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♣ ♣ ♣

1. Introduction

♣♣♣

In the classical Euclidean geometry the notion of point is taken as one of the
basic primitive notions. In contrast the region-based theory of space (RBTS) has
as primitives the more realistic notion of region as an abstraction of physical body,
together with some basic relations and operations on regions. Some of these rela-

tions are mereological - part-of (x ≤ y), overlap (xOy), its dual underlap (xÔy).
Other relations are topological - contact (xCy), nontangential part-of (x � y),

dual contact (xĈy) and some others de�nable by means of the contact and part-of
relations. This is one of the reasons that the extension of mereology with these
new relations is commonly called mereotopology. There is no clear di�erence in the
literature between RBTS and mereotopology, and by some authors RBTS is related
rather to the so called mereogeometry, while mereotopology is considered only as
a kind of point-free topology, considering mainly topological properties of things.
The origin of RBTS goes back to Whitehead [46] and de Laguna [28]. According
to Whitehead points, as well as the other primitive notions in Euclidean geometry
like lines and planes, do not have separate existence in reality and because of this
are not appropriate for primitive notions; but points have to be de�nable by the
other primitive notions.

Survey papers about RBTS are [40, 5, 17, 32] (see also the handbook [1] and
[4] for some logics of space). Surveys concerning various applications are [6, 7] and
the book [20] (see also special issues of Fundamenta Informaticæ[9] and the Journal
of Applied Nonclassical Logics [3]). RBTS has applications in computer science
because of its more simple way of representing qualitative spatial information and
it initiated a special �eld in Knowledge Representation (KR) called Qualitative
Spatial Representation and Reasoning (QSRR). One of the most popular systems
in QSRR is the Region Connection Calculus (RCC) introduced in [33].

The notion of contact algebra is one of the main tools in RBTS. This notion
appears in the literature under di�erent names and formulations as an extension of
Boolean algebra with some mereotopological relations [43, 35, 41, 42, 5, 13, 8,
10]. The simplest system, called just contact algebra was introduced in [8] as an
extension of Boolean algebra B = (B, 0, 1, ·,+, ∗) with a binary relation C called
contact and satisfying several simple axioms:

(C1) If aCb, then a 6= 0 and b 6= 0,
(C2) If aCb and a ≤ c and b ≤ d, then cCd,
(C3) If aC(b+ c), then aCb or aCc,
(C4) If aCb, then bCa,
(C5) If a · b 6= 0, then aCb.
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The elements of the Boolean algebra are called regions and are considered
analogs of physical bodies. Boolean operations are considered as operations for
constructing new regions from given ones. The unit element 1 symbolizes the
region containing as its parts all regions, and the zero region 0 symbolizes the
empty region. The contact relation is used also to de�ne some other important
mereotopological relations like non-tangential inclusion, dual contact and others.

The standard model of Boolean algebra is the algebra of subsets of a given
universe. This model cannot express all kinds of contact, for example, the external
contact in which the regions share only a boundary point. Because of this standard
models of contact algebras are topological and are the contact algebras of regular
closed sets in a given topological space.

Non-tangential inclusion and dual contact are de�ned by the operation of
Boolean complementation. But there are some problems related to the motiva-
tion of this operation. A question arises: if the region a represents a physical body,
then what kind of body represents a∗? To avoid this problem, we can drop the
operation of complement and replace the Boolean part of a contact algebra with
distributive lattice. First steps in this direction were made in [11, 12], introduc-
ing the notion of distributive contact lattice. In a distributive contact lattice the
only mereotopological relation is the contact relation. In the �rst part of the �rst
chapter we extend the language of distributive contact lattices by considering as
non-de�nable primitives the relations of contact, nontangential inclusion and dual
contact. We obtain an axiomatization of the theory consisting of the formulas in the

language L(0, 1; +, ·;≤, C, Ĉ,�) true in all contact algebras. The structures in L,
satisfying the axioms in question, are called extended distributive contact lattices
(EDC-lattices). A representation theorem is proved, stating that each EDC-lattice
can be isomorphically embedded into a contact algebra. Relations of EDC-lattices
with other mereotopological systems are also considered: EDC-lattices are rela-
tional mereotopological systems in the sense of [29], and the well known RCC-8
system of mereotopological relations is de�nable in the language of EDC-lattices.

Part II of chapter 1 is devoted to the topological representation theory of EDC-
lattices and some of their axiomatic extensions yielding representations in T1 and T2
spaces. Special attention is given to dual dense and dense representations (de�ned
in Section 4.1) in contact algebras of regular closed and regular open subsets of
topological spaces. The method is an extension of the representation theory of
distributive contact lattices [12] and adaptation of some constructions from the
representation theory of contact algebras [8, 10].

Since the investigations in chapter 1 form a special sub�eld of mereotopology
based on distributive lattices, we introduce for this sub�eld a special name - dis-
tributive mereotopology, which is included in the title of the chapter. Having in
mind this terminology, then the subarea of mereotopology based on Boolean al-
gebras should be named Boolean mereotopology. Similar special names for other
sub�elds of mereotopology depending on the corresponding mereological parts also
can be suggested: for instance the mereotopology considered in [19, 44, 45] is
based on some non-distributive lattices - hence non-distributive mereotopology, and
the mereotopological structures considered, for instance, in [29, 16] are pure re-
lational and without any algebraic lattice-structure in the set of regions - hence
relational mereotopology. Another way of obtaining various new mereotopologies is
considered in [18] by means di�erent generalizations of Boolean complementation.



In [38] is presented a complete quanti�er-free axiomatization of several logics
on region-based theory of space, based on contact relation and connectedness pred-
icates c and c≤n, and completeness theorems for the logics in question are proved.
It was shown in [38] that c and c≤n are de�nable in contact algebras by the contact
C. The predicates c and c≤n were studied for the �rst time in [30, 31] (see also
[40]). The expressiveness and complexity of spatial logics containing c and c≤n has
been investigated in [23, 24, 25, 26, 27]. In chapter 2 we consider the predicate
co - internal connectedness. Let X be a topological space and x ∈ RC(X). Let
co(x) means that Int(x) is a connected topological space in the subspace topology.
We prove that the predicate internal connectedness cannot be de�ned in the lan-
guage of contact algebras. Because of this we add to the language a new ternary
predicate symbol ` which has the following sense: in the contact algebra of regular
closed sets of some topological space a, b ` c i� a ∩ b ⊆ c. It turns out that the
predicate co can be de�ned in the new language. We de�ne extended contact alge-
bras - Boolean algebras with added relations `, C and co, satisfying some axioms,
and prove that every extended contact algebra can be isomorphically embedded in
the contact algebra of the regular closed subsets of some compact, semiregular, T0
topological space with added relations ` and co. So extended contact algebra can
be considered an axiomatization of the theory, consisting of the universal formulas
true in all topological contact algebras with added relations ` and co.

In chapter 3 we consider a �rst-order language without quanti�ers correspond-
ing to EDCL. We give completeness theorems with respect to both algebraic and
topological semantics for several logics for this language. It turns out that all
these logics are decidable. We also consider a quanti�er-free �rst-order language
corresponding to ECA and a logic for ECA which is decidable.

Acknowledgements. I thank all members of Department of Mathematical
Logic and Applications at the Faculty of Mathematics and Computer Science of
the So�a University for their understanding to my health problems which led to
signi�cant delay of my work. I am grateful to all my teachers from this department
for the considerable amounts of knowledge I have obtained from them. I thank my
supervisors Prof. Dimiter Vakarelov and Prof. Tinko Tinchev for their mentorship
and for the interesting mathematical tasks they gave me to solve.



CHAPTER 1

Distributive mereotopology: extended distributive

contact lattices

In the �rst part of this chapter we extend the language of distributive contact
lattices ([11, 12]) by considering as non-de�nable primitives also the relations of
nontangential inclusion and dual contact. We obtain an axiomatization of the

theory consisting of the formulas in the language L(0, 1; +, ·;≤, C, Ĉ,�) true in all
contact algebras. The structures in L, satisfying the axioms in question, are called
extended distributive contact lattices (EDC-lattices). A representation theorem
is proved, stating that each EDC-lattice can be isomorphically embedded into a
contact algebra. Relations of EDC-lattices with other mereotopological systems
are also considered: EDC-lattices are relational mereotopological systems in the
sense of [29], and the well known RCC-8 system of mereotopological relations is
de�nable in the language of EDC-lattices.

Part II of chapter 1 is devoted to the topological representation theory of EDC-
lattices and some of their axiomatic extensions yielding representations in T1 and T2
spaces. Special attention is given to dual dense and dense representations (de�ned
in Section 4.1) in contact algebras of regular closed and regular open subsets of
topological spaces. The method is an extension of the representation theory of
distributive contact lattices [12] and adaptation of some constructions from the
representation theory of contact algebras [8, 10].

PART I: EXTENDED DISTRIBUTIVE CONTACT LATTICES:
AXIOMATIZATION AND EMBEDDING IN CONTACT ALGEBRAS

1. Extended distributive contact lattices.
Choosing the right axioms

1.1. Contact algebras, distributive contact lattices and extended dis-
tributive contact lattices. As it was mention in the introduction, contact algebra
is a Boolean algebra B = (B,≤, 0, 1, ·,+, ∗, C) with an additional binary relation
C called contact, and satisfying the following axioms:

(C1) If aCb, then a 6= 0 and b 6= 0,
(C2) If aCb and a ≤ a′ and b ≤ b′, then a′Cb′,
(C3) If aC(b+ c), then aCb or aCc,
(C4) If aCb, then bCa,
(C5) If a · b 6= 0, then aCb.

Let us note that on the base of (C4) we have (C3') (a+ b)Cc implies aCc or bCc.

5
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Remark 1.1. Observe that the above axioms are universal �rst-order condi-
tions on the language of Boolean algebra with the C-relation and not containing
the Boolean complementation ∗. This fact says that the axioms of C will be true
in any distributive sublattice of B. �

The Remark 1.1 was one of the formal motivations for the de�nition of distribu-
tive contact lattice introduced in [11, 12]: the de�nition is obtained just by replac-
ing the underlying Boolean algebra by a bounded distributive lattice (D,≤, 0, 1, ·,+)
and taking for the relation C the same axioms. This makes possible to consider the
main standard models of contact algebras, namely the algebras of regular closed or
regular open sets of a topological space, also as the main models for distributive
contact lattices, just by ignoring the Boolean complementation ∗ in this models.
This was guaranteed by Theorem 7 from [12] stating that every distributive contact
lattice can be isomorphically embedded into a contact algebra, which fact indicates
also that the choice of the set of axioms for distributive contact lattice is su�cient
for proving this theorem. Since our main goal in the present paper is to obtain a def-

inition of distributive contact lattice extended with relations of dual contact Ĉ and
nontangential part-of �, we will follow here the above strategy, namely to choose

universal �rst-order statements for the relations C, Ĉ,� as additional axioms which
are true in arbitrary contact algebras and which guarantee the embedding into a
contact algebra. The obtained algebraic system will be called extended distributive
contact lattice. The next de�nition is a result of several preliminary experiments
for ful�lling the above program.

Definition 1.1. Extended distributive contact lattice. Let D = (D,≤
, 0, 1, ·,+, C, Ĉ,�) be a bounded distributive lattice with three additional relations

C, Ĉ,�, called respectively contact, dual contact and nontangential part-of.

The obtained system, denoted shortly by D = (D,C, Ĉ,�), is called extended

distributive contact lattice (EDC-lattice, for short) if it satis�es the axioms
listed below.

Notations: if R is one of the relations ≤, C, Ĉ,�, then its complement is de-
noted by R. We denote by ≥ the converse relation of ≤ and similarly � denotes
the converse relation of �.

Axioms for C alone: The axioms (C1)-(C5) mentioned above.

Axioms for Ĉ alone:

(Ĉ1) If aĈb, then a, b 6= 1,

(Ĉ2) If aĈb and a′ ≤ a and b′ ≤ b, then a′Ĉb′,
(Ĉ3) If aĈ(b · c), then aĈb or aĈc,
(Ĉ4) If aĈb, then bĈa,

(Ĉ5) If a+ b 6= 1, then aĈb.

Axioms for � alone:

(� 1) 0� 0,
(� 2) 1� 1,
(� 3) If a� b, then a ≤ b,
(� 4) If a′ ≤ a� b ≤ b′, then a′ � b′,
(� 5) If a� c and b� c, then (a+ b)� c,
(� 6) If c� a and c� b, then c� (a · b),
(� 7) If a� b and (b · c)� d and c� (a+ d), then c� d.
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Mixed axioms:

(MC1) If aCb and a� c, then aC(b · c),
(MC2) If aC(b · c) and aCb and (a · d)Cb, then dĈc,

(MĈ1) If aĈb and c� a, then aĈ(b+ c),

(MĈ2) If aĈ(b+ c) and aĈb and (a+ d)Ĉb, then dCc,

(M � 1) If aĈb and (a · c)� b, then c� b,
(M � 2) If aCb and b� (a+ c), then b� c.

Remark 1.2. (i) About the axioms. As one can see the list of axioms is
quite long and one can ask about the leading intuition to accept these axioms. We
invite the reader to read again the text after 1.1. Namely, we followed the next 3
principles: (1) the axioms to be �rst-order sentences true in contact algebras, (2)
the principle of duality to be true (see the next Observation) and (3) the axioms to
be su�cient to prove the embedding theorem of EDC-latices in contact algebras.
The most di�cult was the last one. In order to ful�l it we proceeded as follows:
we started to prove the embedding theorem having in mind some construction and
during this process we look for the needed axioms satisfying (1). Then we polished
the obtained set of axioms several times in order to obtain a more elegant set and
accordingly reedited the proof.

(ii) Duality principle. For the language of EDCL we can introduce the

following principle of duality: dual pairs (0, 1), (·,+), (≤,≥), (C, Ĉ), (�,�). The
motivation to consider the �rst three dual pairs comes from the corresponding

notion of duality in lattice theory. But why we consider (C, Ĉ), (�,�) as dual
pairs? The motivation comes from the following facts about duality principle for
operations and relations in Boolean algebras:

If f(a1, . . . , an) is a (de�nable) Boolean operation then its dual f̂ satis�es the

equation f̂(a1, . . . , an) = f(a∗1, . . . , a
∗
n)∗,

If R(a1, . . . , an) is a (de�nable) Boolean relation then its dual R̂ satis�es the

equivalence R̂(a1, . . . , an)↔ R(a∗1, . . . , a
∗
n).

For instance the dual of Boolean ordering a ≤ b is a ≥ b which is equivalent
to a∗ ≤ b∗. Extending this observation to the contact relation C we de�ne its dual

aĈb in the contact algebra as a∗Cb∗. In contact algebras non-tangential part-of has
the following de�nition a� b↔def aCb

∗. Then its dual should be a∗ � b∗ which
is equivalent to b� a (a� b).

By means of dual pairs for each statement (de�nition) A of the language we

can de�ne in an obvious way its dual Â. For each axiom Ax from the list of axioms

of EDCL its dual Âx is also an axiom. On the base of this observation the proofs
of dual statements will be omitted. Note, for instance, that each axiom from the
�rst group (axioms for C alone) is dually equivalent to the corresponding axiom

from the second group (axioms for Ĉ alone) and vice versa, the third and fourth
groups of axioms (axioms for � alone and mixed axioms) are closed under duality.

For instance for the mixed axioms we have: axiom (MĈ1) is dually equivalent to

the axiom (MC1), (MĈ2) is dually equivalent to (MC2) and (M � 2) is dually
equivalent to (M � 1). �

1.2. Relational models of EDC-lattices. In order to prove that the axioms
of EDC-lattices are true in contact algebras we will introduce a relational models
of EDCL which are slight modi�cations of the relational models of contact algebras
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introduced in [10] and called there discrete contact algebras. The model is de�ned
as follows.

Let (W,R) be a relational system whereW is a nonempty set and R is a re�exive
and symmetric relation inW and let a, b be arbitrary subsets ofW . De�ne a contact
relation between a and b as follows

(Def CR) aCRb i� ∃x ∈ a and ∃y ∈ b such that xRy.
Then any Boolean algebra of subsets of W with thus de�ned contact is a contact
algebra, and moreover, every contact algebra is isomorphic to a contact algebra of
such a kind [10].

We will modify this model for EDCL as follows: instead of Boolean algebras of
sets we consider only families of subsets containing the empty set ∅ and the set W
and closed under the set-union and set-intersection which are bounded distributive
lattices of sets. Hence we interpret lattice constants and operations as follows:
0 = ∅, 1 = W , a · b = a ∩ b, a + b = a ∪ b. For the contact relation we preserve
the de�nition (Def CR). This modi�cation is just a model of distributive contact
lattice studied in [12].

Having in mind the de�nitions aĈb ↔def a∗Cb∗ and a � b ↔def aCb∗ in

Boolean contact algebras, we introduce the following de�nitions for Ĉ and � (for
some convenience we present the de�nition of the negation of �):

(Def ĈR ) aĈRb i� ∃x 6∈ a and ∃y 6∈ b such that xRy, and
(Def 6�R) a 6�R b i� ∃x ∈ a and ∃y 6∈ b such that xRy.

Lemma 1.1. Let (W,R) be a relational system with re�exive and symmetric
relation R and let D be any collection of subsets ofW which is a bounded distributive

set-lattice with relations C, Ĉ and � de�ned as above. Then (D,CR, ĈR,�R) is
an EDC-lattice.

Proof. Routine veri�cation that all axioms of EDC-lattice are true. �

EDC-latticeD = (D,CR, ĈR,�R) over a relational system (W,R) will be called
discrete EDC-lattice. If D is a set of all subsets of W then D is called a full discrete
EDC-lattice.

Corollary 1.1. The axioms of the relations C, Ĉ and � are true in contact
algebras.

Proof. The proof follows by Lemma 1.1 and the fact that every contact al-
gebra can be isomorphically embedded into a discrete contact algebra over some
relational system (W,R) with re�exive and symmetric relation R [10]. �

2. Embedding EDC-lattices into contact algebras

The main aim of this section is the proof of a theorem stating that every
EDC-lattice can be embedded into a full discrete EDC-lattice, which, of course is
a Boolean contact algebra. As a consequence this will show that the axiomatiza-
tion program for EDCL is ful�lled successfully. Since all axioms of EDC-lattice
are universal �rst-order conditions, the axiomatization can be considered also as
a characterization of the universal fragment of complement-free contact algebras
based on the three relations. We will use in the representation theory a Stone like
technique developed in [36] for the representation theory of distributive lattices.
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2.1. Preliminary facts about �lters and ideals in
distributive lattices. We remind the reader of some basic facts about �lters and
ideals in distributive lattices, for details see [2, 36].

Let D be a distributive lattice. A subset F of D is called a �lter in D if it
satis�es the following conditions: (f1) 1 ∈ F , (f2) if a ∈ F and a ≤ b then b ∈ F ,
(f3) if a, b ∈ F then a.b ∈ F . F is a proper �lter if 0 6∈ F , F is a prime �lter if it is
a proper �lter and a+ b ∈ F implies a ∈ F or b ∈ F .

Dually, a subset I of D is an ideal if (i1) 0 ∈ I, (i2) if a ∈ I and b ≤ a then
b ∈ I, (i3) if a, b ∈ I then a+ b ∈ I. I is a proper ideal if 1 6∈ I, I is a prime ideal if
it is a proper ideal and a.b ∈ I implies a ∈ I or b ∈ I.

We will use later on some of the following facts without explicit mentioning.

Facts 2.1. Let D be a bounded distributive lattice and Let F, F1, F2 be �lters
and I, I1, I2 be ideals.

(1) The complement of a prime �lter is a prime ideal and vice-versa.
(2) [a) = {x ∈ D : a ≤ x} is the smallest �lter containing a;

(a] = {x ∈ D : x ≤ a} is the smallest ideal containing a.
(3) F1 ⊕ F2 = {c ∈ D : (∃a ∈ F1, b ∈ F2)(a · b ≤ c)} = {a · b : a ∈ F1, b ∈ F2}

is the smallest �lter containing F1 and F2.
[a)⊕ F = {x · y : a ≤ x, y ∈ F}
I1⊕I2 = {c ∈ D : (∃a ∈ I1, b ∈ I2)(c ≤ a+b)} = {a+b : a ∈ I1, b ∈ I2}

is the smallest ideal containing I1 and I2.
(a]⊕ I = {x+ y : x ≤ a, y ∈ I}.
In both cases the operation ⊕ is associative and commutative.

(4) [a) ∩ I = ∅ i� a 6∈ I
If (F ⊕ [a)) ∩ I 6= ∅ then (∃x ∈ F )(a · x ∈ I),
(a] ∩ F = ∅ i� a 6∈ F
If F ∩ (I ⊕ (a]) 6= ∅ then (∃x ∈ I)(a+ x ∈ F ).

The following three statements are well known in the representation theory of
distributive lattices.

Lemma 2.1. Let F0 be a �lter, I0 be an Ideal and F0 ∩ I0 = ∅. Then:
(1) Filter-extension Lemma. There exists a prime �lter F such that F0 ⊆

F and F ∩ I0 = ∅.
(2) Ideal-extension Lemma. There exists a prime ideal I such that I0 ⊆ I

and F0 ∩ I = ∅.
(3) Separation Lemma for �lters and ideals. There exist a (prime)

�lter F and an (prime) ideal I such that F0 ⊆ F , I0 ⊆ I, F ∩ I = ∅, and
F ∪ I = D.

Remark 2.2. Note that Filter-extension Lemma is dual to the Ideal-extension
Lemma and that each of the three statement easily implies the other two. Normally
they can be proved by application of the Zorn Lemma. The proof, for instance,
of Filter-extension Lemma goes as follows. Apply the Zorn Lemma to the set
M = {G : G is a �lter, F0 ⊆ G and G ∩ I0 = ∅} and denote by F one of its
maximal elements. Then it can be proved that F is a prime �lter, and this �nishes
the proof. The sketched proof gives, however, an additional property of the �lter
F , namely

(∀x 6∈ F )(∃y ∈ F )(x · y ∈ I0),
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which added to the formulation of the lemma makes it stronger. Since we will need
later on this stronger version let us prove this property.

Suppose that x 6∈ F and consider the �lter F⊕[x). Since F is a maximal element
of M , then F ⊕ [x) does not belong to M and consequently F ⊕ [x) ∩ I0 6= ∅. By
the Fact 2.1, 4, there exists y ∈ F such that x · y ∈ I0. We formulate this new
statement below as Strong �lter-extension Lemma and its dual as Strong ideal-
extension Lemma. We do not know if these two statements for distributive lattices
are new, but we will use them in the representation theorem in the next section.
�

Lemma 2.2. Let F0 be a �lter, I0 be an Ideal and F0 ∩ I0 = ∅. Then:
(1) Strong �lter-extension Lemma. There exists a prime �lter F such

that F0 ⊆ F , (∀x ∈ F )(x 6∈ I0) and (∀x 6∈ F )(∃y ∈ F )(x · y ∈ I0).
(2) Strong ideal-extension Lemma. There exists a prime ideal I such that

I0 ⊆ I, (∀x ∈ I)(x 6∈ F0) and (∀x 6∈ I)(∃y ∈ I)(x+ y ∈ F0).

2.2. Filters and Ideals in EDC-lattices. In the next two lemmas we list
some constructions of �lters and ideals in EDCL which will be used in the repre-
sentation theory of EDC-lattices.

Lemma 2.3. Let D = (D,C, Ĉ,�) be an EDC-lattice. Then:

(1) The set I(xCb) = {x ∈ D : xCb} is an ideal,

(2) the set F (xĈb) = {x ∈ D : xĈb} is a �lter,
(3) the set I(x� b) = {x ∈ D : x� b} is an ideal,
(4) the set F (x� b) = {x ∈ D : x� b} is a �lter.

Proof. 1. By axiom (C1) 0Cb, so 0 ∈ I(xCb). Suppose x ∈ I(xCb) (hence
xCb) and y ≤ x. Then by axiom (C2) yCb). Let x, y ∈ I(xCb), hence xCb and yCb.
Then by axiom (C3) and (C4) we get (x+ y)Cb which shows that x+ y ∈ I(xCb),
which ends the proof of this case.

In a similar way one can proof 3. The cases 2. and 4. follow from 1. and 3.
respectively by duality.

�

Lemma 2.4. Let D = (D,C, Ĉ,�) be an EDC-lattice and Let Γ be a prime
�lter in D. Then:

(1) The set I(xCΓ) = {x ∈ D : (∃y ∈ Γ)(xCy)} is an ideal,

(2) the set F (xĈΓ) = {x ∈ D : (∃y ∈ Γ)(xĈy)} is a �lter,
(3) the set I(x� Γ) = {x ∈ D : (∃y ∈ Γ)(x� y)} is an ideal,
(4) the set F (x� Γ) = {x ∈ D : (∃y ∈ Γ)(x� y)} is a �lter.

Proof. Note that the Lemma remains true if we replace Γ by a �lter and Γ
by an ideal.

1. The proof that I(xCΓ) satis�es the conditions (i1) and (i2) from the def-
inition of ideal is easy. For the condition (i3) suppose x1, x2 ∈ I(xCΓ). Then
∃y1, y2 ∈ Γ such that x1Cy1 and x2Cy2, Since Γ is a �lter then y = y1 · y2 ∈ Γ.
Since y ≤ y1 and y ≤ y2, then by axiom (C2) we get x1Cy and x2Cy. Then
applying (C3') we obtain (x1 + x2)Cy, which shows that x1 + x2 ∈ I(xCΓ).

In a similar way one can prove 3. The proofs of 2 and 4 follow by duality from
1 and 3, taking into account that Γ is a prime ideal.

�
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2.3. Relational representation theorem for EDC-lattices. Throughout

this section we assume that D = (D,C, Ĉ,�) is an EDC-lattice and let PF (D)
and PI(D) denote the set of prime �lters of D and the set of prime ideals of D.
Let h(a) = {Γ ∈ PF (D) : a ∈ Γ} be the well known Stone embedding mapping.
We shall construct a canonical relational structure (W c, Rc) related to D putting
W c = PF (D) and de�ning the canonical relation Rc for Γ,∆ ∈ PF (D) as follows:

ΓRc∆ ↔def (∀a, b ∈ D)((a ∈ Γ, b ∈ ∆ → aCb)&(a 6∈ Γ, b 6∈ ∆ → aĈb)&(a ∈
Γ, b 6∈ ∆→ a 6� b)&(a 6∈ Γ, b ∈ ∆→ b 6� a))

For some technical reasons and in order to use duality we introduce also the

dual canonical structure (Ŵ c, R̂c) putting Ŵ c = PI(D) and for Γ,∆ ∈ PI(D),

ΓR̂c∆↔def ΓRc∆.
Our aim is to show that the Stone mapping h is an embedding from D into

the EDC-lattice over (W c, Rc) (see Section 1.1). First we need several technical
lemmas.

Lemma 2.5. The canonical relations Rc and R̂c are re�exive and symmetric.

