)NA=g.
Step 3: proof of 'R°A. We will verify the four cases of the definition of R°.

e Case 1: y €I and z € A. We have to show yCz. Suppose yCz. Then
xCyand by y € I' we get z € I(xCT). Then by 4. = ¢ A - a contradiction,
hence yC'z.

e Case 2: yc ' and =z ¢ A. Suppose y < . Then x > yand y € T
implies € F'(x > T'). By (1) z € A - a contradiction, hence y € z.

e Case 3: y ¢ ' and x € A. Suppose x < y. Then € I(x < T') and by
5. x & A - a contradiction. Hence x £ y.

e Case 4: y ¢ T and = ¢ A. Suppose yax. Then xgy and by 2. we
obtain x € A - a contradiction. Hence yC'z.

Thus we have constructed prime filters I' and A such that: a € T, b € A (item
3 from Step 2.2) and TR°A (Step 3).

Proof of (ii). (<) If a € T and b € A then by the definition of R® we obtain
a & b.

(=) Suppose a <« b. The proof, as in (i), will go on several steps.
Step 1: construction of I'. Consider the ideal I(x < b) = {z € D : z < b}
(Lemma 2.3).

Since a € b, a ¢ {xr € D: 2 < b}. Then [a) N{z € D: 2z < b} = and [a) is
a filter (see FACTS 2.1). By the Strong filter-extension lemma (Lemma 2.2) there
exists a prime filter T' such that [a) C T and (Vz € T')(z € {z € D : z < b}) and
Ve g T)(Fy eT)(x-y € {x € D : x < b}). From here we conclude that I" satisfies
the following properties:

(#0) a €T,

(#1) If © € T, then = « b, and
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(#2) If = ¢ T, then there exists y € T such that (z - y) < b.
Step 2: construction of A. This will be done in two sub-steps.

Step 2.1 Consider the filters and ideals definable by I'" as in Lemma 2.4
I(zCT) = {z € D : (3y € I')(2Cy)}, F(aCT) = {z € D : 3y € T)(2Cy)}, I(z <
T={zeD:FyeN(z<y)},and Flz>T)={zreD:3yel)(z >y} In
order to apply the Filter-extension Lemma (Lemma 2.1) we will prove the following
condition: _

(#3) (F(x>T)@® F(x2CT))N(I(z < T) @ I[(2CT) @ (b)) = @

Suppose that (#3) is not true. Consequently 3¢ such that

t=ky ko =Fk4+ k5 + k‘ﬁ for some kl,kz,k4, k5,l€6 € D and

dx1 € T' such that =1 < kq,

(1)

(2)

(3) 3z, € T such that kyCas,
(4) x5 € T such that ks < 3,
(5) x4 € T such that ksCmy,
(6) ke <.

Let z = x5 + 3. Then by (3) and (4) we obtain z € I'. By axiom (@2) we get
(7) koCo.

By (4) and axiom (< 4) we get
(8) k4 < z.

By 2z ¢ T and (#2) we have
(9) Jy € T such that (z-y) < b.

Let x = x1 - 4 - y - a. Then by (#0), (2), (5) and (9) we get = € I'. By axiom
(<« 4) we get
(10) x < k.

By (5), < 24 and axiom (C2) we get
(11) ksCx.

From z € T by (#1) we obtain
(12) = £ b.

From (10) by axiom (< 4) we get
(13) z < (b+ k1)

From (7) by axiom (62) we obtain
(14) 2C (b + k).

From (9) by axiom (< 4) we get
(15) (z-y) < (b+ k2).

From (14) and (15) by axiom (M < 1) we obtain y < (b+ k2). We also have
z < y and by axiom (< 4) we get
(16) v < (b + k).

From (13) and (16) by axiom (< 6) we get © < (b + k1) - (b+ k2). We have
(b+k1)(b+k2) :b+1€1 'kz :b+k4+k5+k6 :b+k4+k5 (since k(; Sbe'OIn
(6)). Thus:

(17) x < (b+ kg + k5).

Suppose (in order to obtain a contradiction) that = < (b + k4). From (9) and
-2z < z-y (which follows from the definitions of z and z) by axiom (<& 4) we
obtain (z-z) < b. Using this fact, (8), x < (b+k4) and axiom (K 7) we get z < b
- a contradiction with (12). Consequently

(18) z & (b + ky).
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From (11) and (17) by axiom (M < 2) we obtain x < (b+k4) - a contradiction
with (18). Consequently (#3) is true.

Step 2.2: the construction of A. Applying the Filter-extension Lemma to
(#3) we obtain a prime filter A (and this is just the required A) such that:

(1) Fla>T)={zeD:(Fyel)(z>y} CA,

(2)
(3) b& A,

(4) I(zCT)NA = @,
(5)

Step 3: proof of 'R°A. The proof is the same as in the corresponding step in
(i)-
To conclude: we have constructed prime filters I', A such that ’R°A, a € T
and b ¢ A, which finishes the proof of the lemma.
O

LEMMA 2.7. (i) aCb iff (30, A € PI(D))(a € T and b € A and TR°A).
(ii) aCb iff (3T, A € PF(D))(a €T and b & A and TR°A).

(iii) a % b iff (AT,A € PI(D))(a €T and b ¢ A and TRCA).

(iv) a B b iff (AT, A € PF(D))(a ¢T and b€ A and TR°A).

PRrOOF. (i) by duality from Lemma 2.6. Note that in this case Strong ideal-
extension Lemma is used. The proof can follow in a "dual way" the steps of the
proof of Lemma 2.6 (i).

(i) is a corollary from (i).

(iii) by duality from Lemma 2.6 (ii) with the same remark as above.

(iv) is a corollary from (iii).

O

LEMMA 2.8. Let (W€, R°) be the canonical structure of D = (D,C,C, <) and
h(a) = {U € PF(D) : a € U} be the Stone mapping from D into the distributive
lattice of all subsets of W¢. Then h is an embedding of D into the EDC-lattice over
(We, R°).

PRrOOF. It is a well known fact that h is an embedding of distributive lattice
into the distributive lattice of all subsets of the set of prime filters PF (D) (see,
[36, 2]). The only thing which have to be done is to show the following equivalences
for all a,b € D:

(i) aCb iff h(a)Creh(b),

(i) aCb iff h(a)Creh(b)

(iii) a < b iff h(a) Kge h(b).

Note that these equivalences are another equivalent reformulation of Lemma
2.6 (i) and (ii) and Lemma 2.7 (ii) and (iv).

O

THEOREM 2.3. Relational representation theorem of EDC-latices. Let
D = (D,C,C,<) be an EDC-lattice. Then there is a relational system W = (W, R)
with reflexive and symmetric R and an embedding h into the EDC-lattice of all
subsets of W.
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ProOOF. The theorem is a corollary of Lemma 2.8.

COROLLARY 2.1. Every EDC-lattice can be isomorphically embedded into a
contact algebra.

PROOF. Since the lattice of all subsets of a given set is a Boolean algebra, then
this is a corollary of Theorem 2.3.
O

The following theorem states that the axiom system of EDC-lattice can be
considered as an axiomatization of the universal fragment of contact algebras in
the language of EDC-lattices.

THEOREM 2.4. Let A be an universal first-order formula in the language of
EDC-lattices. Then A is a consequence from the axioms of EDC-lattice iff A is
true in all contact algebras.

PRrROOF. The proof is a consequence from Corollary 2.1 and the fact that all
axioms of EDC-lattice are universal first-order conditions and that A is also an
universal first-order condition. O

3. Relations to other mereotopologies

In order to see the expressivity power of EDC-lattices compared to distributive
contact lattices from [11, 12] we will compare them with other two mereotopolo-
gies: the relational mereotopology and RCC-8. We show that the mentioned two
mereotopologies are expressible in the language of EDC-lattices but not expressible
in the distributive contact lattices from [11, 12].

3.1. Relational mereotopology. Relational mereotopology is based on mereotopo-
logical structures introduced in [29] (Definition 7, page 254). These are rela-
tional structures in the form (W, <, O, 6, <, C, 6) axiomatizing the basic mereo-
logical relations part-of <, overlap O and dual overlap (underlap) 6, and the basic
mereotopological relations non-tangential part-of <, contact C' and dual contact
C. These relations satisfy the following list of universal first-order axioms:



3. RELATIONS TO OTHER MEREOTOPOLOGIES 17

(<£0) a<bandb<a—a=0b (1) a<a,

(<2) a<bandb<c—a<c

(01) aOb — bOa (61) aOb — bOa

(02)  aOb— aOa (02)  a0b — a0a

(0 <) aOa —a<b (Og) bab—>a§b

(0 <) aOb and b < ¢ — aOc (0 <) c < a and aOb — cOb
(00) aOa or aOa (< 00) cOa and cOb—a<bh
(@) aCb — bCa () aCb — bCa

(Co1) aOb — aCb (Co1) aOb — aCb

(CO2)  aCb— aOa (CO2)  aCb— aOa

(C<) aCband b<c— aCc (C<) aCband ¢ <b— aCec

( ) ak<b—a<b
(«<2) a<bandb<c—a<ce (<3) a<bandb<c—a<c

(€0) aDa—a<b («0) bOb—sa<b
(€ CO) aChand b < ¢ — aOc (€ CO) c< aandaCb— cOb

(< CO) c¢Ca and cOb— a < b (< CO) ¢Oa and Ch — a < b.

Note that all axioms of mereotopological structures are universal first-order
conditions which are true in contact algebras under the standard definitions of the

basic mereological relations [29] (aOb d(gf a-b#0, aOb d?f a+b#1). Soa
standard topological model of a mereotopological structure is any non-empty set
of regular-closed subsets of a given topological space under the standard topolog-
ical definitions of contact, dual contact, non-tangential part-of and the standard
definitions of the mereological relations.

It is proved in [29] that each mereotopological structure is embeddable into a
contact algebra (Theorem 26).

The following theorem relates EDC-lattices to mereotopological structures.

THEOREM 3.1. Every EDC-lattice is a mereotopological structure under the
standard definitions of the basic mereological relations.

ProoOF. Since all axioms of mereotopological structures are universal first-order
sentences true in all contact algebras, then by Theorem 2.4 they follow from the
axioms of EDC-lattice, which shows that they are true in all EDC-lattices. Another
long and non-elegant, but direct proof of this theorem is to show one by one that
all axioms of mereotopological structures are theorems of EDC-lattices. O

Let us note that mereotopological structures cannot be expressed in distributive
contact lattices studied in [11, 12] just because dual contact and nontangential
part-of are not expressible in them.

3.2. RCC-8 spatial relations. One of the most popular systems of topo-
logical relations in the community of QSRR is RCC-8. The system RCC-8 was
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g =Nor¥op

DC(x,y) PO(z,y) TPP(x,y) TPP(x,y)
EQ(z,y) EC(z,y) NTPP(z,y) NTPP'(z,y)

F1GURE 1. RCC-8 relations

introduced for the first time in [14]. Tt consists of 8 relations between non-empty
regular closed subsets of arbitrary topological space. Having in mind the topologi-
cal representation of contact algebras, it was given in [40] an equivalent definition
of RCC-8 in the language of contact algebras:

DEFINITION 3.1. The system RCC-8.
e disconnected — DC(a,b):: aCb,
e external contact — EC(a,b):: aCb and aOb,
e partial overlap — PO(a,b):: aOb and a £ b and b £ a,
e tangential proper part — TPP(a,b):: a <banda £ b and b £ a,
e tangential proper part—! — TPP!(a,b):: b<a andb £« a and a £ b,
e nontangential proper part NTPP(a,b):: a < b and a # b,
¢ nontangential proper part—! — NTPP!(a,b):: b < a and a # b,
e equal — EQ(a,b):: a =b.

Looking at this definition it can be easily seen that the RCC-8 relations are
expressible in the language of EDC-lattices. Let us note that RCC-8 relations are
not expressible in the language of distributive contact algebras from [11, 12] just
because dual contact and nontangential part-of are not expressible in them.

4. Additional axioms

In this Section we will formulate several additional axioms for EDC-lattices
which are adaptations for the language of EDC-lattices of some known axioms
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considered in the context of contact algebras. First we will formulate some new
lattice axioms for EDC-lattices - the so called extensionality axioms for the definable
predicates of overlap - aOb <+gcr a - b # 0 and underlap - aOb <+gep a +b # 1.
(Ext O) a £ b— (Ic)(a-c#0and b-c=0) - extensionality of overlap,

(Ext O) a £b— (3c)(a+c=1and b+ c # 1) - extensionality of underlap.

We say that a lattice is O-extensional if it satisfies (Ext O) and U-extensional
if it satisfies (Ext O). Note that the conditions (Ext O) and (Ext O) are true in
Boolean algebras but not always are true in distributive lattices (see [12] for some
examples, references and additional information about these axioms).

We will study also the following extensionality axioms.

(Ext C) a # 1 — (3b # 0)(aCb) - C-extensionality,

(Bxt C) a0 — (3b 1)(a5b) - C-extensionality.

InAcontact algebras these two axioms are equivalent. It is proved in [12] that
(Ext O) implies that (Ext C) is equivalent to the following extensionality principle
considered by Whitehead [46]

(EXT C) a £ b — (Ic)(aCc and bCc).

Just in a dual way one can show that (Ext O) implies that (Ext C) is equivalent
to the following condition

(EXT C) a £ b — (3¢)(bCe and aCe).

Let us note that (EXT C) and (EXT C ) are equivalent in contact algebras.
(Con C) a#0,b#A0and a+b=1— aCb - C-connectedness axiom and
(Con 6) a#1,b#1and a-b=0— aCb - C-connectedness aziom .

In contact algebras these axioms are equivalent and guarantee topological rep-
resentation in connected topological spaces.

(Nor 1) aCb — (3¢, d)(c +d = 1,aCc and bCd),
(Nor 2) aCb — (3e,d)(c-d =0, aCec and bgd),
(Nor 3) a < b— (Je)(a < ¢ < D).

Let us note that the above three axioms are equivalent in contact algebras and
are known by different names. For instance (Nor 1) comes from the proximity the-
ory [37] as Efremovich axziom, (Nor 3) sometimes is called interpolation axiom. We
adopt the name normality azioms for (Nor 1), (Nor 2) and (Nor 3) because in topo-
logical representations they imply some normality conditions in the corresponding
topological spaces. It is proved in [10] that (Nor 1) is true in the relational models
(W, R) (see Section 1.2) if and only if the relation R is transitive and that (Nor 1)
implies representation theorem in transitive models. In the next lemma we shall
prove similar result using all normality axioms.

LeEMMA 4.1. Transitivity lemma. Let D = (D,C,57<<) be a EDC-lattice
satisfying the axioms (Norl), (Nor 2) and (Nor 3) and let (W€, R®) be the canonical
structure of D (see Section 2.3) Then:

(i) R€ is a transitive relation.

(ii) D is representable in EDC-lattice over some system (W, R) with an equiv-
alence relation R.
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PRrOOF. (i) Let I', A and © be prime filters in D such that

(1) TR°A and

(2) AR°O

and suppose for the sake of contradiction that

(3) TR°©. By the definition of R we have to consider four cases.

Case 1: 3a € T, b € O such that aCb.

Then by (Nor 1) there exists ¢, d such that ¢ +d = 1, aCc and
bCd. Since ¢+ d = 1 then either ¢ € A or d € A. The case
¢ € A together with a € T imply by (1) aCc - a contradiction.
The case d € A together with b € © imply by (2) bCd - again a
contradiction.
Case 2: da € T',b ¢ O such that a < b.
Then by (Nor 3) 3¢ such that ¢ < ¢ and ¢ < b. Consider the
case ¢ € A. Then a € T" and (1) imply a €« ¢ a contradic-
tion. Consider now ¢ € A. Then b ¢ © imply ¢ « b - again a
contradiction.
In a similar way one can obtain a contradiction in the remaining two cases:
Case 3: Jda ¢ I',b € © such that b < a and
Case 4: Ja ¢ T,b ¢ © such that bCa.
(ii) The proof follows from (i) analogous to the proof of Theorem 2.3. O

Another kind of axioms which will be used in the topological representation
theory in PART II are the so called rich axioms.

(U-rich <) a < b — (Fc)(b+ ¢ =1 and aCc),
(U-tich C) aCb — (3e,d)(a+c=1,b+d =1 and ¢Cd).
(O-rich <) a < b — (3¢)(a-c =0 and cgb),
(O-rich C) aCb — (3e,d)(a-c=0,b-d =0 and cgd).
Let us note that U-rich axioms will be used always with the U-extensionality

axiom and that O-rich axioms will be used always with O-extensionality axiom.
The following lemma is obvious.

LEMMA 4.2. The azioms (U-rich <), (U-rich C), (O-rich <) and (O-rich C)
are true in all contact algebras.

4.1. Some good embedding properties. Let (D;,C1, 61, <1)and (Dg, Cy,
52,<<2) be two EDC-lattices. We will write D1 < D, if D; is a substructure of
D, i.e., Dy is a sublattice of Dy, and the relations C1, 61, <& are restrictions of
the relations Cs, 5’2, <9 on Di. Since we want to prove embedding theorems, it is
valuable to know under what conditions we have equivalences of the form:

D7 satisfies some additional axiom iff Dy satisfies the same axiom.

REMARK 4.1. The importance of such conditions is related to the representation
theory of EDC-lattices satisfying some additional axioms. In general, if we have
some embedding theorem for EDC-lattice D satisfying a given additional axiom A,
it is not known in advance that the lattice in which D is embedded also satisfies
A. That is why it is good to have such conditions which automatically guarantee
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this. Below we formulate several such "good conditions": dense and dual dense
sublattice, C- and C-separable sublattice.

DEFINITION 4.1. Dense and dual dense sublattice. Let Dy be a distributive
sublattice of Do. D1 is called a dense sublattice of Dy if the following condition is
satisfied:

(Dense)  (Vag € Ds)(as # 0= (Jay € D1)(a1 < as and a1 # 0)).

If h is an embedding of the lattice Dy into the lattice Do then we say that h is
a dense embedding if the sublattice h(D1) is a dense sublattice of Ds.

Dually, Dy is called a dual dense sublattice of Do if the following condition is
satisfied:

(Dual dense) (Yag € D3)(az # 1= (Fa; € D1)(az < ay and a3 # 1)).

If h is an embedding of the lattice Dy into the lattice Do then we say that h is

a Dual dense embedding if the sublattice h(D1) is a dually dense sublattice of Ds.

Note that in Boolean algebras, dense and dually dense conditions are equivalent;
in distributive lattices this equivalence does not hold (see [12] for some known
characterizations of density and dual density in distributive lattices).

For the case of contact algebras [40] and distributive contact lattices [12] we
introduced the notion of C-separability as follows. Let D1 = Ds; we say that Dy is
a C-separable sublattice of D if the following condition is satisfied:

(C—separable) (Vag, by € Dg)(agébg = (Hal,bl S Dl)(ag <as, by < bl,alébl)).

For the case of EDC-lattices we modified this notion adding two additional
clauses corresponding to the relations C and < just having in mind the definitions
of these relations in contact algebras. Namely

DEFINITION 4.2. C-separability. Let D; < Ds; we say that Dy is a C-
separable EDC-sublattice of D if the following conditions are satisfied:
(C-separability for C) -

(Va27b2 S DQ)(CLQ@I)Q = (Eal,bl S Dl)(ag < al,bg < bl,alébl)).
(C-separability for C) -

(Va27b2 S Dg)(agabg = (Eal,bl S Dl)(ag +a1=1,bo+ by = 1,(1161)1)).
(C-separability for <) -

(Vag, by € D3)(as < by = (3a1,b1 € D1)(az < a1,be + by = 1,a:Cby)).

If h is an embedding of the lattice Dy into the lattice Do then we say that h is
a C-separable embedding if the sublattice h(D1) is a C-separable sublattice of Do.

The notion of a é—separable embedding & is defined similarly. The following
lemma is analogous to a similar result from [40] (Theorem 2.2.2) and from [12]
(Lemma 5).

LEMMA 4.3. Let Dy, Dy be EDC-lattices and Dy be a C-separable EDC-sublattice
of Dy. Then:

(i) If D1 is a dually dense EDC-sublattice of Do, then Dy satisfies the azxiom
(Ext C) iff Dy satisfies the aziom (Ext C),

(i1) D1 satisfies the axiom (Con C) iff Do satisfies the aziom (Con C),

(iii) D1 satisfies the axiom (Nor 1) iff Dy satisfies the aziom (Nor 1),

(iv) Dy satisfies the aziom (U-rich <) iff Dy satisfies the aziom (U-rich <),

(v) Dy satisfies the aziom (U-rich C) iff Dy satisfies the aziom (U-rich 6}
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Proor. Conditions (i), (ii) and (iii) have the same proof as in Theorem 2.2.2
from [40].