Proof. ( For Rc) Symmetry is obvious by the de�nition of Rc and axioms

(C4) and (Ĉ4). In order to prove that ΓRcΓ suppose a ∈ Γ and b ∈ Γ. Then a·b ∈ Γ
and since Γ is a prime �lter, then a.b 6= 0. Then by axiom (C5) we obtain aCb,
which proves the �rst conjunct of the de�nition of Rc. For the second conjunct
suppose that a 6∈ Γ and b 6∈ Γ, then, since Γ is a prime �lter, a + b 6∈ Γ and hence

a+ b 6= 1. Then by axiom (Ĉ5) we get aĈb. For the third conjunct suppose a ∈ Γ
and b 6∈ Γ, which implies that a 6≤ b. Then by axiom (� 3) we obtain a 6� b. The
proof of the last conjunct is similar.

(For R̂c) - by the de�nition of R̂c.
�

Lemma 2.6. (i) aCb i� (∃Γ,∆ ∈ PF (D))(a ∈ Γ and b ∈ ∆ and ΓRc∆).
(ii) a 6� b i� (∃Γ,∆ ∈ PF (D))(a ∈ Γ and b 6∈ ∆ and ΓRc∆).

Proof. (i) Note that the proof is quite technical, so we will present it with
full details. The reasons for this are twofold: �rst to help the reader to follow it
more easily, and second, to skip the details in a similar proofs.

(⇐) If a ∈ Γ and b ∈ ∆ and ΓRc∆), then by the de�nition of Rc we obtain
aCb.

(⇒) Suppose aCb.
The proof will go on several steps.
Step 1: construction of Γ. Consider the ideal I(xCb) = {x ∈ D : xCb} (Lemma
2.3). Since aCb, a 6∈ {x ∈ D : xCb}. Then [a) ∩ {x ∈ D : xCb} = ∅ and [a) is a
�lter (see Facts 2.1). By the Strong �lter-extension lemma (see Lemma 2.2) there
exists a prime �lter Γ such that [a) ⊆ Γ and (∀x ∈ Γ)(x 6∈ {x ∈ D : xCb} and
(∀x 6∈ Γ)(∃y ∈ Γ)(x · y ∈ {x ∈ D : xCb}. From here we conclude that Γ satis�es
the following three properties:

(#0) a ∈ Γ,

(#1) If x ∈ Γ, then xCb, and

(#2) If x 6∈ Γ, then there exists y ∈ Γ such that (x · y)Cb.

Step 2: construction of ∆. This will be done in two sub-steps.
Step 2.1 Consider the �lters and ideals de�nable by Γ as in Lemma 2.4



2. EMBEDDING EDC-LATTICES INTO CONTACT ALGEBRAS 12

I(xCΓ) = {x ∈ D : (∃y ∈ Γ)(xCy)}, F (xĈΓ) = {x ∈ D : (∃y ∈ Γ)(xĈy)}, I(x �
Γ) = {x ∈ D : (∃y ∈ Γ)(x � y)}, and F (x � Γ) = {x ∈ D : (∃y ∈ Γ)(x � y}. In
order to apply the Separation Lemma we will prove the following condition:

(#3) (F (x� Γ)⊕ F (xĈΓ)⊕ [b)) ∩ (I(xCΓ)⊕ I(x� Γ)) = ∅.
Suppose that (#3) is not true, then for some t ∈ D we have

(1) t ∈ F (x� Γ)⊕ F (xĈΓ)⊕ [b) and
(2) t ∈ I(xCΓ)⊕ I(x� Γ).

It follows from (2) that ∃k1, k2 such that
(3) k1 ∈ I(x� Γ) and
(4) k2 ∈ I(xCΓ) and
(5) t = k1 + k2. (Here we use Facts 2.1 (3).)

It follows from (1) that ∃k4, k5, k6 ∈ D such that
(6) k4 ∈ F (x� Γ) and

(7) k5 ∈ F (xĈΓ) and
(8) k6 ∈ [b) and
(9) t = k4 · k5 · k6. (Here we use Facts 2.1 (3).)

From (5) and (9) we get
(10) k1 + k2 = k4 · k5 · k6.

It follows from (3), (4), (6) and (7) that
(11) ∃x1 ∈ Γ such that k1 � x1,
(12) ∃x2 ∈ Γ such that k2Cx2,
(13) ∃x3 ∈ Γ such that x3 � k4,

(14) ∃x4 ∈ Γ such that k5Ĉx4.
Let x = x1 + x4. Since Γ is an ideal, we obtain by (11) and (14) that

(15) x ∈ Γ and x 6∈ Γ. Then by (#2) we get
(16) ∃y ∈ Γ such that (x · y)Cb.

Let z = x2 · x3 · y. Then by (12), (13) and (16) we obtain that
(17) z ∈ Γ
and by (#1) that
(18)zCb.

From x1 ≤ x and (11) by axiom (� 4) we get
(19) k1 � x.

From x4 ≤ x and (14) by axiom (Ĉ2) we obtain

(20) k5Ĉx.
From z ≤ x2 and (12) by axiom (C2) we get

(21) k2Cz.
From z ≤ x3 and (13) by axiom (� 4) we obtain

(22) z � k4.
We shall show that the following holds

(23) zC(b · k1).
Suppose for the sake of contradiction that zC(b · k1). From b · k1 ≤ k1 and (19)

by axiom (� 4) we get (b · k1)� x. From this fact and zC(b · k1) by axiom (MC1)
we obtain (b ·k1)C(z ·x). But we also have b ·k1 ≤ b, z ·x ≤ y ·x, so by axiom (C2)
we get bC(y · x) - a contradiction with (16).

The following condition holds
(24) zC(b · k2).
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To prove this suppose for the sake of contradiction that zC(b · k2). We also
have b · k2 ≤ k2, so by axiom (C2) we get zCk2 - a contradiction with (21).

Suppose that zC(b · (k1 + k2)). By axiom (C3) we have zC(b · k1) or zC(b · k2)
- a contradiction with (23) and (24). Consequently zC(b · (k1 + k2)) and by (10)
we obtain zC(b · k4 · k5 · k6). But b ≤ k6 (from (8)), so b · k4 · k5 · k6 = b · k4 · k5.
Consequently
(25) zC(b · k4 · k5).

From (18) and (22) by axiom (MC1) we get
(26) zC(b · k4).

We shall show that the following condition holds
(27) (z · x)C(b · k4)

For to prove this suppose the contrary (z ·x)C(b ·k4). We also have z ·x ≤ y ·x,
b · k4 ≤ b, so by axiom (C2) we get (y · x)Cb - a contradiction with (16).

From (25), (26) and (27) by axiom (MC2) we obtain xĈk5 - a contradiction
with (20). Consequently (#3) is true.

Step 2.2: the construction of ∆. Applying the Filter extension Lemma to
(#3) we obtain a prime �lter ∆ (and this is just the required ∆) such that:

(1) F (x� Γ) = {x ∈ D : (∃y ∈ Γ)(x� y} ⊆ ∆,

(2) F (xĈΓ) = {x ∈ D : (∃y ∈ Γ)(xĈy)} ⊆ ∆,
(3) b ∈ ∆,
(4) I(xCΓ) ∩∆ = ∅,
(5) I(x� Γ) ∩∆ = ∅.

Step 3: proof of ΓRc∆. We will verify the four cases of the de�nition of Rc.

• Case 1: y ∈ Γ and x ∈ ∆. We have to show yCx. Suppose yCx. Then
xCy and by y ∈ Γ we get x ∈ I(xCΓ). Then by 4. x 6∈ ∆ - a contradiction,
hence yCx.

• Case 2: y ∈ Γ and x 6∈ ∆. Suppose y � x. Then x � y and y ∈ Γ
implies x ∈ F (x� Γ). By (1) x ∈ ∆ - a contradiction, hence y 6� x.

• Case 3: y 6∈ Γ and x ∈ ∆. Suppose x� y. Then x ∈ I(x� Γ) and by
5. x 6∈ ∆ - a contradiction. Hence x 6� y.

• Case 4: y 6∈ Γ and x 6∈ ∆. Suppose yĈx. Then xĈy and by 2. we

obtain x ∈ ∆ - a contradiction. Hence yĈx.

Thus we have constructed prime �lters Γ and ∆ such that: a ∈ Γ, b ∈ ∆ (item
3 from Step 2.2) and ΓRc∆ (Step 3).

Proof of (ii). (⇐) If a ∈ Γ and b 6∈ ∆ then by the de�nition of Rc we obtain
a 6� b.

(⇒) Suppose a 6� b. The proof, as in (i), will go on several steps.
Step 1: construction of Γ. Consider the ideal I(x � b) = {x ∈ D : x � b}
(Lemma 2.3).

Since a 6� b, a 6∈ {x ∈ D : x� b}. Then [a) ∩ {x ∈ D : x� b} = ∅ and [a) is
a �lter (see FACTS 2.1). By the Strong �lter-extension lemma (Lemma 2.2) there
exists a prime �lter Γ such that [a) ⊆ Γ and (∀x ∈ Γ)(x 6∈ {x ∈ D : x � b}) and
(∀x 6∈ Γ)(∃y ∈ Γ)(x · y ∈ {x ∈ D : x� b}). From here we conclude that Γ satis�es
the following properties:

(#0) a ∈ Γ,

(#1) If x ∈ Γ, then x 6� b, and
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(#2) If x 6∈ Γ, then there exists y ∈ Γ such that (x · y)� b.
Step 2: construction of ∆. This will be done in two sub-steps.

Step 2.1 Consider the �lters and ideals de�nable by Γ as in Lemma 2.4

I(xCΓ) = {x ∈ D : (∃y ∈ Γ)(xCy)}, F (xĈΓ) = {x ∈ D : (∃y ∈ Γ)(xĈy)}, I(x �
Γ) = {x ∈ D : (∃y ∈ Γ)(x � y)}, and F (x � Γ) = {x ∈ D : (∃y ∈ Γ)(x � y}. In
order to apply the Filter-extension Lemma (Lemma 2.1) we will prove the following
condition:

(#3) (F (x� Γ)⊕ F (xĈΓ)) ∩ (I(x� Γ)⊕ I(xCΓ)⊕ (b]) = ∅
Suppose that (#3) is not true. Consequently ∃t such that

(1) t = k1 · k2 = k4 + k5 + k6 for some k1, k2, k4, k5, k6 ∈ D and
(2) ∃x1 ∈ Γ such that x1 � k1,

(3) ∃x2 ∈ Γ such that k2Ĉx2,
(4) ∃x3 ∈ Γ such that k4 � x3,
(5) ∃x4 ∈ Γ such that k5Cx4,
(6) k6 ≤ b.

Let z = x2 + x3. Then by (3) and (4) we obtain z ∈ Γ. By axiom (Ĉ2) we get

(7) k2Ĉz.
By (4) and axiom (� 4) we get

(8) k4 � z.
By z 6∈ Γ and (#2) we have

(9) ∃y ∈ Γ such that (z · y)� b.
Let x = x1 · x4 · y · a. Then by (#0), (2), (5) and (9) we get x ∈ Γ. By axiom

(� 4) we get
(10) x� k1.

By (5), x ≤ x4 and axiom (C2) we get
(11) k5Cx.

From x ∈ Γ by (#1) we obtain
(12) x 6� b.

From (10) by axiom (� 4) we get
(13) x� (b+ k1)

From (7) by axiom (Ĉ2) we obtain

(14) zĈ(b+ k2).
From (9) by axiom (� 4) we get

(15) (z · y)� (b+ k2).
From (14) and (15) by axiom (M � 1) we obtain y � (b+ k2). We also have

x ≤ y and by axiom (� 4) we get
(16) x� (b+ k2).

From (13) and (16) by axiom (� 6) we get x � (b + k1) · (b + k2). We have
(b+ k1) · (b+ k2) = b+ k1 · k2 = b+ k4 + k5 + k6 = b+ k4 + k5 (since k6 ≤ b from
(6)). Thus:
(17) x� (b+ k4 + k5).

Suppose (in order to obtain a contradiction) that x� (b+ k4). From (9) and
x · z ≤ z · y (which follows from the de�nitions of x and z) by axiom (� 4) we
obtain (x · z)� b. Using this fact, (8), x� (b+k4) and axiom (� 7) we get x� b
- a contradiction with (12). Consequently
(18) x 6� (b+ k4).
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From (11) and (17) by axiom (M � 2) we obtain x� (b+k4) - a contradiction
with (18). Consequently (#3) is true.

Step 2.2: the construction of ∆. Applying the Filter-extension Lemma to
(#3) we obtain a prime �lter ∆ (and this is just the required ∆) such that:

(1) F (x� Γ) = {x ∈ D : (∃y ∈ Γ)(x� y} ⊆ ∆,

(2) F (xĈΓ) = {x ∈ D : (∃y ∈ Γ)(xĈy)} ⊆ ∆,
(3) b 6∈ ∆,
(4) I(xCΓ) ∩∆ = ∅,
(5) I(x� Γ) ∩∆ = ∅.

Step 3: proof of ΓRc∆. The proof is the same as in the corresponding step in
(i).

To conclude: we have constructed prime �lters Γ,∆ such that ΓRc∆, a ∈ Γ
and b 6∈ ∆, which �nishes the proof of the lemma.

�

Lemma 2.7. (i) aĈb i� (∃Γ,∆ ∈ PI(D))(a ∈ Γ and b ∈ ∆ and ΓR̂c∆).

(ii) aĈb i� (∃Γ,∆ ∈ PF (D))(a 6∈ Γ and b 6∈ ∆ and ΓRc∆).

(iii) a 6� b i� (∃Γ,∆ ∈ PI(D))(a ∈ Γ and b 6∈ ∆ and ΓR̂c∆).
(iv) a 6� b i� (∃Γ,∆ ∈ PF (D))(a 6∈ Γ and b ∈ ∆ and ΓRc∆).

Proof. (i) by duality from Lemma 2.6. Note that in this case Strong ideal-
extension Lemma is used. The proof can follow in a "dual way" the steps of the
proof of Lemma 2.6 (i).

(ii) is a corollary from (i).
(iii) by duality from Lemma 2.6 (ii) with the same remark as above.
(iv) is a corollary from (iii).

�

Lemma 2.8. Let (W c, Rc) be the canonical structure of D = (D,C, Ĉ,�) and
h(a) = {U ∈ PF (D) : a ∈ U} be the Stone mapping from D into the distributive
lattice of all subsets of W c. Then h is an embedding of D into the EDC-lattice over
(W c, Rc).

Proof. It is a well known fact that h is an embedding of distributive lattice
into the distributive lattice of all subsets of the set of prime �lters PF (D) (see,
[36, 2]). The only thing which have to be done is to show the following equivalences
for all a, b ∈ D:

(i) aCb i� h(a)CRch(b),

(ii) aĈb i� h(a)ĈRch(b)
(iii) a� b i� h(a)�Rc h(b).
Note that these equivalences are another equivalent reformulation of Lemma

2.6 (i) and (ii) and Lemma 2.7 (ii) and (iv).
�

Theorem 2.3. Relational representation theorem of EDC-latices. Let

D = (D,C, Ĉ,�) be an EDC-lattice. Then there is a relational system W = (W,R)
with re�exive and symmetric R and an embedding h into the EDC-lattice of all
subsets of W .
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Proof. The theorem is a corollary of Lemma 2.8.
�

Corollary 2.1. Every EDC-lattice can be isomorphically embedded into a
contact algebra.

Proof. Since the lattice of all subsets of a given set is a Boolean algebra, then
this is a corollary of Theorem 2.3.

�

The following theorem states that the axiom system of EDC-lattice can be
considered as an axiomatization of the universal fragment of contact algebras in
the language of EDC-lattices.

Theorem 2.4. Let A be an universal �rst-order formula in the language of
EDC-lattices. Then A is a consequence from the axioms of EDC-lattice i� A is
true in all contact algebras.

Proof. The proof is a consequence from Corollary 2.1 and the fact that all
axioms of EDC-lattice are universal �rst-order conditions and that A is also an
universal �rst-order condition. �

3. Relations to other mereotopologies

In order to see the expressivity power of EDC-lattices compared to distributive
contact lattices from [11, 12] we will compare them with other two mereotopolo-
gies: the relational mereotopology and RCC-8. We show that the mentioned two
mereotopologies are expressible in the language of EDC-lattices but not expressible
in the distributive contact lattices from [11, 12].

3.1. Relational mereotopology. Relational mereotopology is based onmereotopo-
logical structures introduced in [29] (De�nition 7, page 254). These are rela-

tional structures in the form (W,≤, O, Ô,�, C, Ĉ) axiomatizing the basic mereo-

logical relations part-of ≤, overlap O and dual overlap (underlap) Ô, and the basic
mereotopological relations non-tangential part-of �, contact C and dual contact

Ĉ. These relations satisfy the following list of universal �rst-order axioms:
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(≤ 0) a ≤ b and b ≤ a→ a = b (≤ 1) a ≤ a,
(≤ 2) a ≤ b and b ≤ c→ a ≤ c

(O1) aOb→ bOa (Ô1) aÔb→ bÔa

(O2) aOb→ aOa (Ô2) aÔb→ aÔa

(O ≤) aOa→ a ≤ b (Ô ≤) bÔb→ a ≤ b
(O ≤) aOb and b ≤ c→ aOc (Ô ≤) c ≤ a and aÔb→ cÔb

(OÔ) aOa or aÔa (≤ OÔ) cOa and cÔb→ a ≤ b

(C) aCb→ bCa (Ĉ) aĈb→ bĈa

(CO1) aOb→ aCb (ĈÔ1) aÔb→ aĈb

(CO2) aCb→ aOa (ĈÔ2) aĈb→ aÔa

(C ≤) aCb and b ≤ c→ aCc (Ĉ ≤) aĈb and c ≤ b→ aĈc

(�≤ 1) a� b→ a ≤ b
(�≤ 2) a ≤ b and b� c→ a� c (�≤ 3) a� b and b ≤ c→ a� c

(� O) aOa→ a� b (� Ô) bÔb→ a� b

(� CO) aCb and b� c→ aOc (� ĈÔ) c� a and aĈb→ cÔb

(� CÔ) cCa and cÔb→ a� b (� ĈO) cOa and cĈb→ a� b.

Note that all axioms of mereotopological structures are universal �rst-order
conditions which are true in contact algebras under the standard de�nitions of the

basic mereological relations [29] (aOb
↔
def a · b 6= 0, aÔb

↔
def a + b 6= 1). So a

standard topological model of a mereotopological structure is any non-empty set
of regular-closed subsets of a given topological space under the standard topolog-
ical de�nitions of contact, dual contact, non-tangential part-of and the standard
de�nitions of the mereological relations.

It is proved in [29] that each mereotopological structure is embeddable into a
contact algebra (Theorem 26).

The following theorem relates EDC-lattices to mereotopological structures.

Theorem 3.1. Every EDC-lattice is a mereotopological structure under the
standard de�nitions of the basic mereological relations.

Proof. Since all axioms of mereotopological structures are universal �rst-order
sentences true in all contact algebras, then by Theorem 2.4 they follow from the
axioms of EDC-lattice, which shows that they are true in all EDC-lattices. Another
long and non-elegant, but direct proof of this theorem is to show one by one that
all axioms of mereotopological structures are theorems of EDC-lattices. �

Let us note that mereotopological structures cannot be expressed in distributive
contact lattices studied in [11, 12] just because dual contact and nontangential
part-of are not expressible in them.

3.2. RCC-8 spatial relations. One of the most popular systems of topo-
logical relations in the community of QSRR is RCC-8. The system RCC-8 was
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Figure 1. RCC-8 relations

introduced for the �rst time in [14]. It consists of 8 relations between non-empty
regular closed subsets of arbitrary topological space. Having in mind the topologi-
cal representation of contact algebras, it was given in [40] an equivalent de�nition
of RCC-8 in the language of contact algebras:

Definition 3.1. The system RCC-8.

• disconnected � DC(a, b):: aCb,
• external contact � EC(a, b):: aCb and aOb,
• partial overlap � PO(a, b):: aOb and a 6≤ b and b 6≤ a,
• tangential proper part � TPP(a, b):: a ≤ b and a 6� b and b 6≤ a,
• tangential proper part−1 � TPP−1(a, b):: b ≤ a and b 6� a and a 6≤ b,
• nontangential proper part NTPP(a, b):: a� b and a 6= b,
• nontangential proper part−1 � NTPP−1(a, b):: b� a and a 6= b,
• equal � EQ(a, b):: a = b.

Looking at this de�nition it can be easily seen that the RCC-8 relations are
expressible in the language of EDC-lattices. Let us note that RCC-8 relations are
not expressible in the language of distributive contact algebras from [11, 12] just
because dual contact and nontangential part-of are not expressible in them.

4. Additional axioms

In this Section we will formulate several additional axioms for EDC-lattices
which are adaptations for the language of EDC-lattices of some known axioms
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considered in the context of contact algebras. First we will formulate some new
lattice axioms for EDC-lattices - the so called extensionality axioms for the de�nable

predicates of overlap - aOb↔def a · b 6= 0 and underlap - aÔb↔def a+ b 6= 1.
(Ext O) a 6≤ b→ (∃c)(a · c 6= 0 and b · c = 0) - extensionality of overlap,

(Ext Ô) a 6≤ b→ (∃c)(a+ c = 1 and b+ c 6= 1) - extensionality of underlap.

We say that a lattice is O-extensional if it satis�es (Ext O) and U-extensional

if it satis�es (Ext Ô). Note that the conditions (Ext O) and (Ext Ô) are true in
Boolean algebras but not always are true in distributive lattices (see [12] for some
examples, references and additional information about these axioms).

We will study also the following extensionality axioms.

(Ext C) a 6= 1→ (∃b 6= 0)(aCb) - C-extensionality,

(Ext Ĉ) a 6= 0→ (∃b 6= 1)(aĈb) - Ĉ-extensionality.

In contact algebras these two axioms are equivalent. It is proved in [12] that

(Ext Ô) implies that (Ext C) is equivalent to the following extensionality principle
considered by Whitehead [46]

(EXT C) a 6≤ b→ (∃c)(aCc and bCc).
Just in a dual way one can show that (Ext O) implies that (Ext Ĉ) is equivalent

to the following condition

(EXT Ĉ) a 6≤ b→ (∃c)(bĈc and aĈc).
Let us note that (EXT C) and (EXT Ĉ ) are equivalent in contact algebras.

(Con C) a 6= 0, b 6= 0 and a+ b = 1→ aCb - C-connectedness axiom and

(Con Ĉ) a 6= 1, b 6= 1 and a · b = 0→ aĈb - Ĉ-connectedness axiom .

In contact algebras these axioms are equivalent and guarantee topological rep-
resentation in connected topological spaces.

(Nor 1) aCb→ (∃c, d)(c+ d = 1, aCc and bCd),

(Nor 2) aĈb→ (∃c, d)(c · d = 0, aĈc and bĈd),

(Nor 3) a� b→ (∃c)(a� c� b).

Let us note that the above three axioms are equivalent in contact algebras and
are known by di�erent names. For instance (Nor 1) comes from the proximity the-
ory [37] as Efremovich axiom, (Nor 3) sometimes is called interpolation axiom. We
adopt the name normality axioms for (Nor 1), (Nor 2) and (Nor 3) because in topo-
logical representations they imply some normality conditions in the corresponding
topological spaces. It is proved in [10] that (Nor 1) is true in the relational models
(W,R) (see Section 1.2) if and only if the relation R is transitive and that (Nor 1)
implies representation theorem in transitive models. In the next lemma we shall
prove similar result using all normality axioms.

Lemma 4.1. Transitivity lemma. Let D = (D,C, Ĉ,�) be a EDC-lattice
satisfying the axioms (Nor1), (Nor 2) and (Nor 3) and let (W c, Rc) be the canonical
structure of D (see Section 2.3) Then:

(i) Rc is a transitive relation.
(ii) D is representable in EDC-lattice over some system (W,R) with an equiv-

alence relation R.
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Proof. (i) Let Γ,∆ and Θ be prime �lters in D such that
(1) ΓRc∆ and
(2) ∆RcΘ
and suppose for the sake of contradiction that
(3) ΓR

c
Θ. By the de�nition of Rc we have to consider four cases.

Case 1: ∃a ∈ Γ, b ∈ Θ such that aCb.

Then by (Nor 1) there exists c, d such that c + d = 1, aCc and
bCd. Since c + d = 1 then either c ∈ ∆ or d ∈ ∆. The case
c ∈ ∆ together with a ∈ Γ imply by (1) aCc - a contradiction.
The case d ∈ ∆ together with b ∈ Θ imply by (2) bCd - again a
contradiction.

Case 2: ∃a ∈ Γ, b 6∈ Θ such that a� b.

Then by (Nor 3) ∃c such that a � c and c � b. Consider the
case c 6∈ ∆. Then a ∈ Γ and (1) imply a 6� c a contradic-
tion. Consider now c ∈ ∆. Then b 6∈ Θ imply c 6� b - again a
contradiction.

In a similar way one can obtain a contradiction in the remaining two cases:
Case 3: ∃a 6∈ Γ, b ∈ Θ such that b� a and

Case 4: ∃a 6∈ Γ, b 6∈ Θ such that bĈa.
(ii) The proof follows from (i) analogous to the proof of Theorem 2.3. �

Another kind of axioms which will be used in the topological representation
theory in PART II are the so called rich axioms.

(U-rich �) a� b→ (∃c)(b+ c = 1 and aCc),

(U-rich Ĉ) aĈb→ (∃c, d)(a+ c = 1, b+ d = 1 and cCd).

(O-rich �) a� b→ (∃c)(a · c = 0 and cĈb),

(O-rich C) aCb→ (∃c, d)(a · c = 0, b · d = 0 and cĈd).

Let us note that U-rich axioms will be used always with the U-extensionality
axiom and that O-rich axioms will be used always with O-extensionality axiom.

The following lemma is obvious.

Lemma 4.2. The axioms (U-rich �), (U-rich Ĉ), (O-rich �) and (O-rich C)
are true in all contact algebras.

4.1. Some good embedding properties. Let (D1, C1, Ĉ1,�1) and (D2, C2,

Ĉ2,�2) be two EDC-lattices. We will write D1 � D2 if D1 is a substructure of

D2, i.e., D1 is a sublattice of D2, and the relations C1, Ĉ1,�1 are restrictions of

the relations C2, Ĉ2,�2 on D1. Since we want to prove embedding theorems, it is
valuable to know under what conditions we have equivalences of the form:

D1 satis�es some additional axiom i� D2 satis�es the same axiom.

Remark 4.1. The importance of such conditions is related to the representation
theory of EDC-lattices satisfying some additional axioms. In general, if we have
some embedding theorem for EDC-lattice D satisfying a given additional axiom A,
it is not known in advance that the lattice in which D is embedded also satis�es
A. That is why it is good to have such conditions which automatically guarantee
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this. Below we formulate several such "good conditions": dense and dual dense

sublattice, C- and Ĉ-separable sublattice.

Definition 4.1. Dense and dual dense sublattice. Let D1 be a distributive
sublattice of D2. D1 is called a dense sublattice of D2 if the following condition is
satis�ed:

(Dense) (∀a2 ∈ D2)(a2 6= 0⇒ (∃a1 ∈ D1)(a1 ≤ a2 and a1 6= 0)).

If h is an embedding of the lattice D1 into the lattice D2 then we say that h is
a dense embedding if the sublattice h(D1) is a dense sublattice of D2.