(iv) (=) Suppose that D; satisfies the axiom (U-rich <), a2,bs € Do and let
as < ba. Then by (C-separability for <) we obtain: (Ja;,b; € D1)(az < a1,by +
by = 1,a1Chy). Since D is a sublattice of Dy then a1,b; € Dy. From as < a; and
a10b; we get a;Cby. Thus we have just proved: (as < by — (Iby € Dy)(ba+b1 =1
and a»Cbh;) which shows that D, satisfies (U-rich <).

(<) Suppose that D5 satisfies the axiom (U-rich <), a1,b1 € Dy (hence aq,b; €
D5) and let a3 < b;. Then by (U-rich <) for Dy we get: (Jea € D2)(b1 + c2 =
1,a1Cc3). Since aj,co € Do and a;Ccy, then by (C-separability for C) we get:
(Fa, b}, € Dy)(a; < a},co < b),a,CV,). Combining the above results we get:
1 =by + ¢ < by + b and a;Cb;. We have just proved the following: a; < b; —
(3, € D1)(by + b} = 1,a;Cb;) which shows that D; satisfies (U-rich <).

(v) The proof is similar to that of (iv). O

The notion of a—separable sublattice can be defined in a dual way as follows:

DEFINITION 4.3. Suppose that D1 = Ds; we say that Dy is a é—separable
EDC-sublattice of Dy if the following condition is satisfied:
(a-sepambility for C) - B

(Vag, by € Ds)(azChy = (3a1,by € Dy)(ay 4+ az = 1,by + by = 1,a,Chy)),
(C-separability for C) -

(Vaz, by € D2)(azCby = (Ja1, by € Dy)(a1 < az, by < by, a;0by)),
(C-separability for <) - B

(Vag, by € Ds)(as < by = (Jag, by € D1)(a1 + az = 1,by < by, a1Chy)).

The notion of a a-sepamble embedding h is defined as in definition 4.2.

The following lemma is dual to Lemma 4.3 and can be proved in a dual way.

LEMMA 4.4. Let Dy, Dy be EDC-lattices and D1 be a é—sepamble EDC-sublattice
of Ds; then:

(i) If Dy is a dense EDC-sublattice of Do, then D satisfies the axiom (Ext 6)
iff Do satisfies the aziom (Ext 6),

(ii) Dy satisfies the aziom (Con C) iff Dy satisfies the aziom (Con C),

(i1i) Dy satisfies the axiom (Nor 2) iff Do satisfies the aziom (Nor 2).

(iv) Dy satisfies the aziom (O-rich <) iff Dy satisfies the aziom (O-rich <).

(v) Dy satisfies the aziom (O-rich C) iff Do satisfies the aziom (O-rich C).

COROLLARY 4.1. Let D = (D,C,C, <) be an EDC-lattice and B = (B, C) be
a contact algebra. Then:

(i) If h is a C-separable embedding of D into B then D must satisfy the axioms
(U-rich <) and (U-rich C).

(ii) If h is a é-sepamble embedding of D into B then D must satisfy the azioms
(O-rich <) and (O-rich C).

PRrROOF. (i) Note that by Lemma 4.2 B satisfies the axioms (U-rich <) and
(U-rich C). Then by Lemma 4.3 (iv) and (v) D satisfies the axioms (U-rich <)
and (U-rich C).



5. TOPOLOGICAL MODELS OF EDC-LATTICES 23

(ii) Similarly to (i) the proof follows from Lemma 4.2 and Lemma 4.4.

PART II: TOPOLOGICAL REPRESENTATIONS OF EXTENDED DIS-
TRIBUTIVE CONTACT LATTICES

The aim of this second part of the paper is to investigate several kinds of
topological representations of EDC-lattices. We concentrate our attention mainly
on topological representations with some "good properties" in the sense of Section
4.1: dual density and C-separability, and their dual versions - density and C-
separability.

5. Topological models of EDC-lattices

We assume some familiarity of the reader with the basic theory of topological
spaces:(see [15]). First we recall some notions from topology. By a topological
space we mean a set X provided with a family C(X) of subsets, called closed sets,
which contains the empty set &, the whole set X, and is closed with respect to finite
unions and arbitrary intersections. Fixing C(X) we say that X is endowed with a
topology. A subset a C X is called open if it is the complement of a closed set. A
family of closed sets CB(X) is called a closed basis of the topology if every closed
set can be represented as an intersection of sets from CB(X). In a similar way the
topology of X can be characterized by the family O(X) of open sets: it contains
the empty set, X and is closed under finite intersections and arbitrary unions. A
family OB(X) of open sets is called an open basis of the topology if every open set
can be represented as an union of sets from OB(X). X is called semiregular space
if it has a closed base of regular closed sets or an open base of regular open sets.

We remind the reader of the definitions of two important topological opera-
tions on sets - closure operation Cl, and interior operation Int. Namely Cl(a)
is the intersection of all closed sets of X containing a and Int(a) is the union of
all open sets included in a. Note that the operations Cl and Int are interdefin-
able: Cl(a) = —Int(—a) and Int(a) = —Ci(—a). Using the bases CB(X) and
OB(X) the definitions of closure and interior operations have the following useful
expressions:

x € Cl(a) iff (Vb€ CB(X))(a Cb— x € D),

x € Int(a) iff (3b € OB(X))(b C a and x € b).

We say that a is a regular closed set if a = Cl(Int(a)) and a is a regular open
set if a = Int(Cl(a)). Tt is a well known fact that the set RC(X) of all regular
closed subsets of X is a Boolean algebra with respect to the relations, operations
and constants defined as follows: a < biff a Cb,0=92,1 =X, a+b=aUb,
a-b=Cl(Int(and), a* = Cl(—a) where —a = X ~\ a. If we define a contact C by
aCb iff aNb # @ then we obtain the standard topological model of contact algebra.

Another topological model of contact algebra is the set RO(X) of regular open
subsets of X. The relevant definitions are as follows: a < biffa Cb, 0 =9, 1 = X,
a-b=anb, a+b=Int(Cl(aUbdb), a* = Int — a. The contact relation is aCb iff
Cl(a) N CL(b) # 2.

Note that these two models are isomorphic.



5. TOPOLOGICAL MODELS OF EDC-LATTICES 24

Topological model of EDC-lattice by regular-closed sets. Consider the
contact algebra RC(X) of regular closed subsets of X. Let us remove the operation
a* and define the relations C' and < topologically according to their definitions in
contact algebra as follows:

aCb iff Cl(—a) N Cl(—b) # @ iff (equivalently) Int(a) U Int(b) # X.

a < biff anCl(—b) = & iff (equivalently) a C Int(b).

Obviously the obtained structure is a model of EDC-lattice. Also any distribu-
tive sublattice of RC(X) with the same definitions of the relations C, C' and < is a

model of EDC-lattice. These models are considered as standard topological models
of EDC-lattice by reqular closed sets.

Topological model of EDC-lattice by regular-open sets. Consider the
contact algebra RO(X) of regular open subsets of X. Let us remove the operation
a* from the contact algebra RO(X) and define the relations C' and < topologically
according to their definitions in the contact algebra as follows:

aCb iff Cl(Int(—a) N Cl(Int(—b)) # @ iff (equivalently) aUb # X,

a < b iff Cl(a) N Cl(Int(—b)) = @ iff (equivalently) Cl(a) C b.

Obviously the obtained structure is another standard topological model of
EDC-lattice and any distributive sublattice of RO(X) with the same relations C,
C and < is also a model of EDC-lattice.

The main aim of PART II of the paper is the topological representation theory
of EDC-lattices related to the above two standard models. The first simple result
is the following representation theorem.

THEOREM 5.1. Topological representation theorem for EDC-lattices.
Let D = (D,C, 6’, <) be an EDC-lattice. Then:

(i) There exists a topological space X and an embedding of D into the contact
algebra RC(X) of reqular closed subsets of X.

(ii) There exists a topological space Y and an embedding of D into the contact
algebra RO(Y) of regular open subsets of Y.

PROOF. It is shown in [8] that every contact algebra is isomorphic to a subal-
gebra of the contact algebra RC(X) of regular closed subsets of some topological
space X, and dually, that it is also isomorphic to a subalgebra of the contact algebra
RO(Y) of the regular open subsets of some topological space Y. Then the proof
follows directly from this result and the Corollary 2.1.

O

The above theorem is not the best one, because it cannot be extended straight-
forwardly to EDC-lattices satisfying some of the additional axioms mentioned in
Section 4. That is why we will study in the next sections representation theorems
based on embeddings satisfying some of the good conditions described in Section
4.1. Before going on let us remind some other topological facts, which will be used
later on.

A topological space X is called:

e normal if every pair of closed disjoint sets can be separated by a pair of open
sets;

e r-normal [34] if every pair of regular closed disjoint sets can be separated by
a pair of open sets;
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o weakly regular [13] if it is semiregular and for each nonempty open set a there
exits a nonempty open set b such that Cl(a) C b;

e connected if it cannot be represented by a sum of two disjoint nonempty open
sets;

o Ty if for every pair of distinct points there is an open set containing one
of them and not containing the other; X is called Tj if every one-point set is a
closed set, and X is called Hausdorff (or T3) if each pair of distinct points can be
separated by a pair of disjoint open sets.

e compact if it satisfies the following condition: let {A; : i € I} be a non-empty
family of closed sets of X such that for every finite subset J C I the intersection
N{A;:i€ J} # @, then ({A;:i €1} #@.

The following lemma relates topological properties to the properties of the
relations C, C and < and shows the importance of the additional axioms for EDC-
lattices.

LeMMA 5.1. (i) If X is semireqular, then X is weakly regular iff RC(X) satisfies
any of the azioms (Ext C), (Ext C).

(i1) X is k-normal iff RC(X) satisfies any of the axioms (Nor 1), (Nor 2) and
(Nor 3).

(i1i) X is connected iff RC(X) satisfies any of the azioms (Con C), (Con 6’)

(iv) If X is compact and Hausdorff, then RC(X) satisfies (Ext C), (Ext 6)
and (Nor 1), (Nor 2) and (Nor 3) .

PROOF. A variant of the above lemma concerning only axioms (Ext C), (Nor
1) and (Con C) was proved, for instance, in [13]. Having in mind the equivalence of
some of the mentioned axioms in RC(X), it is obvious that the present formulation
is equivalent to the cited result from [13]. O

5.1. Looking for good topological representations of

EDC-lattices. In topological representation theory of lattices the following three
problems have to be solved: (1) for a given lattice L to associate to L a set X
of points, (2) to define an embedding h into the set of subsets of X, and (3) to
define in X a suitable topology. Very often the topology of X is determined by
the embedding h considering the set {h(a) : @ € L} as a base (closed or open)
of the topology of X. Let us note that this construction sometimes yields good
properties of the obtained topology - for instance compactness and some desirable
topological separation properties. That is why we call in this paper such embed-
dings "good topological representations". However, good representations require
sometimes some special properties of the lattice L, and this is just the subject of
the present section.

The following topological theorem proved in [12] (Theorem 4) gives necessary
and sufficient conditions for a closed base of a topology to be semiregular.

THEOREM 5.2. First characterization theorem for semiregularity.
Let X be a topological space and let CB(X) be a closed basis for X. Suppose that
".1is a binary operation defined on the set CB(X) such that (CB(X), o, X,U,")
is a lattice. Then:

(1) The following conditions are equivalent:
(a) CB(X) is U-extensional.
(b) CB(X) C RC(X).
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(¢) For all a,b € CB(X), a-b=Cl(Int(anNb)).
(d) (CB(X),2,X,U,") is a dually dense sublattice of the Boolean algebra
RC(X).
(2) If any of the (equivalent) conditions (a),(b),(c) or (d) of 1. is fulfilled then:
(a) (CB(X),d,X,U,") is a U-extensional distributive lattice.
(b) X is a semiregular space.

The following is a corollary of the above theorem.

COROLLARY 5.1. [12] Let X be a topological space, let L = (L,0,1,+,-) be a
lattice and let h be an embedding of the upper semi-lattice (L,0,1,+) into the lattice
C(X) of closed sets of X. Suppose that the set CB(X) = {h(a) : a € L} forms a
closed basis for the topology of X. Then:

(1) The following conditions are equivalent:

(a) L is U-extensional.

(b) CB(X) C RC(X).

(¢) For all a,b € L, h(a-b) = Cl(Int(h(a) N h(b))).

(d) h is a dually dense embedding of L into the Boolean algebra RC(X).
(2) If any of the (equivalent) conditions (a),(b),(c) or (d) of 1. is fulfilled then:

(a) L is a U-extensional distributive lattice.

(b) X is a semiregular space.

A dual version of Theorem 5.2 is the following one.

THEOREM 5.3. Second characterization theorem for semiregularity.
Let X be a topological space and let OB(X) be an open basis for X. Suppose that
+ is a binary operation defined on the set OB(X) such that (OB(X), 2, X,N,+)
1s a lattice. Then:

(1) The following conditions are equivalent:
(a) OB(X) is O-extensional.
(b) OB(X) C RO(X).
(¢) For all a,b € OB(X), a4+ b= Int(Cl(aUb)).
(d) (OB(X),2,X,N,+) is a dually dense sublattice of the Boolean alge-
bra RO(X).
(2) If any of the (equivalent) conditions (a),(b),(c) or (d) of 1. is fulfilled then:
(a) (OB(X),2,X,N,+) is an O-extensional distributive lattice.
(b) X is a semiregular space.

The following is a corollary of the above theorem.

COROLLARY 5.2. Let X be a topological space, let L = (L,0,1,+,-) be a lattice
and let h be an embedding of the lower semi-lattice (L,0,1,-) into the lattice O(X)
of open sets of X. Suppose that the set OB(X) = {h(a) : a € L} forms an open
basis for the topology of X. Then:

(1) The following conditions are equivalent:
(a) L is O-extensional.
(b) OB(X) C RO(X).
(¢) For all a,b € L, h(a+b) = Int(Cl(h(a) Uh(D))).
(d) h is a dense embedding of L into the Boolean algebra RO(X).
(2) If any of the (equivalent) conditions (a),(b),(c) or (d) of 1. is fulfilled then:
(a) L is a O-extensional distributive lattice.
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(b) X is a semiregular space.

REMARK 5.4. (i) Dual dense representations. Let D = (D, C,C, <) be an
EDC-lattice. Suppose that we want to represent D by an embedding A in the set
RC(X) of regular closed sets of some topological space X such that the topology
of X is determined by the set CB(X) = {h(a) : @ € D} considered as a closed
base for X. Then Corollary 5.1 say that ~ must be a dual dense embedding. The
Corollary 5.1 states also that this fact is equivalent to U-extensionality of D, which
means that D must satisfy the axiom (Ext 5) - extensionality of underlap. If
in addition we want to apply the C-separability property from Lemma 4.3, then
we must assume that h is also a C-separable embedding into RC(X). But then
Corollary 4.1 implies that D must satisfy also the axioms (U-rich <) and (U-rich
0).

(ii) Dense representations. Similar to the above conclusion is the following.
Suppose that we want to represent D by an embedding h into the set RO(X) of
regular open subsets of some topological space X such that the the topology of X
to be determined by the set OB(X) = {h(a) : a € D} considered as an open base
for X. Then Corollary 5.2 say that h must be a dense embedding. The Corollary
5.2 states also that this fact is equivalent to O-extensionality of D, which means
that D must satisfy the axiom (Ext O) - extensionality of overlap. If in addition
we want to apply the a—separability property of Lemma 4.4, then we must assume
that his also a a—separable embedding into RO(X). But then Corollary 4.1 implies
that D must satisfy also the axioms (O-rich <) and (O-rich 6) O

DEFINITION 5.1. U-rich and O-rich EDC-lattices. Let D = (D, C, 5,<<)
be an EDC-lattice. Then:

(i) D is called U-rich EDC-lattice if it satisfies the azioms (Ext O), (U-rich
<) and (U-rich C).

(ii) D is called O-rich EDC-lattice if it satisfies the azioms (Ext O), (O-rich
<) and (O-rich C).

A question arises - aren’t U-rich EDC-lattices (O-rich EDC-lattices) Boolean
algebras? The answer is "no" as it can be seen from the next proposition.

PROPOSITION 5.1. (i) There is an U-rich EDCL D = (D,C,C, <) such that
(Jz e D)Vye D)~(x+y=1 and .y =0);
(i) There is an O-rich EDCL D = (D, C,C, <) such that (3z € D)(Vy € D)—(z +
y=1and z.y =0).

ProoF. (i) Let (W, R) be a relational structure, where W = (—o0; +00), R =

W x W. We consider the contact algebra of all subsets of W: By = (2V,C
,@,VV,*,CR,C/’;,«R). It turns out that aCrb < a,b # 0, aC/’;%b < ab £ 1,
a<pbsra=0orb=(—o0;+00). By = (2", C,0,W, C’R,C/’;L,<<R) is an EDCL.
We consider the substructure of By B with universe B, consisting of the following
sets: 0, W, (—o0;1], [0;4+00), [0;1] and all sets of the kind:

1) (—o03a1) U (az,as) U... U (azn;az2n+1) U (aznt2; +00)

2) [0; a1) (az;a3) U U (a2n; a2n41) U (a2n42; +00)

3) (—o0sa1) U (ag; CL3) U .U (a2n; a2n+41) U (a2n42; 1]

4) [0; a1) U (ag;az)U... U (azn; aznt1) U (a2nt2; 1],
where n >0, 0 < aq <a2 <ag <...<agp < aopy1 < Gopgo < 1.
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It can be easily verified that B is closed under U and N. Consequently B is
a distributive lattice of sets with 0 and 1. Since B is a substructure of Bi, Bi
is an EDCL, the axioms of EDCL are universal formulas, we have that B is an
EDCL. For (—o0;1] it does not exist € B such that (—oo;1] Uz = (—o0; +00),
(—oo; 1Nz = 0.
(o) We will prove that B satisfies (U-rich <). Let a, b € B and a < b. Then a =0
orb=W.

Case 1l: a=10
We have bUW = W and aCrW.
Case 2: b=W

We have bU ) = W and aCR0.

(e) We will prove that B satisfies (U-rich C). Let a, b € B and aCb. Then a = W
or b = W. Without loss of generality a = W. We have aU) = W, bUW = W and
0CrW. R

(o) We will prove that B satisfies (Ext O). Let a, b € B and a ¢ b. There is A
such that A € a, A ¢ b. We will prove that there is ¢ € B such that a Uc = W,
bUc# W

Case 1: a is of the kind 1), 2), 3) or 4)

Case 1.1: b is of the kind 1), 2), 3) or 4)

Case 1.1.1: A€ (0;1)

There are z, y such that 0 < z <y < 1, A € (z,y), (z,y) C q, (z,

y) N
x1, y1 are such that v < 7 < A <y <y. Let ¢ (—o0;21) U (y1; 400
Case 1.1.2: A ¢ (0;1)
b is of the kind 1), 2), 3) or 4). Consequently 0 € b, 1 € b. Consequently A # 0,
A # 1. Without loss of generality A < 0. We also have A € a, so there is
a1 € (0;1) such that (—oo,a1) C a. Let z, y be such that 0 < 2 < y < a;. Let

¢ = [0:2) U (g5 +00).

Case 1.2: b=10

There is a; € (0;1) such that [0;a1) C a. Let z, y be such that 0 < z < y < a;.

Let ¢ </ (—o0; ) U (y; +00).

Case 1.3: b= (—o0;1] or b= [0;+00)

Without loss of generality b = (—o0;1]. Let ¢ = (—o0;1]. A¢b;sol < Abut A€ a
and a is of the kind 1), 2), 3) or 4), so there is o’ € (0;1) such that (a’;+o0) C a
Consequently a Uc = W. We also have bU c # W.

Case 1.4: b= [0;1]

Aé¢b soA<O0or A>1. Without loss of generality A < 0. A € a and a is
of the kind 1), 2), 3) or 4), so there is a; € (0;1) such that (—oo;a1) C a. Let

Nb=0. Let
)-

¥ [0; 4+00).
Case 2:a —( 00; 400)
We take c = Q)

Case 3: a = (—o0; 1]
Case 3.1: b=10

We take ¢ </ [0; 4+00).
Case 3.2: b= [0;+00)
We take ¢ </ [0; 4+00).
Case 3.3: b=[0;1]
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We take ¢ 2 [0; +00).

Case 3.4: b is of the kind 1), 2), 3) or 4).
Case 3.4.1: A€ (0;1)

The proof is similar to the proof in case 1.1.1.
Case 3.4.2: A ¢ (0;1)

We have A # 0 because otherwise A € b. Consequently A < 0. We take ¢ def
[0; +00).

Case 4: a = [0; +00)

The proof is similar to the proof in case 3.

Case 5: a = [0;1]

Case 5.1: b= 10

We take ¢ "</ (—o0; %) U (%, +00)

Case 5.2: b is of the kind 1), 2), 3) or 4)

The proof is similar to the proof in case 1.1.1.

(ii) Dual proof. O

The aim of the next sections is to develop the topological representation theory
of U-rich and O-rich EDC-lattices.

6. Topological representation theory of U-rich EDC-lattices

The aim of this section is to develop a topological representation theory for
U-rich EDC-latices. According to Theorem 5.2 we will look for a dual dense rep-
resentation with regular closed sets (see 5.4 (i)). To realize this we will follow the
representation theory of contact algebras by regular closed sets developed in [8, 40],
updating the results of Section 4 from [12] to the case of U-rich EDC-lattices. We
will consider also extensions of U-rich EDC-lattices with some of the additional
axioms mentioned in Section 4. The scheme of the representation procedure is the
following: for each U-rich EDC-lattice D from a given class, determined by the
additional axioms, we will do the following:

e Define a set X (D) of "abstract points" of D,

e define a topology in X (D) by the set CB(X (D)) = {h(a) : a € D}, consid-
ered as a closed base of the topology, where h is the intended embedding of
Stone type: h(a) = {I': T is "abstract point" and a € T'}. X (D) is called
the canonical topological space of D and h is called canonical embedding,

e establish that h is a dual dense embedding of the lattice D into the Boolean
algebra RC(X (D)) of regular closed sets of the space X (D).

We will consider separately the cases of representations in Ty, 77 and 75 spaces
which requires introducing different "abstract points".

6.1. Representations in 7, spaces. Throughout this section we consider
that D = (D, C,C, <) is a U-rich EDC-lattice.

6.1.1. Abstract points of D. As in [12], we consider the abstract points of D
to be clans (see [8] for the origin of this notion). The definition is the following. A
subset I' C D is a clan if it satisfies the following conditions:

(Clan1) 1 €T, 0 &T,

(Clan 2) If a € T and a < b, then b € T,

(Clan 3) If a+beT, thenacT orbeT,
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(Clan 4) If a,b € T then aCb.

These conditions are similar to the conditions for prime filters.

I' is a maximal clan if it is maximal with respect to the set-inclusion. We
denote by CLAN(D) (MaxCLAN(D) ) the set of all (maximal) clans of D.

The notion of clan is an abstraction from the following natural example. Let X
be a topological space and RC(X) be the contact algebra of regular-closed subsets
of X and let z € X. Then the set I', = {a € RC(X) : « € a} is a clan.

Now we will present a construction of clans which is similar to the constructions
of clans in contact algebras. First we will introduce a new canonical relation between
prime filters.

DEFINITION 6.1. Let U,V be prime filters. Define a new canonical relation Ro

( Rc-canonical relation) between prime filters as follows:
URcV ey (Va S U)(Vb S V)(aC’b)

Let us note that the relation Rc depends only on C' and can be defined also
for filters. It is different from the canonical relation between prime filters defined
in Section 2.3, but the presence of U-rich axioms makes it equivalent to R¢ as it
can be seen from the following lemma.

LEMMA 6.1. LetU, V be prime filters and Rc the relation defined as URcV < gey
(Va € U)(Vb € V)(aCb).
Then

(i) Rc is reflexive and symmetric relation.

(ii) If D satisfies the azioms (U-rich <) and (U-rich C) then Re = RC.

Proor. (i) follows from the axioms (C4) and (C5).

(ii) The inclusion R® C R¢ follows directly by the definition of R°. For the
converse inclusion suppose URcV. To show URV we have to inspect the four
cases of the definition of R€.

Claim 1: a € U and b € V implies aCb. This is just by the definition of R¢ .
Claim 2: ¢ € U and b ¢ V implies a <« b. For the sake of contradiction suppose
a €U and b gV but a < b. Then by axiom (U-rich <) (a < b— (Fc)(b+c=1
and aCc), we obtain b + ¢ = 1 and aCe. Conditions b+c¢ =1 and b ¢ V imply
ce V. But a €U, soaCc- a contradiction.

Claim 3: ¢ ¢ U and b € V implies b &« a. The proof is similar to the proof of
Claim 2.

Claim 4: a ¢ U and b ¢ V implies aCh. The proof is similar to the proof of Claim
2 by the use of axiom

(U-rich 5) aCb— (3e,d)(a+c=1,b+c=1 and cCd).

The following statement lists some facts about the relation R¢.

FacTs 6.1. [10, 8, 12].
(1) Let F,G be filters and FRcG then there are prime filters U,V such that
FCU,GCV and UR:SV.
(2) For all a,b € D: aChb iff there exist prime filters U,V such that URcV,
acUandbeV.

In the following lemma we list some facts about clans (see, for instance, [8, 12]).
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FAcTS 6.2. (1) Every prime filter is a clan.

(2) The complement of every clan is an ideal.

(8) If T is a clan and F is a filter such that F C T, then there is a prime
filter U such that F C U CT. In particular, if a € T, then there exists a
prime filter U such that a € U CT.

(4) Every clan T is the union of all prime filters contained in T.

(5) Every clan is contained in a mazimal clan.

(6) Let ¥ be a nonempty set of prime filters such that for every U,V € ¥ we
have URcV and let T' be the union of the elements of ¥. Then T is a clan
and every clan can be obtained in this way.

(7) Let U,V be prime filters, T be a clan and U,V CT,. Then UR:V and
UR‘V.

LEMMA 6.2. Let T be a clan and a € D. Then the following two conditions are
equivalent:

(i) (Ve € D)(a+c=1—cel),

(ii) There exists a prime filter U C T such that a ¢ U.

PRrROOF. (i)— (ii). Suppose that (i) holds. It is easy to see that the set F' =
{¢:a+c=1}is afilter. The complement I of T is an ideal (Facts 6.2) and hence
T @ (a] is an ideal. We will show that F'NT @ (a] = @. Suppose the contrary. Then
there is a ¢ such that a+c = 1 (and hence by (i) ¢ € T') and ¢ € T @ (a]. Then there
is € T such that ¢ < x+a. From here we get: 1 = a+c < a+x+a = z+a, hence
r+a=1andby (i) - z € T, contrary to € I'. Now we can apply Filter-extension
Lemma and obtain a prime filter U extending F such that UNT & (a] = @. It
follows from here that a« € U, U NT = @ which implies U C T.

(ii)—(i). Suppose (ii) holds: U C T and a ¢ U. Suppose a + ¢ = 1. Then
ceUCT,soceTl - (i) is fulfilled.

O

6.1.2. Defining the canonical topological space X(D) of D and the canonical
embedding h. Define the Stone like embedding: h(a) = {T' € CLAN(D) : a € T'}
and consider the set CB(X) = {h(a) : a € D} as a closed base of the topology in
X(D)=CLAN(D,).

LEMMA 6.3. The space X (D) is semiregular and h is a dually dense embedding
of D into the contact Boolean algebra RC (X (D)).

Proor. Using the properties of clans, one can easily check that h(0) = &,
h(1) = X, and that h(a + b) = h(a) U h(b). This shows that the set CB(X (D)) =
{h(a) : a € D} is closed under finite unions and, in fact, it is a closed basis for the
topology of X. Also we have the implication: a < b then h(a) C h(b).

To show that h is an embedding we use the fact that prime filters are clans and
prove that a £ b implies h(a) € h(b). Indeed, from a £ b it follows by the theory
of distributive lattices (see [2]) that there exists a prime filter U (which is also a
clan) such that a € U (so U € h(a)) and b € U (so, U ¢ h(b)), which proves that
h(a) € h(b). Consequently, h is an embedding of the upper semi-lattice (D,0,1,+)
into the lattice of closed sets of the space X (D). By Corollary 5.1, X(D) is a
semiregular space and h is a dually dense embedding of D into the Boolean algebra



6. TOPOLOGICAL REPRESENTATION THEORY OF U-RICH EDC-LATTICES 32

RC(X). It remains to show that h preserves the relations C, C and <. This follows
from the following claim.

Cram 6.3. (i) Let T be a clan and a € D. The following equivalence holds:
I' € h(a) iff there exists a prime filter U such that a € U CT.
(ii) Let " be a clan and a € D. Then following conditions are equivalent:

(I) Vce D)(a+c=1—=cel),
(II) T € Cl(—h(a)),
(I1I) There exists a prime filter U such that a ¢ U CT.
(111) aCb iff h(a) N h(b) # @,
(iv) a L b iff h(a) N Cl(—h(b)) # @.
(v) aCb iff Cl(—h(a)) N Cl(—h(b)) # 2,

Proof of the claim. (i) follows easily from Facts 6.2 (3.).
(ii) The proof of (I) <+ (II) follows by the following sequence of equivalences:

(VeeD)a+c=1—cel)iff
(Ve € D)(h(a) Uh(c) = X(D) =T € h(c)) iff
(Ve € D)(—h(a) C h(c) = T € h(c)) iff
I e Cl(—h(a))

The first equivalence holds because h is an embedding of the upper semi-lattice
(D,0,1,+) into the lattice of closed sets of the space X (D), the third equivalence
uses the fact that the set {h(c) : ¢ € D} is a closed base of the topology of X (D).

The equivalence (I) <> (II1I) is just the Lemma 6.2.

(iii) (= ) Suppose aCb, then by Lemma 2.6 (i) there exist prime filters U, and
V such that URV,ac U and be V. Let I' = UUV. By Facts 6.2 I is a clan,
obviously containing a and b, which implies h(a) N h(b) # @.

(<) Suppose h(a) N h(b) # @. Then there exists a clan ' containing a and b,
hence aC.

(iv) (= ) Suppose a & b. Then by Lemma 2.6 (ii) there exist prime filters U, V
such that URV,a € U and b¢ V. Let ' = U UV, then I is a clan containing U
and V. So, a € T and hence T" € h(a). From the condition b ¢ V C T" we obtain by
(ii) that T' € Cl(—h(b)) and hence h(a) N Cl(—h(b)) # @.

(<) Suppose h(a) N Cl(—h(b)) # @. Then there exists a clan I" € h(a) and
I' € Ci(—h(b)). It follows by (i) that there exists a prime filter U such that a €
U C T and by (ii) we obtain that there exists a prime filter V' such that b¢ V C T,
Condition U,V C T" implies by Facts 6.2 (7.) that URV. Using the properties of
the relation R® and a € U and b ¢ V we get a £ b.

(v) The proof of (v) is similar to the proof of (iv) with the use of Lemma 2.7.
This finishes the proof of Lemma 6.3 (]

LEMMA 6.4. The following conditions are true for the canonical space X(D):
(i) X(D) is Tp.
(i) X (D) is compact.

PRrROOF. The proof is the same as the proof of Lemma 19 from [12].
O

LEMMA 6.5. The mapping h is a C-separable embedding of D into RC(X(D)).
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PRrOOF. This lemma was proved in [12] by a special construction. Since the
definition of C-separability for EDC-lattices uses an extended definition for which
the special construction from [12] does not hold, in this paper we give a new proof
deducing the statement from the compactness of the space X (D).

We have to prove the following three statements, corresponding to the three
clauses of the condition of C-separability (see Definition 4.2).

(C-separability for C) (Va, 8 € RC(X(D)))(anNf =2 — (Ja,b € D)(a C h(a),B C
h(b), h(a) N k(b)) = @.

(C-separability for C) (Yo, 3 € RC(X(D))(Cl(—a) N Cl(—-B) = @ — (3a,b €
D)(aUh(a) = X(D),BU h(b) = X(D),h(a) N h(b) = ).
(C-separability for <) (Va5 € RC(X(D))(anNCl(—F) = & — (Ja,b € D)(a C
h(a), BUh(b) = X(D),h(a) Nh(b) = 2).

As an example we shall prove the condition (C-separability for C). The proofs
for the other two conditions are similar.

Proof of (C-separability for C). Let o, 5 € RC(X(D)) and aNf = @.
Since a and S are closed sets they can be represented as intersections from the
elements of the basis CB(X (D)) = {h(c) : ¢ € D} of X(D). So there are subsets
A, B C CB(X (D)) such that & = {h(c) : h(c) € A} and B8 = N{h(c) : h(c) € B}.
Then an g = ({h(c) : h(c) € A} NN{h(c) : h(c) € B} = @. By the compactness
of X(D) (Lemma 6.4 (ii)), there are finite subsets Ag C A and By C B such that
anpg ={h(c) : h(c) € Ao} NN {h(c) : h(c) € Bo} = @. Let Ag = {h(c1), ..., h(cn)}
and By = {h(d1),....,h(dn)} andlet a = ¢y -...-c, and b=dy - ... - dp,. Then h(a) C
h(c;), i = 1...n and from here we get h(a) C h(cr) N...Nh( n) Analogously we
obtain that h(b) C h(d;)N...NA(d,,)- Consequently h(a ) h(b) C (h(c1)N...0A(cp)N
(h(dy)N...0h(dy)) = @, so h(a)Nh(b) = @. Also we have o C h(c) for all h(c) € A
and consequently for all h(c) € Ag. Hence a C h(cy)-...-h(cy) = h(er-...-cn) = h(a),
so a C h(a). Analogously we get 8 C h(b). O

The following theorem is the main result of this section.

THEOREM 6.4. Topological representation theorem for U-rich EDC-
lattices R
Let D = (D,C,C,<) be an U-rich EDC-lattice. Then there exists a compact
semireqular Ty-space X and a dually dense and C-separable embedding h of D into
the Boolean contact algebra RC(X) of the regular closed sets of X. Moreover:

(i) D satisfies (Ext C) iff RC(X) satisfies (Eat C); in this case X is weakly
reqular.

(i) D satisfies (Con C) iff RC(X) satisfies (Con C); in this case X is con-
nected.

(i1i) D satisfies (Nor 1) iff RC(X) satisfies (Nor 1); in this case X is k-normal.

ProOF. Let X be the canonical space X (D) of D and h be the canonical
embedding of D. Then, the theorem is a corollary of Lemma 6.3, Lemma 6.4,
Lemma 6.5 and Lemma 5.1. O

Note that Theorem 6.4 generalizes several results from [8, 13] to the distributive
case.
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6.2. Representations in 77 spaces. The aim of this section is to obtain rep-
resentations of some U-rich EDC-lattices in 7% -spaces extending the corresponding
results from [12]. The constructions will be slight modifications of the correspond-
ing constructions from the previous section, so we will be sketchy.

Let D = (D,C,é,<<) be an U-rich EDC-lattice. In the previous section the
abstract points were clans and this guarantees that the representation space is Tj.
To obtain representations in 77 spaces we assume abstract points to be maximal
clans, so for the canonical space of D we put X (D) = MaxCLAN (D) and define
the canonical embedding h to be h(a) = {I' € MaxCLAN(D) : a € T'}. The
topology in X (D) is defined considering the set CB(X (D)) = {h(a) : a € D} to
be the closed base for the space. Note that in general, without additional axioms
we cannot prove in this case that h is an embedding. In order to guarantee this we
will assume that D satisfies additionally the axiom of C-extensionality

(Ext C) a # 1 — (3b # 0)(aCh).
Note that in this case, due to U-extensionality (see Section 4), the lattice D satisfies
also the axiom

(EXT C) a £ b — (3¢)(aCc and bCc),
which is essential in the proof that h is an embedding.

LEMMA 6.6. The space X (D) is semiregular and h is a dually dense embedding
of D into the contact Boolean algebra RC (X (D)).

PrOOF. The proof is similar to the proof of Lemma 6.3, so we will indicate
only the differences. First we show that h is an embedding of the upper semi-
lattice (D, 0,1, +) into the lattice of closed sets of the space X (D). The only new
thing which we have to show is: If a £ b then h(a) Z h(b). To do this suppose a £ b.
Then by axiom (EXT C) there exists ¢ € D such that aCc but bCe. Condition aCc
implies that there exist prime filters U,V such that UR‘V, a € U and ¢ € V. Let
T'o=UUV. Tyis a clan and by Facts 6.2 it is contained in a maximal clan T'.
Obviously a,c € ', so I' € h(a). But bCc implies that b ¢ ' (otherwise we will get
bCc). Conditions I € h(a) and T € h(b) show that h(a) Z h(b). Thus, by Corollary
5.1, h is a dually dense embedding of D into the Boolean algebra RC(X(D)). It
remains to show that h preserves the relations C, C and <. The proof is almost the
same as in the corresponding proof of Lemma 6.3. The only new thing is when we
construct a certain clan from prime filters satisfying the relation U RV in the form
U UV, then we extend it into a maximal clan. Note also that Claim 6.3 remains
true. We demonstrate this by considering only the preservation of <. We have to
show:

a £ biff h(a) NCl(—h(b) # &

(=) Suppose a £ b. Then by Lemma 2.6 (3U,V € PF(D))(a€ U and b ¢ V
and URV). Define 'y = U UV. Ty is a clan containing U and V. Extend I'y into
a maximal clan I". Then T" contains a, so I" € h(a). We have also that b ¢ V C T,
so by the Claim 6.3 T' € Cl(—h(b)).

(<) The proof is identical to the corresponding proof from Lemma 6.3. O

LEMMA 6.7. The space X (D) satisfies the following conditions:
(i) X(D) is Ty,

(i) X (D) is compact,

(iii) h is C-separable embedding.
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PRrROOF. (i) Let I" be an arbitrary maximal clan. The space X (D) is T3 iff the
singleton set {I'} is closed, i.e. CI({I'}) = {I'}. This follows by the maximality of
I' as follows. Let A be a maximal clan. Then:

A € ClI({T'}) iff (Ve € D)({T'} C h(c) = A € h(e)) iff (Ve € D)(T" € h(c) = A €
h(c)) ifft (Vee D)(ceT - ce A)MfiT CAMIT =Aiff A e {T}.

This chain shows that indeed CI({T'}) = {T'}.

(ii) The proof is similar to the proof of Lemma 6.4 (ii)

(iii) follows from (ii) as in the proof of Lemma 6.5. O

THEOREM 6.5. Topological representation theorem for C-extensional
U-rich EDC-lattices Let D = (D,C, 6’, <) be a C-extensional U-rich EDC-
lattice. Then there exists a compact weakly reqular Ty -space X and a dually dense
and C-separable embedding h of D into the Boolean contact algebra RC(X) of the
reqular closed sets of X. Moreover:

(i) D satisfies (Con C) iff RC(X) satisfies (Con C); in this case X is connected.

(11) D satisfies (Nor 1) iff RC(X) satisfies (Nor 1); in this case X is k-normal.

ProOF. The proof follows from Lemma 6.6, Lemma 6.7 and Lemma 5.1.
O

6.3. Representations in 75 spaces. In the previous section we proved repre-
sentability in 77 spaces of U-rich EDC-lattices satisfying the axiom of C-extensionality
(Ext C). The T; property of the topological space was guaranteed by the fact that
abstract points are maximal clans. In this section we will show that adding the
axiom (Nor 1) we can obtain representability in compact Th-spaces. The reason
for this is that the axiom (Nor 1) makes possible to use new abstract points - the
so called clusters, which are maximal clans satisfying some additional properties
yielding T5 separability of the topological space. Clusters have been used in the
compactification theory of proximity spaces (see more about their origin in [37]).
They have been adapted in algebraic form in the representation theory of contact
algebras in [8, 42]. In [12] their definition and some constructions are modified for
the distributive case. We remind below the corresponding definition.

DEFINITION 6.2. Let D = (D7C,a,<<) be an EDC-lattice. A clan T in D is
called a cluster if it satisfies the following condition:

(Cluster) If for all b € T we have aCb, then a € T.

We denote the set of clusters in D by CLUSTER(D).

Let us note that not in all EDC-lattices there are clusters. The following lemma
shows that the axiom (Nor 1) guarantees existence of clusters and some important
properties needed for the representation theorem.

LEMMA 6.8. [12] Let D = (D, C,C, <) be an EDC-lattice. Then:

(i) Every cluster is a mazimal clan.

(i1) If D satisfies (Nor 1) then every maximal clan is a cluster.

(iii) If T and A are clusters such that T # A, then there are a € T and b & A
such that a +b=1.

To build the canonical space X (D) we assume in this section that D = (D, C, 6‘,
<) is an U-rich EDC-lattice satisfying the axioms (Ext C) and (Nor 1). We define
X(D) = CLUSTER(D), h(a) = {I' € CLUSTER(D) : a € T} and define the
topology in X (D) considering the set CB(X) = {h(a) : a € D} as a basis for
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closed sets in X (D). Since the points of X (D) are maximal clans, just as in Section
6.2 we can prove the following lemma.