Dually, D1 is called a dual dense sublattice of D2 if the following condition is
satis�ed:

(Dual dense) (∀a2 ∈ D2)(a2 6= 1⇒ (∃a1 ∈ D1)(a2 ≤ a1 and a1 6= 1)).

If h is an embedding of the lattice D1 into the lattice D2 then we say that h is
a Dual dense embedding if the sublattice h(D1) is a dually dense sublattice of D2.

Note that in Boolean algebras, dense and dually dense conditions are equivalent;
in distributive lattices this equivalence does not hold (see [12] for some known
characterizations of density and dual density in distributive lattices).

For the case of contact algebras [40] and distributive contact lattices [12] we
introduced the notion of C-separability as follows. Let D1 � D2; we say that D1 is
a C-separable sublattice of D2 if the following condition is satis�ed:

(C-separable) (∀a2, b2 ∈ D2)(a2Cb2 ⇒ (∃a1, b1 ∈ D1)(a2 ≤ a1, b2 ≤ b1, a1Cb1)).
For the case of EDC-lattices we modi�ed this notion adding two additional

clauses corresponding to the relations Ĉ and � just having in mind the de�nitions
of these relations in contact algebras. Namely

Definition 4.2. C-separability. Let D1 � D2; we say that D1 is a C-
separable EDC-sublattice of D2 if the following conditions are satis�ed:

(C-separability for C) -
(∀a2, b2 ∈ D2)(a2Cb2 ⇒ (∃a1, b1 ∈ D1)(a2 ≤ a1, b2 ≤ b1, a1Cb1)).

(C-separability for Ĉ) -

(∀a2, b2 ∈ D2)(a2Ĉb2 ⇒ (∃a1, b1 ∈ D1)(a2 + a1 = 1, b2 + b1 = 1, a1Cb1)).

(C-separability for �) -
(∀a2, b2 ∈ D2)(a2 � b2 ⇒ (∃a1, b1 ∈ D1)(a2 ≤ a1, b2 + b1 = 1, a1Cb1)).

If h is an embedding of the lattice D1 into the lattice D2 then we say that h is
a C-separable embedding if the sublattice h(D1) is a C-separable sublattice of D2.

The notion of a Ĉ-separable embedding h is de�ned similarly. The following
lemma is analogous to a similar result from [40] (Theorem 2.2.2) and from [12]
(Lemma 5).

Lemma 4.3. Let D1, D2 be EDC-lattices and D1 be a C-separable EDC-sublattice
of D2. Then:

(i) If D1 is a dually dense EDC-sublattice of D2, then D1 satis�es the axiom
(Ext C) i� D2 satis�es the axiom (Ext C),

(ii) D1 satis�es the axiom (Con C) i� D2 satis�es the axiom (Con C),
(iii) D1 satis�es the axiom (Nor 1) i� D2 satis�es the axiom (Nor 1),
(iv) D1 satis�es the axiom (U-rich �) i� D2 satis�es the axiom (U-rich �),

(v) D1 satis�es the axiom (U-rich Ĉ) i� D2 satis�es the axiom (U-rich Ĉ).
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Proof. Conditions (i), (ii) and (iii) have the same proof as in Theorem 2.2.2
from [40].

(iv) (⇒) Suppose that D1 satis�es the axiom (U-rich �), a2, b2 ∈ D2 and let
a2 � b2. Then by (C-separability for �) we obtain: (∃a1, b1 ∈ D1)(a2 ≤ a1, b2 +
b1 = 1, a1Cb1). Since D1 is a sublattice of D2 then a1, b1 ∈ D2. From a2 ≤ a1 and
a1Cb1 we get a2Cb1. Thus we have just proved: (a2 � b2 → (∃b1 ∈ D2)(b2 +b1 = 1
and a2Cb1) which shows that D2 satis�es (U-rich �).

(⇐) Suppose thatD2 satis�es the axiom (U-rich�), a1, b1 ∈ D1 (hence a1, b1 ∈
D2) and let a1 � b1. Then by (U-rich �) for D2 we get: (∃c2 ∈ D2)(b1 + c2 =
1, a1Cc2). Since a1, c2 ∈ D2 and a1Cc2, then by (C-separability for C) we get:
(∃a′1, b′1 ∈ D1)(a1 ≤ a′1, c2 ≤ b′1, a

′
1Cb

′
1). Combining the above results we get:

1 = b1 + c2 ≤ b1 + b′1 and a1Cb
′
1. We have just proved the following: a1 � b1 →

(∃b′1 ∈ D1)(b1 + b′1 = 1, a1Cb
′
1) which shows that D1 satis�es (U-rich �).

(v) The proof is similar to that of (iv). �

The notion of Ĉ-separable sublattice can be de�ned in a dual way as follows:

Definition 4.3. Suppose that D1 � D2; we say that D1 is a Ĉ-separable
EDC-sublattice of D2 if the following condition is satis�ed:

(Ĉ-separability for C) -

(∀a2, b2 ∈ D2)(a2Cb2 ⇒ (∃a1, b1 ∈ D1)(a1 + a2 = 1, b1 + b2 = 1, a1Ĉb1)),

(Ĉ-separability for Ĉ) -

(∀a2, b2 ∈ D2)(a2Ĉb2 ⇒ (∃a1, b1 ∈ D1)(a1 ≤ a2, b1 ≤ b2, a1Ĉb1)),

(Ĉ-separability for �) -

(∀a2, b2 ∈ D2)(a2 � b2 ⇒ (∃a1, b1 ∈ D1)(a1 + a2 = 1, b1 ≤ b2, a1Ĉb1)).

The notion of a Ĉ-separable embedding h is de�ned as in de�nition 4.2.

The following lemma is dual to Lemma 4.3 and can be proved in a dual way.

Lemma 4.4. Let D1, D2 be EDC-lattices and D1 be a Ĉ-separable EDC-sublattice
of D2; then:

(i) If D1 is a dense EDC-sublattice of D2, then D1 satis�es the axiom (Ext Ĉ)

i� D2 satis�es the axiom (Ext Ĉ),

(ii) D1 satis�es the axiom (Con Ĉ) i� D2 satis�es the axiom (Con Ĉ),
(iii) D1 satis�es the axiom (Nor 2) i� D2 satis�es the axiom (Nor 2).
(iv) D1 satis�es the axiom (O-rich �) i� D2 satis�es the axiom (O-rich �).

(v) D1 satis�es the axiom (O-rich Ĉ) i� D2 satis�es the axiom (O-rich Ĉ).

Corollary 4.1. Let D = (D,C, Ĉ,�) be an EDC-lattice and B = (B,C) be
a contact algebra. Then:

(i) If h is a C-separable embedding of D into B then D must satisfy the axioms

(U-rich �) and (U-rich Ĉ).

(ii) If h is a Ĉ-separable embedding of D into B then D must satisfy the axioms

(O-rich �) and (O-rich Ĉ).

Proof. (i) Note that by Lemma 4.2 B satis�es the axioms (U-rich �) and

(U-rich Ĉ). Then by Lemma 4.3 (iv) and (v) D satis�es the axioms (U-rich �)

and (U-rich Ĉ).
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(ii) Similarly to (i) the proof follows from Lemma 4.2 and Lemma 4.4.
�

PART II: TOPOLOGICAL REPRESENTATIONS OF EXTENDEDDIS-
TRIBUTIVE CONTACT LATTICES

The aim of this second part of the paper is to investigate several kinds of
topological representations of EDC-lattices. We concentrate our attention mainly
on topological representations with some "good properties" in the sense of Section

4.1: dual density and C-separability, and their dual versions - density and Ĉ-
separability.

5. Topological models of EDC-lattices

We assume some familiarity of the reader with the basic theory of topological
spaces:(see [15]). First we recall some notions from topology. By a topological
space we mean a set X provided with a family C(X) of subsets, called closed sets,
which contains the empty set ∅, the whole set X, and is closed with respect to �nite
unions and arbitrary intersections. Fixing C(X) we say that X is endowed with a
topology. A subset a ⊆ X is called open if it is the complement of a closed set. A
family of closed sets CB(X) is called a closed basis of the topology if every closed
set can be represented as an intersection of sets from CB(X). In a similar way the
topology of X can be characterized by the family O(X) of open sets: it contains
the empty set, X and is closed under �nite intersections and arbitrary unions. A
family OB(X) of open sets is called an open basis of the topology if every open set
can be represented as an union of sets from OB(X). X is called semiregular space
if it has a closed base of regular closed sets or an open base of regular open sets.

We remind the reader of the de�nitions of two important topological opera-
tions on sets - closure operation Cl, and interior operation Int. Namely Cl(a)
is the intersection of all closed sets of X containing a and Int(a) is the union of
all open sets included in a. Note that the operations Cl and Int are interde�n-
able: Cl(a) = −Int(−a) and Int(a) = −Cl(−a). Using the bases CB(X) and
OB(X) the de�nitions of closure and interior operations have the following useful
expressions:

x ∈ Cl(a) i� (∀b ∈ CB(X))(a ⊆ b→ x ∈ b),
x ∈ Int(a) i� (∃b ∈ OB(X))(b ⊆ a and x ∈ b).
We say that a is a regular closed set if a = Cl(Int(a)) and a is a regular open

set if a = Int(Cl(a)). It is a well known fact that the set RC(X) of all regular
closed subsets of X is a Boolean algebra with respect to the relations, operations
and constants de�ned as follows: a ≤ b i� a ⊆ b, 0 = ∅, 1 = X, a + b = a ∪ b,
a · b = Cl(Int(a ∩ b), a∗ = Cl(−a) where −a = X r a. If we de�ne a contact C by
aCb i� a∩ b 6= ∅ then we obtain the standard topological model of contact algebra.

Another topological model of contact algebra is the set RO(X) of regular open
subsets of X. The relevant de�nitions are as follows: a ≤ b i� a ⊆ b, 0 = ∅, 1 = X,
a · b = a ∩ b, a + b = Int(Cl(a ∪ b), a∗ = Int − a. The contact relation is aCb i�
Cl(a) ∩ Cl(b) 6= ∅.

Note that these two models are isomorphic.
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Topological model of EDC-lattice by regular-closed sets. Consider the
contact algebra RC(X) of regular closed subsets of X. Let us remove the operation

a∗ and de�ne the relations Ĉ and � topologically according to their de�nitions in
contact algebra as follows:

aĈb i� Cl(−a) ∩ Cl(−b) 6= ∅ i� (equivalently) Int(a) ∪ Int(b) 6= X.

a� b i� a ∩ Cl(−b) = ∅ i� (equivalently) a ⊆ Int(b).
Obviously the obtained structure is a model of EDC-lattice. Also any distribu-

tive sublattice of RC(X) with the same de�nitions of the relations C, Ĉ and� is a
model of EDC-lattice. These models are considered as standard topological models
of EDC-lattice by regular closed sets.

Topological model of EDC-lattice by regular-open sets. Consider the
contact algebra RO(X) of regular open subsets of X. Let us remove the operation

a∗ from the contact algebra RO(X) and de�ne the relations Ĉ and� topologically
according to their de�nitions in the contact algebra as follows:

aĈb i� Cl(Int(−a) ∩ Cl(Int(−b)) 6= ∅ i� (equivalently) a ∪ b 6= X,

a� b i� Cl(a) ∩ Cl(Int(−b)) = ∅ i� (equivalently) Cl(a) ⊆ b.
Obviously the obtained structure is another standard topological model of

EDC-lattice and any distributive sublattice of RO(X) with the same relations C,

Ĉ and � is also a model of EDC-lattice.
The main aim of PART II of the paper is the topological representation theory

of EDC-lattices related to the above two standard models. The �rst simple result
is the following representation theorem.

Theorem 5.1. Topological representation theorem for EDC-lattices.

Let D = (D,C, Ĉ,�) be an EDC-lattice. Then:
(i) There exists a topological space X and an embedding of D into the contact

algebra RC(X) of regular closed subsets of X.
(ii) There exists a topological space Y and an embedding of D into the contact

algebra RO(Y ) of regular open subsets of Y .

Proof. It is shown in [8] that every contact algebra is isomorphic to a subal-
gebra of the contact algebra RC(X) of regular closed subsets of some topological
space X, and dually, that it is also isomorphic to a subalgebra of the contact algebra
RO(Y ) of the regular open subsets of some topological space Y . Then the proof
follows directly from this result and the Corollary 2.1.

�

The above theorem is not the best one, because it cannot be extended straight-
forwardly to EDC-lattices satisfying some of the additional axioms mentioned in
Section 4. That is why we will study in the next sections representation theorems
based on embeddings satisfying some of the good conditions described in Section
4.1. Before going on let us remind some other topological facts, which will be used
later on.

A topological space X is called:
• normal if every pair of closed disjoint sets can be separated by a pair of open

sets;
• κ-normal [34] if every pair of regular closed disjoint sets can be separated by

a pair of open sets;
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• weakly regular [13] if it is semiregular and for each nonempty open set a there
exits a nonempty open set b such that Cl(a) ⊆ b;
• connected if it cannot be represented by a sum of two disjoint nonempty open

sets;
• T0 if for every pair of distinct points there is an open set containing one

of them and not containing the other; X is called T1 if every one-point set is a
closed set, and X is called Hausdor� (or T2) if each pair of distinct points can be
separated by a pair of disjoint open sets.
• compact if it satis�es the following condition: let {Ai : i ∈ I} be a non-empty

family of closed sets of X such that for every �nite subset J ⊆ I the intersection⋂
{Ai : i ∈ J} 6= ∅, then

⋂
{Ai : i ∈ I} 6= ∅.

The following lemma relates topological properties to the properties of the

relations C, Ĉ and� and shows the importance of the additional axioms for EDC-
lattices.

Lemma 5.1. (i) If X is semiregular, then X is weakly regular i� RC(X) satis�es

any of the axioms (Ext C), (Ext Ĉ).
(ii) X is κ-normal i� RC(X) satis�es any of the axioms (Nor 1), (Nor 2) and

(Nor 3).

(iii) X is connected i� RC(X) satis�es any of the axioms (Con C), (Con Ĉ).

(iv) If X is compact and Hausdor�, then RC(X) satis�es (Ext C), (Ext Ĉ)
and (Nor 1), (Nor 2) and (Nor 3) .

Proof. A variant of the above lemma concerning only axioms (Ext C), (Nor
1) and (Con C) was proved, for instance, in [13]. Having in mind the equivalence of
some of the mentioned axioms in RC(X), it is obvious that the present formulation
is equivalent to the cited result from [13]. �

5.1. Looking for good topological representations of
EDC-lattices. In topological representation theory of lattices the following three
problems have to be solved: (1) for a given lattice L to associate to L a set X
of points, (2) to de�ne an embedding h into the set of subsets of X, and (3) to
de�ne in X a suitable topology. Very often the topology of X is determined by
the embedding h considering the set {h(a) : a ∈ L} as a base (closed or open)
of the topology of X. Let us note that this construction sometimes yields good
properties of the obtained topology - for instance compactness and some desirable
topological separation properties. That is why we call in this paper such embed-
dings "good topological representations". However, good representations require
sometimes some special properties of the lattice L, and this is just the subject of
the present section.

The following topological theorem proved in [12] (Theorem 4) gives necessary
and su�cient conditions for a closed base of a topology to be semiregular.

Theorem 5.2. First characterization theorem for semiregularity.
Let X be a topological space and let CB(X) be a closed basis for X. Suppose that
"·" is a binary operation de�ned on the set CB(X) such that (CB(X),∅, X,∪, ·)
is a lattice. Then:

(1) The following conditions are equivalent:
(a) CB(X) is U -extensional.
(b) CB(X) ⊆ RC(X).
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(c) For all a, b ∈ CB(X), a · b = Cl(Int(a ∩ b)).
(d) (CB(X),∅, X,∪, ·) is a dually dense sublattice of the Boolean algebra

RC(X).
(2) If any of the (equivalent) conditions (a),(b),(c) or (d) of 1. is ful�lled then:

(a) (CB(X),∅, X,∪, ·) is a U -extensional distributive lattice.
(b) X is a semiregular space.

The following is a corollary of the above theorem.

Corollary 5.1. [12] Let X be a topological space, let L = (L, 0, 1,+, ·) be a
lattice and let h be an embedding of the upper semi-lattice (L, 0, 1,+) into the lattice
C(X) of closed sets of X. Suppose that the set CB(X) = {h(a) : a ∈ L} forms a
closed basis for the topology of X. Then:

(1) The following conditions are equivalent:
(a) L is U -extensional.
(b) CB(X) ⊆ RC(X).
(c) For all a, b ∈ L, h(a · b) = Cl(Int(h(a) ∩ h(b))).
(d) h is a dually dense embedding of L into the Boolean algebra RC(X).

(2) If any of the (equivalent) conditions (a),(b),(c) or (d) of 1. is ful�lled then:
(a) L is a U -extensional distributive lattice.
(b) X is a semiregular space.

A dual version of Theorem 5.2 is the following one.

Theorem 5.3. Second characterization theorem for semiregularity.
Let X be a topological space and let OB(X) be an open basis for X. Suppose that
+ is a binary operation de�ned on the set OB(X) such that (OB(X),∅, X,∩,+)
is a lattice. Then:

(1) The following conditions are equivalent:
(a) OB(X) is O-extensional.
(b) OB(X) ⊆ RO(X).
(c) For all a, b ∈ OB(X), a+ b = Int(Cl(a ∪ b)).
(d) (OB(X),∅, X,∩,+) is a dually dense sublattice of the Boolean alge-

bra RO(X).
(2) If any of the (equivalent) conditions (a),(b),(c) or (d) of 1. is ful�lled then:

(a) (OB(X),∅, X,∩,+) is an O-extensional distributive lattice.
(b) X is a semiregular space.

The following is a corollary of the above theorem.

Corollary 5.2. Let X be a topological space, let L = (L, 0, 1,+, ·) be a lattice
and let h be an embedding of the lower semi-lattice (L, 0, 1, ·) into the lattice O(X)
of open sets of X. Suppose that the set OB(X) = {h(a) : a ∈ L} forms an open
basis for the topology of X. Then:

(1) The following conditions are equivalent:
(a) L is O-extensional.
(b) OB(X) ⊆ RO(X).
(c) For all a, b ∈ L, h(a+ b) = Int(Cl(h(a) ∪ h(b))).
(d) h is a dense embedding of L into the Boolean algebra RO(X).

(2) If any of the (equivalent) conditions (a),(b),(c) or (d) of 1. is ful�lled then:
(a) L is a O-extensional distributive lattice.
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(b) X is a semiregular space.

Remark 5.4. (i) Dual dense representations. Let D = (D,C, Ĉ,�) be an
EDC-lattice. Suppose that we want to represent D by an embedding h in the set
RC(X) of regular closed sets of some topological space X such that the topology
of X is determined by the set CB(X) = {h(a) : a ∈ D} considered as a closed
base for X. Then Corollary 5.1 say that h must be a dual dense embedding. The
Corollary 5.1 states also that this fact is equivalent to U -extensionality of D, which

means that D must satisfy the axiom (Ext Ô) - extensionality of underlap. If
in addition we want to apply the C-separability property from Lemma 4.3, then
we must assume that h is also a C-separable embedding into RC(X). But then
Corollary 4.1 implies that D must satisfy also the axioms (U-rich �) and (U-rich

Ĉ).
(ii) Dense representations. Similar to the above conclusion is the following.

Suppose that we want to represent D by an embedding h into the set RO(X) of
regular open subsets of some topological space X such that the the topology of X
to be determined by the set OB(X) = {h(a) : a ∈ D} considered as an open base
for X. Then Corollary 5.2 say that h must be a dense embedding. The Corollary
5.2 states also that this fact is equivalent to O-extensionality of D, which means
that D must satisfy the axiom (Ext O) - extensionality of overlap. If in addition

we want to apply the Ĉ-separability property of Lemma 4.4, then we must assume

that h is also a Ĉ-separable embedding into RO(X). But then Corollary 4.1 implies

that D must satisfy also the axioms (O-rich �) and (O-rich Ĉ). �

Definition 5.1. U-rich and O-rich EDC-lattices. Let D = (D,C, Ĉ,�)
be an EDC-lattice. Then:

(i) D is called U-rich EDC-lattice if it satis�es the axioms (Ext Ô), (U-rich

�) and (U-rich Ĉ).
(ii) D is called O-rich EDC-lattice if it satis�es the axioms (Ext O), (O-rich

�) and (O-rich Ĉ).

A question arises - aren't U-rich EDC-lattices (O-rich EDC-lattices) Boolean
algebras? The answer is "no" as it can be seen from the next proposition.

Proposition 5.1. (i)There is an U-rich EDCL D = (D,C, Ĉ,�) such that
(∃x ∈ D)(∀y ∈ D)¬(x+ y = 1 and x.y = 0);

(ii)There is an O-rich EDCL D = (D,C, Ĉ,�) such that (∃x ∈ D)(∀y ∈ D)¬(x+
y = 1 and x.y = 0).

Proof. (i) Let (W,R) be a relational structure, where W = (−∞; +∞), R =
W × W . We consider the contact algebra of all subsets of W : B1 = (2W ,⊆
, ∅,W, ∗, CR, ĈR,�R). It turns out that aCRb ↔ a, b 6= ∅, aĈRb ↔ a, b 6= 1,

a�R b↔ a = ∅ or b = (−∞; +∞). B1 = (2W ,⊆, ∅,W,CR, ĈR,�R) is an EDCL.
We consider the substructure of B1 B with universe B, consisting of the following
sets: ∅, W , (−∞; 1], [0; +∞), [0; 1] and all sets of the kind:
1) (−∞; a1) ∪ (a2; a3) ∪ . . . ∪ (a2n; a2n+1) ∪ (a2n+2; +∞)
2) [0; a1) ∪ (a2; a3) ∪ . . . ∪ (a2n; a2n+1) ∪ (a2n+2; +∞)
3) (−∞; a1) ∪ (a2; a3) ∪ . . . ∪ (a2n; a2n+1) ∪ (a2n+2; 1]
4) [0; a1) ∪ (a2; a3) ∪ . . . ∪ (a2n; a2n+1) ∪ (a2n+2; 1],
where n ≥ 0, 0 < a1 < a2 < a3 < . . . < a2n < a2n+1 < a2n+2 < 1.
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It can be easily veri�ed that B is closed under ∪ and ∩. Consequently B is
a distributive lattice of sets with 0 and 1. Since B is a substructure of B1, B1

is an EDCL, the axioms of EDCL are universal formulas, we have that B is an
EDCL. For (−∞; 1] it does not exist x ∈ B such that (−∞; 1] ∪ x = (−∞; +∞),
(−∞; 1] ∩ x = ∅.
(•) We will prove that B satis�es (U-rich �). Let a, b ∈ B and a� b. Then a = ∅
or b = W .
Case 1: a = ∅
We have b ∪W = W and aCRW .
Case 2: b = W
We have b ∪ ∅ = W and aCR∅.
(•) We will prove that B satis�es (U-rich Ĉ). Let a, b ∈ B and aĈb. Then a = W
or b = W . Without loss of generality a = W . We have a∪ ∅ = W , b∪W = W and
∅CRW .
(•) We will prove that B satis�es (Ext Ô). Let a, b ∈ B and a * b. There is A
such that A ∈ a, A /∈ b. We will prove that there is c ∈ B such that a ∪ c = W ,
b ∪ c 6= W
Case 1: a is of the kind 1), 2), 3) or 4)
Case 1.1: b is of the kind 1), 2), 3) or 4)
Case 1.1.1: A ∈ (0; 1)
There are x, y such that 0 < x < y < 1, A ∈ (x, y), (x, y) ⊆ a, (x, y) ∩ b = ∅. Let
x1, y1 are such that x < x1 < A < y1 < y. Let c

def
= (−∞;x1) ∪ (y1; +∞).

Case 1.1.2: A /∈ (0; 1)
b is of the kind 1), 2), 3) or 4). Consequently 0 ∈ b, 1 ∈ b. Consequently A 6= 0,
A 6= 1. Without loss of generality A < 0. We also have A ∈ a, so there is
a1 ∈ (0; 1) such that (−∞, a1) ⊆ a. Let x, y be such that 0 < x < y < a1. Let

c
def
= [0;x) ∪ (y; +∞).

Case 1.2: b = ∅
There is a1 ∈ (0; 1) such that [0; a1) ⊆ a. Let x, y be such that 0 < x < y < a1.

Let c
def
= (−∞;x) ∪ (y; +∞).

Case 1.3: b = (−∞; 1] or b = [0; +∞)
Without loss of generality b = (−∞; 1]. Let c = (−∞; 1]. A /∈ b; so 1 < A but A ∈ a
and a is of the kind 1), 2), 3) or 4), so there is a′ ∈ (0; 1) such that (a′; +∞) ⊆ a.
Consequently a ∪ c = W . We also have b ∪ c 6= W .
Case 1.4: b = [0; 1]
A /∈ b, so A < 0 or A > 1. Without loss of generality A < 0. A ∈ a and a is
of the kind 1), 2), 3) or 4), so there is a1 ∈ (0; 1) such that (−∞; a1) ⊆ a. Let

c
def
= [0; +∞).

Case 2: a = (−∞; +∞)

We take c
def
= ∅.

Case 3: a = (−∞; 1]
Case 3.1: b = ∅
We take c

def
= [0; +∞).

Case 3.2: b = [0; +∞)

We take c
def
= [0; +∞).

Case 3.3: b = [0; 1]
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We take c
def
= [0; +∞).

Case 3.4: b is of the kind 1), 2), 3) or 4).
Case 3.4.1: A ∈ (0; 1)
The proof is similar to the proof in case 1.1.1.
Case 3.4.2: A /∈ (0; 1)

We have A 6= 0 because otherwise A ∈ b. Consequently A < 0. We take c
def
=

[0; +∞).
Case 4: a = [0; +∞)
The proof is similar to the proof in case 3.
Case 5: a = [0; 1]
Case 5.1: b = ∅
We take c

def
= (−∞; 1

3

)
∪
(

2
3 ; +∞)

Case 5.2: b is of the kind 1), 2), 3) or 4)
The proof is similar to the proof in case 1.1.1.
(ii) Dual proof. �

The aim of the next sections is to develop the topological representation theory
of U-rich and O-rich EDC-lattices.

6. Topological representation theory of U-rich EDC-lattices

The aim of this section is to develop a topological representation theory for
U-rich EDC-latices. According to Theorem 5.2 we will look for a dual dense rep-
resentation with regular closed sets (see 5.4 (i)). To realize this we will follow the
representation theory of contact algebras by regular closed sets developed in [8, 40],
updating the results of Section 4 from [12] to the case of U-rich EDC-lattices. We
will consider also extensions of U-rich EDC-lattices with some of the additional
axioms mentioned in Section 4. The scheme of the representation procedure is the
following: for each U-rich EDC-lattice D from a given class, determined by the
additional axioms, we will do the following:

• De�ne a set X(D) of "abstract points" of D,
• de�ne a topology inX(D) by the setCB(X(D)) = {h(a) : a ∈ D}, consid-
ered as a closed base of the topology, where h is the intended embedding of
Stone type: h(a) = {Γ : Γ is "abstract point" and a ∈ Γ}. X(D) is called
the canonical topological space of D and h is called canonical embedding,

• establish that h is a dual dense embedding of the latticeD into the Boolean
algebra RC(X(D)) of regular closed sets of the space X(D).

We will consider separately the cases of representations in T0, T1 and T2 spaces
which requires introducing di�erent "abstract points".

6.1. Representations in T0 spaces. Throughout this section we consider

that D = (D,C, Ĉ,�) is a U-rich EDC-lattice.

6.1.1. Abstract points of D. As in [12], we consider the abstract points of D
to be clans (see [8] for the origin of this notion). The de�nition is the following. A
subset Γ ⊆ D is a clan if it satis�es the following conditions:

(Clan 1) 1 ∈ Γ, 0 6∈ Γ,
(Clan 2) If a ∈ Γ and a ≤ b, then b ∈ Γ,
(Clan 3) If a+ b ∈ Γ, then a ∈ Γ or b ∈ Γ,
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(Clan 4) If a, b ∈ Γ then aCb.
These conditions are similar to the conditions for prime �lters.
Γ is a maximal clan if it is maximal with respect to the set-inclusion. We

denote by CLAN(D) (MaxCLAN(D) ) the set of all (maximal) clans of D.
The notion of clan is an abstraction from the following natural example. Let X

be a topological space and RC(X) be the contact algebra of regular-closed subsets
of X and let x ∈ X. Then the set Γx = {a ∈ RC(X) : x ∈ a} is a clan.

Now we will present a construction of clans which is similar to the constructions
of clans in contact algebras. First we will introduce a new canonical relation between
prime �lters.

Definition 6.1. Let U, V be prime �lters. De�ne a new canonical relation RC
(RC-canonical relation) between prime �lters as follows:

URCV ↔def (∀a ∈ U)(∀b ∈ V )(aCb).

Let us note that the relation RC depends only on C and can be de�ned also
for �lters. It is di�erent from the canonical relation between prime �lters de�ned
in Section 2.3, but the presence of U-rich axioms makes it equivalent to Rc as it
can be seen from the following lemma.

Lemma 6.1. Let U , V be prime �lters and RC the relation de�ned as URCV ↔def

(∀a ∈ U)(∀b ∈ V )(aCb).
Then

(i) RC is re�exive and symmetric relation.

(ii) If D satis�es the axioms (U-rich �) and (U-rich Ĉ) then RC = Rc.

Proof. (i) follows from the axioms (C4) and (C5).
(ii) The inclusion Rc ⊆ RC follows directly by the de�nition of Rc. For the

converse inclusion suppose URCV . To show URcV we have to inspect the four
cases of the de�nition of Rc.

Claim 1: a ∈ U and b ∈ V implies aCb. This is just by the de�nition of RC .

Claim 2: a ∈ U and b 6∈ V implies a 6� b. For the sake of contradiction suppose
a ∈ U and b 6∈ V but a� b. Then by axiom (U-rich �) ( a� b→ (∃c)(b+ c = 1
and aCc), we obtain b + c = 1 and aCc. Conditions b + c = 1 and b 6∈ V imply
c ∈ V . But a ∈ U , so aCc - a contradiction.

Claim 3: a 6∈ U and b ∈ V implies b 6� a. The proof is similar to the proof of
Claim 2.

Claim 4: a 6∈ U and b 6∈ V implies aĈb. The proof is similar to the proof of Claim
2 by the use of axiom

(U-rich Ĉ) aĈb→ (∃c, d)(a+ c = 1, b+ c = 1 and cCd).
�

The following statement lists some facts about the relation RC .

Facts 6.1. [10, 8, 12].

(1) Let F,G be �lters and FRCG then there are prime �lters U, V such that
F ⊆ U , G ⊆ V and URCV .

(2) For all a, b ∈ D: aCb i� there exist prime �lters U, V such that URCV ,
a ∈ U and b ∈ V .

In the following lemma we list some facts about clans (see, for instance, [8, 12]).
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Facts 6.2. (1) Every prime �lter is a clan.
(2) The complement of every clan is an ideal.
(3) If Γ is a clan and F is a �lter such that F ⊆ Γ, then there is a prime

�lter U such that F ⊆ U ⊆ Γ. In particular, if a ∈ Γ, then there exists a
prime �lter U such that a ∈ U ⊆ Γ.

(4) Every clan Γ is the union of all prime �lters contained in Γ.
(5) Every clan is contained in a maximal clan.
(6) Let Σ be a nonempty set of prime �lters such that for every U, V ∈ Σ we

have URCV and let Γ be the union of the elements of Σ. Then Γ is a clan
and every clan can be obtained in this way.

(7) Let U, V be prime �lters, Γ be a clan and U, V ⊆ Γ,. Then URCV and
URcV .

Lemma 6.2. Let Γ be a clan and a ∈ D. Then the following two conditions are
equivalent:

(i) (∀c ∈ D)(a+ c = 1→ c ∈ Γ),
(ii) There exists a prime �lter U ⊆ Γ such that a 6∈ U .

Proof. (i)→ (ii). Suppose that (i) holds. It is easy to see that the set F =
{c : a+ c = 1} is a �lter. The complement Γ of Γ is an ideal (Facts 6.2) and hence
Γ⊕ (a] is an ideal. We will show that F ∩Γ⊕ (a] = ∅. Suppose the contrary. Then
there is a c such that a+ c = 1 (and hence by (i) c ∈ Γ) and c ∈ Γ⊕ (a]. Then there
is x ∈ Γ such that c ≤ x+a. From here we get: 1 = a+c ≤ a+x+a = x+a, hence
x+ a = 1 and by (i) - x ∈ Γ, contrary to x ∈ Γ. Now we can apply Filter-extension
Lemma and obtain a prime �lter U extending F such that U ∩ Γ ⊕ (a] = ∅. It
follows from here that a 6∈ U , U ∩ Γ = ∅ which implies U ⊆ Γ.

(ii)→(i). Suppose (ii) holds: U ⊆ Γ and a 6∈ U . Suppose a + c = 1. Then
c ∈ U ⊆ Γ, so c ∈ Γ - (i) is ful�lled.

�

6.1.2. De�ning the canonical topological space X(D) of D and the canonical
embedding h. De�ne the Stone like embedding: h(a) = {Γ ∈ CLAN(D) : a ∈ Γ}
and consider the set CB(X) = {h(a) : a ∈ D} as a closed base of the topology in
X(D) = CLAN(D).

Lemma 6.3. The space X(D) is semiregular and h is a dually dense embedding
of D into the contact Boolean algebra RC(X(D)).

Proof. Using the properties of clans, one can easily check that h(0) = ∅,
h(1) = X, and that h(a+ b) = h(a) ∪ h(b). This shows that the set CB(X(D)) =
{h(a) : a ∈ D} is closed under �nite unions and, in fact, it is a closed basis for the
topology of X. Also we have the implication: a ≤ b then h(a) ⊆ h(b).

To show that h is an embedding we use the fact that prime �lters are clans and
prove that a 6≤ b implies h(a) 6⊆ h(b). Indeed, from a 6≤ b it follows by the theory
of distributive lattices (see [2]) that there exists a prime �lter U (which is also a
clan) such that a ∈ U (so U ∈ h(a)) and b 6∈ U (so, U 6∈ h(b)), which proves that
h(a) 6⊆ h(b). Consequently, h is an embedding of the upper semi-lattice (D, 0, 1,+)
into the lattice of closed sets of the space X(D). By Corollary 5.1, X(D) is a
semiregular space and h is a dually dense embedding of D into the Boolean algebra
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RC(X). It remains to show that h preserves the relations C, Ĉ and�. This follows
from the following claim.

Claim 6.3. (i) Let Γ be a clan and a ∈ D. The following equivalence holds:
Γ ∈ h(a) i� there exists a prime �lter U such that a ∈ U ⊆ Γ.
(ii) Let Γ be a clan and a ∈ D. Then following conditions are equivalent:

(I) (∀c ∈ D)(a+ c = 1→ c ∈ Γ),
(II) Γ ∈ Cl(−h(a)),
(III) There exists a prime �lter U such that a 6∈ U ⊆ Γ.

(iii) aCb i� h(a) ∩ h(b) 6= ∅,
(iv) a 6� b i� h(a) ∩ Cl(−h(b)) 6= ∅.
(v) aĈb i� Cl(−h(a)) ∩ Cl(−h(b)) 6= ∅,

Proof of the claim. (i) follows easily from Facts 6.2 (3.).
(ii) The proof of (I)↔ (II) follows by the following sequence of equivalences:

(∀c ∈ D)(a+ c = 1→ c ∈ Γ) i�
(∀c ∈ D)(h(a) ∪ h(c) = X(D)→ Γ ∈ h(c)) i�
(∀c ∈ D)(−h(a) ⊆ h(c)→ Γ ∈ h(c)) i�
Γ ∈ Cl(−h(a))

The �rst equivalence holds because h is an embedding of the upper semi-lattice
(D, 0, 1,+) into the lattice of closed sets of the space X(D), the third equivalence
uses the fact that the set {h(c) : c ∈ D} is a closed base of the topology of X(D).

The equivalence (I)↔ (III) is just the Lemma 6.2.

(iii) (⇒ ) Suppose aCb, then by Lemma 2.6 (i) there exist prime �lters U , and
V such that URcV , a ∈ U and b ∈ V . Let Γ = U ∪ V . By Facts 6.2 Γ is a clan,
obviously containing a and b, which implies h(a) ∩ h(b) 6= ∅.

(⇐) Suppose h(a) ∩ h(b) 6= ∅. Then there exists a clan Γ containing a and b,
hence aCb.

(iv) (⇒ ) Suppose a 6� b. Then by Lemma 2.6 (ii) there exist prime �lters U, V
such that URcV , a ∈ U and b 6∈ V . Let Γ = U ∪ V , then Γ is a clan containing U
and V . So, a ∈ Γ and hence Γ ∈ h(a). From the condition b 6∈ V ⊆ Γ we obtain by
(ii) that Γ ∈ Cl(−h(b)) and hence h(a) ∩ Cl(−h(b)) 6= ∅.

(⇐) Suppose h(a) ∩ Cl(−h(b)) 6= ∅. Then there exists a clan Γ ∈ h(a) and
Γ ∈ Cl(−h(b)). It follows by (i) that there exists a prime �lter U such that a ∈
U ⊆ Γ and by (ii) we obtain that there exists a prime �lter V such that b 6∈ V ⊆ Γ.
Condition U, V ⊆ Γ implies by Facts 6.2 (7.) that URcV . Using the properties of
the relation Rc and a ∈ U and b 6∈ V we get a 6� b.

(v) The proof of (v) is similar to the proof of (iv) with the use of Lemma 2.7.
This �nishes the proof of Lemma 6.3 �

Lemma 6.4. The following conditions are true for the canonical space X(D):
(i) X(D) is T0.
(ii) X(D) is compact.

Proof. The proof is the same as the proof of Lemma 19 from [12].
�

Lemma 6.5. The mapping h is a C-separable embedding of D into RC(X(D)).
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Proof. This lemma was proved in [12] by a special construction. Since the
de�nition of C-separability for EDC-lattices uses an extended de�nition for which
the special construction from [12] does not hold, in this paper we give a new proof
deducing the statement from the compactness of the space X(D).

We have to prove the following three statements, corresponding to the three
clauses of the condition of C-separability (see De�nition 4.2).

(C-separability for C) (∀α, β ∈ RC(X(D)))(α∩β = ∅→ (∃a, b ∈ D)(α ⊆ h(a), β ⊆
h(b), h(a) ∩ h(b)) = ∅.

(C-separability for Ĉ) (∀α, β ∈ RC(X(D))(Cl(−α) ∩ Cl(−β) = ∅ → (∃a, b ∈
D)(α ∪ h(a) = X(D), β ∪ h(b) = X(D), h(a) ∩ h(b) = ∅).

(C-separability for �) (∀α, β ∈ RC(X(D))(α ∩ Cl(−β) = ∅ → (∃a, b ∈ D)(α ⊆
h(a), β ∪ h(b) = X(D), h(a) ∩ h(b) = ∅).

As an example we shall prove the condition (C-separability for C). The proofs
for the other two conditions are similar.

Proof of (C-separability for C). Let α, β ∈ RC(X(D)) and α ∩ β = ∅.
Since α and β are closed sets they can be represented as intersections from the
elements of the basis CB(X(D)) = {h(c) : c ∈ D} of X(D). So there are subsets
A,B ⊆ CB(X(D)) such that α =

⋂
{h(c) : h(c) ∈ A} and β =

⋂
{h(c) : h(c) ∈ B}.

Then α ∩ β =
⋂
{h(c) : h(c) ∈ A} ∩

⋂
{h(c) : h(c) ∈ B} = ∅. By the compactness

of X(D) (Lemma 6.4 (ii)), there are �nite subsets A0 ⊆ A and B0 ⊆ B such that
α∩β =

⋂
{h(c) : h(c) ∈ A0}∩

⋂
{h(c) : h(c) ∈ B0} = ∅. Let A0 = {h(c1), ..., h(cn)}

and B0 = {h(d1), ..., h(dm)} and let a = c1 · ... · cn and b = d1 · ... · dm. Then h(a) ⊆
h(ci), i = 1...n and from here we get h(a) ⊆ h(c1) ∩ ... ∩ h(cn). Analogously we
obtain that h(b) ⊆ h(d1)∩...∩h(dm). Consequently h(a)∩h(b) ⊆ (h(c1)∩...∩h(cn)∩
(h(d1)∩ ...∩h(dm)) = ∅, so h(a)∩h(b) = ∅. Also we have α ⊆ h(c) for all h(c) ∈ A
and consequently for all h(c) ∈ A0. Hence α ⊆ h(c1)·...·h(cn) = h(c1 ·...·cn) = h(a),
so α ⊆ h(a). Analogously we get β ⊆ h(b). �

The following theorem is the main result of this section.

Theorem 6.4. Topological representation theorem for U-rich EDC-
lattices
Let D = (D,C, Ĉ,�) be an U -rich EDC-lattice. Then there exists a compact
semiregular T0-space X and a dually dense and C-separable embedding h of D into
the Boolean contact algebra RC(X) of the regular closed sets of X. Moreover:

(i) D satis�es (Ext C) i� RC(X) satis�es (Ext C); in this case X is weakly
regular.

(ii) D satis�es (Con C) i� RC(X) satis�es (Con C); in this case X is con-
nected.

(iii) D satis�es (Nor 1) i� RC(X) satis�es (Nor 1); in this case X is κ-normal.

Proof. Let X be the canonical space X(D) of D and h be the canonical
embedding of D. Then, the theorem is a corollary of Lemma 6.3, Lemma 6.4,
Lemma 6.5 and Lemma 5.1. �

Note that Theorem 6.4 generalizes several results from [8, 13] to the distributive
case.
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6.2. Representations in T1 spaces. The aim of this section is to obtain rep-
resentations of some U-rich EDC-lattices in T1-spaces extending the corresponding
results from [12]. The constructions will be slight modi�cations of the correspond-
ing constructions from the previous section, so we will be sketchy.

Let D = (D,C, Ĉ,�) be an U -rich EDC-lattice. In the previous section the
abstract points were clans and this guarantees that the representation space is T0.
To obtain representations in T1 spaces we assume abstract points to be maximal
clans, so for the canonical space of D we put X(D) = MaxCLAN(D) and de�ne
the canonical embedding h to be h(a) = {Γ ∈ MaxCLAN(D) : a ∈ Γ}. The
topology in X(D) is de�ned considering the set CB(X(D)) = {h(a) : a ∈ D} to
be the closed base for the space. Note that in general, without additional axioms
we cannot prove in this case that h is an embedding. In order to guarantee this we
will assume that D satis�es additionally the axiom of C-extensionality

(Ext C) a 6= 1→ (∃b 6= 0)(aCb).

Note that in this case, due to U-extensionality (see Section 4), the lattice D satis�es
also the axiom

(EXT C) a 6≤ b→ (∃c)(aCc and bCc),
which is essential in the proof that h is an embedding.

Lemma 6.6. The space X(D) is semiregular and h is a dually dense embedding
of D into the contact Boolean algebra RC(X(D)).

Proof. The proof is similar to the proof of Lemma 6.3, so we will indicate
only the di�erences. First we show that h is an embedding of the upper semi-
lattice (D, 0, 1,+) into the lattice of closed sets of the space X(D). The only new
thing which we have to show is: If a 6≤ b then h(a) 6⊆ h(b). To do this suppose a 6≤ b.
Then by axiom (EXT C) there exists c ∈ D such that aCc but bCc. Condition aCc
implies that there exist prime �lters U, V such that URcV , a ∈ U and c ∈ V . Let
Γ0 = U ∪ V . Γ0 is a clan and by Facts 6.2 it is contained in a maximal clan Γ.
Obviously a, c ∈ Γ, so Γ ∈ h(a). But bCc implies that b 6∈ Γ (otherwise we will get
bCc). Conditions Γ ∈ h(a) and Γ 6∈ h(b) show that h(a) 6⊆ h(b). Thus, by Corollary
5.1, h is a dually dense embedding of D into the Boolean algebra RC(X(D)). It

remains to show that h preserves the relations C, Ĉ and�. The proof is almost the
same as in the corresponding proof of Lemma 6.3. The only new thing is when we
construct a certain clan from prime �lters satisfying the relation URcV in the form
U ∪ V , then we extend it into a maximal clan. Note also that Claim 6.3 remains
true. We demonstrate this by considering only the preservation of �. We have to
show:

a 6� b i� h(a) ∩ Cl(−h(b) 6= ∅
(⇒) Suppose a 6� b. Then by Lemma 2.6 (∃U, V ∈ PF (D))(a ∈ U and b 6∈ V

and URcV ). De�ne Γ0 = U ∪ V . Γ0 is a clan containing U and V . Extend Γ0 into
a maximal clan Γ. Then Γ contains a, so Γ ∈ h(a). We have also that b 6∈ V ⊆ Γ,
so by the Claim 6.3 Γ ∈ Cl(−h(b)).

(⇐) The proof is identical to the corresponding proof from Lemma 6.3. �

Lemma 6.7. The space X(D) satis�es the following conditions:
(i) X(D) is T1,
(ii) X(D) is compact,
(iii) h is C-separable embedding.
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Proof. (i) Let Γ be an arbitrary maximal clan. The space X(D) is T1 i� the
singleton set {Γ} is closed, i.e. Cl({Γ}) = {Γ}. This follows by the maximality of
Γ as follows. Let ∆ be a maximal clan. Then:
∆ ∈ Cl({Γ}) i� (∀c ∈ D)({Γ} ⊆ h(c) → ∆ ∈ h(c)) i� (∀c ∈ D)(Γ ∈ h(c) → ∆ ∈
h(c)) i� (∀c ∈ D)(c ∈ Γ→ c ∈ ∆) i� Γ ⊆ ∆ i� Γ = ∆ i� ∆ ∈ {Γ}.

This chain shows that indeed Cl({Γ}) = {Γ}.
(ii) The proof is similar to the proof of Lemma 6.4 (ii)
(iii) follows from (ii) as in the proof of Lemma 6.5. �

Theorem 6.5. Topological representation theorem for C-extensional

U-rich EDC-lattices Let D = (D,C, Ĉ,�) be a C-extensional U -rich EDC-
lattice. Then there exists a compact weakly regular T1-space X and a dually dense
and C-separable embedding h of D into the Boolean contact algebra RC(X) of the
regular closed sets of X. Moreover:

(i) D satis�es (Con C) i� RC(X) satis�es (Con C); in this case X is connected.
(ii) D satis�es (Nor 1) i� RC(X) satis�es (Nor 1); in this case X is κ-normal.

Proof. The proof follows from Lemma 6.6, Lemma 6.7 and Lemma 5.1.
�

6.3. Representations in T2 spaces. In the previous section we proved repre-
sentability in T1 spaces of U-rich EDC-lattices satisfying the axiom of C-extensionality
(Ext C). The T1 property of the topological space was guaranteed by the fact that
abstract points are maximal clans. In this section we will show that adding the
axiom (Nor 1) we can obtain representability in compact T2-spaces. The reason
for this is that the axiom (Nor 1) makes possible to use new abstract points - the
so called clusters, which are maximal clans satisfying some additional properties
yielding T2 separability of the topological space. Clusters have been used in the
compacti�cation theory of proximity spaces (see more about their origin in [37]).
They have been adapted in algebraic form in the representation theory of contact
algebras in [8, 42]. In [12] their de�nition and some constructions are modi�ed for
the distributive case. We remind below the corresponding de�nition.

Definition 6.2. Let D = (D,C, Ĉ,�) be an EDC-lattice. A clan Γ in D is
called a cluster if it satis�es the following condition:

(Cluster) If for all b ∈ Γ we have aCb, then a ∈ Γ.
We denote the set of clusters in D by CLUSTER(D).

Let us note that not in all EDC-lattices there are clusters. The following lemma
shows that the axiom (Nor 1) guarantees existence of clusters and some important
properties needed for the representation theorem.

Lemma 6.8. [12] Let D = (D,C, Ĉ,�) be an EDC-lattice. Then:
(i) Every cluster is a maximal clan.
(ii) If D satis�es (Nor 1) then every maximal clan is a cluster.
(iii) If Γ and ∆ are clusters such that Γ 6= ∆, then there are a 6∈ Γ and b 6∈ ∆

such that a+ b = 1.

To build the canonical spaceX(D) we assume in this section thatD = (D,C, Ĉ,
�) is an U-rich EDC-lattice satisfying the axioms (Ext C) and (Nor 1). We de�ne
X(D) = CLUSTER(D), h(a) = {Γ ∈ CLUSTER(D) : a ∈ Γ} and de�ne the
topology in X(D) considering the set CB(X) = {h(a) : a ∈ D} as a basis for
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closed sets in X(D). Since the points of X(D) are maximal clans, just as in Section
6.2 we can prove the following lemma.

Lemma 6.9. The space X(D) is a semiregular and h is a dually dense embedding
of D into the contact Boolean algebra RC(X(D)).

Lemma 6.10. (i) X(D) is T2,
(ii) X(D) is compact,
(iii) h is C-separable embedding.

Proof. (i) To show that the space X(D) is T2 suppose that Γ,∆ are two
di�erent clusters. We have to �nd two disjoint open sets A,B such that Γ ∈ A and
∆ ∈ B. By Lemma 6.8 (iii) there are a, b ∈ D such that a 6∈ Γ and b 6∈ ∆ such that
a+ b = 1. Then by Lemma 6.9 we get Γ 6∈ h(a), ∆ 6∈ h(b) and h(a)∪h(b) = X(D),
hence −h(a) ∩−h(b) = ∅. De�ne A = −h(a), B = −h(b). Since h(a) and h(b) are
closed sets, then A and B are open sets which separate the abstract points Γ and
∆.

The proof of (ii) and (iii) is the same as the proof of (ii) and (iii) in Lemma
6.7. �

Theorem 6.6. Topological representation theorem for U-rich EDC-

lattices satisfying (Ext C) and (Nor 1). Let D = (D,C, Ĉ,�) be an U -rich
EDC-lattice satisfying (Ext C) and (Nor 1). Then there exists a compact T2-space
X and a dually dense and C-separable embedding h of D into the Boolean contact
algebra RC(X) of the regular closed sets of X. Moreover D satis�es (Con C) i�
RC(X) satis�es (Con C) and in this case X is connected.

Proof. The proof follows from Lemma 6.9, Lemma 6.10 and 5.1.
�

Let us note that this theorem generalizes to the case of EDC-lattices several
representation theorems for contact algebras from [8, 40, 43, 42].

7. Topological representation theory of O-rich
EDC-lattices

This section is devoted to the theory of dense representations for O-rich EDC-
latices (see De�nition 5.1). According to Theorem 5.3 we will look for dense repre-
sentations with regular open sets (see 5.4 (ii)). This case is completely dual to the
corresponding theory developed in Section 6. For this reason we will only sketch
the main representation scheme and the de�nitions of abstract points for the T0,
T1 and T2 representations.

The representation scheme is dual to the scheme presented in Section 6:

• De�ne a set X(D) of "abstract points" of D,
• de�ne a topology in X(D) by the set OB(X(D)) = {h(a) : a ∈ D},
considered as an open base of the topology, where h is the intended em-
bedding of Stone type: h(a) = {Γ : Γ is "abstract point" and a ∈ Γ}.
X(D) is called the canonical topological space of D and h is called canon-
ical embedding,

• establish that h is a dense embedding of the lattice D into the Boolean
algebra RO(X(D)) of regular open sets of the space X(D).



7. TOPOLOGICAL REPRESENTATION THEORY OF O-RICH EDC-LATTICES 37

For the case of T0 dense representation we consider a notion of abstract point
which is dual to the notion of clan. This is the so called E-�lter (Efremovich �lter).
E-�lters were used in the theory of proximity spaces (see [37]). In the context
of contact algebras they were introduced for the �rst time in [8]. The de�nition
adapted for the language of EDC-lattices is the following.

Definition 7.1. Let D = (D,C, Ĉ,�) be an EDC-lattice. A subset Γ ⊆ D is
called an E-�lter if it satis�es the following properties:

(E-�l 1) Γ is a proper �lter in D, i.e. 0 6∈ Γ,

(E-�l 2) If a 6∈ Γ and b 6∈ Γ, then aĈb.
Γ is a minimal E-�lter if it is minimal in the set of all E-�lters of D with

respect to set inclusion.

This de�nition comes as an abstraction from the following natural example.
Let X be a topological space, x ∈ X and RO(X) be the set of all regular-open sets
of X. Then the set Γx = {a ∈ RO(X) : x ∈ a} is an E-�lter in the contact algebra
RO(X). Note that the de�nition of E-�lter is based not on the relation of contact

C, but on the dual contact Ĉ.
A general construction of E-�lters can be obtained dualizing the construction

of clans from Section 6.1. Just to show how this dual construction works and how
the O-rich axioms works, we will repeat some steps of the construction omitting
the corresponding proofs.

First we will introduce a new canonical relation between prime �lters.

Definition 7.2. Let U, V be prime ideals. De�ne a new canonical relation R̂Ĉ
( R̂Ĉ-canonical relation) between prime ideals as follows:

UR̂ĈV ↔def (∀a ∈ U)(∀b ∈ V )(aĈb).

If U, V are prime �lters then we de�ne URĈV ↔def UR̂ĈV .

Let us note that the relation R̂Ĉ depends only on Ĉ and can be de�ned also for

ideals. It is di�erent from the canonical relation R̂c between prime ideals de�ned

in Section 2.3, but the presence of O-rich axioms makes it equivalent to R̂c as it is
stated in the following lemma.

Lemma 7.1. (i) R̂Ĉ is a re�exive and symmetric relation.

(ii) If D satis�es the axioms (O-rich �) and (O-rich Ĉ), then R̂Ĉ = R̂c.

The following statement lists some facts about the relation RC .

Facts 7.1. (1) Let F,G be ideals and FR̂ĈG then there are prime ideals

U, V such that F ⊆ U , G ⊆ V and UR̂ĈV .

(2) For all a, b ∈ D: aĈb i� there exist prime ideals U, V such that UR̂ĈV ,
a ∈ U and b ∈ V .

(3) For all a, b ∈ D: aĈb i� there exist prime �lters U, V such that URĈV ,
a 6∈ U and b 6∈ V .