LEMMA 6.9. The space X (D) is a semiregular and h is a dually dense embedding
of D into the contact Boolean algebra RC (X (D)).

LEMMA 6.10. (i) X (D) is Tz,
(i) X (D) is compact,
(i5i) h is C-separable embedding.

Proor. (i) To show that the space X (D) is T5 suppose that I'; A are two
different clusters. We have to find two disjoint open sets A, B such that I' € A and
A € B. By Lemma 6.8 (iii) there are a,b € D such that a ¢ I" and b ¢ A such that
a+b=1. Then by Lemma 6.9 we get I" € h(a), A & h(b) and h(a) Uh(b) = X (D),
hence —h(a) N —h(b) = @. Define A = —h(a), B = —h(b). Since h(a) and h(b) are
closed sets, then A and B are open sets which separate the abstract points I' and
A.

The proof of (ii) and (iii) is the same as the proof of (ii) and (iii) in Lemma
6.7. O

THEOREM 6.6. Topological representation theorem for U-rich EDC-
lattices satisfying (Ext C) and (Nor 1). Let D = (D,C,C, <) be an U-rich
EDC-lattice satisfying (Ext C) and (Nor 1). Then there exists a compact Ts-space
X and a dually dense and C-separable embedding h of D into the Boolean contact
algebra RC(X) of the regular closed sets of X. Moreover D satisfies (Con C) iff
RC(X) satisfies (Con C) and in this case X is connected.

ProOOF. The proof follows from Lemma 6.9, Lemma 6.10 and 5.1.
O

Let us note that this theorem generalizes to the case of EDC-lattices several
representation theorems for contact algebras from [8, 40, 43, 42].

7. Topological representation theory of O-rich
EDC-lattices

This section is devoted to the theory of dense representations for O-rich EDC-
latices (see Definition 5.1). According to Theorem 5.3 we will look for dense repre-
sentations with regular open sets (see 5.4 (ii)). This case is completely dual to the
corresponding theory developed in Section 6. For this reason we will only sketch
the main representation scheme and the definitions of abstract points for the Tp,
Ty and T5 representations.

The representation scheme is dual to the scheme presented in Section 6:

e Define a set X (D) of "abstract points" of D,

e define a topology in X (D) by the set OB(X (D)) = {h(a) : a € D},
considered as an open base of the topology, where h is the intended em-
bedding of Stone type: h(a) = {I' : T' is "abstract point" and a € T'}.
X (D) is called the canonical topological space of D and h is called canon-
ical embedding,

e establish that h is a dense embedding of the lattice D into the Boolean
algebra RO(X (D)) of regular open sets of the space X (D).



7. TOPOLOGICAL REPRESENTATION THEORY OF O-RICH EDC-LATTICES 37

For the case of T dense representation we consider a notion of abstract point
which is dual to the notion of clan. This is the so called E-filter (Efremovich filter).
E-filters were used in the theory of proximity spaces (see [37]). In the context
of contact algebras they were introduced for the first time in [8]. The definition
adapted for the language of EDC-lattices is the following.

DEFINITION 7.1. Let D = (D,C,a,<<) be an EDC-lattice. A subset ' C D 1is
called an E-filter if it satisfies the following properties:

(E-fil 1) T is a proper filter in D, i.e. 0 €T,

(E-fil 2) Ifa ¢T and b €T, then aCb.

I' is a minimal E-filter if it is minimal in the set of all E-filters of D with
respect to set inclusion.

This definition comes as an abstraction from the following natural example.
Let X be a topological space, z € X and RO(X) be the set of all regular-open sets
of X. Then the set I';, = {a € RO(X) : « € a} is an E-filter in the contact algebra
RO(X). Note that the definition of E-filter is based not on the relation of contact
C, but on the dual contact C.

A general construction of E-filters can be obtained dualizing the construction
of clans from Section 6.1. Just to show how this dual construction works and how
the O-rich axioms works, we will repeat some steps of the construction omitting
the corresponding proofs.

First we will introduce a new canonical relation between prime filters.

DEFINITION 7.2. Let U,V be prime ideals. Define a new canonical relation Eé
(ﬁé—canonical relation) between prime ideals as follows:

UR@V def (VCLE U)(VbEV)(aCb). o

If U,V are prime filters then we define URZV <>qey URZV .

Let us note that the relation ﬁ@ depends only on C and can be defined also for
ideals. Tt is different from the canonical relation R° between prime ideals defined
in Section 2.3, but the presence of O-rich axioms makes it equivalent to Re as it is
stated in the following lemma.

LEMMA 7.1. (i) Eé is a reflezive and symmetric relation.
(ii) If D satisfies the axioms (O-rich <) and (O-rich 6), then }Aﬁé = k.

The following statement lists some facts about the relation R¢.

Facts 7.1. (1) Let F,G be ideals and FR\@G then there are prime ideals
U,V such that F CU, G CV and URSV.
(2) For all a,b € D: aCb iff there exist prime ideals U,V such that Uﬁ@V,
acUandbeV.
(3) For all a,b € D: aCb iff there exist prime filters U,V such that URZV,
agU andb g V.

In the following lemma we list some facts about E-filters.

Facts 7.2. (1) Every prime filter is an E-filter.
(2) If T is an E-filter and a & T, then there exists a prime filter U such that
I'CU anda ¢ U.
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(8) Every E-filter T is the intersection of all prime filters containing T .

(4) Every E-filter contains a minimal E-filter.

(5) Let ¥ be a nonempty set of prime filters such that for every U,V € ¥ we
have URZV and let T be the intersection of the elements of ¥. Then T is
an E-filter and every E-filter can be obtained in this way.

(6) Let U,V be prime filters, I be an E-filter, T C U andT' C V. Then URzV
and UR®V.

Using the above facts one can prove the following representation theorem.

THEOREM 7.3. Representation theorem for O-rich EDC-lattices. Let
D = (D,C, 5,<<) be an O-rich EDC-lattice. Then there exists a compact semi-
reqular space X and a dense and a-sepamble embedding h from D into the contact
algebra RO(X) of reqular-open sets of X. Moreover:

(i) If D satisfies (Ext C), then X is weakly regular,

(ii) If D satisfies (Con C), then X is a connected space,

(113) If D satisfies (Nor 2), then X is k-normal.

Abstract points for dense representations in 737 spaces are minimal E-filters
and abstract points for dense representations in 75 spaces are duals of clusters
introduced in [8] under the name co-clusters. We adapt this notion for the language
of EDC-lattices as follows:

DEFINITION 7.3. An E-filter T is a co-cluster if it satisfies the following condi-
tion:

(Co-cluster) If (Vb ¢ F)(aCA'b), then a & T. (or, equivalently, if a € T, then
(3b & T)(aCb)).

Let us show, for instance, the following statement for co-clusters, which is dual
to the corresponding property for clusters as maximal clans:

LEMMA 7.2. Every co-cluster is a minimal E-filter.

PROOF. Suppose that I' is a co-cluster which is not a minimal E-filter. Then
there exists an E-filter A such that A C ', so a € I and a ¢ A for some a. Then

there exists b ¢ I' such that aéb. From here we get b € A. Consequently b € I" - a

contradiction.
O

We leave to the reader to prove the dual analogues of Theorem 6.5 and Theorem
6.6 which we formulate below.

THEOREM 7.4. Topological representation theorem for C-extensional
O-rich EDC-lattices. Let D = (D,C,a,<<) be a C-extensional O-rich EDC-
lattice. Then there exists a compact weakly reqular Ty -space X and a dense and C-
separable embedding h of D into the Boolean contact algebra RO(X) of the regular
open sets of X. Moreover:

(i) D satisfies (Con C) iff RO(X) satisfies (Con C); in this case X is con-
nected.

(ii) D satisfies (Nor 2) iff RO(X) satisfies (Nor 2); in this case X is k-normal.

THEOREM 7.5. Topological representation theorem for O-rich EDC-
lattices satisfying (Ext C') and (Nor 2). Let D = (D,C,C, <) be an O-rich



EDC-lattice satisfying (Ext C) and (Nor 2). Then there exists a compact Ty-space
X and a dense and a—sepamble embedding h of D into the Boolean contact algebra
RO(X) of the reqular open sets of X. Moreover D satisfies (Con C) iff RO(X)
satisfies (Con C) and in this case X is connected.



CHAPTER 2

Extended contact algebras and internal
connectedness

In [38] is presented a complete quantifier-free axiomatization of several logics
on region-based theory of space, based on contact relation and connectedness pred-
icates ¢ and ¢=", and completeness theorems for the logics in question are proved.
It was shown in [38] that c and ¢=" are definable in contact algebras by the contact
C. The predicates ¢ and ¢=" were studied for the first time in [30, 31] (see also
[40]). The expressiveness and complexity of spatial logics containing ¢ and ¢=" has
been investigated in [23, 24, 25, 26, 27|. In this chapter we consider the predicate
¢ - internal connectedness. Let X be a topological space and x € RC(X). Let
¢®(x) means that Int(zx) is a connected topological space in the subspace topology.
We prove that the predicate internal connectedness cannot be defined in the lan-
guage of contact algebras. Because of this we add to the language a new ternary
predicate symbol F which has the following sense: in the contact algebra of regular
closed sets of some topological space a,b - c iff aNb C ¢. It turns out that the
predicate ¢® can be defined in the new language. We define extended contact alge-
bras - Boolean algebras with added relations -, C' and ¢°, satisfying some axioms,
and prove that every extended contact algebra can be isomorphically embedded in
the contact algebra of the regular closed subsets of some compact, semiregular, T,
topological space with added relations - and ¢°. So extended contact algebra can
be considered an axiomatization of the theory, consisting of the universal formulas
true in all topological contact algebras with added relations F and ¢°.

1. Undefinability of internal connectedness in the language of contact
algebras

Let X be a topological space and € RC(X). Let ¢°(z) means that Int(z) is
a connected topological space in the subspace topology.

PROPOSITION 1.1. There does not ezist a formula A(x) in the language of
contact algebras such that: for arbitrary topological space, for every reqular closed
subset x of this topological space, ¢°(x) iff A(zx) is valid in the algebra of regular
closed subsets of the topological space.

PROOF. Suppose for the sake of contradiction that there exists a formula A(x)
in the language of contact algebras such that: for any topological space, for every
regular closed subset z of this topological space, ¢®(x) iff A(z) is valid in the algebra
of regular closed subsets of the topological space.

40
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Ficure 1. The topological space (X, O)

We consider the topological space (X, O), where X = {1,2,3,4,5,6,7} and the
topology is defined by an open basis: {{1,2,3}, {7}, {2,5,7}, {3,6,7}, {2}, {3}, X,
0} (see Figure 1).

It can be easily verified that the open sets are {1,2,3}, {7}, {2,5,7}, {3,6,7},
(2}, {3}, {2.3,5,6,7}, {1,2,3,5,6,7}, {1,2,3,7}, {2,7}, {3,7}, {2,3}, {2.3,7},
{1,2,3,5,7}, {1,2,3,6,7}, {2,3,5,7}, {2,3,6,7}, X, (. It can be easily verified
that the regular closed sets are {4,5,6,7}, {1,2,3,4,5,6}, {1,2,4,5}, {1,3,4,6},
{1,2,4,5,6,7}, {1,3,4,5,6,7}, X, 0.

We consider the subspace of X, Y = X\{1}. It can be easily proved that:

(1.1) Inty (c\{1}) = Intxc\{1} for every c - closed subset of X

Using (1.1) and the fact that for every ¢, Clyt = ClxtNY = Clxt\{1}, we prove
that RC(Y) = {z\{1} : z € RC(X)}.
We define a function f from RC(X) to RC(Y) in the following way:

t iflegt
f“)—{ A {1} if1et
It can be easily proved that f is an isomorphism from (RC(X),<,0, X, -, +,*,C)
to (RC(Y),<,0,Y, -, +,%,C).

Let a = {1,2,3,4,5,6}. We will prove that a is internally connected. Intxa =
{1,2,3}. The closed sets in Int(a) are: {1,2,3}, 0, {1,2}, {1,3}, {1}. Ini(a)
cannot be represented as the union of two non-empty disjoint closed sets and hence
Int(a) is connected. Consequently « is internally connected.

Let b = {2,3,4,5,6}. Intyb = {2,3}. We will prove that b is not internally
connected. We will prove that {2, 3} is not connected. Since {2,3} = {2} U {3}, it
suffices to prove that {2} and {3} are closed in {2,3}. {2,4,5} is closed in Y and
hence {2} = {2,4,5} N {2,3} is closed in {2,3}. {3,4,6} is closed in Y and hence
{3} ={3,4,6} N {2,3} is closed in {2, 3}. Consequently {2, 3} is not connected, i.e.
b is not internally connected.
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We have a € RC(X), ¢°(a). Consequently A(a). Now consider the topo-
logical space Y. Using b € RC(Y) and —c°(b), we have —A(b). We also have
b= f(a). (RC(X),<,0,X,-,4+,%C) and (RC(Y),<,0,Y,-,+,%,C) are isomor-
phic structures for the language of contact algebras, A is a formula in the same
language. Consequently: A(a) is true in (RC(X)...) iff A(f(a)) i.e. A(b) is true
in (RC(Y)...). We have proven that A(a) is true in (RC(X)...); so A(b) is true
in (RC(Y)...) - a contradiction. O

2. Definability of internal connectedness in an extended language

Let X be a topological space. We define the relation - in RC(X) in the
following way: a,bkF ciff anbd C c.

PROPOSITION 2.1. Let X be a topological space. For every a in RC(X), c°(a)
iff VVe(b#OANc#OANa=b+c— b,c¥F a*).

PrROOF. —) Let ¢°(a). Let b,c € RC(X), b# 0, c# 0, a = b+ c. We will
prove that b,c ¥ a*. We have a* = Clx — a = —Intxa. Suppose for the sake of
contradiction that b, ¢ —Intxa. It follows that bN e € —Intxa (1). Suppose for
the sake of contradiction that bNIntxa = (). We also have a = bUc and consequently
Intxa C c. We will prove that Intxb = (. Suppose for the sake of contradiction
that Intxb # (). Using Intxa C ¢ and (1), we have that IntxbN Intxa = 0, but
Intxb # 0, so Intxa # Intxa U Intxb (2). We have a = bU c. Consequently
IntxaUlIntxb C a, but IntxaU Intxb is an open set, so IntxaUIntxb C Intxa,
i.e. Intxa U Intxb = Intxa - a contradiction. Consequently Intxb = (). We
have b € RC(X), so b = ClxIntxb = Clx® = () - a contradiction. Consequently
bNIntxa # (). Similarly cNIntxa # 0. Let by = bN Intxa, c; = cNIntxa. We
have by Ucy = Intxan (bUc¢) = IntxaNa = Intxa. From a = bU ¢ and (1) we
get by Necp = 0. We have Intxa =by Ucy, by #0, c1 # 0, by Nep =0, by and ¢
are closed in Intxa and therefore Intxa is not connected, i.e. a is not internally
connected - a contradiction.

+) Let Vb,c € RC(X)(b#0Ac#0ANa=b+c — bc¥Fa). We wil
prove that Intxa is connected. Suppose for the sake of contradiction that Intxa is
not connected. Consequently there are by, ¢; - closed in Intxa, such that Intxa =
byUcy (1), b1 £ 0, ¢1 # 0, byNey = 0. We have by = bNIntxa, ¢y = ecNIntxa, where
b and c are closed in X because b; and c; are closed in Intxa. Let b = Clxby,
¢ = Clxcy. a and b are closed sets in X, by C b, by C a and therefore o' C b,
b C a. Similarly ¢ C ¢, ¢ C a. Suppose for the sake of contradiction that
aZVUd. b and ¢ are closed in X and consequently b’ U ¢ is closed in X. From
by CV, 1 Cc, (1) we obtain that Intxa C V¥ U/, but & U ¢ is closed in X and
consequently ClxIntxa C b Uc. We have ¥ Uc' C a, b’ U # a. Consequently
ClxIntxa # a - a contradiction with a € RC(X). Consequently a C ' U ¢ and
thus @ = b’ U’ (3). We have ¢; = ¢NIntxa, Intxa = by Ucy, by Neyp = 0 and
therefore by = —c N Intxa. cis closed in X and hence —c is open in X; Intxa is
open in X; so by is open in X, but by C ¥, so by C Intxb'. Suppose for the sake
of contradiction that Intxd’ # b;. From (3) we get Intxb’ C Intxa (4). From
Intxa = by Uecy, by C Intxl, by # Intxb’, (4) we obtain c¢; N Intxb’ # 0, but
Intxb Cb Cb,sociNb#D. Consequently bIntxanc; # (), but bnIntxa = by, so
by Necy # O - a contradiction. Consequently Intxd’ = by. V' = Clxby = ClxIntxb,
so b € RC(X). Similarly ¢ € RC(X). We also have b/,¢/ # 0, a = b + ¢/, so
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VN ¢ a* = —Intxa. Consequently &' N’ NIntxa # 0, but ' C b, ¢ C ¢, so
bNeNIntxa #0,ie (bNIntxa)N(cNIntxa) # 0. Consequently by Ney 0 - a
contradiction. Consequently Intxa is connected, i.e. ¢°(a). O

3. Extended contact algebras

In this section we give an axiomatization of the relation a,b F ¢ used in the
characterization of the predicate c(a) of internal connectedness given in Section 2.

DEFINITION 3.1. Extended contact algebra (ECA, for short) is a system B =
(B,<,0,1,-,+,%,,C,c°), where (B,<,0,1,-,+, %) is a nondegenerate Boolean al-
gebra, = is a ternary relation in B such that the following azioms are true:

(1) a,bFc—batc,

(2) a<b—a,atb,

(3) a,bt a,

(4) a,btF 2z, a,bty, z,yFc—a,blc,

(5) a,bFc—a-b<c

(6) a,bFc—a+x,bbFc+u,

C is a binary relation in B such that for all a, b € B: aCb <> a,b ¥ 0. ¢° is a
unary predicate in B such that for all a € B: ¢°(a) <> VoVe(b #0Ac# 0Aa =
b+c— b,c¥a*).

LemmaA 3.1. If B=(B,<,0,1,-,+,*,,C, c°) is an ECA, then C is a contact
relation in B and hence (B, C) is a contact algebra.

PROOF. Routine verification that the axioms of contact C; - C5 are true. [

The above lemma shows that the notion of ECA is a generalization of contact
algebra.
The next lemma shows the standard topological example of ECA.

LEMMA 3.2. Let X be a topological space and RC(X) be the Boolean algebra
of regular closed subsets of X. Let for a,b,c € RC(X):

aCb iff anb # 0,

a,bFciffanbCec

(a) iff Int(a) is a connected subspace of X .

Then the Boolean algebra RC(X) with just defined relations is an ECA, called
topological ECA over the space X .

PROOF. It can be easily verified that the axioms (1)-(6) of ECA are true and
for all a, b € RC(X): aCb <> a,b¥ 0. Using proposition 2.1, we get that for every
a € RC(X) we have c°(a) <> VOVe(b#AO0Ac#0Na=b+c— b c¥Fa*). O

Our aim is to prove that every ECA can be isomorphically embedded into a
topological ECA over a certain topological space X, which will be done in the next
section. This will show that the chosen axioms for ECA are right.

REMARK 3.1. Using azioms (2) and (5), we see that in an ECA B a < b +
a,a = b for every a,b € B, i.e. the predicate symbol < can be removed from the
language. Although this we leave it in the language.
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4. Topological representation theory of ECA

DEFINITION 4.1. Let (B, <,0,1,-,+,*,F,C,c°) be an ECA and S C B.
Sepr Y zes
SEpi1 @ t{ Jxi, 290 x1, 20, S Er, 21, S Fk, k2, where k1,ka <n
SFux %if dn: Sk, x

For to prove a representation theorem of EC-algebras we will need several
lemmas.

LeEmMA 4.1. If SE, y and S C S, then S" E, y.

PROOF. An induction on n.

Case 1: n=10

Let SFgy and S C S’. We have y € S and consequently y € S’, i.e. S’ Fq y.
Case 2: n >0

Let Sk, y and S C S’. We will prove that S’ F,, y. From S F, y, n > 0 we get
that there are x1, x2 such that xq1,z2 Fy, S Fr, 21, S Fg, z2, where ki, k2 < n.
Using S Fi, x1, S Fi, x2, S C S’ and the induction hypothesis, we have S’ Fy, x1,
S’ Bk, xo. Consequently S’ E,, y. O

LEMMA 4.2. If SE, y and n < n/, then S F,. y.