In the following lemma we list some facts about E-�lters.

Facts 7.2. (1) Every prime �lter is an E-�lter.
(2) If Γ is an E-�lter and a 6∈ Γ, then there exists a prime �lter U such that

Γ ⊆ U and a 6∈ U .
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(3) Every E-�lter Γ is the intersection of all prime �lters containing Γ.
(4) Every E-�lter contains a minimal E-�lter.
(5) Let Σ be a nonempty set of prime �lters such that for every U, V ∈ Σ we

have URĈV and let Γ be the intersection of the elements of Σ. Then Γ is
an E-�lter and every E-�lter can be obtained in this way.

(6) Let U, V be prime �lters, Γ be an E-�lter, Γ ⊆ U and Γ ⊆ V . Then URĈV
and URcV .

Using the above facts one can prove the following representation theorem.

Theorem 7.3. Representation theorem for O-rich EDC-lattices. Let

D = (D,C, Ĉ,�) be an O-rich EDC-lattice. Then there exists a compact semi-

regular space X and a dense and Ĉ-separable embedding h from D into the contact
algebra RO(X) of regular-open sets of X. Moreover:

(i) If D satis�es (Ext Ĉ), then X is weakly regular,

(ii) If D satis�es (Con Ĉ), then X is a connected space,
(iii) If D satis�es (Nor 2), then X is κ-normal.

Abstract points for dense representations in T1 spaces are minimal E-�lters
and abstract points for dense representations in T2 spaces are duals of clusters
introduced in [8] under the name co-clusters. We adapt this notion for the language
of EDC-lattices as follows:

Definition 7.3. An E-�lter Γ is a co-cluster if it satis�es the following condi-
tion:

(Co-cluster) If (∀b 6∈ Γ)(aĈb), then a 6∈ Γ. (or, equivalently, if a ∈ Γ, then

(∃b 6∈ Γ)(aĈb)).

Let us show, for instance, the following statement for co-clusters, which is dual
to the corresponding property for clusters as maximal clans:

Lemma 7.2. Every co-cluster is a minimal E-�lter.

Proof. Suppose that Γ is a co-cluster which is not a minimal E-�lter. Then
there exists an E-�lter ∆ such that ∆ ⊂ Γ, so a ∈ Γ and a 6∈ ∆ for some a. Then

there exists b 6∈ Γ such that aĈb. From here we get b ∈ ∆. Consequently b ∈ Γ - a
contradiction.

�

We leave to the reader to prove the dual analogues of Theorem 6.5 and Theorem
6.6 which we formulate below.

Theorem 7.4. Topological representation theorem for Ĉ-extensional

O-rich EDC-lattices. Let D = (D,C, Ĉ,�) be a Ĉ-extensional O-rich EDC-

lattice. Then there exists a compact weakly regular T1-space X and a dense and Ĉ-
separable embedding h of D into the Boolean contact algebra RO(X) of the regular
open sets of X. Moreover:

(i) D satis�es (Con Ĉ) i� RO(X) satis�es (Con Ĉ); in this case X is con-
nected.

(ii) D satis�es (Nor 2) i� RO(X) satis�es (Nor 2); in this case X is κ-normal.

Theorem 7.5. Topological representation theorem for O-rich EDC-

lattices satisfying (Ext Ĉ) and (Nor 2). Let D = (D,C, Ĉ,�) be an O-rich



EDC-lattice satisfying (Ext Ĉ) and (Nor 2). Then there exists a compact T2-space

X and a dense and Ĉ-separable embedding h of D into the Boolean contact algebra

RO(X) of the regular open sets of X. Moreover D satis�es (Con Ĉ) i� RO(X)

satis�es (Con Ĉ) and in this case X is connected.



CHAPTER 2

Extended contact algebras and internal

connectedness

In [38] is presented a complete quanti�er-free axiomatization of several logics
on region-based theory of space, based on contact relation and connectedness pred-
icates c and c≤n, and completeness theorems for the logics in question are proved.
It was shown in [38] that c and c≤n are de�nable in contact algebras by the contact
C. The predicates c and c≤n were studied for the �rst time in [30, 31] (see also
[40]). The expressiveness and complexity of spatial logics containing c and c≤n has
been investigated in [23, 24, 25, 26, 27]. In this chapter we consider the predicate
co - internal connectedness. Let X be a topological space and x ∈ RC(X). Let
co(x) means that Int(x) is a connected topological space in the subspace topology.
We prove that the predicate internal connectedness cannot be de�ned in the lan-
guage of contact algebras. Because of this we add to the language a new ternary
predicate symbol ` which has the following sense: in the contact algebra of regular
closed sets of some topological space a, b ` c i� a ∩ b ⊆ c. It turns out that the
predicate co can be de�ned in the new language. We de�ne extended contact alge-
bras - Boolean algebras with added relations `, C and co, satisfying some axioms,
and prove that every extended contact algebra can be isomorphically embedded in
the contact algebra of the regular closed subsets of some compact, semiregular, T0
topological space with added relations ` and co. So extended contact algebra can
be considered an axiomatization of the theory, consisting of the universal formulas
true in all topological contact algebras with added relations ` and co.

1. Unde�nability of internal connectedness in the language of contact
algebras

Let X be a topological space and x ∈ RC(X). Let co(x) means that Int(x) is
a connected topological space in the subspace topology.

Proposition 1.1. There does not exist a formula A(x) in the language of
contact algebras such that: for arbitrary topological space, for every regular closed
subset x of this topological space, co(x) i� A(x) is valid in the algebra of regular
closed subsets of the topological space.

Proof. Suppose for the sake of contradiction that there exists a formula A(x)
in the language of contact algebras such that: for any topological space, for every
regular closed subset x of this topological space, co(x) i� A(x) is valid in the algebra
of regular closed subsets of the topological space.

40
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Figure 1. The topological space (X,O)

We consider the topological space (X,O), where X = {1, 2, 3, 4, 5, 6, 7} and the
topology is de�ned by an open basis: {{1, 2, 3}, {7}, {2, 5, 7}, {3, 6, 7}, {2}, {3}, X,
∅} (see Figure 1).

It can be easily veri�ed that the open sets are {1, 2, 3}, {7}, {2, 5, 7}, {3, 6, 7},
{2}, {3}, {2, 3, 5, 6, 7}, {1, 2, 3, 5, 6, 7}, {1, 2, 3, 7}, {2, 7}, {3, 7}, {2, 3}, {2, 3, 7},
{1, 2, 3, 5, 7}, {1, 2, 3, 6, 7}, {2, 3, 5, 7}, {2, 3, 6, 7}, X, ∅. It can be easily veri�ed
that the regular closed sets are {4, 5, 6, 7}, {1, 2, 3, 4, 5, 6}, {1, 2, 4, 5}, {1, 3, 4, 6},
{1, 2, 4, 5, 6, 7}, {1, 3, 4, 5, 6, 7}, X, ∅.

We consider the subspace of X, Y = X\{1}. It can be easily proved that:

(1.1) IntY (c\{1}) = IntXc\{1} for every c - closed subset of X

Using (1.1) and the fact that for every t, ClY t = ClXt ∩ Y = ClXt\{1}, we prove
that RC(Y ) = {x\{1} : x ∈ RC(X)}.

We de�ne a function f from RC(X) to RC(Y ) in the following way:

f(t) =

{
t if 1 6∈ t
t\{1} if 1 ∈ t

It can be easily proved that f is an isomorphism from (RC(X),≤, ∅, X, ·,+, ∗, C)
to (RC(Y ),≤, ∅, Y, ·,+, ∗, C).

Let a = {1, 2, 3, 4, 5, 6}. We will prove that a is internally connected. IntXa =
{1, 2, 3}. The closed sets in Int(a) are: {1, 2, 3}, ∅, {1, 2}, {1, 3}, {1}. Int(a)
cannot be represented as the union of two non-empty disjoint closed sets and hence
Int(a) is connected. Consequently a is internally connected.

Let b = {2, 3, 4, 5, 6}. IntY b = {2, 3}. We will prove that b is not internally
connected. We will prove that {2, 3} is not connected. Since {2, 3} = {2} ∪ {3}, it
su�ces to prove that {2} and {3} are closed in {2, 3}. {2, 4, 5} is closed in Y and
hence {2} = {2, 4, 5} ∩ {2, 3} is closed in {2, 3}. {3, 4, 6} is closed in Y and hence
{3} = {3, 4, 6}∩ {2, 3} is closed in {2, 3}. Consequently {2, 3} is not connected, i.e.
b is not internally connected.
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We have a ∈ RC(X), co(a). Consequently A(a). Now consider the topo-
logical space Y . Using b ∈ RC(Y ) and ¬co(b), we have ¬A(b). We also have
b = f(a). (RC(X),≤, ∅, X, ·,+, ∗, C) and (RC(Y ),≤, ∅, Y, ·,+, ∗, C) are isomor-
phic structures for the language of contact algebras, A is a formula in the same
language. Consequently: A(a) is true in (RC(X) . . .) i� A(f(a)) i.e. A(b) is true
in (RC(Y ) . . .). We have proven that A(a) is true in (RC(X) . . .); so A(b) is true
in (RC(Y ) . . .) - a contradiction. �

2. De�nability of internal connectedness in an extended language

Let X be a topological space. We de�ne the relation ` in RC(X) in the
following way: a, b ` c i� a ∩ b ⊆ c.

Proposition 2.1. Let X be a topological space. For every a in RC(X), co(a)
i� ∀b∀c(b 6= 0 ∧ c 6= 0 ∧ a = b+ c→ b, c 0 a∗).

Proof. →) Let co(a). Let b, c ∈ RC(X), b 6= 0, c 6= 0, a = b + c. We will
prove that b, c 0 a∗. We have a∗ = ClX − a = −IntXa. Suppose for the sake of
contradiction that b, c ` −IntXa. It follows that b ∩ c ⊆ −IntXa (1). Suppose for
the sake of contradiction that b∩IntXa = ∅. We also have a = b∪c and consequently
IntXa ⊆ c. We will prove that IntXb = ∅. Suppose for the sake of contradiction
that IntXb 6= ∅. Using IntXa ⊆ c and (1), we have that IntXb ∩ IntXa = ∅, but
IntXb 6= ∅, so IntXa 6= IntXa ∪ IntXb (2). We have a = b ∪ c. Consequently
IntXa∪ IntXb ⊆ a, but IntXa∪ IntXb is an open set, so IntXa∪ IntXb ⊆ IntXa,
i.e. IntXa ∪ IntXb = IntXa - a contradiction. Consequently IntXb = ∅. We
have b ∈ RC(X), so b = ClXIntXb = ClX∅ = ∅ - a contradiction. Consequently
b ∩ IntXa 6= ∅. Similarly c ∩ IntXa 6= ∅. Let b1 = b ∩ IntXa, c1 = c ∩ IntXa. We
have b1 ∪ c1 = IntXa ∩ (b ∪ c) = IntXa ∩ a = IntXa. From a = b ∪ c and (1) we
get b1 ∩ c1 = ∅. We have IntXa = b1 ∪ c1, b1 6= ∅, c1 6= ∅, b1 ∩ c1 = ∅, b1 and c1
are closed in IntXa and therefore IntXa is not connected, i.e. a is not internally
connected - a contradiction.
←) Let ∀b, c ∈ RC(X)(b 6= 0 ∧ c 6= 0 ∧ a = b + c → b, c 0 a∗). We will

prove that IntXa is connected. Suppose for the sake of contradiction that IntXa is
not connected. Consequently there are b1, c1 - closed in IntXa, such that IntXa =
b1∪c1 (1), b1 6= ∅, c1 6= ∅, b1∩c1 = ∅. We have b1 = b∩IntXa, c1 = c∩IntXa, where
b and c are closed in X because b1 and c1 are closed in IntXa. Let b′ = ClXb1,
c′ = ClXc1. a and b are closed sets in X, b1 ⊆ b, b1 ⊆ a and therefore b′ ⊆ b,
b′ ⊆ a. Similarly c′ ⊆ c, c′ ⊆ a. Suppose for the sake of contradiction that
a * b′ ∪ c′. b′ and c′ are closed in X and consequently b′ ∪ c′ is closed in X. From
b1 ⊆ b′, c1 ⊆ c′, (1) we obtain that IntXa ⊆ b′ ∪ c′, but b′ ∪ c′ is closed in X and
consequently ClXIntXa ⊆ b′ ∪ c′. We have b′ ∪ c′ ⊆ a, b′ ∪ c′ 6= a. Consequently
ClXIntXa 6= a - a contradiction with a ∈ RC(X). Consequently a ⊆ b′ ∪ c′ and
thus a = b′ ∪ c′ (3). We have c1 = c ∩ IntXa, IntXa = b1 ∪ c1, b1 ∩ c1 = ∅ and
therefore b1 = −c ∩ IntXa. c is closed in X and hence −c is open in X; IntXa is
open in X; so b1 is open in X, but b1 ⊆ b′, so b1 ⊆ IntXb

′. Suppose for the sake
of contradiction that IntXb

′ 6= b1. From (3) we get IntXb
′ ⊆ IntXa (4). From

IntXa = b1 ∪ c1, b1 ⊆ IntXb
′, b1 6= IntXb

′, (4) we obtain c1 ∩ IntXb′ 6= ∅, but
IntXb

′ ⊆ b′ ⊆ b, so c1∩b 6= ∅. Consequently b∩IntXa∩c1 6= ∅, but b∩IntXa = b1, so
b1 ∩ c1 6= ∅ - a contradiction. Consequently IntXb′ = b1. b

′ = ClXb1 = ClXIntXb
′,

so b′ ∈ RC(X). Similarly c′ ∈ RC(X). We also have b′, c′ 6= ∅, a = b′ + c′, so
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b′ ∩ c′ * a∗ = −IntXa. Consequently b′ ∩ c′ ∩ IntXa 6= ∅, but b′ ⊆ b, c′ ⊆ c, so
b ∩ c ∩ IntXa 6= ∅, i.e. (b ∩ IntXa) ∩ (c ∩ IntXa) 6= ∅. Consequently b1 ∩ c1 6= ∅ - a
contradiction. Consequently IntXa is connected, i.e. co(a). �

3. Extended contact algebras

In this section we give an axiomatization of the relation a, b ` c used in the
characterization of the predicate c0(a) of internal connectedness given in Section 2.

Definition 3.1. Extended contact algebra (ECA, for short) is a system B =
(B,≤, 0, 1, ·,+, ∗,`, C, co), where (B,≤, 0, 1, ·,+, ∗) is a nondegenerate Boolean al-
gebra, ` is a ternary relation in B such that the following axioms are true:
(1) a, b ` c→ b, a ` c,
(2) a ≤ b→ a, a ` b,
(3) a, b ` a,
(4) a, b ` x, a, b ` y, x, y ` c→ a, b ` c,
(5) a, b ` c→ a · b ≤ c,
(6) a, b ` c→ a+ x, b ` c+ x,
C is a binary relation in B such that for all a, b ∈ B: aCb ↔ a, b 0 0. co is a
unary predicate in B such that for all a ∈ B: co(a) ↔ ∀b∀c(b 6= 0 ∧ c 6= 0 ∧ a =
b+ c→ b, c 0 a∗).

Lemma 3.1. If B = (B,≤, 0, 1, ·,+, ∗,`, C, co) is an ECA, then C is a contact
relation in B and hence (B,C) is a contact algebra.

Proof. Routine veri�cation that the axioms of contact C1 - C5 are true. �

The above lemma shows that the notion of ECA is a generalization of contact
algebra.

The next lemma shows the standard topological example of ECA.

Lemma 3.2. Let X be a topological space and RC(X) be the Boolean algebra
of regular closed subsets of X. Let for a, b, c ∈ RC(X):

aCb i� a ∩ b 6= ∅,
a, b ` c i� a ∩ b ⊆ c
c0(a) i� Int(a) is a connected subspace of X.
Then the Boolean algebra RC(X) with just de�ned relations is an ECA, called

topological ECA over the space X.

Proof. It can be easily veri�ed that the axioms (1)-(6) of ECA are true and
for all a, b ∈ RC(X): aCb↔ a, b 0 0. Using proposition 2.1, we get that for every
a ∈ RC(X) we have co(a)↔ ∀b∀c(b 6= 0 ∧ c 6= 0 ∧ a = b+ c→ b, c 0 a∗). �

Our aim is to prove that every ECA can be isomorphically embedded into a
topological ECA over a certain topological space X, which will be done in the next
section. This will show that the chosen axioms for ECA are right.

Remark 3.1. Using axioms (2) and (5), we see that in an ECA B a ≤ b ↔
a, a ` b for every a, b ∈ B, i.e. the predicate symbol ≤ can be removed from the
language. Although this we leave it in the language.
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4. Topological representation theory of ECA

Definition 4.1. Let (B,≤, 0, 1, ·,+, ∗,`, C, co) be an ECA and S ⊆ B.
S �0 x

def↔ x ∈ S
S �n+1 x

def↔ ∃x1, x2 : x1, x2 ` x, S �k1 x1, S �k2 x2, where k1, k2 ≤ n
S � x

def↔ ∃n : S �n x

For to prove a representation theorem of EC-algebras we will need several
lemmas.

Lemma 4.1. If S �n y and S ⊆ S′, then S′ �n y.

Proof. An induction on n.
Case 1: n = 0
Let S �0 y and S ⊆ S′. We have y ∈ S and consequently y ∈ S′, i.e. S′ �0 y.
Case 2: n > 0
Let S �n y and S ⊆ S′. We will prove that S′ �n y. From S �n y, n > 0 we get
that there are x1, x2 such that x1, x2 ` y, S �k1 x1, S �k2 x2, where k1, k2 < n.
Using S �k1 x1, S �k2 x2, S ⊆ S′ and the induction hypothesis, we have S′ �k1 x1,
S′ �k2 x2. Consequently S

′ �n y. �

Lemma 4.2. If S �n y and n ≤ n′, then S �n′ y.

Proof. Let S �n y and n ≤ n′. We will prove that S �n′ y.
Case 1: n = 0
By induction on n′ we will prove that ∀n′∀S∀y(S �0 y and 0 ≤ n′ → S �n′ y).
Case 1.1: n′ = 0
Obviously ∀S∀y(S �0 y and 0 ≤ 0→ S �0 y).
Case 1.2: n′ > 0
Let S ⊆ B, y ∈ B, S �0 y and 0 ≤ n′. We will prove that S �n′ y. From n′ > 0
we have 0 ≤ n′ − 1. By the induction hypothesis we obtain that ∀S∀y(S �0 y and
0 ≤ n′ − 1 → S �n′−1 y). Consequently S �n′−1 y. We also have y, y ` y (from
axiom (2)). Consequently S �n′ y.

So we proved that ∀n′∀S∀y(S �0 y and 0 ≤ n′ → S �n′ y). We also have
S �0 y and 0 ≤ n′. Consequently S �n′ y.
Case 2: n > 0
From S �n y, n > 0 we get that there are x1, x2 such that x1, x2 ` y, S �k1 x1,
S �k2 x2, where k1, k2 < n. But we have n ≤ n′, so k1, k2 < n′. Consequently
S �n′ y. �

Lemma 4.3. If S � x and x ≤ y, then S � y.

Proof. Let S � x and x ≤ y. We will prove that S � y. From x ≤ y and
axiom (2) we have that x, x ` y (1). From S � x we obtain that: S �n x for some
n (2). From (1) and (2) we have S �n+1 y, i.e. S � y. �

Lemma 4.4. If {x} ∪ S � y, {y} ∪ S � z, then {x} ∪ S � z.

Proof. Let {x}∪S � y, {y}∪S � z. We will prove that {x}∪S � z. We have
{y} ∪S �n0 z for some n0. By induction on n we will prove that ∀n∀t({x} ∪S � y,
{y}∪S �n t→ {x}∪S � t). Let n be a natural number and ∀n′ < n∀t({x}∪S � y,
{y} ∪ S �n′ t → {x} ∪ S � t). We will prove that ∀t({x} ∪ S � y, {y} ∪ S �n t →
{x} ∪ S � t). Let t ∈ B, {x} ∪ S � y, {y} ∪ S �n t. We will prove that {x} ∪ S � t.
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Case 1: n = 0
Case 1.1: t = y
Obviously {x} ∪ S � t.
Case 1.2: t 6= y
We have {y}∪S �0 t. Consequently t ∈ {y}∪S, but t 6= y, so t ∈ S. Consequently
{x} ∪ S �0 t.
Case 2: n > 0
We have {y} ∪ S �n t, n > 0. Consequently there are t1, t2 such that t1, t2 ` t,
{y}∪S �k1 t1, {y}∪S �k2 t2, where k1, k2 < n. By the induction hypothesis for k1,
k2, we get {x}∪S � t1, {x}∪S � t2. Consequently {x}∪S �l1 t1, {x}∪S �l2 t2 for
some integers l1, l2. Let l be the greater among l1 and l2. We have {x} ∪ S �l t1,
{x} ∪ S �l t2 by lemma 4.2; t1, t2 ` t; consequently {x} ∪ S �l+1 t, i.e. {x} ∪ S � t.
We proved that ∀n∀t({x} ∪ S � y, {y} ∪ S �n t → {x} ∪ S � t). We also have
{x} ∪ S � y, {y} ∪ S �n0 z. Consequently {x} ∪ S � z. �

Lemma 4.5. If {x1} ∪ S � y, {x2} ∪ S � y, then {x1 + x2} ∪ S � y.

Proof. Let {x1} ∪ S � y, {x2} ∪ S � y. We will prove that {x1 + x2} ∪ S � y.
There is a n0 such that {x1}∪S �n0

y, {x2}∪S �n0
y. We will prove by induction

on n that:
(∗) ∀n∀u∀v∀w({u} ∪ S �n v → {u+ w} ∪ S � v + w)
Let n be a natural number and ∀t < n∀u∀v∀w({u}∪S �t v → {u+w}∪S � v+w).
We will prove that ∀u∀v∀w({u} ∪ S �n v → {u+w} ∪ S � v +w). Let u, v, w ∈ B
and {u} ∪ S �n v. We will prove that {u+ w} ∪ S � v + w.
Case 1: n = 0
Case 1.1: v ∈ S
We have {u+w} ∪ S �0 v and by lemma 4.3, we obtain that {u+w} ∪ S � v +w.
Case 1.2: v /∈ S
We have {u} ∪ S �0 v, v /∈ S. Consequently v = u. It is su�cient to prove that
{v + w} ∪ S � v + w which obviously is true.
Case 2: n > 0
We have {u} ∪ S �n v, n > 0. Consequently there are v1, v2 such that v1, v2 ` v,
{u}∪S �k1 v1, {u}∪S �k2 v2, where k1, k2 < n. From the induction hypothesis for
k1 and k2 we get that {u+w}∪S � v1 +w (1) and {u+w}∪S � v2 +w (2). From
v1, v2 ` v and axiom (6) we obtain v1+w, v2 ` v+w; so v2, v1+w ` v+w (by axiom
(1)); so v2 + w, v1 + w ` v + w + w (by axiom (6)); consequently v1 + w, v2 + w `
v + w (3) (by axiom (1)). Using (1),(2) and (3) we have {u+ w} ∪ S � v + w.

We proved that (∗) is true. From (∗) and {x1}∪S �n0
y we get that {x1+x2}∪

S � y+x2 (4). From (∗) and {x2}∪S �n0 y, we obtain that {x2+y}∪S � y+y, i.e.
{y+ x2} ∪S � y (5). Using (4), (5) and lemma 4.4, we have {x1 + x2} ∪S � y. �

Lemma 4.6. Let S � x. Then there is a �nite nonempty subset of S, S0, such
that S0 � x.

Proof. We will prove by induction on n that ∀n∀x(S �n x→ ∃ �nite nonempty
subset S0 of S such that S0 �n x).
Case 1: n = 0
Let S �0 x. Consequently x ∈ S. Thus {x} is a �nite nonempty subset of S and
{x} �0 x.
Case 2: n 6= 0
Let S �n x. Consequently there are x1, x2 such that x1, x2 ` x, S �k1 x1, S �k2 x2,
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where k1, k2 < n. Using the induction hypothesis, we have that there exist �nite
nonempty subsets of S, S1 and S2, such that S1 �k1 x1, S2 �k2 x2. By lemma 4.1,
we get S1 ∪ S2 �k1 x1, S1 ∪ S2 �k2 x2. Thus S1 ∪ S2 �n x, S1 ∪ S2 6= ∅, S1 ∪ S2 is
�nite, S1 ∪ S2 ⊆ S. �

Lemma 4.7. Let S = {a1, . . . , an} ∪ {b1, . . . , bk} for some n, k > 0 and S � x.
Let a = a1 · . . . · an, b = b1 · . . . · bk. Then a, b ` x.

Proof. By induction on n we will prove that ∀n∀x(S �n x→ a, b ` x).
Case 1: n = 0
Let x ∈ B, S �0 x. We will prove that a, b ` x. We have x ∈ S. Without loss of
generality x = a1. From a ≤ a1 by axiom (2), we obtain that a, a ` a1. From axiom
(3) we get a, b ` a. From here and a, a ` a1 by axiom (4), we get that a, b ` a1.
Case 2: n 6= 0
Let x ∈ B and S �n x. We will prove that a, b ` x. There are x1, x2 such that
x1, x2 ` x, S �k1 x1, S �k2 x2, where k1, k2 < n. Using the induction hypothesis,
we get a, b ` x1, a, b ` x2. But x1, x2 ` x, so by axiom (4), we obtain a, b ` x. �

Definition 4.2. Let B = (B,≤, 0, 1, ·,+, ∗,`, C, co) be an ECA. A subset of
B, Γ, is an abstract point if the following conditions are satis�ed:
1) 1 ∈ Γ
2) 0 /∈ Γ
3) a+ b ∈ Γ→ a ∈ Γ or b ∈ Γ
4) a, b ∈ Γ, a, b ` c→ c ∈ Γ

Note that ultra�lters are abstract points.

Lemma 4.8. Let X be a topological space. For every n and for any b1, . . . , bn ∈
RC(X), we have ClInt(b1 ∩ . . . ∩ bn) = b1 · . . . · bn.

Proof. An induction on n.
• n = 1
ClIntb1 = b1 because b1 ∈ RC(X).
• n→ n+ 1
We will prove that ClInt(b1 ∩ . . . ∩ bn+1) = b1 · . . . · bn+1. Let b = b2 ∩ . . . ∩ bn+1.
We will prove that Int(b1 ∩ b) = Int(b1 ∩ClIntb). We have Int(b1 ∩ b) ⊆ Intb and
hence Int(b1 ∩ b) ⊆ ClIntb. We also have Int(b1 ∩ b) ⊆ b1 ∩ b ⊆ b1. Consequently
Int(b1 ∩ b) ⊆ b1 ∩ ClIntb. Consequently Int(b1 ∩ b) ⊆ Int(b1 ∩ ClIntb). Since
b2, . . . , bn+1 ∈ RC(X) and b = b2 ∩ . . . ∩ bn+1, we have that b is closed. We also
have Intb ⊆ b, so ClIntb ⊆ b. Consequently b1 ∩ ClIntb ⊆ b1 ∩ b and hence
Int(b1 ∩ ClIntb) ⊆ Int(b1 ∩ b). Thus Int(b1 ∩ b) = Int(b1 ∩ ClIntb). We have
ClInt(b1 ∩ b) = ClInt(b1 ∩ ClInt(b2 ∩ . . . ∩ bn+1)) = ClInt(b1 ∩ (b2 · . . . · bn+1)) =
b1 · (b2 · . . . · bn+1). �

Lemma 4.9. Let B = (B,≤, 0, 1, ·,+, ∗,`, C, co) be an ECA. Let A 6= ∅, A ⊆
B, a ∈ B, A 2 a. Then there exists an abstract point Γ such that A ⊆ Γ and a /∈ Γ.

Proof. We consider the set (M,⊆), where M = {P ⊆ B : A ⊆ P ; a /∈
P ; x, y ∈ P, x, y ` z → z ∈ P}. We will prove that (M,⊆) has a maximal element
Γ and Γ is an abstract point. Let P0 = {t : A � t}. We will prove that P0 ∈ M .
Obviously A ⊆ P0 and a /∈ P0. Let x, y ∈ P0, x, y ` z. We will prove that z ∈ P0.
We have A �n x and A �n y for some n. Consequently A �n+1 z. Consequently
z ∈ P0. Thus P0 ∈ M . We will prove that (M,⊆) has a maximal element. Let L
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be a chain in M .
Case 1: L = ∅
P0 is an upper bound of L.
Case 2: L 6= ∅
We will prove that

⋃
L ∈ M . Obviously

⋃
L ⊆ B, A ⊆

⋃
L, a /∈

⋃
L. Let

x, y ∈
⋃
L, x, y ` z. We will prove that z ∈

⋃
L. We have x ∈ P1, y ∈ P2, where

P1, P2 ∈ L. Without loss of generality P1 ⊆ P2. Thus x, y ∈ P2, x, y ` z, P2 ∈ M .
Consequently z ∈ P2 and hence z ∈

⋃
L. Consequently

⋃
L ∈ M . Obviously

⋃
L

is an upper bound of L.
Thus (M,⊆) satis�es the Zorn condition. Consequently (M,⊆) has a maximal

element Γ. We will prove that Γ is an abstract point. A 6= ∅ and hence a1 ∈ A for
some a1. Γ ∈ M and therefore A ⊆ Γ, so a1 ∈ Γ. From a1 ≤ 1 by axiom (2), we
get that a1, a1 ` 1. We also have Γ ∈M , a1 ∈ Γ, so 1 ∈ Γ.

Suppose for the sake of contradiction that 0 ∈ Γ. From 0 ≤ a by axiom (2), we
obtain 0, 0 ` a. Consequently a ∈ Γ - a contradiction with Γ ∈ M . Consequently
0 /∈ Γ.

Condition 4) from the de�nition of abstract point is satis�ed for Γ because
Γ ∈M .

Let x+y ∈ Γ. We will prove that x ∈ Γ or y ∈ Γ. For the sake of contradiction
suppose that {x} ∪ Γ � a, {y} ∪ Γ � a. From lemma 4.5 we have {x + y} ∪ Γ � a,
but {x + y} ∪ Γ = Γ, so Γ � a. Consequently there is a n0 such that Γ �n0

a. By
induction on n we will prove that
∀n∀x(Γ �n x→ x ∈ Γ) (1)
Case 1: n = 0
Let x ∈ B and Γ �0 x. Obviously x ∈ Γ.
Case 2: n > 0
Let x ∈ B and Γ �n x. We will prove that x ∈ Γ. There are x1, x2 such that
x1, x2 ` x, Γ �k1 x1, Γ �k2 x2, where k1, k2 < n. By the induction hypothesis and
Γ �k1 x1, Γ �k2 x2, we get that x1, x2 ∈ Γ. We also have Γ ∈ M , x1, x2 ` x, so
x ∈ Γ.
Consequently (1) is true. We also have Γ �n0 a. Consequently a ∈ Γ - a contra-
diction with Γ ∈ M . Consequently {x} ∪ Γ 2 a or {y} ∪ Γ 2 a. Without loss of
generality, {x} ∪ Γ 2 a. Let Γ′ = {z : {x} ∪ Γ � z}. We will prove that Γ′ ∈ M .
Obviously Γ′ ⊆ B, A ⊆ Γ ⊆ Γ′. Since {x} ∪ Γ 2 a, a /∈ Γ′. Let x1, x2 ∈ Γ′,
x1, x2 ` x3. We will prove that x3 ∈ Γ′. We have {x} ∪ Γ �n x1, {x} ∪ Γ �n x2
for some n. Consequently {x} ∪ Γ �n+1 x3. Consequently x3 ∈ Γ′. Thus Γ′ ∈ M .
We have Γ ⊆ Γ′, Γ is a maximal element of (M,⊆), Γ′ ∈ M , so Γ = Γ′ and hence
x ∈ Γ. Consequently Γ is an abstract point. �

Theorem 4.1. (Representation theorem) Let B = (B,≤, 0, 1, ·,+, ∗,`, C, co)
be an ECA. Then there is a compact, semiregular, T0 topological space X and an
embedding h of B into RC(X).

Proof. Let X be the set of all abstract points of B and for a ∈ B, suppose
h(a) = {Γ ∈ X : a ∈ Γ}. The set {h(a) : a ∈ B} can be taken as a closed basis for a
topology of X. From the de�nition of abstract point we obtain h(0) = ∅, h(1) = X.

Let a, b ∈ B. We will prove that h(a + b) = h(a) + h(b). h(a + b) = {Γ ∈
X : a + b ∈ Γ}, h(a) + h(b) = {Γ ∈ X : a ∈ Γ} ∪ {Γ ∈ X : b ∈ Γ}. Obviously
h(a + b) ⊆ h(a) + h(b). Let Γ ∈ h(a) ∪ h(b). Without loss of generality Γ ∈ h(a),
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i.e. Γ ∈ X and a ∈ Γ. From a ≤ a+ b and axiom (2) we get a, a ` a+ b. But a ∈ Γ
and Γ is an abstract point, so a+ b ∈ Γ, so Γ ∈ h(a+ b).

Let a, b, c ∈ B. Obviously a, b ` c implies h(a), h(b) ` h(c). Suppose that
h(a), h(b) ` h(c). We will prove that a, b ` c. Suppose for the sake of contradiction
that {a, b} 2 c. By lemma 4.9, we get that there is an abstract point Γ such that
a, b ∈ Γ, c /∈ Γ. We have Γ ∈ h(a)∩h(b); h(a)∩h(b) ⊆ h(c) (since h(a), h(b) ` h(c));
so Γ ∈ h(c); so c ∈ Γ - a contradiction. Consequently {a, b} � c. By lemma 4.7,
a, b ` c.

Let a, b ∈ B. We have a ≤ b ↔ a, a ` b ↔ h(a), h(a) ` h(b) ↔ h(a) ∩ h(a) ⊆
h(b)↔ h(a) ⊆ h(b).

In a similar way as in [40] (Proposition 2.3.4 (1),(2)) we prove that h(a∗) =
Cl(−h(a)), h(a) is a regular closed set for every a ∈ B. Consequently X is semireg-
ular.

We have h(a.b) = h((a∗ + b∗)∗) = (h(a)∗ + h(b)∗)∗ = h(a).h(b) for all a, b ∈ B.
Let a, b ∈ B. Obviously aCb i� h(a)Ch(b).
Let a ∈ B. Clearly co(h(a)) implies co(a). Let co(a). Suppose for the sake

of contradiction that ¬co(h(a)). Consequently there are b, c ∈ RC(X) such that
b 6= ∅, c 6= ∅, h(a) = b∪ c and b∩ c ⊆ h(a)∗ (proposition 2.1). b and c are closed, so
b =

⋂
i∈I h(bi), c =

⋂
j∈J h(cj) for some sets I and J . Let A = {bi : i ∈ I} ∪ {cj :

j ∈ J}. Suppose for the sake of contradiction that A � a∗. Thus by lemma 4.6,
we get that there is a �nite nonempty subset of A, A′, such that A′ � a∗. Let
bi1 ∈ {bi : i ∈ I}, cj1 ∈ {cj : j ∈ J}. Let A′ = {bi2 , bi3 , . . . , bik} ∪ {cj2 , cj3 , . . . , cjl}
for some k, l ≥ 1. Let b′ = bi1 · bi2 · . . . · bik , c′ = cj1 · cj2 · . . . · cjl . From A′ � a∗ and
lemma 4.1 we get that {bi1 , bi2 , . . . , bik}∪{cj1 , cj2 , . . . , cjl} � a∗. Using this fact, the
de�nitions of b′ and c′ and lemma 4.7, we obtain b′, c′ ` a∗. Suppose for the sake of
contradiction that b′ ·a = 0. Consequently h(bi1)·h(bi2)·. . .·h(bik)·h(a) = h(0) = ∅.
Thus by lemma 4.8, we have ClInt(h(bi1) ∩ h(bi2) ∩ . . . ∩ h(bik) ∩ h(a)) = ∅, so
Int(h(bi1) ∩ h(bi2) ∩ . . . ∩ h(bik) ∩ h(a)) = ∅. We have h(a) = b ∪ c and therefore
b = b∩h(a) ⊆ h(bi1)∩h(bi2)∩ . . .∩h(bik)∩h(a). Consequently Intb ⊆ Int(h(bi1)∩
h(bi2) ∩ . . . ∩ h(bik) ∩ h(a)) = ∅, i.e. Intb = ∅. We have b ∈ RC(X) and from here
b = ClIntb = Cl∅ = ∅ - a contradiction. Consequently b′ · a 6= 0 (1). Similarly
c′·a 6= 0 (2). We have h(a) = b∪c ⊆ h(bim)∪h(cjn) for allm = 1, . . . , k, n = 1, . . . , l.
Consequently a ≤ bim +cjn for all m = 1, . . . , k, n = 1, . . . , l. We also have b′+c′ =
(bi1 · . . . ·bik)+(cj1 · . . . ·cjl) = (bi1 +cj1) · . . . ·(bik +cj1) · . . . ·(bi1 +cjl) · . . . ·(bik +cjl).
Consequently a ≤ b′+ c′. Thus a = (b′+ c′) ·a = b′ ·a+ c′ ·a (3). From b′ ·a ≤ b′ by
axiom (2), we have b′ · a, b′ · a ` b′ (4). From axiom (3) we get b′ · a, c′ · a ` b′ · a (5).
From (5) and (4) by axiom (4), we obtain b′ ·a, c′ ·a ` b′ (6). Similarly c′ ·a, b′ ·a ` c′
and from here by axiom (1), we have b′ ·a, c′ ·a ` c′ (7). From (6), (7) and b′, c′ ` a∗
we get, by axiom (4), that b′ · a, c′ · a ` a∗ (8). From co(a), (1), (2) and (3) we
obtain b′ · a, c′ · a 0 a∗ - a contradiction with (8). Consequently A 2 a∗. Thus by
lemma 4.9, we get that there is an abstract point Γ1 such that A ⊆ Γ1, a

∗ /∈ Γ1.
Since A ⊆ Γ1, we have bi ∈ Γ1 for every i ∈ I and cj ∈ Γ1 for every j ∈ J . We
also have that Γ1 is an abstract point, so Γ1 ∈ h(bi) for every i ∈ I and Γ1 ∈ h(cj)
for every j ∈ J . Consequently Γ1 ∈ b, Γ1 ∈ c. We have a∗ /∈ Γ1, so Γ1 /∈ h(a∗).
Thus b ∩ c * h(a∗), i.e. b ∩ c * h(a)∗ - a contradiction. Consequently co(h(a)).
Consequently h is an embedding.

As in [40] (Lemma 2.3.6), replacing the notion clan with abstract point, we
prove that X is a compact, T0 space. �



5. Concluding remarks

One of the motivations to introduce ECA is that its language is more rich
and makes possible to express the predicate of internal connectedness of a region.
Here we mention without proof some other things which can be expressed in its
language and also some things which are not expressible and need further extension.
It is known that the intersection of regular closed sets is not in general a regular
closed set. Let X be a topological space and for the elements of RC(X) consider
the relation: RC ∩ (a, b) ↔ a ∩ b is a regular closed set. Very probably this
relation is not expressible in contact algebras, but it is expressible in ECA as follows:
RC∩(a, b)↔ (∃c)(a, b ` c and c ≤ a and c ≤ b). Another interesting property which
is expressible in ECA is related to the existence or not existence of holes in a region
like for instance the hole of a region with the form of torus. Then the complement
−a is an open set which is not connected. So connectedness of −a expresses that
a has no holes. This is expressible in ECA by co(a∗). If the internal part of a
region is not connected then we cannot express the number of its components. For
that purpose we need a more general relation between �nite number of regions,
which topological meaning is expressible in RC(X) by the relation: a1, . . . , an ` b
i� a1 ∩ . . . ∩ an ⊆ b. Such relations for all n are studied in the paper [39].

By this relation one can express also n-ary contact by Cn(a1, . . . , an) i� a1, . . . , an
0 0, which is not expressible neither in contact algebras nor in ECA.



CHAPTER 3

Quanti�er-free logics, related to EDC-lattices and

EC-algebras

In this chapter we consider a �rst-order language without quanti�ers corre-
sponding to EDCL. We give completeness theorems with respect to both algebraic
and topological semantics for several logics for this language. It turns out that all
these logics are decidable. We also consider a quanti�er-free �rst-order language
corresponding to ECA and a logic for ECA which is decidable.

1. Preliminaries

Here we have constructions almost the same as in [4] (pages 57-59).
Let L be a quanti�er-free countable �rst-order language with equality. Let δ be

a formula in L. We de�ne ⊥ = δ∧¬δ, > = δ∨¬δ. Let I be an arbitrary set; for every
i ∈ I βi be a formula for L with variables among pi1 , . . . , pini

, qi1 , . . . , qimi
; for every

i ∈ I γi be a formula for L with variables among qi1 , . . . , qimi
. (pi1 , . . . , pini

, qi1 , . . . ,

qimi
are di�erent variables.)
Let L be a logic for L, containing all axioms of the classical propositional logic,

whose rules are MP and all rules of the type:

(1.1)
ϕ→ βi

[
pi1 ...pini

qi1 ...qimi

ri1 ...rini
ai1 ...aimi

]
for all sequences of variables ri1 . . . rini

ϕ→ γi

[
qi1 ...qimi

ai1 ...aimi

] ,

where i ∈ I, ϕ is a formula for L, ai1 . . . aimi
are terms for L. Let also if α is an

axiom of L with variables p1, . . . , pn and a1, . . . , an are terms in L, then α
[
p1,...,pn
a1,...,an

]
is also an axiom of L. (Here [. . . ] means a simultaneous substitution.)

We call the following axiom corresponding to the rule 1.1:

¬γi
[
qi1 ...qimi

ai1 ...aimi

]
→ ∃xi1 . . . ∃xini

¬βi
[
pi1 ...pini

qi1 ...qimi

xi1
...xini

ai1 ...aimi

]
, where xi1 , . . . , xini

are some

variables, not occurring in ai1 , . . . , aimi
, di�erent from pi1 , . . . , pini

, qi1 . . . , qimi
.

Remark 1.1. Another approach is to be considered rules of the kind:

ϕ→βi

[
pi1

...pini
qi1

...qimi
ri1

...rini
ai1

...aimi

]
ϕ→γi

[
qi1

...qimi
ai1

...aimi

] , where ri1 . . . rini
are variables not occuring in ai1 , . . . , aimi

and ϕ (see [4]).

Definition 1.1. A set of formulas for L Γ is a L-theory, if satis�es the fol-
lowing conditions:
(i) Γ contains all theorems of L;

50
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(ii) If α, α→ β ∈ Γ, then β ∈ Γ;

(iii) For every rule of the type above, we have: if ϕ→ βi

[
pi1 ...pini

qi1 ...qimi

ri1 ...rini
ai1 ...aimi

]
∈ Γ for

all sequences of variables ri1 , . . . , rini
, then ϕ→ γi

[
qi1 ...qimi

ai1 ...aimi

]
∈ Γ.

A L-theory Γ is consistent, if ⊥ /∈ Γ.
Γ is a maximal L-theory, if it is a consistent L-theory and for every consistent

L-theory ∆, if Γ ⊆ ∆, then Γ = ∆.

Lemma 1.1 (Extension lemma). Let Γ be a L-theory and α be a formula. Let

∆ = Γ + α
def
= {β : α→ β ∈ Γ}. Then:

(i) ∆ is the smallest L-theory, containing Γ and α;
(ii) ∆ is inconsistent ↔ ¬α ∈ Γ;
(iii) For any i ∈ I, ϕ - a formula for L, ai1 , . . . , aimi

- terms for L, we have: if

Γ + ¬
(
ϕ → γi

[
qi1 ...qimi

ai1 ...aimi

])
is consistent, then there are variables ri1 , . . . , rini

such

that
(

Γ + ¬
(
ϕ → γi

[
qi1 ...qimi

ai1 ...aimi

]))
+ ¬

(
ϕ → βi

[
pi1 ...pini

qi1 ...qimi

ri1 ...rini
ai1 ...aimi

])
is a consistent

L-theory.

Proof. (i) We will prove that Γ ⊆ ∆. Let γ ∈ Γ. We will prove that γ ∈ ∆.
It su�ces to prove that α→ γ ∈ Γ. The formula γ → (α→ γ) is a theorem of the
classical propositional logic, Γ is a L-theory, so γ → (α → γ) ∈ Γ. We also have
γ ∈ Γ, Γ is closed under MP , so α→ γ ∈ Γ.

We will prove that α ∈ ∆. It su�ces to prove that α→ α ∈ Γ. But this is true
because α→ α is a theorem of L.

We will prove that ∆ is a L-theory. Γ contains all theorems of L and Γ ⊆ ∆,
consequently ∆ contains all theorems of L. Let γ1, γ1 → γ2 ∈ ∆. We will prove
that γ2 ∈ ∆. We have α → γ1 ∈ Γ, α → (γ1 → γ2) ∈ Γ(1). The formula (α →
γ1) → ((α → (γ1 → γ2)) → (α → γ2)) is a theorem of the classical propositional
logic and consequently is in Γ. Using this fact, (1) and the closeness of Γ under
MP , we get α → γ2 ∈ Γ, so γ2 ∈ ∆. Let i ∈ I, ϕ is a formula for L, ai1 , . . . , aimi

are terms for L. Let ϕ → βi

[
pi1 ...pini

qi1 ...qimi

ri1 ...rini
ai1 ...aimi

]
∈ ∆ for all sequences of variables

ri1 , . . . , rini
. Let γ′i = γi

[
qi1 ...qimi

ai1 ...aimi

]
. We will prove that ϕ → γ′i ∈ ∆. We have

α →
(
ϕ → βi

[
pi1 ...pini

qi1 ...qimi

ri1 ...rini
ai1 ...aimi

])
∈ Γ for all sequences of variables ri1 , . . . , rini

,

so (α ∧ ϕ) → βi

[
pi1 ...pini

qi1 ...qimi

ri1 ...rini
ai1 ...aimi

]
∈ Γ for all sequences of variables ri1 , . . . , rini

.

From here and the fact that Γ is a L-theory, we obtain (α ∧ ϕ) → γ′i ∈ Γ, so
α→ (ϕ→ γ′i) ∈ Γ, so ϕ→ γ′i ∈ ∆. Consequently ∆ is a L-theory.

Let ∆′ is a L-theory, containing Γ and α. We will prove that ∆ ⊆ ∆′. Let
γ ∈ ∆. We will prove that γ ∈ ∆′. We have α → γ ∈ Γ, Γ ⊆ ∆′, so α → γ ∈ ∆′.
But α ∈ ∆′ and ∆′ is closed under MP , so γ ∈ ∆′. Consequently ∆ is the smallest
L-theory, containing Γ and α.
(ii) Let ∆ is inconsistent. We will prove that ¬α ∈ Γ. ⊥ ∈ ∆ and hence α→ ⊥ ∈ Γ.
(α → ⊥) → ¬α is a theorem of the classical propositional logic and therefore is in
Γ. Consequently ¬α ∈ Γ.

Let ¬α ∈ Γ. We will prove that ∆ is inconsistent, i.e. that ⊥ ∈ ∆. The formula
¬α→ (α→ ⊥) ∈ Γ, ¬α ∈ Γ, so α→ ⊥ ∈ Γ, i.e. ⊥ ∈ ∆.

(iii) Let i ∈ I, ϕ be a formula for L, ai1 , . . . , aimi
be terms for L, Γ + ¬

(
ϕ →
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γi

[
qi1 ...qimi

ai1 ...aimi

])
is consistent. Suppose for the sake of contradiction that for all se-

quences of variables ri1 , . . . , rini

(
Γ + ¬

(
ϕ→ γi

[
qi1 ...qimi

ai1 ...aimi

]))
+ ¬

(
ϕ→

βi

[
pi1 ...pini

qi1 ...qimi

ri1 ...rini
ai1 ...aimi

])
is inconsistent. Consequently

(
ϕ→ βi

[
pi1 ...pini

qi1 ...qimi

ri1 ...rini
ai1 ...aimi

])
∈

Γ + ¬
(
ϕ → γi

[
qi1 ...qimi

ai1 ...aimi

])
for all sequences of variables ri1 , . . . , rini

. Thus we

get ϕ → γi

[
qi1 ...qimi

ai1 ...aimi

]
∈ Γ + ¬

(
ϕ → γi

[
qi1 ...qimi

ai1 ...aimi

])
. We also have ¬

(
ϕ →

γi

[
qi1 ...qimi

ai1 ...aimi

])
∈ Γ + ¬

(
ϕ → γi

[
qi1 ...qimi

ai1 ...aimi

])
, so ⊥ ∈ Γ + ¬

(
ϕ → γi

[
qi1 ...qimi

ai1 ...aimi

])
- a contradiction. Consequently there is a sequence of variables ri1 , . . . , rini

such

that
(

Γ+¬
(
ϕ→ γi

[
qi1 ...qimi

ai1 ...aimi

]))
+¬
(
ϕ→ βi

[
pi1 ...pini

qi1 ...qimi

ri1 ...rini
ai1 ...aimi

])
is consistent. �

Lemma 1.2 (Lindenbaum lemma for L-theories). Every consistent L-theory Γ
can be extended to a maximal L-theory ∆.

Proof. Let Γ be a consistent L-theory and the formulas of L be α1, . . . , αn, . . . ,
n < ω. Let an enumeration of the �nite sequences of variables be �xed. We de�ne a
sequence of consistent L-theories Γ1 ⊆ Γ2 ⊆ . . . by induction in the following way:
Γ1 = Γ and let Γ1, . . . ,Γn be de�ned. We de�ne Γn+1 in the following way:
Case 1: Γn + αn is consistent

Case 1.1: αn is not of the kind ¬
(
ϕ → γi

[
qi1 ...qimi

ai1 ...aimi

])
, where ϕ is a formula for

L, i ∈ I, ai1 , . . . , aimi
are terms for L.

In this case Γn+1
def
= Γn + αn.

Case 1.2: αn is of the kind ¬
(
ϕ → γi

[
qi1 ...qimi

ai1 ...aimi

])
, where ϕ is a formula for

L, i ∈ I, ai1 , . . . , aimi
are terms for L. By the Extension lemma, we get that

there are variables ri1 , . . . , rini
such that

(
Γn + ¬

(
ϕ → γi

[
qi1 ...qimi

ai1 ...aimi

]))
+ ¬

(
ϕ →

βi

[
pi1 ...pini

qi1 ...qimi

ri1 ...rini
ai1 ...aimi

])
is a consistent L-theory and let ri1 , . . . , rini

be the �rst in

the enumeration sequence of variables with this property. In this case Γn+1
def
=(

Γn + ¬
(
ϕ→ γi

[
qi1 ...qimi

ai1 ...aimi

]))
+ ¬

(
ϕ→ βi

[
pi1 ...pini

qi1 ...qimi

ri1 ...rini
ai1 ...aimi

])
.

Case 2: Γn + αn is not consistent

In this case Γn+1
def
= Γn.

Let ∆ =
⋃∞
n=1 Γn. Obviously Γ ⊆ ∆. We will prove that ∆ is a maximal L-

theory. Obviously ∆ contains all theorems of L. Let α, α→ β ∈ ∆. We will prove
that β ∈ ∆. There is an n such that α, α → β ∈ Γn; Γn is a L-theory; so β ∈ Γn,
i.e. β ∈ ∆. Let i ∈ I, ϕ be a formula for L, ai1 , . . . , aimi

be terms for L, ϕ →
βi

[
pi1 ...pini

qi1 ...qimi

ri1 ...rini
ai1 ...aimi

]
∈ ∆ for all sequences of variables ri1 , . . . , rini

(1). For the sake

of contradiction suppose that ϕ → γi

[
qi1 ...qimi

ai1 ...aimi

]
/∈ ∆(2). ¬

(
ϕ → γi

[
qi1 ...qimi

ai1 ...aimi

])
is

αm for some m. By the Extension lemma (ii) and (2), we obtain that Γm + αm is

consistent. Γm+1 = (Γm + αm) + ¬
(
ϕ→ βi

[
pi1 ...pini

qi1 ...qimi

r′i1
...r′ini

ai1 ...aimi

])
for some sequence

of variables r′i1 , . . . , r
′
ini

(3). From (1) we get that ϕ → βi

[
pi1 ...pini

qi1 ...qimi

r′i1
...r′ini

ai1 ...aimi

]
∈

Γl for some l. From here and (3) we obtain that there is a k such that ϕ →
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βi

[
pi1 ...pini

qi1 ...qimi

r′i1
...r′ini

ai1 ...aimi

]
, ¬
(
ϕ → βi

[
pi1 ...pini

qi1 ...qimi

r′i1
...r′ini

ai1 ...aimi

])
∈ Γk. Consequently ⊥ ∈ Γk,

i.e. Γk is not consistent - a contradiction. Consequently ∆ is a L-theory.
For every n, Γn is consistent and hence ⊥ /∈ Γn for every n. Consequently

⊥ /∈ ∆, i.e. ∆ is consistent.
Let ∆′ be a consistent L-theory and ∆ ⊆ ∆′. We will prove that ∆′ ⊆ ∆.

Let αn ∈ ∆′. We will prove that αn ∈ ∆. For the sake of contradiction suppose
that ¬αn ∈ Γn. Consequently ¬αn ∈ ∆ and ¬αn ∈ ∆′. We also have αn ∈ ∆′, so
⊥ ∈ ∆′ - a contradiction. Consequently ¬αn /∈ Γn. From here and the Extension
lemma (ii) we get that Γn + αn is consistent. Consequently αn ∈ ∆. Consequently
∆ is a maximal L-theory. �

Lemma 1.3. Let S be a maximal L-theory. Then:
(i) for every formula α, α ∈ S or ¬α ∈ S;
(ii) for all formulas α and β:
1) ¬α ∈ S ↔ α /∈ S;
2) α ∧ β ∈ S ↔ α ∈ S and β ∈ S;
3) α ∨ β ∈ S ↔ α ∈ S or β ∈ S.