PROOF. Let S F, y and n < n’. We will prove that S F, y.
Case 1: n=0
By induction on n’ we will prove that Vn'VSVy(S Foy and 0 < n' — S E,. y).
Case 1.1: n’ =0
Obviously VSVy(S Eg y and 0 <0 — S Fq y).
Case 1.2: n' >0
Let SC B,y € B, SkFgy and 0 <n/. We will prove that S F,, y. From n’ > 0
we have 0 < n’ — 1. By the induction hypothesis we obtain that VSVy(S Fq y and
0<n' —1— SE,_1vy). Consequently S F, 1 y. We also have y,y - y (from
axiom (2)). Consequently S F, y.

So we proved that Vn'VSVy(S Fo y and 0 < n’ — S E,» y). We also have
S Foyand 0 < n'/. Consequently S F, y.
Case 2: n >0
From S F,, y, n > 0 we get that there are z1, xo such that zi,22 F y, S Fg, 21,
S Ep, T2, where k1,ko < n. But we have n < n/, so k1,ka < n’. Consequently
S En y. O

LEMMA 43. If SEx and x <y, then S F y.

ProOOF. Let S F z and = < y. We will prove that S F y. From =z < y and
axiom (2) we have that z,z -y (1). From S F = we obtain that: S F,, = for some
n (2). From (1) and (2) we have S F, 41 y,ie. SFy. O

LEMMA 4.4, If {z} USFy, {yfUSE z, then {x} USF z.

ProOOF. Let {z}US Fy, {y}USE z. We will prove that {z} US F z. We have
{y}U S k,, z for some ny. By induction on n we will prove that VnVt({z}US F y,
{y}USkE, t = {z}US E t). Let n be a natural number and Vn' < nVt({z}US F y,
{y}USE, t = {2} USEt). We will prove that Vi({z} US Fuy, {ytUSE, t —
{z}USEt). Let t € B, {z} USFy, {y}USE, t. We will prove that {x}US F .
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Case 1: n=0

Case 1.1: t =y

Obviously {z} U S E ¢.

Case 1.2: t#£y

We have {y}US Eq t. Consequently t € {y}US, but ¢t # y, so ¢t € S. Consequently
{Z} us ':0 t.

Case 2: n >0

We have {y} U S E, t, n > 0. Consequently there are ¢, to such that ¢1,ts F ¢,
{y}US B, t1, {y}US Ey, ta, where k1, ko < n. By the induction hypothesis for k1,
ko, we get {x}US E t1, {x} US E ta. Consequently {z}US &, t1, {x}US Ey, t5 for
some integers Iy, 5. Let [ be the greater among [; and lo. We have {z} U S F; ¢4,
{z} US F; t2 by lemma 4.2; t1,t2 F ¢; consequently {x} U S Fjyq ¢, ie. {x}USFE .
We proved that VnVi({z} U S Fy, {y} US F, t = {z} US E t). We also have
{z}USEy, {y}USE,, z. Consequently {x}US F z. O

LEMMA 4.5. If {1} USEy, {z2} USFy, then {x; + 22} US Ey.

PRrROOF. Let {z1}US Ey, {z2} US Ey. We will prove that {z; + 22} US F y.
There is a ng such that {z1}US E,, v, {x2} US E,, y. We will prove by induction
on n that:

() VnVuVoVw({u} US E, v = {u+w} U S Ev+w)

Let n be a natural number and V¢ < nvuvoVw({u}US Ey v — {u+w}US Fv+w).
We will prove that VuVoVw({u} US E, v = {u+w}US E v+ w). Let u,v,w € B
and {u} U Sk, v. We will prove that {u +w}USF v+ w.

Case 1: n =0

Case 1.1: veE S

We have {u+w}US Fq v and by lemma 4.3, we obtain that {u+w}US E v+ w.
Case 1.2: v ¢ S

We have {u} U S Fg v, v ¢ S. Consequently v = u. It is sufficient to prove that
{v+w}USE v+ w which obviously is true.

Case 2: n >0

We have {u} U S E,, v, n > 0. Consequently there are vy, vo such that vy, vs F v,
{u}US Eg, v1, {u}US Eyg, va, where ki, k2 < n. From the induction hypothesis for
k1 and ko we get that {u+w}US F vy +w (1) and {u+w}US F vy +w (2). From
v1, V2 F v and axiom (6) we obtain v1 +w, ve F v+w; s0 ve,v1 +w F v+w (by axiom
(1)); so va +w,v1 + w F v+ w+ w (by axiom (6)); consequently vq + w,ve +w
v+ w (3) (by axiom (1)). Using (1),(2) and (3) we have {u+w} U S F v+ w.

We proved that (x) is true. From (%) and {z1}US F,, y we get that {1 +x2}U
S Ey+ax2 (4). From (%) and {z2}US E,, vy, we obtain that {x2+y}US F y+vy, i.e.
{y+22} US Ey (5). Using (4), (5) and lemma 4.4, we have {z1 + 22} USFy. O

LEMMA 4.6. Let S E x. Then there is a finite nonempty subset of S, Sy, such
that SO F .

Proor. We will prove by induction on n that VnVx(S E,, + — 3 finite nonempty
subset Sy of S such that Sy F,, z).
Case 1: n =0
Let S ko 2. Consequently z € S. Thus {z} is a finite nonempty subset of S and
{Z‘} ':O xZ.
Case 2: n#0
Let S F, . Consequently there are x1, x2 such that x1,22 F x, S Fg, x1, S Fr, 22,
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where ki1,k2 < n. Using the induction hypothesis, we have that there exist finite
nonempty subsets of S, Sy and Sy, such that S; Fg, 1, S2 Fr, z2. By lemma 4.1,
we get S1 U Sy blﬂ Xy, S1 U Sy ':k2 z9. Thus S; U Sy F, x, S1U Sy 75 @, S1 U Sy is

finite, S U Sy C S. O
LEMMA 4.7. Let S = {a1,...,an,} U{b1,..., by} for some n,k >0 and S F x.
Leta=ay-...-ap,b="0by-...-bg. Then a,bt x.

PROOF. By induction on n we will prove that VnVz(S F, x — a,bF x).

Case 1: n =0

Let z € B, S Fg . We will prove that a,b - . We have z € S. Without loss of
generality © = a1. From a < aq by axiom (2), we obtain that a,a - a;. From axiom
(3) we get a,bt a. From here and a,a F a; by axiom (4), we get that a,bt a;.
Case 2: n#£0

Let x € B and S F,, . We will prove that a,b - . There are z1, x5 such that
1,2 Fx, S Fr, 1, S Fr, x2, where k1, ks < n. Using the induction hypothesis,
we get a,bF 21, a,bF xo. But z1, 22 F z, so by axiom (4), we obtain a,bFz. O

DEFINITION 4.2. Let B = (B,<,0,1,-,+,%,,C,c°) be an ECA. A subset of
B, T, is an abstract point if the following conditions are satisfied:
1)1eT
2)0¢r
a+bel wacTorbel
4) a,beT, a,bFc—cel

Note that ultrafilters are abstract points.

LEMMA 4.8. Let X be a topological space. For every n and for any by, ..., b, €
RC(X), we have ClInt(byN...Nby,) =by ... by.

PROOF. An induction on n.
en=1
ClIntb; = by because by € RC(X).
en—n+1
We will prove that ClInt(by N...Nbpy1) =b1 ... bpp1. Let b="baN...Nbyy1.
We will prove that Int(by Nb) = Int(by N ClIntb). We have Int(by Nb) C Intb and
hence Int(by Nb) C ClInthb. We also have Int(by Nb) C by Nb C by. Consequently
Int(by N'b) C by N ClIntb. Consequently Int(by Nb) C Int(by N ClIntd). Since
ba,...,bnt1 € RC(X) and b = by N ... N byy1, we have that b is closed. We also
have Intb C b, so ClIntb C b. Consequently by N ClIntb C by Nb and hence
Int(by N ClIntb) C Int(by Nb). Thus Int(by Nb) = Int(by N Clintb). We have
C’llnt(bl N b) = Cllnt(bl N Cllnt(bg n...N bn—i—l)) = Cllnt(b1 N (bg et bn+1)) =
by (ba ... bpt1)- ]

LEMMA 4.9. Let B = (B, <,0,1,-,+,*,b,C,c°) be an ECA. Let A # 0, A C
B, a € B, A¥ a. Then there exists an abstract point I such that ACT anda ¢ T.

Proor. We consider the set (M,C), where M = {P C B: ACP; a ¢
P; z,y€e P, x,y+ z = z € P}. We will prove that (M, C) has a maximal element
I' and T is an abstract point. Let Py = {t: A F t}. We will prove that Py € M.
Obviously A C Py and a ¢ Py. Let x,y € Py, x,y b 2. We will prove that z € P.
We have A E,, « and A E, y for some n. Consequently A F, . z. Consequently
z € Py. Thus Py € M. We will prove that (M, C) has a maximal element. Let L
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be a chain in M.

Case 1: L =1

Py is an upper bound of L.

Case 2: L #

We will prove that |JL € M. Obviously JL C B, A C UL, a ¢ JL. Let
z,y € UL, z,y - z. We will prove that z € |JL. We have z € Py, y € P,, where
Py, P, € L. Without loss of generality Py C Py. Thus z,y € Py, x,y b 2z, P, € M.
Consequently z € P; and hence z € | J L. Consequently |JL € M. Obviously |JL
is an upper bound of L.

Thus (M, C) satisfies the Zorn condition. Consequently (M, C) has a maximal
element I'. We will prove that I' is an abstract point. A # () and hence a; € A for
some ay. I' € M and therefore A C T, so a1 € I'. From a; < 1 by axiom (2), we
get that ay,a; 1. We alsohave I' € M, a; €I',s01 €T.

Suppose for the sake of contradiction that 0 € I'. From 0 < a by axiom (2), we
obtain 0,0  a. Consequently a € I" - a contradiction with I' € M. Consequently
0¢T.

Condition 4) from the definition of abstract point is satisfied for I' because
eM.

Let z+y € I'. We will prove that « € I or y € I". For the sake of contradiction
suppose that {z} UT E a, {y} UT F a. From lemma 4.5 we have {z + y} UT E aq,
but {x + y} UT =T, so T F a. Consequently there is a ng such that ' E,, a. By
induction on n we will prove that
VYnVz(TE, z —x€l) (1)

Case 1: n=0

Let x € B and I' kg 2. Obviously « € I.

Case 2: n >0

Let x € B and I' F,, x. We will prove that x € I'. There are z1, x5 such that
x1,x9 b x, I' Fy, 21, I Fi, 22, where k1, k2 < n. By the induction hypothesis and
' Fg, 1, I' Fi, 22, we get that x1, 9 € I'. We also have I' € M, z1,22 F x, so
zel.

Consequently (1) is true. We also have T' F,, a. Consequently a € T' - a contra-
diction with I' € M. Consequently {z} UT ¥ a or {y} UT ¥ a. Without loss of
generality, {z} UT ¥ a. Let IV = {2z : {2} UT E z}. We will prove that TV € M.
Obviously IV € B, A C T CI'. Since {} UT ¥ a, a ¢ T'. Let x1, zo € TV,
x1,x9 F x3. We will prove that z3 € TV, We have {z} UT &, z1, {2} UT F,
for some n. Consequently {z} UT F,;1 3. Consequently x3 € I". Thus IV € M.
We have I' C TV, T is a maximal element of (M,C), IV € M, so I' = I"” and hence
x € I'. Consequently I' is an abstract point. ([l

THEOREM 4.1. (Representation theorem) Let B = (B, <,0,1,-,+,*,F,C, c°)
be an ECA. Then there is a compact, semireqular, Ty topological space X and an
embedding h of B into RC(X).

PrOOF. Let X be the set of all abstract points of B and for a € B, suppose
h(a) ={T' € X : a €T}. Theset {h(a): a € B} can be taken as a closed basis for a
topology of X. From the definition of abstract point we obtain h(0) = 0, h(1) = X.

Let a, b € B. We will prove that h(a + b) = h(a) + h(b). h(a+b) = {T €
X:a+beTl} ha)+hd)={TeX: acT}U{l' e X: beTI}. Obviously
h(a+0b) C h(a) + h(b). Let T € h(a) U h(b). Without loss of generality I € h(a),
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ie. T € X and a € T. From a < a+ b and axiom (2) we get a,ata+b. Buta €T
and I' is an abstract point, so a +b €', so ' € h(a + b).

Let a, b, ¢ € B. Obviously a,b F ¢ implies h(a), h(b) - h(c). Suppose that
h(a), h(b) F h(c). We will prove that a,bF ¢. Suppose for the sake of contradiction
that {a,b} ¥ c. By lemma 4.9, we get that there is an abstract point I' such that
a,beT,c¢T. WehaveI € h(a)Nh(b); h(a)Nh(b) C h(c) (since h(a), h(b) - h(c));
so I € h(c); so ¢ € T' - a contradiction. Consequently {a,b} F c¢. By lemma 4.7,
a,bkc.

Let a, b € B. We have a < b <> a,a b b <> h(a),h(a) F h(b) <> h(a) Nh(a) C
h(b) < h(a) C h(b).

In a similar way as in [40] (Proposition 2.3.4 (1),(2)) we prove that h(a*) =
Cl(—h(a)), h(a) is a regular closed set for every a € B. Consequently X is semireg-
ular.

We have h(a.b) = h((a* +b*)*) = (h(a)* + h(b)*)* = h(a).h(D) for all a, b € B.

Let a, b € B. Obviously aCb iff h(a)Ch(b).

Let a € B. Clearly ¢°(h(a)) implies ¢°(a). Let ¢°(a). Suppose for the sake
of contradiction that —c°(h(a)). Consequently there are b, ¢ € RC(X) such that
b#0, c#0, h(a) =bUcand bNe C h(a)* (proposition 2.1). b and ¢ are closed, so
b= Nier Mbi), ¢ =, hlc;) for some sets I and J. Let A= {b;: i € [} U{c;:
j € J}. Suppose for the sake of contradiction that A F a*. Thus by lemma 4.6,
we get that there is a finite nonempty subset of A, A’, such that A" F a*. Let
bil € {bz NS I}, cj, € {Cj tJ € J} Let A" = {biQ,bZ‘3, . ~7bik} U{Cj2,Cj37. . ,le}
for some k, 1 > 1. Let b’ =b;, by, -... b, ¢ =¢j, -¢jp-...-¢j. From A" F a* and
lemma 4.1 we get that {b;,, bs,,...,b;, }U{cj,,¢j,,...,¢j } F a*. Using this fact, the
definitions of ¥’ and ¢’ and lemma, 4.7, we obtain V', ¢’ - a*. Suppose for the sake of
contradiction that b’ -a = 0. Consequently h(b;,)-h(b;,)-...-h(b;,)-h(a) = h(0) = 0.
Thus by lemma 4.8, we have ClInt(h(b;;) N h(by,) N ... N A(b;,) Nh(a)) = 0, so
Int(h(b;,) N h(biy) N...N h(b;,) Nh(a)) = 0. We have h(a) = bU ¢ and therefore
b=0bNh(a) C h(b;,)Nh(b;,)N...NA(b;, )Nh(a). Consequently Intb C Int(h(b;,)N
h(bi,) N...0h(b;,) Nh(a)) =0, ie. Intb=(. We have b € RC(X) and from here
b= Clintb = Cl) = 0 - a contradiction. Consequently b - a # 0 (1). Similarly
-a # 0 (2). We have h(a) = bUc C h(b;,, )Uh(c;,) forallm=1,...,k,n=1,...,L
Consequently a < b;, +c¢;, forallm=1,...,k,n=1,...,l. Wealso have b’ +¢ =
(bil ""'bik)+(cj1 ""'Cjz) = (bi1+cj1)"'"(bik+cj1)" : "(bil +c.jl)" "'(bik+cjz)'
Consequently a < b +¢. Thusa= ('+c)-a=b-a+c -a (3). From b’ -a < b by
axiom (2), we have b -a,b’ -a b (4). From axiom (3) we get b’ -a,c -at b -a (5).
From (5) and (4) by axiom (4), we obtain &’ -a,c’-a = ¥’ (6). Similarly ¢-a,b -a F ¢
and from here by axiom (1), we have b'-a,¢-a F ¢ (7). From (6), (7) and ¥/, ¢ - a*
we get, by axiom (4), that b - a,¢’ - a F a* (8). From c°(a), (1), (2) and (3) we
obtain ¥’ - a,c¢’ - a ¥ a* - a contradiction with (8). Consequently A ¥ a*. Thus by
lemma 4.9, we get that there is an abstract point I'y such that A C I'y, a* ¢ T';.
Since A C I'y, we have b; € I'y for every ¢ € I and ¢; € I'y for every j € J. We
also have that I'y is an abstract point, so I'y € h(b;) for every ¢ € I and I'; € h(c;)
for every j € J. Consequently I'y € b, 'y € ¢. We have a* ¢ T'y, so I'y ¢ h(a*).
Thus bNe € h(a*), ie. bNe € h(a)* - a contradiction. Consequently ¢°(h(a)).
Consequently & is an embedding.

As in [40] (Lemma 2.3.6), replacing the notion clan with abstract point, we
prove that X is a compact, Ty space. (Il



5. Concluding remarks

One of the motivations to introduce ECA is that its language is more rich
and makes possible to express the predicate of internal connectedness of a region.
Here we mention without proof some other things which can be expressed in its
language and also some things which are not expressible and need further extension.
It is known that the intersection of regular closed sets is not in general a regular
closed set. Let X be a topological space and for the elements of RC(X) consider
the relation: RC N (a,b) <> aNb is a regular closed set. Very probably this
relation is not expressible in contact algebras, but it is expressible in ECA as follows:
RCN(a,b) +» (F¢)(a,bt cand ¢ < a and ¢ < b). Another interesting property which
is expressible in ECA is related to the existence or not existence of holes in a region
like for instance the hole of a region with the form of torus. Then the complement
—a is an open set which is not connected. So connectedness of —a expresses that
a has no holes. This is expressible in ECA by ¢°(a*). If the internal part of a
region is not connected then we cannot express the number of its components. For
that purpose we need a more general relation between finite number of regions,
which topological meaning is expressible in RC(X) by the relation: aq,...,a, - b
iff a3 N...Na, Cb. Such relations for all n are studied in the paper [39].

By this relation one can express also n-ary contact by Cy, (a1, ...,ay) iffaq,...,a,
¥ 0, which is not expressible neither in contact algebras nor in ECA.



CHAPTER 3

Quantifier-free logics, related to EDC-lattices and
EC-algebras

In this chapter we consider a first-order language without quantifiers corre-
sponding to EDCL. We give completeness theorems with respect to both algebraic
and topological semantics for several logics for this language. It turns out that all
these logics are decidable. We also consider a quantifier-free first-order language
corresponding to ECA and a logic for ECA which is decidable.

1. Preliminaries

Here we have constructions almost the same as in [4] (pages 57-59).

Let £ be a quantifier-free countable first-order language with equality. Let § be
aformulain £. We define 1. = 6A—§, T = §V—4. Let I be an arbitrary set; for every
i € I B; be a formula for £ with variables among p;,, ... s Pin, s Qins s Qi for every
i € I 7; be a formula for £ with variables among g, , ..., gi,,,, - (Diyy--- sPin, s Qins - -+ s
4i,,, are different variables.)

Let L be a logic for £, containing all axioms of the classical propositional logic,
whose rules are M P and all rules of the type:

Piy - Pip, iy Qim, .
=B ﬁ} for all sequences of variables r;, ...r;
11 Tip, Qiq Qi . i
(1.1) e i ,
| 2 Eimy
where ¢ € I, ¢ is a formula for £, a;, ...a;, are terms for £. Let also if o is an
axiom of L with variables p1,...,p, and a1, ..., a, are terms in £, then « [H}
seeym
is also an axiom of L. (Here [...] means a simultaneous substitution.)
We call the following axiom corresponding to the rule 1.1:
Qiq Qi ] ) [ Piy-Pin, Gy i 4 4
e [ail---aimi} — Jx;, ... Ela:,ni =B; {—wnwl‘mi Ty |7 where z;,, ... » Tj,, are some
variables, not occurring in a;,, ..., a;,, , different from p;,,....pi, . iy - Gi,,, -

REMARK 1.1. Another approach is to be considered rules of the kind:

|:pi1"'pi7l‘ Diy - Tip, j|

$=Bi| v ey A
1 tng 1 m

} =, wherer;, ...r;, are variables not occuring in a;,, ..., a;

) ) my
Tiy - Tim, i

P=Yi | o a;
21 tm;

and ¢ (see [4]).