Proof. (i) Let α be a formula for L. For the sake of contradiction suppose
that S′ = S + ¬α and S′′ = S + α are inconsistent. Consequently ¬α → ⊥ ∈ S
and α → ⊥ ∈ S. The formula (¬α → ⊥) → ((α → ⊥) → ⊥) is a theorem of the
classical propositional logic and consequently is in S. Thus using that S is closed
under MP , we get that ⊥ ∈ S - a contradiction. Consequently S′ is consistent or
S′′ is consistent, so S′ = S or S′′ = S, i.e. ¬α ∈ S or α ∈ S.
(ii) Let α and β be formulas for L.
1) If ¬α ∈ S, then α /∈ S because otherwise S is inconsistent. If α /∈ S, then ¬α ∈ S
because (i) is true.
2) Let α∧ β ∈ S. The formula (α∧ β)→ α is in S. Consequently α ∈ S. Similarly
β ∈ S. Let α, β ∈ S. The formula α → (β → α ∧ β) is in S. Consequently
α ∧ β ∈ S.
3) Let α ∨ β ∈ S. Suppose for the sake of contradiction that α /∈ S, β /∈ S. From
(i) we get ¬α ∈ S and ¬β ∈ S. We have ¬α → (¬β → ¬(α ∨ β)) ∈ S. Thus
¬(α ∨ β) ∈ S. Consequently S is inconsistent - a contradiction.

Let α ∈ S or β ∈ S. The formulas α → (α ∨ β) and β → (α ∨ β) are in S.
Consequently α ∨ β ∈ S. �

Let S be a maximal L-theory. We de�ne the relation ≡ in the set of all terms
of L in the following way: a ≡ b ⇔ a = b ∈ S. ≡ is an equivalence relation. Let
Bs = {|a| : a is a term}. We de�ne the structure Bs with universe Bs in the
following way:
• for every constant c: cBs = |c|;
• for every n-ary function symbol f : fBs(|a1|, . . . , |an|) = |f(a1, . . . , an)|;
• for every n-ary predicate symbol p: pBs(|a1|, . . . , |an|)↔ p(a1, . . . , an) ∈ S.
We de�ne a valuation in Bs in the following way: vs(p) = |p| for every variable p.
It can be easily veri�ed that vs(a) = |a| for every term a. We call (Bs, vs) canonical
model, corresponding to S.

The semantics of L is the standard one.

Lemma 1.4. For every formula α: (Bs, vs) � α⇔ α ∈ S.
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Proof. Induction on the complexity of α. �

Proposition 1.1. All theorems of L are true in (Bs, vs). For every i ∈ I and

for any ai1 , . . . , aimi
- terms we have: if (Bs, vs) 2 γi

[
qi1 ...qimi

ai1 ...aimi

]
, then there are

terms p′i1 , . . . , p
′
ini

such that (Bs, vs) 2 βi
[
pi1 ...pini

qi1 ...qimi

p′i1
...p′ini

ai1 ...aimi

]
.

Proof. Since S contains all theorem of L by lemma 1.4, we get that all theo-
rems of L are true in (Bs, vs).

Let i ∈ I, ai1 , . . . , aimi
be terms and (Bs, vs) 2 γi

[
qi1 ...qimi

ai1 ...aimi

]
. Consequently

γi

[
qi1 ...qimi

ai1 ...aimi

]
/∈ S. For simplicity for any k and any terms τ1, . . . , τk we will denote

τ1, . . . , τk by τ . Thus γi

[
q
a

]
/∈ S. For the sake of contradiction suppose that for

any terms p′, βi

[
p,q

p′,a

]
∈ S. For any terms p′, βi

[
p,q

p′,a

]
→
(
> → βi

[
p,q

p′,a

])
is a

theorem of L and hence is in S. Consequently > → βi

[
p,q

p′,a

]
∈ S for any terms p′.

By condition (iii) from the de�nition of L-theory, > → γi

[
q
a

]
∈ S. Consequently

γi

[
q
a

]
∈ S - a contradiction. �

Proposition 1.2. Let S be a maximal L-theory. Then the canonical structure,
corresponding to S, Bs satis�es all axioms of L and the axioms, corresponding to
the rules of L.

Proof. Let α be an axiom of L with variables among p1, . . . , pn, where n ≥ 0.

Let v be a valuation in Bs. We will prove that (Bs, v) � α, i.e. α
[

p1,...,pn
v(p1),...,v(pn)

]
is

true. There are terms a1, . . . , an such that v(p1) = |a1|, . . . , v(pn) = |an|. (Here we
use the de�nition of the canonical structure Bs, corresponding to S - Bs = {|a| : a
is a term}.) α

[
p1,...,pn
a1,...,an

]
is also an axiom of L and hence by lemma 1.4, (Bs, vs) �

α
[
p1,...,pn
a1,...,an

]
. Consequently α

[
p1,...,pn
|a1|,...,|an|

]
is true.

If L includes rules, di�erent from MP, we prove that their corresponding ax-
ioms are true in Bs, using proposition 1.1, in the following way: For simplicity for
any k and any terms τ1, . . . , τk we denote τ1, . . . , τk by τ , |τ1|, . . . , |τk| by |τ | and
v(τ1), . . . , v(τk) by v(τ), where v is some valuation. Let i ∈ I and a be terms.

Let v be a valuation in Bs and (Bs, v) � ¬γi
[
q
a

]
. We will prove that (Bs, v) �

∃xi1 . . . ∃xini
¬βi
[
p,q
x,a

]
, where x are some variables, not occurring in a, di�erent from

p, q. Let v(ai1) = |bi1 |, . . . , v(aimi
) = |bimi

|. We have ¬γi
[

q

v(a)

]
, i.e. ¬γi

[
q

vs(b)

]
,

i.e. (Bs, vs) � ¬γi
[
q

b

]
. By proposition 1.1, we obtain that there are terms p′ such

that (Bs, vs) 2 βi

[
p,q

p′,b

]
, i.e. ¬βi

[
p,q

|p′|,v(a)

]
. Consequently

(
Bs, v

[
x

|p′|

])
� ¬βi

[
p,q
x,a

]
and hence (Bs, v) � ∃xi1 . . . ∃xini

¬βi
[
p,q
x,a

]
. �

Theorem 1.2 (Completeness theorem). The following conditions are equivalent
for every formula α:
(i) α is a theorem of L;
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(ii) α is true in all structures for L in which the axioms of L and the corresponding
to the rules of L axioms are true.

Proof. (i)→(ii) It su�ces to prove that for every i ∈ I, ϕ - a formula,
ai1 , . . . , aimi

- terms:

(1) if for arbitrary variables ri1 , . . . , rini
ϕ → βi

[
pi1 ...pini

qi1 ...qimi

ri1 ...rini
ai1 ...aimi

]
is true in all

structures for L in which the axioms of L and the corresponding to the rules of L
axioms are true, then ϕ→ γi

[
qi1 ...qimi

ai1 ...aimi

]
is true in all structures for L in which the

axioms of L and the corresponding to the rules of L axioms are true.

Let i ∈ I, ϕ be a formula, ai1 , . . . , aimi
be terms and the premise of (1) be true.

Let B be a structure for L in which the axioms of L and the corresponding to the
rules of L axioms are true, and v be a valuation in B. We will prove that (B, v) �

ϕ → γi

[
qi1 ...qimi

ai1 ...aimi

]
. Suppose for the sake of contradiction the contrary. Conse-

quently (B, v) � ϕ and (B, v) 2 γi
[
qi1 ...qimi

ai1 ...aimi

]
. But in B is true the corresponding to

the considered rule axiom: ¬γi
[
qi1 ...qimi

ai1 ...aimi

]
→ ∃xi1 . . . ∃xini

¬βi
[
pi1 ...pini

qi1 ...qimi

xi1
...xini

ai1 ...aimi

]
,

where xi1 , . . . , xini
are some variables, not occurring in ai1 , . . . , aimi

, di�erent from

pi1 , . . . , pini
, qi1 . . . , qimi

. Consequently (B, v) � ∃xi1 . . . ∃xini
¬βi
[
pi1 ...pini

qi1 ...qimi

xi1
...xini

ai1 ...aimi

]
and hence there are r′i1 , . . . , r

′
ini
∈ B such that

(
B, v

[
ri1 ...rini

r′i1
...r′ini

])
2 βi

[
pi1 ...pini

qi1 ...qimi

ri1 ...rini
ai1 ...aimi

]
,

where ri1 , . . . , rini
are some variables, not occurring in ai1 , . . . , aimi

and ϕ. We

have (B, v
[
ri1 ...rini

r′i1
...r′ini

])
� ϕ and (B, v

[
ri1 ...rini

r′i1
...r′ini

])
� ϕ → βi

[
pi1 ...pini

qi1 ...qimi

ri1 ...rini
ai1 ...aimi

]
. Con-

sequently (B, v
[
ri1 ...rini

r′i1
...r′ini

])
� βi

[
pi1 ...pini

qi1 ...qimi

ri1 ...rini
ai1 ...aimi

]
- a contradiction.

(ii)→(i) Let α be true in all structures for L in which the axioms of L and the cor-
responding to the rules of L axioms are true. Suppose for the sake of contradiction
that α is not a theorem of L. Let T be the set of all theorems of L. T is a L-theory.
Let T ′ = T + {¬α}. We have ¬¬α /∈ T , so using the extension lemma (ii), we get
that T ′ is a consistent L-theory. From the Lindenbaum lemma it follows that T ′

can be extended to a maximal L-theory S. From proposition 1.2 we obtain that the
canonical structure Bs satis�es all axioms of L and the axioms, corresponding to
the rules of L. Consequently (Bs, vs) � α. By lemma 1.4, we get that α ∈ S. But
¬α is also in S. Consequently S is inconsistent - a contradiction. Consequently α
is a theorem of L. �

2. Quanti�er-free logics for extended distributive contact lattices

We consider the quanti�er-free �rst-order language with equality L which in-
cludes:
• constants: 0, 1;
• function symbols: +, ·;
• predicate symbols: ≤, C, Ĉ, �.

Let ⊥ def
= (0 ≤ 0) ∧ ¬(0 ≤ 0), > def

= (0 ≤ 0) ∨ ¬(0 ≤ 0). Every EDCL is a structure
for L.

We consider the logic L with rule MP and the following axioms:
• the axioms of the classical propositional logic;
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• the axiom schemes of distributive lattice;

• the axioms for C, Ĉ, � and the mixed axioms of EDCL - considered as axiom
schemes.

We consider the following additional rules and an axiom scheme:

(R Ext Ô) α→(a+p 6=1∨b+p=1) for all variables p
α→(a≤b) , where α is a formula, a, b are terms

(R U-rich �) α→(b+p 6=1∨aCp) for all variables p
α→(a�b) , where α is a formula, a, b are terms

(R U-rich Ĉ) α→(a+p 6=1∨b+q 6=1∨pCq) for all variables p, q
α→aĈb

, where α is a formula, a, b
are terms

(R Ext C) α→(p 6=0→aCp) for all variables p
α→(a=1) , where α is a formula, a is a term

(R Nor1) α→(p+q 6=1∨aCp∨bCq) for all variables p, q
α→aCb , where α is a formula, a, b are terms

(Con C) p 6= 0 ∧ q 6= 0 ∧ p+ q = 1→ pCq
The corresponding to these rules axioms are equivalent respectively to the ax-

ioms (Ext Ô), (U-rich �), (U-rich Ĉ), (Ext C), (Nor1).

Let L′ be for example the extension of L with the rule (R Ext Ô) and the axiom
scheme (Con C). Then we denote L′ by LConC,ExtÔ and call the axioms (Con C)

and (Ext Ô) corresponding to L′ additional axioms. In a similar way we denote
any extension of L with some of the considered additional rules and axiom scheme
and in a similar way we de�ne its corresponding additional axioms.

Using theorem 1.2, we obtain:

Theorem 2.1 (Completeness theorem with respect to algebraic semantics).
Let L′ be some extension of L with 0 or more of the considered additional rules and
axiom scheme. The following conditions are equivalent for any formula α:
(i) α is a theorem of L′;
(ii) α is true in all EDCL, satisfying the corresponding to L′ additional axioms.

We consider the following logics, corresponding to the EDC-lattices, considered
in chapter 1:
1) L;
2) LExtÔ,U−rich�,U−richĈ ;

3) LExtÔ,U−rich�,U−richĈ,ExtC ;

4) LExtÔ,U−rich�,U−richĈ,ConC ;

5) LExtÔ,U−rich�,U−richĈ,Nor1;

6) LExtÔ,U−rich�,U−richĈ,ExtC,ConC ;

7) LExtÔ,U−rich�,U−richĈ,Nor1,ConC ;

8) LExtÔ,U−rich�,U−richĈ,ExtC,Nor1;

9) LExtÔ,U−rich�,U−richĈ,ExtC,ConC,Nor1.

To every of these logics we juxtapose a class of topological spaces:
1) the class of all T0, semiregular, compact topological spaces;
2) the class of all T0, semiregular, compact topological spaces;
3) the class of all T0, compact, weakly regular topological spaces;
4) the class of all T0, semiregular, compact, connected topological spaces;
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5) the class of all T0, semiregular, compact, κ - normal topological spaces;
6) the class of all T0, compact, weakly regular, connected topological spaces;
7) the class of all T0, semiregular, compact, κ - normal, connected topological
spaces;
8) the class of all T0, compact, weakly regular, κ - normal topological spaces;
9) the class of all T0, compact, weakly regular, connected, κ - normal topological
spaces.

Later we will prove that some of the rules of these logics can be eliminated and
these logics are reducible to other logics. Because of this some other logics also will
be considered.

Proposition 2.1. For every EDCL B, satisfying the corresponding of some
of the considered above logics additional axioms, there exists a topological space X
from the corresponding class and an embedding of B in RC(X).

Proof. In [40] (Theorem 2.3.9) it is proved that: if B is a contact algebra,
then there is a compact, semiregular, T0 topological space X and an embedding of
B in RC(X). From here and corollary 2.1 in chapter 1 it follows that: if B is an
EDCL (i.e. EDCL, satisfying the corresponding to L zero additional axioms), then
there is a compact, semiregular, T0 topological space X and an embedding of B in
RC(X).

For the other eight logics the proposition follows from theorem 6.4 in chapter 1.
�

Theorem 2.2 (Completeness theorem with respect to topological semantics).
Let L′ be any of the considered logics. The following conditions are equivalent for
any formula α:
(i) α is a theorem of L′;
(ii) α is true in all contact algebras over a topological space from the corresponding
to L′ class.

Proof. From the previous completeness theorem we have: (i)↔

(ii′)α is true in all EDCL, satisfying the corresponding to L′ additional axioms

We will prove that (ii')↔ (ii).
(ii')→(ii) Let α be true in all EDCL, satisfying the corresponding to L′ additional
axioms. Let X be a topological space from the corresponding to L′ class. From
lemma 5.1 in chapter 1 it follows that RC(X) satis�es the corresponding to L′

additional axioms. Consequently α is true in RC(X).
(ii)→(ii') Let α be true in all contact algebras over a topological space from the
corresponding to L′ class. Let B be an EDCL, satisfying the corresponding to L′

additional axioms, and v be a valuation in B. We will prove that (B, v) � α. By
proposition 2.1, we get that there is a topological spaceX from the corresponding to
L′ class and an isomorphic embedding h of B in RC(X). We de�ne a valuation v′ in
RC(X) in the following way: v′(p) = h(v(p)) for every variable p. By B′ we denote
the sublattice of RC(X) to which B is isomorphic. We have (RC(X), v′) � α, so
(B′, v′) � α, so (B, v) � α. �

Proposition 2.2. L and LExtÔ,U−rich�,U−richĈ have the same theorems.
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Proof. The proposition follows from the completeness theorem with respect
to topological semantics because to L and LExtÔ,U−rich�,U−richĈ corresponds the

same class of topological spaces. �

3. Decidability via �nite models and admissibility of some rules of
inference

In this section we discuss admissibility of some rules of inference and decidabil-
ity via �nite models of the logics introduced in Section 2. We will not discuss in
this dissertation the complexity of the corresponding logics.

3.1. Decidability of the logic L.

Proposition 3.1. The following conditions are equivalent for any formula α:
(i) α is true in all EDCL;
(ii) α is true in all �nite EDCL with a number of the elements less or equal to
22

n−1 + 1, where n is the number of the variables of α.

Proof. Obviously (i) implies (ii). Let (ii) be true. We will prove (i). Let B be
an EDCL, v be a valuation in B. We will prove that (B, v) � α. Let the variables of
α be p1, . . . , pn, where n ≥ 0. It is a well known fact that v(p1), . . . , v(pn) generate
a distributive sublattice B′ of B with a number of the elements less or equal to
22

n−1 + 1. B′ is an EDCL. We de�ne a valuation v′ in B′ in the following way:

v′(p) =

{
v(p) if p = p1 or p = p2 or . . . or p = pn
0 otherwise

It su�ces to prove that (B′, v′) � α. But this is true because (ii) is ful�lled. �

Corollary 3.1. L is decidable.

3.2. Admissibility of the rule (R Ext C). As in [4] we de�ne a p-morphism
and prove a lemma for it. Let (W,R) and (W ′, R′) be relational structures and f
be a surjection from W to W ′. We call f p-morphism from (W,R) to (W ′, R′), if
the following conditions are ful�lled for any x, y ∈W and any x′, y′ ∈W ′:
(p1) If xRy, then f(x)R′f(y);
(p2) If x′R′y′, then (∃x, y ∈W )(x′ = f(x), y′ = f(y), xRy).

Let B be the contact algebra over (W,R), B′ be the contact algebra over
(W ′, R′), v and v′ be valuations respectively in B and B′. We say that f is a
p-morphism from (B, v) to (B′, v′), if for every variable p and every x ∈ W : x ∈
v(p)↔ f(x) ∈ v′(p). It can be easily proved that for every term a and every x ∈W :
x ∈ v(a)↔ f(x) ∈ v′(a).

Lemma 3.1. [4] Let f be a p-morphism from (B, v) to (B′, v′). Then for any
formula for L, ϕ we have: (B, v) � ϕ↔ (B′, v′) � ϕ.

Proof. Induction on the complexity of ϕ. �

Proposition 3.2. The rule (R Ext C) is admissible in LExtÔ,U−rich�,U−richĈ
and LExtÔ,U−rich�,U−richĈ,ConC .
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Proof. The construction is almost the same as in [4] (Lemma 6.1). Let L′ be
any of these logics. Let α be a formula, a be a term. Let α → (p 6= 0 → aCp) be
a theorem of L′ for every variable p. We will prove that α→ (a = 1) is a theorem
of L′. Suppose for the sake of contradiction the contrary. There is an EDCL B,
satisfying the corresponding to L′ additional axioms, and a valuation in it v such
that (B, v) 2 α → (a = 1). Consequently (B, v) � α and (B, v) 2 a = 1. B is an
U -rich EDCL and by theorem 6.4 in chapter 1, we get that there is a topological
space X and an embedding h of B in RC(X). Moreover if B satis�es (Con C),
then RC(X) also satis�es (Con C). We de�ne a valuation v′ in RC(X) in the
following way: v′(p) = h(v(p)) for every variable p. We have (RC(X), v′) � α and
(RC(X), v′) 2 a = 1.

Let Q be the set of all variables, occurring in α and a. v′(Q) is a �nite subset
of RC(X). The subalgebra B1 of RC(X), generated by v′(Q), is a �nite Boolean
contact algebra. If RC(X) satis�es (Con C), then B1 also satis�es the axiom (Con
C). We de�ne a valuation v1 in B1 in the following way:

v1(p) =

{
v′(p) if p ∈ Q
0 otherwise

We have (B1, v1) � α and (B1, v1) 2 a = 1. There is a relational structure
(W2, R2) and an isomorphism h1 from B1 to the contact algebra B2 over (W2, R2).
We de�ne a valuation v2 in B2 in the following way v2(p) = h1(v1(p)) for ev-
ery variable p. (B2, v2) � α and (B2, v2) 2 a = 1. Consequently v2(a) 6= W2.
Let w1 ∈ W2 − v2(a), w0 /∈ W2. We de�ne W3 = W2 ∪ {w0}, R3 = R2 ∪
{(w0, w0), (w0, w1), (w1, w0)}. We de�ne f : W3 →W2 in the following way:

f(w) =

{
w if w 6= w0

w1 if w = w0

Let B3 be the contact algebra over (W3, R3). We de�ne a valuation v3 in B3 in

the following way: v3(p) = f−1(v2(p)) for every variable p. It can be easily veri�ed
that f is a p-morphism from (B3, v3) to (B2, v2). Consequently (B3, v3) � α and
(B3, v3) 2 a = 1. If B satis�es the axiom (Con C), then B1 also satis�es (Con
C) and since B1 is isomorphic to B2, we have that B2 also satis�es (Con C).
From here and the de�nition of R3 we get that if B satis�es (Con C), then B3

also satis�es the axiom (Con C)(1). Since B3 is a contact algebra, we have that

B3 satis�es (Ext Ô), (U-rich �) and (U-rich Ĉ)(2). Let p be a variable, not

occurring in a and α. We have (B3, v3

[
p
{w0}

]
) � α and v3

[
p
{w0}

]
(a) = v3(a) =

f−1(v2(a)) = v2(a); v3

[
p
{w0}

]
(p) 6= ∅; v3

[
p
{w0}

]
(a)CR3v3

[
p
{w0}

]
(p). Consequently

(B3, v3

[
p
{w0}

]
) 2 α → (p 6= 0 → aCp). Also from (1) and (2) it follows that B3

satis�es the corresponding to L′ additional axioms. But α → (p 6= 0 → aCp) is a

theorem of L′, so (B3, v3

[
p
{w0}

]
) � α→ (p 6= 0→ aCp) - a contradiction. �

3.3. Admissibility of the rule (R Nor1).

Proposition 3.3. The rule (R Nor1) is admissible in the logics
LExtÔ,U−rich�,U−richĈ and LExtÔ,U−rich�,U−richĈ,ConC .

Proof. The construction is almost the same as in [4] (Lemma 6.2). Let L′

be any of these logics. Let α be a formula, a and b be terms. Let α → (p + q 6=
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1 ∨ aCp ∨ bCq) be a theorem of L′ for all variables p and q. We will prove that
α → aCb is a theorem of L′. Suppose for the sake of contradiction the contrary.
The same way as in the proof of the previous proposition we obtain that there is
a contact algebra B over some relational structure (W,R) and a valuation in it v
such that (B, v) � α and (B, v) � aCb. Moreover if L′ is the second logic, then B
satis�es (Con C). Let A ⊆ W . We de�ne 〈R〉A = {x ∈ W : (∃y ∈ A)(yRx)}. Let
Wdefects = 〈R〉(v(a)) ∩ 〈R〉(v(b)). We de�ne
W1 = W × {1, 2},
(x, i)R1(y, j)↔ xRy and ((j = 1 ∧ x ∈ v(a) ∧ y ∈Wdefects)
or (i = 1 ∧ y ∈ v(a) ∧ x ∈Wdefects)
or (j = 2 ∧ x ∈ v(b) ∧ y ∈Wdefects)
or (i = 2 ∧ y ∈ v(b) ∧ x ∈Wdefects)
or (x /∈ v(a) ∪ v(b) ∪Wdefects ∧ y ∈Wdefects)
or (y /∈ v(a) ∪ v(b) ∪Wdefects ∧ x ∈Wdefects)
or (x ∈Wdefects ∧ y ∈Wdefects)
or (x /∈Wdefects ∧ y /∈Wdefects)),
v1(q) = v(q)× {1, 2},
f((x, i)) = x.
Let B1 be the contact algebra over (W1, R1). It can be easily veri�ed that f is a

p-morphism from (B1, v1) to (B, v). Consequently (B1, v1) � α and (B1, v1) � aCb.
It can be easily veri�ed that if L′ is the second logic, then B1 satis�es (Con C).
Let p, q be variables which do not occur in a, b and ϕ. We de�ne a valuation v′1
in B1 eventually di�erent from v1 only in p and q: v′1(p) = 〈R1〉(v1(b)), v′1(q) =

〈R1〉(v1(b)). Obviously v′1(p)+v′1(q) = 1. Suppose for the sake of contradiction that
v′1(a)Cv′1(p). Consequently v1(a)CR1

〈R1〉v1(b). From here we obtain that there are
(x, i) ∈ v1(a), (y, j) ∈ 〈R1〉v1(b) such that (x, i)R1(y, j). From (y, j) ∈ 〈R1〉(v1(b))
we obtain that there is (z, k) ∈ v1(b) such that (z, k)R1(y, j). Consequently z ∈ v(b)
and yRz and hence y ∈ 〈R〉(v(b)) (1). From (x, i) ∈ v1(a) we obtain x ∈ v(a) (2).
From (x, i)R1(y, j) we get xRy (3). Using (2) and (3), we get y ∈ 〈R〉(v(a)) (4).
From (4) and (1) we get y ∈ Wdefects. From (x, i)R1(y, j), y ∈ Wdefects, x ∈
v(a), (B, v) � aCb and the de�nition of R1 we get j = 1. Using (z, k)R1(y, j),
y ∈ Wdefects, z ∈ v(b), (B, v) � aCb and the de�nition of R1, we get j = 2 - a

contradiction. Consequently v′1(a)Cv′1(p). From the de�nition of v′1(q) we obtain
that v′1(b)Cv′1(q). Thus (B1, v

′
1) 2 p + q 6= 1 ∨ aCp ∨ bCq and (B1, v

′
1) � α; B1

satis�es the corresponding to L′ additional axioms - a contradiction. �

3.4. The rule (R U-rich �) is not admissible in LConC .

Lemma 3.2. Let B = (B, . . .) be an EDCL, satisfying (U-rich �) and (Con
C). Then for every a ∈ B, di�erent from 0 and 1, we have a�a.

Proof. Let a ∈ B, a 6= 0, a 6= 1. Suppose for the sake of contradiction that
a� a. Since B satis�es (U-rich �), there is a c ∈ B such that c+ a = 1 and aCc.
We have that B satis�es (Con C) and c + a = 1, a 6= 0, c 6= 0 (because a 6= 1), so
aCc - a contradiction. Consequently a�a. �

Proposition 3.4. The rule (R U-rich �) is not admissible in LConC .

Proof. We will prove that there is a theorem of LConC,U−rich� which is not
a theorem of LConC . We consider the formula α : p 6= 0 ∧ p 6= 1 → p�p. Using
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lemma 3.2, we obtain that α is true in every EDCL, satisfying (Con C) and (U-rich
�). Consequently α is a theorem of LConC,U−rich�.

We consider the relational structure (W,R), whereW = {x, y}, R = {(x, x), (y,
y)}. Let B be the contact algebra over (W,R). Let B′ = {∅,W, {x}}. It can
be easily veri�ed that B′ is closed under ∪ and ∩. Consequently B′ = (B′,⊆
, ∅,W,∩,∪) is a distributive lattice. We can consider B′ as a substructure (B′,⊆
, ∅,W,∩,∪, CR, ĈR,�R) ofB. B is an EDCL and the axioms of EDCL are quanti�er-
free and therefore B′ is an EDCL. We have {x} 6= ∅, {x} 6= W and {x} � {x}, so α
is not true in B′. It can be easily veri�ed that B′ satis�es (Con C). Consequently
α is not a theorem of LConC . �

3.5. A technical lemma with applications to admissibility of some
rules of inference and decidability of some logics.

Lemma 3.3. Let B be an EDCL, satisfying (Con C) and (U-rich �) and v be
a valuation in it. Let α be a formula in L. Then there is a �nite connected Boolean
contact algebra B∗ and a valuation in it v∗ such that: (B∗, v∗) � α i� (B, v) � α.