DEFINITION 1.1. A set of formulas for L T is a LL-theory, if satisfies the fol-
lowing conditions:
(i) T' contains all theorems of L;

50
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(ii) If «, « — B €T, then § €T

(iii) For every rule of the type above, we have: if p — f; [—mlmm"i 2 By

’I‘il TLTLL ail alml

el for

all sequences of variables r;,, . .. s iy, then ¢ — 7 [%} erl.

ail (J,,L,m1
A L-theory T is consistent, if L ¢ T.
I' is a maximal L-theory, if it is a consistent L-theory and for every consistent
L-theory A, if I C A, then T' = A,

LEMMA 1.1 (Extension lemma). Let I' be a L-theory and « be a formula. Let

A=T+a™® (8. a— BeT}). Then:

(i) A is the smallest L-theory, containing T' and «;
(i) A is inconsistent <> —« € T';
(i5i) For any i € I, ¢ - a formula for L, Qiys ooy i, - terms for L, we have: if

iy Qi

I+ —|(<p — Y [Z ) is consistent, then there are variables v;,,...,7;, such

i Gigy, n

that (F + ﬂ<<p =Y {2‘17‘;:})) + —\(go — B [W}) is a consistent
L-theory. '

ProOOF. (i) We will prove that I' C A. Let v € I". We will prove that v € A.
It suffices to prove that & — v € I'. The formula v — (o — 7) is a theorem of the
classical propositional logic, I' is a L-theory, so v — (@ — ) € I'. We also have
v €T, I'is closed under MP,so o — vy eTl.

We will prove that oo € A. It suffices to prove that « — « € I'. But this is true
because « — « is a theorem of L.

We will prove that A is a L-theory. I' contains all theorems of . and I' C A,
consequently A contains all theorems of L. Let 71, y1 — 72 € A. We will prove
that vo € A. We have a — v € ', a = (71 — 72) € I'(1). The formula (o —
m) = (@ = (11 = 72)) = (@ = 72)) is a theorem of the classical propositional
logic and consequently is in I'. Using this fact, (1) and the closeness of ' under
MP, we get « = 72 €', 50 v2 € A. Let i € I, ¢ is a formula for £, a;,,...,a;,,

Piy - Pin; iy 9im;
@
imy,

are terms for £. Let ¢ — ﬂl[ } € A for all sequences of variables

Pig e Tip, Gig -

M} We will prove that ¢ — v/ € A. We have

- .
Tivs s Tip, - Let v; = v I:a111~~-a11m4
’
Piy - Pin; Tia - dimy

o —r (SO — B |:Ti1"'r'i”i @iy o iy,
so (@ Ap) — 61[%
From here and the fact that T' is a L-theory, we obtain (o A ¢) — 7} € T, so
a— (p— 7)) €T, s0 p =4, € A. Consequently A is a L-theory.

Let A’ is a L-theory, containing I' and . We will prove that A C A’. Let
~v € A. We will prove that v € A’. Wehave a -~y eI, T C A, so a — v € A’
But o € A’ and A’ is closed under M P, so v € A’. Consequently A is the smallest
L-theory, containing I" and «.
(ii) Let A is inconsistent. We will prove that o € I". L € A and hence o — L €T
(¢ = 1) = -« is a theorem of the classical propositional logic and therefore is in
I'. Consequently ~a € T

Let ma € T'. We will prove that A is inconsistent, i.e. that | € A. The formula
= (a—=1)el, ~ael,soa— L el ie LeA.

(iii) Let ¢ € I, ¢ be a formula for £, a;,,... :a;,, be terms for £, I' + ﬁ(ap —

D € T for all sequences of variables r;,,...,7;, ,

} € I for all sequences of variables r;,,... 7, .
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Z[%D is consistent. Suppose for the sake of contradiction that for all se-
quences of variables r;,, ..., 7, (F + - (gp — Vi {3172:‘;} )) + ﬁ<<p -
Bi [%D is inconsistent. Consequently (go — B; [%D IS
r'+ ﬁ(gp — %{%D for all sequences of variables r;,,...,r;, . Thus we
get p — %[%} e I' + ﬂ<gp — 72[%}) We also have ﬂ<<p —

%[ﬂb € F+ﬁ(<p o %[%D so L el + ﬂ(w — %{7@1.4%})

Aig Qi s Qi Qig oo Qg

- a contradiction. Consequently there is a sequence of variables r; , ... Ty, such
that (F—l——'(go — v {wb) +ﬂ<<p — 6 {MD is consistent. [

iy oo Gig, Tin, Giy - @im,

LeEmMA 1.2 (Lindenbaum lemma for L-theories). Every consistent L-theory I’
can be extended to a mazximal L-theory A.

PrOOF. Let I" be a consistent L-theory and the formulas of Lbe a1, ..., ap, ...,
n < w. Let an enumeration of the finite sequences of variables be fixed. We define a
sequence of consistent L-theories I'y C 'y C ... by induction in the following way:
I'y =T and let I'y,...,T', be defined. We define I';,;; in the following way:
Case 1: T',, + «,, is consistent
Case 1.1: «, is not of the kind — ((p — %[

L,i€l, a,...,aq;,, are terms for L.

Z?%D, where ¢ is a formula for
In this case 'y, 1 def Iy + ay,.

Case 1.2: «, is of the kind (go — 'yz{
£, i € I, Qjyyevey Q4

iy Qim;

Qg oo @iy,

D, where ¢ is a formula for

are terms for £. By the Extension lemma, we get that
_such that (F (sp N %{%D) Jrﬁ((p N
i o

a7rmi

m;

there are variables 7;,,...,7;

/8 Piy---Pin, Tig - (I1m1
(2
Tig e Tip, Qig - Gigy,

D is a consistent L-theory and let r; ,...,r;, be the first in

. . . . d
the enumeration sequence of variables with this property. In this case ', lef

Qiy - Qipm, Piy--Pin, iy Qi
Case 2: I',, + o, is not consistent
In this case Fn+1 = F
Let A = J,—,;T'. Obviously I' C A. We will prove that A is a maximal L-

theory. Obviously A contains all theorems of L. Let o, a — g € A. We will prove
that 8 € A. There is an n such that o, « — 8 € I'y;; I, is a L-theory; so 8 € 'y,

ie. B € A. Leti€ I, ¢ be aformula for L, Qiys s iy, be terms for £, ¢ —
Bi [W € A for all sequences of variables 7;,,...,r; (1). For the sake
iy Tip, Qig Qi i

of contradiction suppose that ¢ — v; [Z”&} ¢ A(2). ﬁ(cp — [%D is

aimi
Qty, for some m. By the Extension lemma (ii) and (2), we obtain that T';, 4+ «, is
Pin, Qiy - Tim,

consistent. T'pyy1 = (T + @) + ((p — B {%D for some sequence

of variables r} ,...,r; (3). From (1) we get that ¢ — f; [W] €
i T lipy T my

I'; for some [. From here and (3) we obtain that there is a k such that ¢ —
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Diy - Pip, iy Qi Piy ---Pin, diy - dim,
Z[W}’ —\((p — B [W}) € I'y. Consequently 1 € T,

i1 in, 17 in, i
i.e. T'k is not consistent - a contradiction. Consequently A is a L-theory.

For every n, T, is consistent and hence L ¢ T, for every n. Consequently
1 ¢ A, ie. A is consistent.

Let A’ be a consistent L-theory and A C A’. We will prove that A" C A.
Let o, € A’. We will prove that a,, € A. For the sake of contradiction suppose
that —a,, € T',,. Consequently —a,, € A and —«,, € A’. We also have a,, € A/, so
1 € A’ - a contradiction. Consequently -, ¢ I',. From here and the Extension
lemma (ii) we get that I'), + «, is consistent. Consequently «,, € A. Consequently
A is a maximal L-theory. O

LEMMA 1.3. Let S be a maximal L-theory. Then:
(i) for every formula o, « € S or —~a € S;
(ii) for all formulas o and B:
1)-aeS+—aé¢s;
2)anpeScaceSandfeS;
avpeSaeSorpeds.

PRrROOF. (i) Let a be a formula for £. For the sake of contradiction suppose
that S’ = S + -« and S” = S + « are inconsistent. Consequently - — 1 € S
and o — L € S. The formula (- — 1) = ((o« — L) — 1) is a theorem of the
classical propositional logic and consequently is in S. Thus using that S is closed
under M P, we get that 1 € S - a contradiction. Consequently S’ is consistent or
S” is consistent, so S’ =S or S’ =S,ie. ~a€ Sora € S.

(ii) Let o and B be formulas for L.

1) If —a € S, then o ¢ S because otherwise S is inconsistent. If « ¢ S, then —a € S
because (i) is true.

2) Let a A B € S. The formula (e« A 8) = a is in S. Consequently o € S. Similarly
B €S. Let o, B €S. The formula « — (8 — a A p) is in S. Consequently
aNpes.

3) Let a VvV 8 € S. Suppose for the sake of contradiction that « ¢ S, 5 ¢ S. From
(i) we get —a € S and - € S. We have ~a — (=8 — —(aV f)) € S. Thus
—(aV B) € S. Consequently S is inconsistent - a contradiction.

Let « € Sor f € S. The formulas « — (aV ) and § — (aV ) are in S.
Consequently a VvV g € S. O

Let S be a maximal L-theory. We define the relation = in the set of all terms
of £ in the following way: a =b & a = b € S. = is an equivalence relation. Let
Bs = {la] : ais a term}. We define the structure Bs with universe By in the
following way:
o for every constant c: ¢Bs = |c|;
e for every n-ary function symbol f: 5 (|ai|,...,|an]) = |f(a1,...,an)];
o for every n-ary predicate symbol p: p®:(|ai|,...,|an|) < p(as,...,a,) € S.
We define a valuation in B; in the following way: v,(p) = |p| for every variable p.
It can be easily verified that vs(a) = |a| for every term a. We call (B, vs) canonical
model, corresponding to S.

The semantics of £ is the standard one.

LEMMA 1.4. For every formula a: (Bs,vs) Fa s a € S.
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PRrROOF. Induction on the complexity of a. O

PRrROPOSITION 1.1. All theorems of L are true in (Bs,vs). For everyi € I and
}, then there are

iy Qim,;

for any a;,, ... a;, - terms we have: if (Bs,vs) ¥ %[ T
terms pj , ... ,péni such that (Bs,v,) ¥ s [—p” Ping &y dim, ] .

Py Pl Bt Qim,

PRrROOF. Since S contains all theorem of IL by lemma 1.4, we get that all theo-
rems of L are true in (B, vs).

Dy,

Let i € I, a;,...,a;, be terms and (Bs,vs) ¥ v [‘117] Consequently

a,;mi
2[21171:} ¢ S. For simplicity for any k and any terms 71, ..., 7, we will denote
Ti,...,Tk by 7. Thus ~; [7} ¢ S. For the sake of contradiction suppose that for

any terms p/, Bi[p’q,] € S. For any terms p/, f3; [pﬂ,’qa] — (T — ﬂi{pﬂ/’qa]) is a

/a

theorem of IL and hence is in S. Consequently T — f; [%} € S for any terms p'.
By condition (iii) from the definition of L-theory, T — ~; [%] € S. Consequently
%[ ] € S - a contradiction. O

PROPOSITION 1.2. Let S be a maximal L-theory. Then the canonical structure,
corresponding to S, By satisfies all azioms of I and the axioms, corresponding to
the rules of L.

PRrROOF. Let a be an axiom of L. with variables among p1, ..., p,, where n > 0.

Let v be a valuation in Bs;. We will prove that (Bs,v) F a, i.e. a[%} is

true. There are terms aq, ..., a, such that v(p1) = |a1|,...,v(pn) = |an|. (Here we
use the definition of the canonical structure By, corresponding to S - Bs = {|a| : a

3eenln

is a term}.) a{%} is also an axiom of L. and hence by lemma 1.4, (B,,vs) F

a|:p17 - Pn
A1,y...,Qn

Pi,--,Pn
|a1|,...,|an\

. Consequently a{ } is true.

If L includes rules, different from MP, we prove that their corresponding ax-
ioms are true in Bg, using proposition 1.1, in the following way: For simplicity for
any k and any terms 71, ..., 7, we denote 71,...,7¢ by T, |71],..., || by |7| and
v(71),...,0(7%) by v(r), where v is some valuation. Let ¢ € I and @ be terms.
Let v be a valuation in By and (Bs,v) E —; [%} We will prove that (Bs,v) F

3ziy .. Fxi, B [p ’q} where T are some variables, not occurring in @, different from
P, @ Let v(ay,) = [by,- - v(ai, ) = |bi,.|. We have w,[ a )] —; [%]

e. (Bs,vs) E [g] By proposition 1.1, we obtain that there are terms p’ such
that (Bs,v,) ¥ ﬂl{p’q} ie. =5 [ﬁ%}. Consequently (Bs,v[fl D -5 [ }
and hence (B,,v) F 3, ... 3z, —f; [Evg . 0

‘,L‘7

2l

Bl

THEOREM 1.2 (Completeness theorem). The following conditions are equivalent
for every formula a:
(i) a is a theorem of L;
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(i) « is true in all structures for L in which the azioms of L and the corresponding
to the rules of L axioms are true.

PrOOF. (i)—(ii) It suffices to prove that for every i € I, ¢ - a formula,
@iy s - -+, Ay, - tErms:
Piy---Pin; Tig ---Qim,

Tig e Tig Gig - Qi

(1) if for arbitrary variables r;,,..., 7, ¢ — Bi[ is true in all

structures for £ in which the axioms of L and the corresponding to the rules of L

qhn1

qi
axioms are true, then ¢ — ~; {17

a;

} is true in all structures for £ in which the

axioms of I and the corresponding to the rules of I axioms are true.

Let ¢ € I, ¢ be a formula, a;,,. .., a;,, be terms and the premise of (1) be true.
Let B be a structure for £ in which the axioms of L and the corresponding to the

rules of L axioms are true, and v be a valuation in B. We will prove that (B,v) F

0 = v [%] Suppose for the sake of contradiction the contrary. Conse-

quently (B,v) F ¢ and (B,v) ¥ ~; {M] But in B is true the corresponding to

iy .04

. . Qiq Qi Piy--Pip, Qiq-Qipy,
the considered rule axiom: —; {w} — 3z, .. Ty, 6 L”W’—”Zm’},
k3 'Ll

Fig iy, T Qig - Qigp
where z;,,...,x;, are some variables, not occurring in a;,,...,a;,, , different from
K k2
Piy--Pin, iy Qim,
Diys -« sDip,»Qiy -+ -+ Gy, - Consequently (B,v) F Ela:il oo Jzg, B |:—93i1 T ]
/ / Tin,; Piy--Pip, ig-Dim,
and hence therearer; ,...,r; € Bsuchthat ( B,v 7@ T A
n; i rm Tig e Tip, Giq Qi
where r;,,...,7;, are some variables, not occurring in a;,,...,a;,, and ¢. We
Tig oo Tig, Tig o Tip Piy - Pin, iy - Qim,
have (B U[ﬁ}) E %) and (B 'U|:7rln:|) = © — 61 {m] Con-

sequently (B, v[%}) EB; [%} - a contradiction.
(ii)—(i) Let a be true in all structures for £ in which the axioms of L. and the cor-
responding to the rules of L axioms are true. Suppose for the sake of contradiction
that « is not a theorem of L. Let T be the set of all theorems of L. T is a L-theory.
Let 7" = T + {—a}. We have -—a ¢ T, so using the extension lemma (i), we get
that 7" is a consistent L-theory. From the Lindenbaum lemma it follows that 7"
can be extended to a maximal LL-theory S. From proposition 1.2 we obtain that the
canonical structure By satisfies all axioms of I and the axioms, corresponding to
the rules of L. Consequently (Bs,vs) F . By lemma 1.4, we get that o € S. But
-« is also in S. Consequently S is inconsistent - a contradiction. Consequently «

is a theorem of L. O

2. Quantifier-free logics for extended distributive contact lattices

We consider the quantifier-free first-order language with equality £ which in-
cludes:
e constants: 0, 1;
e function symbols: +, -;
e predicate symbols: <, C, 6, <.
Let LY (0<0)a-(0<0), T
for L.

We consider the logic L with rule M P and the following axioms:
e the axioms of the classical propositional logic;

(0 <0)V—(0<0). Every EDCL is a structure

|
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e the axiom schemes of distributive lattice;
e the axioms for C, 6, < and the mixed axioms of EDCL - considered as axiom
schemes.

We consider the following additional rules and an axiom scheme:

(R Ext 0) a— (a+p#1Vb+p=1) for all variables p

as(a<b) , where « is a formula, a, b are terms

. for all variabl .

(R U-rich <) e=btp#1vaCp) for all variables p 166 ¢ is a formula, a, b are terms
a—(a<kb) ’ [

(R U-rich 6) a— (a+p#1Vb+q#1VpCyq) for all variables p, ¢

o , where « is a formula, a, b
[e% a

are terms

(R Ext C’) a— (p#0—aCp) for all variables p

a—(a=1) , where « is a formula, a is a term

f 11 iabl
(R Norl) a—(p+q#1VaCpVvbCyq) for all variables p, ¢

S aCh , where « is a formula, a, b are terms

(ConC)p#£A0Aqg#0Ap+qg=1—pCq

The corresponding to these rules axioms are equivalent respectively to the ax-
ioms (Ext O), (U-rich <), (U-rich C), (Ext C), (Norl).

Let L’ be for example the extension of L with the rule (R Ext 6) and the axiom
scheme (Con C). Then we denote L' by L, ¢ g5 and call the axioms (Con C)

and (Ext O) corresponding to L' additional axioms. In a similar way we denote
any extension of L with some of the considered additional rules and axiom scheme
and in a similar way we define its corresponding additional axioms.

Using theorem 1.2, we obtain:

THEOREM 2.1 (Completeness theorem with respect to algebraic semantics).
Let L' be some extension of L with O or more of the considered additional rules and
axiom scheme. The following conditions are equivalent for any formula o:

(i) « is a theorem of L';
(i) o is true in all EDCL, satisfying the corresponding to L' additional axioms.

We consider the following logics, corresponding to the EDC-lattices, considered
in chapter 1:

1) L;

2) Ewta,U—rich<<,U—richC'\;

3) LEwta,U—rich<<,U—rich67EwtC;

4) LEwta,U—rich<<,U—rich6,ConC;

5) LEwta,U—rich<<,U—rich@,Norl;

6) LEa;ta,U—rich<<,U—m’cha,EJ;tC,ConC;
7) LEwta,U—rich<<,U—m’cha,Norl,ConC;
8) LExt@,U—m’ch<<,U—m’ché,EwtC,Ncrl;
9) L

Exté,U—rich<<,U—m’ch@,EwtC,ConC,Norl :

To every of these logics we juxtapose a class of topological spaces:
the class of all Tj, semiregular, compact topological spaces;
the class of all Tj, semiregular, compact topological spaces;
the class of all Tj), compact, weakly regular topological spaces;
the class of all Ty, semiregular, compact, connected topological spaces;

1
2
3
4

— N —
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5) the class of all T, semiregular, compact, x - normal topological spaces;
6) the class of all Ty, compact, weakly regular, connected topological spaces;
7) the class of all Tp, semiregular, compact, x - normal, connected topological
spaces;
8) the class of all Ty, compact, weakly regular, x - normal topological spaces;
9) the class of all Ty, compact, weakly regular, connected, x - normal topological
spaces.

Later we will prove that some of the rules of these logics can be eliminated and
these logics are reducible to other logics. Because of this some other logics also will
be considered.

PRrROPOSITION 2.1. For every EDCL B, satisfying the corresponding of some
of the considered above logics additional axioms, there exists a topological space X
from the corresponding class and an embedding of B in RC(X).

PrOOF. In [40] (Theorem 2.3.9) it is proved that: if B is a contact algebra,
then there is a compact, semiregular, Ty topological space X and an embedding of
B in RC(X). From here and corollary 2.1 in chapter 1 it follows that: if B is an
EDCL (i.e. EDCL, satisfying the corresponding to L zero additional axioms), then
there is a compact, semiregular, Ty topological space X and an embedding of B in
RC(X).

For the other eight logics the proposition follows from theorem 6.4 in chapter 1.

O

THEOREM 2.2 (Completeness theorem with respect to topological semantics).
Let L' be any of the considered logics. The following conditions are equivalent for
any formula o:

(i) a is a theorem of L';
(ii) « is true in all contact algebras over a topological space from the corresponding
to L' class.

ProOOF. From the previous completeness theorem we have: (i)«
(#5')a is true in all EDCL, satisfying the corresponding to L’ additional axioms

We will prove that (ii”)« (ii).

(ii")—(ii) Let « be true in all EDCL, satisfying the corresponding to L’ additional
axioms. Let X be a topological space from the corresponding to L’ class. From
lemma 5.1 in chapter 1 it follows that RC(X) satisfies the corresponding to L’
additional axioms. Consequently « is true in RC(X).

(ii)—(ii") Let « be true in all contact algebras over a topological space from the
corresponding to L’ class. Let B be an EDCL, satisfying the corresponding to L’
additional axioms, and v be a valuation in B. We will prove that (B,v) F a. By
proposition 2.1, we get that there is a topological space X from the corresponding to
L’ class and an isomorphic embedding h of B in RC(X). We define a valuation v’ in
RC(X) in the following way: v'(p) = h(v(p)) for every variable p. By B’ we denote
the sublattice of RC(X) to which B is isomorphic. We have (RC(X),v’) E «, so
(B',v")E a, so (B,v) F a. O

PROPOSITION 2.2. L and L have the same theorems.

Erta,U—rich<<,U—rich6
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PRrOOF. The proposition follows from the completeness theorem with respect
to topological semantics because to L and Ly .5 _iche v—riend COITesponds the
same class of topological spaces. ([

3. Decidability via finite models and admissibility of some rules of
inference

In this section we discuss admissibility of some rules of inference and decidabil-
ity via finite models of the logics introduced in Section 2. We will not discuss in
this dissertation the complexity of the corresponding logics.

3.1. Decidability of the logic L.

PRrROPOSITION 3.1. The following conditions are equivalent for any formula «:
(i) « is true in all EDCL;
(i1) « is true in all finite EDCL with a number of the elements less or equal to
22" =1 4 1, where n is the number of the variables of c.

PrOOF. Obviously (i) implies (ii). Let (ii) be true. We will prove (i). Let B be
an EDCL, v be a valuation in B. We will prove that (B, v) F a. Let the variables of
abe pi,...,pn, where n > 0. It is a well known fact that v(p1),...,v(p,) generate
a distributive sublattice B’ of B with a number of the elements less or equal to
22"=1 4+ 1. B’ is an EDCL. We define a valuation v/ in B’ in the following way:

v (p) = v(p) ifp=piorp=pgor...orp=p,
p 0 otherwise

It suffices to prove that (B’,v") E a. But this is true because (ii) is fulfilled. O

COROLLARY 3.1. L is decidable.

3.2. Admissibility of the rule (R Ext C). Asin [4] we define a p-morphism
and prove a lemma for it. Let (W, R) and (W', R’) be relational structures and f
be a surjection from W to W’. We call f p-morphism from (W, R) to (W', R’), if
the following conditions are fulfilled for any =, y € W and any z’, y' € W":

(p1) If xRy, then f(x)R'f(y);
(p2) If 2’ Ry, then (3z,y € W)(a' = f(2),y" = f(y),zRy).

Let B be the contact algebra over (W, R), B’ be the contact algebra over
(W’',R’), v and v' be valuations respectively in B and B’. We say that f is a
p-morphism from (B, v) to (B’,v’), if for every variable p and every z € W: z €
v(p) > f(z) € v/(p). It can be easily proved that for every term a and every z € W:
z €v(a) < f(x) € v'(a).

LEMMA 3.1. [4] Let f be a p-morphism from (B,v) to (B/,v"). Then for any
formula for L, ¢ we have: (B,v) E ¢ < (B,v") E .

ProOOF. Induction on the complexity of . O

PROPOSITION 3.2. The rule (R Ext C) is admissible in L
and L

Ez2tO,U—rich<,U—richC
Ezté,U—m’ch<<,U—m'cha,ConC .
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PRrROOF. The construction is almost the same as in [4] (Lemma 6.1). Let L’ be
any of these logics. Let o be a formula, a be a term. Let o« — (p # 0 — aCp) be
a theorem of L’ for every variable p. We will prove that & — (a = 1) is a theorem
of L’. Suppose for the sake of contradiction the contrary. There is an EDCL B,
satisfying the corresponding to L’ additional axioms, and a valuation in it v such
that (B,v) ¥ a — (a = 1). Consequently (B,v) F « and (B,v) ¥ a = 1. B is an
U-rich EDCL and by theorem 6.4 in chapter 1, we get that there is a topological
space X and an embedding h of B in RC(X). Moreover if B satisfies (Con C),
then RC(X) also satisfies (Con C). We define a valuation v’ in RC(X) in the
following way: v'(p) = h(v(p)) for every variable p. We have (RC(X),v’) E o and
(RC(X),v)YEa=1.

Let @ be the set of all variables, occurring in « and a. v'(Q) is a finite subset
of RC(X). The subalgebra B; of RC(X), generated by v'(Q), is a finite Boolean
contact algebra. If RC(X) satisfies (Con C'), then B; also satisfies the axiom (Con
C). We define a valuation v; in By in the following way:

v'(p ifpeq@
uilp) = { 0 v otherwise

We have (Bi,v1) F « and (By,v1) ¥ @ = 1. There is a relational structure
(W3, Ry) and an isomorphism h; from Bj to the contact algebra By over (W, Ra).
We define a valuation vy in By in the following way va(p) = hi(vi(p)) for ev-
ery variable p. (Ba,v2) F « and (Bg,v2) ¥ a = 1. Consequently va(a) # Wo.
Let wi € Wy — va(a), wg ¢ Wa. We define W3 = Wo U {wp}, R3 = Ra U
{(wo, wo), (wo, w1), (w1, wp)}. We define f: W5 — Wy in the following way:

fw) = {

Let B3 be the contact algebra over (W3, R3). We define a valuation vs in Bs in
the following way: v3(p) = f~1(va(p)) for every variable p. It can be easily verified
that f is a p-morphism from (Bs,v3) to (B, v2). Consequently (Bs,v3) F « and
(Bs,vs3) ¥ a = 1. If B satisfies the axiom (Con C), then B; also satisfies (Con
C) and since B is isomorphic to B, we have that By also satisfies (Con C).
From here and the definition of Rs we get that if B satisfies (Con C), then Bs
also satisfies the axiom (Con C)(1). Since Bs is a contact algebra, we have that
Bs satisfies (Ext 0), (U-rich <) and (U-rich C)(2). Let p be a variable, not

occurring in a and o. We have (B3, v3 {{%}}) F « and Ug{ﬁ] (a) = v3(a) =

F Y (va(a)) = va(a); vs [{%}} (p) # 0; vs [WL}] (a)Cryvs [{%}} (p). Consequently
(B3, v3 {{15;0}}) Fa— (p#0— aCp). Also from (1) and (2) it follows that Bs
satisfies the corresponding to L’ additional axioms. But a — (p # 0 — aCp) is a
theorem of L', so (Bs,vs {ﬁ}) Ea— (p#0— aCp) - a contradiction. O

w if w # wo
w1 if w = wy

3.3. Admissibility of the rule (R Norl).

PROPOSITION 3.3. The rule (R Norl) is admissible in the logics

Lpi6.0 - riehe.v—riend ¥ L6 1 viche U—rich@.Conc-

PRrROOF. The construction is almost the same as in [4] (Lemma 6.2). Let L’
be any of these logics. Let « be a formula, a and b be terms. Let « — (p+ ¢ #
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1V aCpV bCq) be a theorem of L’ for all variables p and q. We will prove that
a — aCb is a theorem of L’. Suppose for the sake of contradiction the contrary.
The same way as in the proof of the previous proposition we obtain that there is
a contact algebra B over some relational structure (W, R) and a valuation in it v
such that (B,v) F a and (B,v) F aCb. Moreover if L’ is the second logic, then B
satisfies (Con C). Let A C W. We define (R)A={z e W : (Jy € A)(yRx)}. Let
Wierects = (R)(v(a)) N (R)(v(b)). We define
Wi=W x {1, 2},
(,9)R1(y,j) <> xRy and ((j = 1 Az € v(a) Ny € Wiefects)
or (i=1Ay€cv(a) Nz € Waefects)

or (j=2ANz€v(b) Ny € Wacfects)
or (i=2Ay€v(b) ANz € Wycsects)
or (l‘ é ( ) (b) U Wdefects A Y S Wdefects)
or ( ¢ ( ) (b) ) Wdefects Nx € Wdefects)
or ( S Wdefects A ye Wdefects)
or (1' ¢ Wdefects A Y ¢ Wdefects));
v1(q) = v(q) x {1,2},
f((z,1)) = .
Let B; be the contact algebra over (Wi, R;). It can be easily verified that f is a
p-morphism from (B, v1) to (B,v). Consequently (By,v1) E a and (By,v1) E aCb.
It can be easily verified that if L’ is the second logic, then B, satisfies (Con C).
Let p, ¢ be variables which do not occur in a, b and ¢. We define a valuation v}
in By eventually different from v; only in p and ¢: vi(p) = (R1)(v1(D)), vi(q) =
(R1)(v1(b)). Obviously v} (p)+v|(¢) = 1. Suppose for the sake of contradiction that
v} (a)Cvi(p). Consequently v1(a)Cr, (R1)v1(b). From here we obtain that there are
(2.7) € 1(a), (y.) € (Ra)ur(b) such that (z,)Ra(y, ). From (y,7) € (Ra)(v1(b))
we obtain that there is (z, k) € v1(b) such that (z, k)R1(y, 7). Consequently z € v(b)
and yRz and hence y € (R)(v(b)) (1). From (x,i) € v1(a) we obtain x € v(a) (2
From (z,7)Ri(y,j) we get xRy (3). Using (2) and (3), we get y € (R)(v(a)) (4
From (4) and (1) we get y € Wyepects- From (z,0)R1(y,J), ¥ € Waefects; T €
v(a), (B,v) F aCb and the definition of Ry we get j = 1. Using (z,k)R1(y, j),
Yy € Waeseets, 2 € v(b), (B,v) F aCb and the definition of R;, we get j = 2 - a
contradiction. Consequently v} (a)Cv}(p). From the definition of v}(q) we obtain
that v} (b)Cvi(q). Thus (By,v}) ¥ p+q # 1V aCpV bCq and (By1,v}) F a; By
satisfies the corresponding to L’ additional axioms - a contradiction. ]

).
).

3.4. The rule (R U-rich <) is not admissible in Lconc.

LEMMA 3.2. Let B = (B,...) be an EDCL, satisfying (U-rich <) and (Con
C). Then for every a € B, different from 0 and 1, we have a<a.

PrROOF. Let a € B, a # 0, a # 1. Suppose for the sake of contradiction that
a < a. Since B satisfies (U-rich <), there is a ¢ € B such that ¢+ a = 1 and aCc.
We have that B satisfies (Con C) and ¢ +a =1, a # 0, ¢ # 0 (because a # 1), so
aCc - a contradiction. Consequently a<a. (I

PROPOSITION 3.4. The rule (R U-rich <) is not admissible in Loonc .-

Proor. We will prove that there is a theorem of Lconc,v—riche Which is not
a theorem of Loynco. We consider the formula o : p # 0Ap #1 — p<Kp. Using
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lemma 3.2, we obtain that « is true in every EDCL, satisfying (Con C) and (U-rich
<). Consequently « is a theorem of Leoonc,v—rich< -

We consider the relational structure (W, R), where W = {z,y}, R = {(, 2), (y,
y)}. Let B be the contact algebra over (W, R). Let B’ = {0,W,{z}}. Tt can
be easily verified that B’ is closed under U and N. Consequently B’ = (B’,C
,0,W,N,U) is a distributive lattice. We can consider B’ as a substructure (B, C
,0,W,N,U, Chg, (/J;g, < ) of B. Bisan EDCL and the axioms of EDCL are quantifier-
free and therefore B’ is an EDCL. We have {z} # 0, {z} # W and {z} < {z}, s0 «
is not true in B’. It can be easily verified that B’ satisfies (Con C). Consequently
« is not a theorem of Lgoonc. O

3.5. A technical lemma with applications to admissibility of some
rules of inference and decidability of some logics.

LEMMA 3.3. Let B be an EDCL, satisfying (Con C) and (U-rich <) and v be
a valuation in it. Let o be a formula in L. Then there is a finite connected Boolean
contact algebra B* and a valuation in it v* such that: (B*,v*) F « iff (B,v) F a.
The number of the elements of B* is < 95—
the variables of «.

, where n is the number of

ProOF. Let B be an EDCL, satisfying (Con C) and (U-rich <), and v be
a valuation in it. Let « be a formula in £. From the relational representation
theorem of EDC-lattices (Theorem 2.3 in Chapter 1) it follows that there is a
relational structure (W', R’) with R’ reflexive and symmetric and an isomorphic
embedding h of B in the contact algebra B’ over (W', R'). B is isomorphic of some
substructure of B’, By, which is an EDCL, satisfying (Con C) and (U-rich <).

We define a valuation v; in B; in the following way: for every variable p v (p) def
h(v(p)). It can be easily proved that (B,v) F « iff (B1,v1) F a. Let the variables
of a be p1,...,pn, where n > 0. wv1(p1),...,v1(pn) generate a finite sublattice
By = (Bs, C,0,W’, ﬂ,U,C’R/,@,«R/) of By which is an EDCL, satisfying (Con
O), and has number of the elements < 22"~! + 1. We define a valuation vy in By
in the following way:

va(p) = v1(p) ifp=prorp=pgor...orp=p,
2 0 otherwise

We have (Bi,v1) F a iff (By,v2) F a iff (Bg, v2) F a.

For every A € W' we define, using that Bs is finite, s4 = N{a € By: A€ a},
i.e. sy is the smallest element of By which contains A.
We will define special sets and with their help we will obtain a Boolean algebra
Bs. Let Ae W and b € By, b C sa, A ¢ b, Ve(e # 0,c € Ba,c C sa,A ¢ c—
bNc # (). Then s4 —b we call a special set, determined by the ordered pair (s4,b).
Let (a,b) be an ordered pair of elements of By. We have:
1) if b C a, a # b, then (a,b) determines at most one special set;
2) if b is not a proper subset of a, then (a,b) does not determine a special set;
Using this fact, we get that the number of the special sets is < half of the
ordered pairs of different elements of By. Let C' be the set of all special sets, N be

the number of the elements of By. We have |C] < N(]\Qrfl) < (22 _121)22 _1. Let D
be the set of all finite unions of special sets. We have that |D| < the number of the
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2™ 1 2™ 1
nonempty subsets of C, i.e. |D| < 2/¢1—1 < 952 —1. Let B3 def Du{0}.
2™ -1 2™ —1
We have |Bs| < 22— By C B’
We will prove:

Cram 3.1. If a,b € By, then a — b € Bs.

PrROOF. Case 1: a—b=10)

We have a — b € Bs.

Case 2: a—b#0

Let A € a—b. By t4 we denote the largest element of By which is a subset of s 4 and
does not contain A (t4 =U{e € Ba: e C s4,A ¢ e}). sa is the smallest element
of By which contains A; a is an element of By which contains A; so s4 C a(2).
We have sy Nb € By, sANbC s4, A s4Nb;s054NbCta(3). From (2) and
(3) we get that sy —ta C a —b. Thus we juxtapose to every point A of a — b
an ordered pair elements of By (sa4,t4) such that A € s4 —t4 C a — b. Let the
obtained this way ordered pairs be (s1,t1),..., (Sk,tx), where k > 0. Obviously
a—bC (s1—t)U...U(sp—t) Ca—b,ie. a—b=(s1 —t1)U...U(sk — tx).
Let ¢ € {1,...,k}. Using the definition of ¢;, we get that s; — t; is a special
set, determined by (s;,t;). Consequently a — b is a finite union of special sets.
Consequently a — b € Bs. |

CLAIM 3.2. B3 = (B3,C,0,W’,U,N) is a Boolean algebra and By C Bs. (We
do not use x in the notation of Bz because we do not want to change the language.)

PROOF. Let a € By. Wehave a = a—{). Using claim 3.1, we obtain that a € Bs.
Consequently By C Bs. Consequently W’ € Bz. We will prove that Bs is closed
under U and N. Obviously Bj is closed under U. Let ay, ay € B3. We will prove
that a; Nas € Bs. If a; = 0 or az = (), then obviously a; Nay € Bs. Let ay, as # 0.
We have a1 Naz = (a;1U...Uay )N (a1 U. . .Uasy,), where I, m > 0, ay1, . . ., agpm, are
special sets. a1 Nag = (anﬁagl)u. . .U(a11 ﬂagm) . (auﬂagl)u. . .U(auﬁagm). It
is sufficient to prove that the intersection of two special sets is () or a finite union of
special sets. Let s4, —b; and s4, — ba be special sets. It can be easily verified that
(sa, —b1)N(sa, —b2) = (sa4,N84,) — ((b1 Nsa,)U(baNsa,)). Using this fact and
claim 3.1, we obtain that (s4, — b1) N (s4, — b2) € Bs. Consequently a; Nag € Bs.
Thus B = (Bs, C,0,W’,U,N) is a distributive lattice of sets.

We will prove that for every a € B3, we have @ € Bs. Let a € Bs. If a = (),
then @ € Bs. Let a = (sa, —b1)U...U(s4, —b;), where [ >0, s4, —b1,...,54, — b
are special sets, determined respectively by (sa,,b1),...,(s4,,b1). @ =54, —b1 N
...Nsa, —b. Let i € {1,...,1}. We will prove that s4, —b; € Bs. sa, —b; =
Sa,Ub; = (W' —s4,)Ub;. Using W’ € By, sa, € B and claim 3.1, we get that
W' — s4, € B3(4). (sa,,b;) determines a special set and therefore b; € Ba; but
Bs; C Bs, so b; € B3(5). Using (4), (5) and the fact that Bs is closed under U, we
get that s4, — b; € B for every i € {1,...,l}. But Bj is closed under N, so @ € Bs.
Consequently Bz = (B3, C,0, W', U,N) is a Boolean algebra. O

We will call the elements of W’ points. Let T, U € W’ and suppose there is an
a € By such that T € a, U ¢ a. We define Spy =J{a € By: T € a,U ¢ a}, i.e.
St.u is the largest element of By, containing 7' and not-containing U.

Let T, U € W’ and suppose there is an a € By such that T € a, U ¢ a. We
call U corresponding to T', if (Va € B2)(U € a - T € a) and sy<p' St,U.
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We define a binary relation R in W’ in the following way: TRU iff TR'U
or U is corresponding to 1" or T is corresponding to U. Obviously R is re-
flexive and symmetric. We consider the Boolean contact algebra By = (B3, C
,@,W’,U,Q,C’R,C/’;{,«R). (Here C’R,C/’;L,<<R are defined in the following way:
aCRrb > there are I} € a, F5 € b such that F|RF5, aC/’;{b <> there are F} € a,
Fy € b such that F1RF,, a < b < (VF; € a)(VFy € b)(F1RF,)). We consider
the following substructure of By: Bs = (Bo, g,@,W’,U,ﬂ,C’R,é}\z,<<R). We will
prove:

CLAIM 3.3. Bs is isomorphic to By = (B, C,0, W', U, ﬂ,C’R/,@,<<R/).

ProoF. The isomorphism will be the mapping id : Bs — Bs (id(a) o for
every a € Bo).

e) We will prove that for all a1, as € B2 we have: a1Cp as iff a1Craz. Obviously
a1Crras implies a1CRras. Let a1Cras. Consequently there are Fy € aq, Fb € as
such that Fy} RF5.

Case 1: | R'F,

Obviously a1Crras.

Case 2: F|R'F,

F5 is corresponding to Fy or F} is corresponding to F>. Without loss of generality
Fy is corresponding to Fy. Consequently every element of By which contains Fy,
also contains Fi; Fy € as; as € By; so Fy € as. We also have F € aq, so a1Cgrras.
o) We will prove that for all a;, as € By we have: a15§a2 iff alél\:gag. Obviously
(115;042 implies alé’;ag. Let alc/'l\{ag(6). Suppose for the sake of contradiction

that alazag(?). Consequently @; Naz = B(8). From here and (6) we get that
there are Fy € ay, Fy € ag such that FyRF>. There is an element of By (as)
which contains F» but does not contain Fi; there is an element of By (a1) which
contains F; but does not contain Fb; so F5 is not corresponding to F} and Fj is
not corresponding to Fy. From (7) we get that I} R'F,. Consequently F}RF, - a

—Z

contradiction. Consequently a1 Crras.
o) We will prove that for all a;, as € By we have: a; <p as iff a3 <g as.
Obviously a1 < g as implies a; < as. Let a3 <pr a2(9). Suppose for the
sake of contradiction that a;<<gas. Consequently there are Fy € a1, Fo ¢ as
such that Fy RF,. From (9) we obtain that F} R'F,. We have Fy € as, ay € Bo,
F5 ¢ ay, so Fy is not corresponding to F». Consequently Fj is corresponding to
Fy. Consequently sp <r'Sk r,(10). We have ay € By, Fi € ag, Fo ¢ ag, so
az C Sp,.r,(11). We have Fy € a1, a1 € Ba, 50 sp, C a1(12). From (9) we get that
a1 C az(13). From (10), (12), (13) and (11) we obtain a1 < gas - a contradiction
with (9). Consequently a; < as.

Consequently Bs is isomorphic to Bs. (I

From this claim we get (Ba,v2) F « iff (Bs,v2) F a. Bs is a substructure of
By, a is quantifier-free, so (Bs, v2) F o iff (By,v2) F a.

CLAIM 3.4. By satisfies (Con C).

Proovr. It suffices to prove that for every non-empty and different from W’
a € Bs, there are F} € a and F» ¢ a such that FiRF,. Let a € Bs, a # () and

a#W'. Wehave a = (sa, —b1)U...U(sa, —bg), where k > 0; s4, —b1,...,54, —bx
are special sets, determined respectively by (sa,,b1),...,(54,,bk)-
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Case 1: (Fie {1,...,k})(3T € b; —a)(3U € s4, — b;)(U is corresponding to T')
We have U € a, T ¢ a and URT.
Case 2: (Vi€ {1,....k})(VT € b; — a)(VU € sa, — b;)(U is not corresponding to
T)
We will prove that for every i € {1,...,k} there is a ¢; € By such that s4, — b; C
¢ Ca. Letie{l,... k}.
Case 2.1: b; Ca
54; —b; € sa, Ca. We have sy, € By C By, i.e. sa, € By.
Case 2.2: b; C a
The idea of finding ¢; is shortly the following: Let T € b; — a. For T we divide the
points from s4, — b; into two kinds:
1 kind) all U such that (Vb € B2)(U € b — T € b)
2 kind) all U such that (3b € By)(U € b, T ¢ b)
We will prove that there is an element of By t7 such that sy <g/ tr and every
point of the first kind is not in t7. Since B, is finite, we can obtain finitely many
such pairs (sr,tr). For every pair (sr,tr), using sy <pg tr, we get that there is
a ¢, such that ¢, does not intersect st and ¢, contains all points of the first kind.
Thus every point T from b; — a which determines the pair in question (sr,tr), is
not in ¢, the points for T of the first kind are in ¢,. We will find a set ¢. such that
sa, — b; C grUq., every point T which determines the pair (s7,tr), is not in g¢..
Thus for every pair (st,tr) we get a set ¢, Uq.. which includes s4, —b; and does not
contain any point T, determining the pair (s7,tr). We consider the intersection ¢
of all sets of the kind ¢, U ¢.. We have s4, — b; C ¢. Every point T from b; — a is
not in some ¢, U ¢ and therefore is not in q. As a ¢; we can take ¢ N sy, .

Now we will give the proof in details. Let T € b; — a. We consider arbitrary
U € sa, — b; such that (Vb € By)(U € b — T € b). U is not corresponding to T.

Consequently sy <g S7.rv. We have b; C Sy . Let Pr def {Stv: Ué€sy —b
and (Vb € Bo)(U € b — T € b)}. By is finite and therefore Pr is finite and let

Pr = {t1,...,t;}, where > 0. Let tp def t1N...Nt. We have ¢t € By. We have
VU(IE U € s, — b; and (Vb € Bo)(U € b— T € b), then U ¢ t7)(14); b; C to(15).
For every j € {1,...,1} sp <p tj, s0 s7 <p tr(16).

Let Q = {(st,tr): T € b; — a}. Since By is finite, we have that @ is finite
and let Q = {(pll,plg), vany (pml,pmg)}, where m > 0.

Let r € {1,...,m}. We consider (p,1,pr2). Using (16), we get p,1 <g' Pra-
We also have p,1, pro € By C Bi; By satisfies (U-rich <); so there is a ¢, € By
such that p.o U¢q. = W', ¢.Crp,1. Consequently ¢, Np,y = 0. Let V. = {T €
bi —a: (sr,tr) = (pr1,pr2)}. We have:

(17U TeV,.,thenT € p.y and T ¢ g,.

Using (14) and p,o U g, = W/, we obtain that:

(18) If T € V,, then

VUIf U € s4, —b; and (Vb € Bo)(U € b— T €b), then U ¢ po and U € ¢,).

Let ¢ Y Ulsy : U €sa, —bi, (VT € V,)(3b € B)(U € band T ¢ b)}. We will
prove that s4, —b; C g, Uq.. Let U € s4, — b;.

Case 1: (3T € V;.)(Vb € B2)(U € b— T €b)

Using (18), we get U € g,..

Case 2: (VT € V,.)(3b € By)(U € band T ¢ b). From the definition of ¢, we obtain
that sy C ¢.. U € sy, so U € ¢
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We proved that:
(19) s4, — b; C g U{..

We will prove that: if T € V., then T' ¢ q... Let T € V,.. Suppose for the sake of
contradiction that T € ¢.. Consequently T' € sy for some U such that U € sy, —b;,
(VI € V.)(Fb € B3)(U € band T ¢ b). Consequently (3b € Bo)(U € b and T ¢ b)
and hence T ¢ sy (we have sy C b) - a contradiction with T' € sy. Consequently
T ¢ q,.. We proved that:

(20)if T € V,, then T ¢ ¢..
From (17) and (20) we get that:
(21)if T € V,, then T ¢ g, Uq..

Let g def (rUq)N...N(gnUdq,). For every point T of b; — a, there is
ar € {l,...,m} such that (sp,t7) = (pr1,pr2). We have T' € V.. and by (21),
we obtain T ¢ ¢, U q.. We proved that for every point T of b; — a, there is a
r € {1,...,m} such that T ¢ ¢, U ¢... Consequently
(22) (VT € b; —a)(T ¢ q)

We have proved ((19)) that

(23) (Vre{1,...,m})(sa, —b; Cq-Uq.)

Consequently s4, — b; C q (24)

We have that for every r € {1,...,m}: ¢- € By, ¢. € By C By, so q € By (25).

Let ¢; = g N sa,. From here and (25) we obtain ¢; € By (26). From (22) we get:
From (24) we get:
(28) 54, —bi Cc;
We will prove that ¢; C a. Let F' € ¢;. Consequently F' € sy,.
Case 1: F € 54, — b;
We have F' € a.
Case 2: F € b;
Suppose for the sake of contradiction that F' ¢ a. Consequently F' € b; — a. From
(27) we obtain F ¢ ¢; - a contradiction. Consequently F € a.
We proved that ¢; C a (29)
From (26), (28) and (29) we get that there is a ¢; € By such that s4, —b; C ¢; C a.
We proved that for every i € {1,...,k}, there is a ¢; € By such that s4, —b; C
¢; € a. Consequently a = (sa, —b1)U...U(sa, —br) CcaU...Uc C a.
Consequently a = ¢; U...Ucg. Consequently a € B;. We have a # 0, a # W/,
B; is an EDCL, satisfying (Con C) and (U-rich <), so by lemma 3.2, we get that
a<ga. Consequently there are Fy € a, Fy ¢ a such that FyR'F,. Consequently
FiRF5.
We proved that for every non-empty and different from W’ a € Bs, there are
F) € a and F5 ¢ a such that F; RF,. Thus we proved that By satisfies (Con C). O

Thus By is a finite connected Boolean contact algebra and vy is a valuation in
— (227141027 1
2

it; (B, v2) F o iff (B, v) F ; the number of the elements of Byis <2~z
where n is the number of the variables of a. O

PROPOSITION 3.5. The rule (R U-rich 6) is admissible in Loonc,U—rich< -

PRrROOF. It suffices to show that every theorem of LConC,UfM'ch<<,Ufriché is
a theorem of Leoonc,v—rich<- Let o be a theorem of LconC’Uﬂich«’Uﬂicha (1).
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We will prove that o is a theorem of Lconc,u—rich- 1t suffices to prove that o
is true in all EDCL, satisfying (Con C') and (U-rich «). Let B be an EDCL,
satisfying (Con C') and (U-rich <) and v be a valuation in it. We will prove that
(B,v) E a. By lemma 3.3, we get that there is a finite connected Boolean contact
algebra B* and a valuation in it v* such that (B*,v*) F a iff (B,v) F a. B*is a
Boolean contact algebra and therefore satisfies (U-rich <) and (U-rich C). Using
this fact, the connectedness of B* and (1), we have (B*,v*) E a. Consequently
(B,v) E a. O

PROPOSITION 3.6. The rule (R Ext O) is admissible in the logic

LConC,U—rich<<,U—richa -

PROOF. The proof is similar to the proof of proposition 3.5. Here we use that
in all Boolean contact algebras are true (U-rich <), (U-rich C) and (Ext O). O

PROPOSITION 3.7. Lconc,u—rich< 5 decidable.

PRroOOF. It suffices to prove that the following are equivalent for every formula
ain L:
(1) o is a theorem of Leonc,v—rich<;
(i7) « is true in all finite EDCL, satisfying (Con C') and (U-rich <) with number

of the elements < 2%, where n is the number of the variables of a.

Let « be a formula in £. Obviously (i) implies (i7). Let (i7) be true. We will
prove (i). Let B be an EDCL, satisfying (Con C), (U-rich <) and v be a valuation
in it. It suffices to prove that (B,v) F «. By lemma 3.3, we get that there is

a finite connected Boolean contact algebra B* and a valuation in it v* such that
(22"71+1)22"71
2

(B*,v*) E a iff (B,v) F a. The number of the elements of B* is <2~z |
where n is the number of the variables of a. We have (B*,v*) E a. Consequently
(B,v) E a. O

3.6. The main theorem.

COROLLARY 3.2. (i) The logics L, Ly .5 1 yiche .U —rich

LExta,U—rich<<,U—rich5,E9ctC’ LEacta,U—rich<<,U—rich@,Norl ’
LEa:ta,Ufrich<<,Ufricha,Ea:tC,Norl have the same theorems and are decidable;
(”) The lOgZCS LCO”CfU*”'Ch«’ LEa:ta,Ufrich<<,U*Ticha,ConC’

LEa:tCA),Ufrich<<,Ufricha,ConC,Norl’ LEzta,UfriCh<<,U*’riché,Eth,ConC’
LExt@,U—m’ch<<,U—rich@,Eth,CanC,Ncrl have the same theorems and are decidable.

Proor. (i) follows from proposition 3.3, proposition 3.2, proposition 2.2 and
corollary 3.1.
(ii) follows from proposition 3.3, proposition 3.2, proposition 3.6, proposition 3.5,
proposition 3.7. (]

In a dual way we can obtain logics for O-rich EDC-lattices.

4. A quantifier-free logic for extended contact algebras

We consider a quantifier-free first-order language £’ with equality which has:
e constants: 0, 1
e functional symbols: +, -, *
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e predicate symbols: <, -, C, ¢°
Let L (0<0)A=(0<0), T (0<0)v-(0<0).
Every ECA is a structure for £'.
We consider the logic L.. which has the following:
e axioms:
- the axioms of the classical propositional logic
- the axioms of Boolean algebra - as axiom schemes
- the axioms (1),...,(6) of ECA - as axiom schemes
- the axiom scheme:
(Ax C) pCq < p,q ¥ 0
- the axiom scheme:
(Ax ®) (P)ANg#OAT#O0Ap=q+71 — q, 1T ¥ D"

e rules:
- MP

0Ag#£0Aa=p+g—p,gta®) for all variabl . .
- (Rule ¢°) 2=(p£0Na700a p+qaj£(g)) Or AT Vaman e P 4 where « is a formula, a is
a term.

Let a be a formula, a be a term. The corresponding to (Rule ¢°) axiom is:
(%) =c®(a) = 1 Fza—(21 0N T2 #A0ANa =21 + 22 — 21,22 ¥ a*)

We also consider the logic L4, which is obtained from L. by removing the
rule (Rule ¢°).

THEOREM 4.1 (Completeness theorem). For every formula o in L' the following
conditions are equivalent:
(i) a is a theorem of Leo;
(i) « is true in all ECA;
(153) « is true in all ECA over a compact, Ty, semiregular topological space.

PRrOOF. (i)<»(ii) is obtained by the completeness theorem in section Prelim-
inaries. Obviously (ii) implies (iii). Using the representation theorem of ECA
(theorem 4.1 in chapter 2), we get (iii)—(ii). O

LEMMA 4.1. For every formula o in L' the following conditions are equivalent:
(i) a is a theorem of L agco;
(ii) « is true in all Boolean algebras in which the predicates =, C' and ¢° are defined
in such a way that the axzioms (1),...,(6) of ECA and the axzioms (Az C), (Az ¢°)
are true.

PrOOF. We use the completeness theorem in section Preliminaries. [l
PROPOSITION 4.1. The rule (Rule ¢°) is not admissible in Lagco.

PROOF. L gzc0 is complete in the class of all Boolean algebras in which the
predicates -, C' and ¢° are defined in such a way that the axioms (1),...,(6) of
ECA and the axioms (Ax ('), (Ax ¢°) are true. L. is complete in the class of all
ECA. Consequently it suffices to find a formula in £’ which is true in all ECA, but
is not true in all Boolean algebras in which the predicates |, C' and ¢° are defined
in such a way that the axioms (1),...,(6) of ECA and the axioms (Ax C), (Ax ¢°)
are true. We consider the formula a: —¢°(p) — p # 0. Let B be an ECA and v be
a valuation in it. We will prove that (B, v) F a. Let v(p) = a. We will prove that
if =¢°(a), then a # 0. Suppose —c°(a). B is an ECA and therefore there are b and
¢ such that b # 0, ¢ # 0 and a = b+ ¢. Consequently a # 0.
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We consider the Boolean algebra By = ({0,1}, <,0,1,-, 4, *). We define in By

the predicate b in the following way: for arbitrary a, b, ¢ € {0,1}, a,b F ¢ Ca= 0
orb=0o0ra=>0=c=1. It can be easily verified that B; satisfies the axioms
(1),...,(6) of ECA. We define C' in B; in the following way: for arbitrary a,
b e {0,1}, aCb <+ a,b ¥ 0. We define ¢® in B; in the following way: —c°(0) and
—¢°(1). Obviously B satisfies (Ax ¢°). We define a valuation v; in B in the
following way: vi(p) = 0 for every variable p. We have —¢°(0) and 0 = 0 and
consequently —¢°(0) — 0 # 0 is not true, i.e. (By,v1) ¥ a. O

PROPOSITION 4.2. Lo is decidable.

Proovr. It suffices to prove that for every formula « in £’ the following condi-
tions are equivalent:
(i) v is true in all ECA;
(if) o is true in all finite ECA with number of the elements less or equal to 2(2*""),
where h,, = 22" and n is the number of the variables of «.
Let a be a formula for £’. Obviously (i) implies (ii). Let (ii) be true. We will prove
(i). Let B be an ECA and v be a valuation in it. We will prove that (B,v) F «a.
Let the variables of « be p1,...,p,, where n > 0. v(p1),...,v(p,) generate a finite
substructure By = (B, <,0,1,-,+,*,F,C, ) of B which is a Boolean algebra with
number of the elements less or equal to 2(2"). By satisfies (1), ..., (6), (Ax c°) be-
cause they are quantifier-free, true in B and B; is a substructure of B. We define
a valuation v; in B; in the following way:

0 (p) = v(p) ifp=piorp=psor...orp=p,
! 0 otherwise

We have (B,v) F a iff (Bi,v1) F a. Let ay,...,a; be the elements of B; for which
—¢°. For every i = 1,...,k we have —¢°(a;) in B and B is an ECA; so 3b;,¢; € B
such that b; 7£ 0, ¢ 7é 0, a; = b; + ¢, bi,Ci H CL;-k. Let C = By U {bz 1€
{1,...,k}} U{e; + @ € {1,...,k}}. We have |C| < 3.hy,. C generates a finite
Boolean subalgebra of B B, with a number of the elements less or equal to 92"
We define in By F as a restriction of - in B. Consequently B, satisfies (1),.. ., (6).

We define ¢® in By in the following way: for every a € Bs, ¢°(a) gy c®(a) in B or
(Vb,c € Ba)(b#0,c#0,a=b+c— b,c¥ a*). We define C in B, in the following
way: aCb < a,b¥ 0 for arbitrary a, b € Bs.

We will prove that B; is a substructure of Bs. It suffices to prove that for every
a € B; we have: ¢°(a) in By <> ¢°(a) in Bs.
—) Let ¢°(a) in B;. Consequently c°(a) in B because B is a substructure of B.
Thus ¢°(a) in Bs.
) Let ¢°(a) in Bs.
Case 1: ¢°(a) in B
Consequently c°(a) in B; because By is a substructure of B.
Case 2: —c°(a) in B
Since ¢®(a) in By, we have (Vb,c € By)(b # 0, ¢ # 0, a = b+ ¢ — b,c ¥ a¥).
We have —¢°(a) in B and a € By. Consequently a = a; for some i € {1,...,k}.
Consequently (3b;,¢; € Bo)(b; # 0, ¢; # 0, a = b; + ¢, bj,¢; b a*). This is a
contradiction. Consequently case 2 is impossible.
Consequently B; is a substructure of By; so (By,v1) F a ¢ (B2, v1) F a.
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We will prove that Bj satisfies (Ax ¢°). Let a, b, ¢ € By and ¢°(a), b # 0, ¢ # 0,

a =0b+ c. We will prove that b, c ¥ a*.

Case 1: °(a) in B

We have b # 0, ¢ # 0, a = b+ c in B because B; is a Boolean subalgebra of B.
Using that B is an ECA and ¢°(a) in B, we get that b,c¥ o* in B. Consequently
b,c¥ a* in Bs.

Case 2: —c°(a) in B

We have (Vb,c € By)(b#0,c#0,a=b+c—b,cFa*). We have b,cF a* in Bs.
Consequently By satisfies (Ax ¢°).

Let a € By and —¢°(a) in By. We will prove that there are b, ¢ € B, such that
b#0,c#0,a=b+c,bck a” in By. From the definition of ¢® in B, we get that:
—c®(a) in B and (Fb,c € B3)(b#0,c#0,a=b+c¢, b,ck a*).

Consequently for every a € By we have ¢®(a) <> Vb,c(b#0,c#0,a=b+c —
b, c ¥ a*).

Consequently By is an ECA. By has a number of the elements less or equal to
22°"" S0 o is true in By, ie. (Ba,v1) F a. Consequently (B,v) F a. O



CHAPTER 4

Conclusion

In the dissertation have been obtained the following results:

In the first part of the first chapter the language of distributive contact lattices is
extended by considering as non-definable primitives the relations of contact, non-
tangential inclusion and dual contact. It is obtained an axiomatization of the theory
consisting of the universal formulas in the language £(0,1;+,; <, C, 6, <) true in
all contact algebras. The structures in £, satisfying the axioms in question, are
called extended distributive contact lattices (EDC-lattices). A relational repre-
sentation theorem is proved, stating that each EDC-lattice can be isomorphically
embedded into a contact algebra. The axiomatization and the relational represen-
tation theorem have been obtained by T. Ivanova.

In part IT of chapter 1 is obtained topological representation theory of EDC-
lattices and some of their axiomatic extensions yielding representations in 7} and T5
spaces. Special attention is given to dual dense and dense representations (defined
in Section 4.1) in contact algebras of regular closed and regular open subsets of
topological spaces. These results are common with Prof. D. Vakarelov.

In chapter 2 is considered the predicate ¢ - internal connectedness. It is proved
that this predicate cannot be defined in the language of contact algebras. Because
of this to the language is added a new ternary predicate symbol F which has the
following sense: in the contact algebra of regular closed sets of some topological
space a,b F ciff anbd C ¢. It turns out that the predicate ¢ can be defined
in the new language. It is defined extended contact algebra - a Boolean algebra
with added relations -, C' and ¢°, satisfying some axioms, and is proved that every
extended contact algebra can be isomorphically embedded in the contact algebra
of the regular closed subsets of some compact, semiregular, T; topological space
with added relations F and ¢°. So extended contact algebra can be considered
an axiomatization of the theory, consisting of the universal formulas true in all
topological contact algebras with added relations - and ¢®. The results in chapter 2
except the idea that ¢° can be defined by the relation -, have been obtained by T.
Ivanova.

In chapter 3 is considered a first-order language without quantifiers correspond-
ing to EDCL. Completeness theorems are given with respect to both algebraic and
topological semantics for several logics for this language. It turns out that all these
logics are decidable. It is also considered a quantifier-free first-order language cor-
responding to ECA and a logic for ECA which is decidable. The results in this
chapter have been obtained by T. Ivanova.
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