The number of the elements of B∗ is ≤ 2
(22

n−1+1)22
n−1

2 , where n is the number of
the variables of α.

Proof. Let B be an EDCL, satisfying (Con C) and (U-rich �), and v be
a valuation in it. Let α be a formula in L. From the relational representation
theorem of EDC-lattices (Theorem 2.3 in Chapter 1) it follows that there is a
relational structure (W ′, R′) with R′ re�exive and symmetric and an isomorphic
embedding h of B in the contact algebra B′ over (W ′, R′). B is isomorphic of some
substructure of B′, B1, which is an EDCL, satisfying (Con C) and (U-rich �).

We de�ne a valuation v1 in B1 in the following way: for every variable p v1(p)
def
=

h(v(p)). It can be easily proved that (B, v) � α i� (B1, v1) � α. Let the variables
of α be p1, . . . , pn, where n ≥ 0. v1(p1), . . . , v1(pn) generate a �nite sublattice

B2 = (B2,⊆, ∅,W ′,∩,∪, CR′ , ĈR′ ,�R′) of B1 which is an EDCL, satisfying (Con

C), and has number of the elements ≤ 22
n−1 + 1. We de�ne a valuation v2 in B2

in the following way:

v2(p) =

{
v1(p) if p = p1 or p = p2 or . . . or p = pn
∅ otherwise

We have (B1, v1) � α i� (B1, v2) � α i� (B2, v2) � α.

For every A ∈W ′ we de�ne, using that B2 is �nite, sA
def
=
⋂
{a ∈ B2 : A ∈ a},

i.e. sA is the smallest element of B2 which contains A.
We will de�ne special sets and with their help we will obtain a Boolean algebra

B3. Let A ∈ W ′ and b ∈ B2, b ⊆ sA, A /∈ b, ∀c(c 6= ∅, c ∈ B2, c ⊆ sA, A /∈ c →
b∩ c 6= ∅). Then sA− b we call a special set, determined by the ordered pair (sA, b).

Let (a, b) be an ordered pair of elements of B2. We have:
1) if b ⊆ a, a 6= b, then (a, b) determines at most one special set;
2) if b is not a proper subset of a, then (a, b) does not determine a special set;

Using this fact, we get that the number of the special sets is ≤ half of the
ordered pairs of di�erent elements of B2. Let C be the set of all special sets, N be

the number of the elements of B2. We have |C| ≤ N(N−1)
2 ≤ (22

n−1+1)22
n−1

2 . Let D
be the set of all �nite unions of special sets. We have that |D| ≤ the number of the
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nonempty subsets of C, i.e. |D| ≤ 2|C|−1 ≤ 2
(22

n−1+1)22
n−1

2 −1. Let B3
def
= D∪{∅}.

We have |B3| ≤ 2
(22

n−1+1)22
n−1

2 ; B3 ⊆ B′.
We will prove:

Claim 3.1. If a, b ∈ B2, then a− b ∈ B3.

Proof. Case 1: a− b = ∅
We have a− b ∈ B3.
Case 2: a− b 6= ∅
Let A ∈ a−b. By tA we denote the largest element of B2 which is a subset of sA and
does not contain A (tA = ∪{e ∈ B2 : e ⊆ sA, A /∈ e}). sA is the smallest element
of B2 which contains A; a is an element of B2 which contains A; so sA ⊆ a(2).
We have sA ∩ b ∈ B2, sA ∩ b ⊆ sA, A /∈ sA ∩ b; so sA ∩ b ⊆ tA(3). From (2) and
(3) we get that sA − tA ⊆ a − b. Thus we juxtapose to every point A of a − b
an ordered pair elements of B2 (sA, tA) such that A ∈ sA − tA ⊆ a − b. Let the
obtained this way ordered pairs be (s1, t1), . . . , (sk, tk), where k > 0. Obviously
a − b ⊆ (s1 − t1) ∪ . . . ∪ (sk − tk) ⊆ a − b, i.e. a − b = (s1 − t1) ∪ . . . ∪ (sk − tk).
Let i ∈ {1, . . . , k}. Using the de�nition of ti, we get that si − ti is a special
set, determined by (si, ti). Consequently a − b is a �nite union of special sets.
Consequently a− b ∈ B3. �

Claim 3.2. B3 = (B3,⊆, ∅,W ′,∪,∩) is a Boolean algebra and B2 ⊆ B3. (We
do not use ∗ in the notation of B3 because we do not want to change the language.)

Proof. Let a ∈ B2. We have a = a−∅. Using claim 3.1, we obtain that a ∈ B3.
Consequently B2 ⊆ B3. Consequently W ′ ∈ B3. We will prove that B3 is closed
under ∪ and ∩. Obviously B3 is closed under ∪. Let a1, a2 ∈ B3. We will prove
that a1 ∩a2 ∈ B3. If a1 = ∅ or a2 = ∅, then obviously a1 ∩a2 ∈ B3. Let a1, a2 6= ∅.
We have a1∩a2 = (a11∪. . .∪a1l)∩(a21∪. . .∪a2m), where l, m > 0, a11, . . . , a2m are
special sets. a1∩a2 = (a11∩a21)∪. . .∪(a11∩a2m) . . . (a1l∩a21)∪. . .∪(a1l∩a2m). It
is su�cient to prove that the intersection of two special sets is ∅ or a �nite union of
special sets. Let sA1

− b1 and sA2
− b2 be special sets. It can be easily veri�ed that

(sA1
− b1)∩ (sA2

− b2) = (sA1
∩ sA2

)− ((b1 ∩ sA2
)∪ (b2 ∩ sA1

)). Using this fact and
claim 3.1, we obtain that (sA1 − b1)∩ (sA2 − b2) ∈ B3. Consequently a1 ∩ a2 ∈ B3.
Thus B3 = (B3,⊆, ∅,W ′,∪,∩) is a distributive lattice of sets.

We will prove that for every a ∈ B3, we have a ∈ B3. Let a ∈ B3. If a = ∅,
then a ∈ B3. Let a = (sA1

− b1)∪ . . .∪ (sAl
− bl), where l > 0, sA1

− b1, . . . , sAl
− bl

are special sets, determined respectively by (sA1 , b1), . . . , (sAl
, bl). a = sA1 − b1 ∩

. . . ∩ sAl
− bl. Let i ∈ {1, . . . , l}. We will prove that sAi

− bi ∈ B3. sAi
− bi =

sAi ∪ bi = (W ′ − sAi) ∪ bi. Using W ′ ∈ B2, sAi ∈ B2 and claim 3.1, we get that
W ′ − sAi ∈ B3(4). (sAi , bi) determines a special set and therefore bi ∈ B2; but
B2 ⊆ B3, so bi ∈ B3(5). Using (4), (5) and the fact that B3 is closed under ∪, we
get that sAi − bi ∈ B3 for every i ∈ {1, . . . , l}. But B3 is closed under ∩, so a ∈ B3.
Consequently B3 = (B3,⊆, ∅,W ′,∪,∩) is a Boolean algebra. �

We will call the elements of W ′ points. Let T , U ∈W ′ and suppose there is an
a ∈ B2 such that T ∈ a, U /∈ a. We de�ne ST,U =

⋃
{a ∈ B2 : T ∈ a, U /∈ a}, i.e.

ST,U is the largest element of B2, containing T and not-containing U .
Let T , U ∈ W ′ and suppose there is an a ∈ B2 such that T ∈ a, U /∈ a. We

call U corresponding to T , if (∀a ∈ B2)(U ∈ a→ T ∈ a) and sT�R′ST,U .
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We de�ne a binary relation R in W ′ in the following way: TRU i� TR′U
or U is corresponding to T or T is corresponding to U . Obviously R is re-
�exive and symmetric. We consider the Boolean contact algebra B4 = (B3,⊆
, ∅,W ′,∪,∩, CR, ĈR,�R). (Here CR, ĈR,�R are de�ned in the following way:

aCRb ↔ there are F1 ∈ a, F2 ∈ b such that F1RF2, aĈRb ↔ there are F1 ∈ a,
F2 ∈ b such that F1RF2, a �R b ↔ (∀F1 ∈ a)(∀F2 ∈ b)(F1RF2)). We consider

the following substructure of B4: B5 = (B2,⊆, ∅,W ′,∪,∩, CR, ĈR,�R). We will
prove:

Claim 3.3. B5 is isomorphic to B2 = (B2,⊆, ∅,W ′,∪,∩, CR′ , ĈR′ ,�R′).

Proof. The isomorphism will be the mapping id : B2 → B2 (id(a)
def
= a for

every a ∈ B2).
•) We will prove that for all a1, a2 ∈ B2 we have: a1CR′a2 i� a1CRa2. Obviously
a1CR′a2 implies a1CRa2. Let a1CRa2. Consequently there are F1 ∈ a1, F2 ∈ a2
such that F1RF2.
Case 1: F1R

′F2

Obviously a1CR′a2.
Case 2: F1R′F2

F2 is corresponding to F1 or F1 is corresponding to F2. Without loss of generality
F2 is corresponding to F1. Consequently every element of B2 which contains F2,
also contains F1; F2 ∈ a2; a2 ∈ B2; so F1 ∈ a2. We also have F1 ∈ a1, so a1CR′a2.
•) We will prove that for all a1, a2 ∈ B2 we have: a1ĈR′a2 i� a1ĈRa2. Obviously

a1ĈR′a2 implies a1ĈRa2. Let a1ĈRa2(6). Suppose for the sake of contradiction

that a1ĈR′a2(7). Consequently a1 ∩ a2 = ∅(8). From here and (6) we get that
there are F1 ∈ a1, F2 ∈ a2 such that F1RF2. There is an element of B2 (a2)
which contains F2 but does not contain F1; there is an element of B2 (a1) which
contains F1 but does not contain F2; so F2 is not corresponding to F1 and F1 is
not corresponding to F2. From (7) we get that F1R′F2. Consequently F1RF2 - a

contradiction. Consequently a1ĈR′a2.
•) We will prove that for all a1, a2 ∈ B2 we have: a1 �R′ a2 i� a1 �R a2.
Obviously a1 �R a2 implies a1 �R′ a2. Let a1 �R′ a2(9). Suppose for the
sake of contradiction that a1�Ra2. Consequently there are F1 ∈ a1, F2 /∈ a2
such that F1RF2. From (9) we obtain that F1R′F2. We have F1 ∈ a2, a2 ∈ B2,
F2 /∈ a2, so F1 is not corresponding to F2. Consequently F2 is corresponding to
F1. Consequently sF1

�R′SF1,F2
(10). We have a2 ∈ B2, F1 ∈ a2, F2 /∈ a2, so

a2 ⊆ SF1,F2
(11). We have F1 ∈ a1, a1 ∈ B2, so sF1

⊆ a1(12). From (9) we get that
a1 ⊆ a2(13). From (10), (12), (13) and (11) we obtain a1�R′a2 - a contradiction
with (9). Consequently a1 �R a2.

Consequently B5 is isomorphic to B2. �

From this claim we get (B2, v2) � α i� (B5, v2) � α. B5 is a substructure of
B4, α is quanti�er-free, so (B5, v2) � α i� (B4, v2) � α.

Claim 3.4. B4 satis�es (Con C).

Proof. It su�ces to prove that for every non-empty and di�erent from W ′

a ∈ B3, there are F1 ∈ a and F2 /∈ a such that F1RF2. Let a ∈ B3, a 6= ∅ and
a 6= W ′. We have a = (sA1−b1)∪ . . .∪(sAk

−bk), where k > 0; sA1−b1,. . . ,sAk
−bk

are special sets, determined respectively by (sA1
, b1), . . . , (sAk

, bk).
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Case 1: (∃i ∈ {1, . . . , k})(∃T ∈ bi − a)(∃U ∈ sAi
− bi)(U is corresponding to T )

We have U ∈ a, T /∈ a and URT .
Case 2: (∀i ∈ {1, . . . , k})(∀T ∈ bi − a)(∀U ∈ sAi − bi)(U is not corresponding to
T )
We will prove that for every i ∈ {1, . . . , k} there is a ci ∈ B1 such that sAi

− bi ⊆
ci ⊆ a. Let i ∈ {1, . . . , k}.
Case 2.1: bi ⊆ a
sAi − bi ⊆ sAi ⊆ a. We have sAi ∈ B2 ⊆ B1, i.e. sAi ∈ B1.
Case 2.2: bi * a
The idea of �nding ci is shortly the following: Let T ∈ bi − a. For T we divide the
points from sAi

− bi into two kinds:
1 kind) all U such that (∀b ∈ B2)(U ∈ b→ T ∈ b)
2 kind) all U such that (∃b ∈ B2)(U ∈ b, T /∈ b)
We will prove that there is an element of B2 tT such that sT �R′ tT and every
point of the �rst kind is not in tT . Since B2 is �nite, we can obtain �nitely many
such pairs (sT , tT ). For every pair (sT , tT ), using sT �R′ tT , we get that there is
a qr such that qr does not intersect sT and qr contains all points of the �rst kind.
Thus every point T from bi − a which determines the pair in question (sT , tT ), is
not in qr, the points for T of the �rst kind are in qr. We will �nd a set q′r such that
sAi − bi ⊆ qr ∪ q′r, every point T which determines the pair (sT , tT ), is not in q′r.
Thus for every pair (sT , tT ) we get a set qr∪q′r which includes sAi

−bi and does not
contain any point T , determining the pair (sT , tT ). We consider the intersection q
of all sets of the kind qr ∪ q′r. We have sAi

− bi ⊆ q. Every point T from bi − a is
not in some qr ∪ q′r and therefore is not in q. As a ci we can take q ∩ sAi .

Now we will give the proof in details. Let T ∈ bi − a. We consider arbitrary
U ∈ sAi

− bi such that (∀b ∈ B2)(U ∈ b → T ∈ b). U is not corresponding to T .

Consequently sT �R′ ST,U . We have bi ⊆ ST,U . Let PT
def
= {ST,U : U ∈ sAi

− bi
and (∀b ∈ B2)(U ∈ b → T ∈ b)}. B2 is �nite and therefore PT is �nite and let

PT = {t1, . . . , tl}, where l > 0. Let tT
def
= t1 ∩ . . . ∩ tl. We have tT ∈ B2. We have

∀U(If U ∈ sAi
− bi and (∀b ∈ B2)(U ∈ b→ T ∈ b), then U /∈ tT )(14); bi ⊆ tT (15).

For every j ∈ {1, . . . , l} sT �R′ tj , so sT �R′ tT (16).

Let Q
def
= {(sT , tT ) : T ∈ bi − a}. Since B2 is �nite, we have that Q is �nite

and let Q = {(p11, p12), . . . , (pm1, pm2)}, where m > 0.
Let r ∈ {1, . . . ,m}. We consider (pr1, pr2). Using (16), we get pr1 �R′ pr2.

We also have pr1, pr2 ∈ B2 ⊆ B1; B1 satis�es (U-rich �); so there is a qr ∈ B1

such that pr2 ∪ qr = W ′, qrCR′pr1. Consequently qr ∩ pr1 = ∅. Let Vr = {T ∈
bi − a : (sT , tT ) = (pr1, pr2)}. We have:
(17) If T ∈ Vr, then T ∈ pr1 and T /∈ qr.
Using (14) and pr2 ∪ qr = W ′, we obtain that:
(18) If T ∈ Vr, then
∀U(If U ∈ sAi

− bi and (∀b ∈ B2)(U ∈ b→ T ∈ b), then U /∈ pr2 and U ∈ qr).
Let q′r

def
=
⋃
{sU : U ∈ sAi

− bi, (∀T ∈ Vr)(∃b ∈ B2)(U ∈ b and T /∈ b)}. We will
prove that sAi

− bi ⊆ qr ∪ q′r. Let U ∈ sAi
− bi.

Case 1: (∃T ∈ Vr)(∀b ∈ B2)(U ∈ b→ T ∈ b)
Using (18), we get U ∈ qr.
Case 2: (∀T ∈ Vr)(∃b ∈ B2)(U ∈ b and T /∈ b). From the de�nition of q′r we obtain
that sU ⊆ q′r. U ∈ sU , so U ∈ q′r.
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We proved that:
(19) sAi − bi ⊆ qr ∪ q′r.

We will prove that: if T ∈ Vr, then T /∈ q′r. Let T ∈ Vr. Suppose for the sake of
contradiction that T ∈ q′r. Consequently T ∈ sU for some U such that U ∈ sAi

−bi,
(∀T ∈ Vr)(∃b ∈ B2)(U ∈ b and T /∈ b). Consequently (∃b ∈ B2)(U ∈ b and T /∈ b)
and hence T /∈ sU (we have sU ⊆ b) - a contradiction with T ∈ sU . Consequently
T /∈ q′r. We proved that:
(20) if T ∈ Vr, then T /∈ q′r.
From (17) and (20) we get that:
(21) if T ∈ Vr, then T /∈ qr ∪ q′r.

Let q
def
= (q1 ∪ q′1) ∩ . . . ∩ (qm ∪ q′m). For every point T of bi − a, there is

a r ∈ {1, . . . ,m} such that (sT , tT ) = (pr1, pr2). We have T ∈ Vr and by (21),
we obtain T /∈ qr ∪ q′r. We proved that for every point T of bi − a, there is a
r ∈ {1, . . . ,m} such that T /∈ qr ∪ q′r. Consequently
(22) (∀T ∈ bi − a)(T /∈ q)
We have proved ((19)) that
(23) (∀r ∈ {1, . . . ,m})(sAi − bi ⊆ qr ∪ q′r)
Consequently sAi

− bi ⊆ q (24)
We have that for every r ∈ {1, . . . ,m}: qr ∈ B1, q

′
r ∈ B2 ⊆ B1, so q ∈ B1 (25).

Let ci
def
= q ∩ sAi

. From here and (25) we obtain ci ∈ B1 (26). From (22) we get:
(27) (∀T ∈ bi − a)(T /∈ ci)
From (24) we get:
(28) sAi − bi ⊆ ci
We will prove that ci ⊆ a. Let F ∈ ci. Consequently F ∈ sAi

.
Case 1: F ∈ sAi

− bi
We have F ∈ a.
Case 2: F ∈ bi
Suppose for the sake of contradiction that F /∈ a. Consequently F ∈ bi − a. From
(27) we obtain F /∈ ci - a contradiction. Consequently F ∈ a.
We proved that ci ⊆ a (29)
From (26), (28) and (29) we get that there is a ci ∈ B1 such that sAi

− bi ⊆ ci ⊆ a.
We proved that for every i ∈ {1, . . . , k}, there is a ci ∈ B1 such that sAi

− bi ⊆
ci ⊆ a. Consequently a = (sA1 − b1) ∪ . . . ∪ (sAk

− bk) ⊆ c1 ∪ . . . ∪ ck ⊆ a.
Consequently a = c1 ∪ . . . ∪ ck. Consequently a ∈ B1. We have a 6= ∅, a 6= W ′,
B1 is an EDCL, satisfying (Con C) and (U-rich �), so by lemma 3.2, we get that
a�R′a. Consequently there are F1 ∈ a, F2 /∈ a such that F1R

′F2. Consequently
F1RF2.

We proved that for every non-empty and di�erent from W ′ a ∈ B3, there are
F1 ∈ a and F2 /∈ a such that F1RF2. Thus we proved that B4 satis�es (Con C). �

Thus B4 is a �nite connected Boolean contact algebra and v2 is a valuation in

it; (B4, v2) � α i� (B, v) � α; the number of the elements of B4 is ≤ 2
(22

n−1+1)22
n−1

2 ,
where n is the number of the variables of α. �

Proposition 3.5. The rule (R U-rich Ĉ) is admissible in LConC,U−rich�.

Proof. It su�ces to show that every theorem of LConC,U−rich�,U−richĈ is

a theorem of LConC,U−rich�. Let α be a theorem of LConC,U−rich�,U−richĈ (1).
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We will prove that α is a theorem of LConC,U−rich�. It su�ces to prove that α
is true in all EDCL, satisfying (Con C) and (U-rich �). Let B be an EDCL,
satisfying (Con C) and (U-rich �) and v be a valuation in it. We will prove that
(B, v) � α. By lemma 3.3, we get that there is a �nite connected Boolean contact
algebra B∗ and a valuation in it v∗ such that (B∗, v∗) � α i� (B, v) � α. B∗ is a

Boolean contact algebra and therefore satis�es (U-rich �) and (U-rich Ĉ). Using
this fact, the connectedness of B∗ and (1), we have (B∗, v∗) � α. Consequently
(B, v) � α. �

Proposition 3.6. The rule (R Ext Ô) is admissible in the logic
LConC,U−rich�,U−richĈ .

Proof. The proof is similar to the proof of proposition 3.5. Here we use that

in all Boolean contact algebras are true (U-rich �), (U-rich Ĉ) and (Ext Ô). �

Proposition 3.7. LConC,U−rich� is decidable.

Proof. It su�ces to prove that the following are equivalent for every formula
α in L:
(i) α is a theorem of LConC,U−rich�;
(ii) α is true in all �nite EDCL, satisfying (Con C) and (U-rich �) with number

of the elements ≤ 2
(22

n−1+1)22
n−1

2 , where n is the number of the variables of α.
Let α be a formula in L. Obviously (i) implies (ii). Let (ii) be true. We will

prove (i). Let B be an EDCL, satisfying (Con C), (U-rich�) and v be a valuation
in it. It su�ces to prove that (B, v) � α. By lemma 3.3, we get that there is
a �nite connected Boolean contact algebra B∗ and a valuation in it v∗ such that

(B∗, v∗) � α i� (B, v) � α. The number of the elements of B∗ is ≤ 2
(22

n−1+1)22
n−1

2 ,
where n is the number of the variables of α. We have (B∗, v∗) � α. Consequently
(B, v) � α. �

3.6. The main theorem.

Corollary 3.2. (i) The logics L, LExtÔ,U−rich�,U−richĈ ,

LExtÔ,U−rich�,U−richĈ,ExtC , LExtÔ,U−rich�,U−richĈ,Nor1,

LExtÔ,U−rich�,U−richĈ,ExtC,Nor1 have the same theorems and are decidable;

(ii) The logics LConC,U−rich�, LExtÔ,U−rich�,U−richĈ,ConC ,

LExtÔ,U−rich�,U−richĈ,ConC,Nor1, LExtÔ,U−rich�,U−richĈ,ExtC,ConC ,

LExtÔ,U−rich�,U−richĈ,ExtC,ConC,Nor1 have the same theorems and are decidable.

Proof. (i) follows from proposition 3.3, proposition 3.2, proposition 2.2 and
corollary 3.1.
(ii) follows from proposition 3.3, proposition 3.2, proposition 3.6, proposition 3.5,
proposition 3.7. �

In a dual way we can obtain logics for O-rich EDC-lattices.

4. A quanti�er-free logic for extended contact algebras

We consider a quanti�er-free �rst-order language L′ with equality which has:
• constants: 0, 1
• functional symbols: +, ·, ∗
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• predicate symbols: ≤, `, C, co

Let ⊥ def
= (0 ≤ 0) ∧ ¬(0 ≤ 0), > def

= (0 ≤ 0) ∨ ¬(0 ≤ 0).
Every ECA is a structure for L′.
We consider the logic Lco which has the following:

• axioms:
- the axioms of the classical propositional logic
- the axioms of Boolean algebra - as axiom schemes
- the axioms (1), . . . , (6) of ECA - as axiom schemes
- the axiom scheme:
(Ax C) pCq ↔ p, q 0 0
- the axiom scheme:
(Ax co) co(p) ∧ q 6= 0 ∧ r 6= 0 ∧ p = q + r → q, r 0 p∗
• rules:
- MP
- (Rule co) α→(p 6=0∧q 6=0∧a=p+q→p,q0a∗) for all variables p, q

α→co(a) , where α is a formula, a is
a term.

Let α be a formula, a be a term. The corresponding to (Rule co) axiom is:
(∗) ¬co(a)→ ∃x1∃x2¬(x1 6= 0 ∧ x2 6= 0 ∧ a = x1 + x2 → x1, x2 0 a∗)

We also consider the logic LAxco which is obtained from Lco by removing the
rule (Rule co).

Theorem 4.1 (Completeness theorem). For every formula α in L′ the following
conditions are equivalent:
(i) α is a theorem of Lco ;
(ii) α is true in all ECA;
(iii) α is true in all ECA over a compact, T0, semiregular topological space.

Proof. (i)↔(ii) is obtained by the completeness theorem in section Prelim-
inaries. Obviously (ii) implies (iii). Using the representation theorem of ECA
(theorem 4.1 in chapter 2), we get (iii)→(ii). �

Lemma 4.1. For every formula α in L′ the following conditions are equivalent:
(i) α is a theorem of LAxco ;
(ii) α is true in all Boolean algebras in which the predicates `, C and co are de�ned
in such a way that the axioms (1), . . . , (6) of ECA and the axioms (Ax C), (Ax co)
are true.

Proof. We use the completeness theorem in section Preliminaries. �

Proposition 4.1. The rule (Rule co) is not admissible in LAxco .

Proof. LAxco is complete in the class of all Boolean algebras in which the
predicates `, C and co are de�ned in such a way that the axioms (1), . . . , (6) of
ECA and the axioms (Ax C), (Ax co) are true. Lco is complete in the class of all
ECA. Consequently it su�ces to �nd a formula in L′ which is true in all ECA, but
is not true in all Boolean algebras in which the predicates `, C and co are de�ned
in such a way that the axioms (1), . . . , (6) of ECA and the axioms (Ax C), (Ax co)
are true. We consider the formula α: ¬co(p)→ p 6= 0. Let B be an ECA and v be
a valuation in it. We will prove that (B, v) � α. Let v(p) = a. We will prove that
if ¬co(a), then a 6= 0. Suppose ¬co(a). B is an ECA and therefore there are b and
c such that b 6= 0, c 6= 0 and a = b+ c. Consequently a 6= 0.
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We consider the Boolean algebra B1 = ({0, 1},≤, 0, 1, ·,+, ∗). We de�ne in B1

the predicate ` in the following way: for arbitrary a, b, c ∈ {0, 1}, a, b ` c def↔ a = 0
or b = 0 or a = b = c = 1. It can be easily veri�ed that B1 satis�es the axioms
(1), . . . , (6) of ECA. We de�ne C in B1 in the following way: for arbitrary a,
b ∈ {0, 1}, aCb ↔ a, b 0 0. We de�ne co in B1 in the following way: ¬co(0) and
¬co(1). Obviously B1 satis�es (Ax co). We de�ne a valuation v1 in B1 in the
following way: v1(p) = 0 for every variable p. We have ¬co(0) and 0 = 0 and
consequently ¬co(0)→ 0 6= 0 is not true, i.e. (B1, v1) 2 α. �

Proposition 4.2. Lco is decidable.

Proof. It su�ces to prove that for every formula α in L′ the following condi-
tions are equivalent:
(i) α is true in all ECA;

(ii) α is true in all �nite ECA with number of the elements less or equal to 2(2
3·hn ),

where hn = 2(2
n) and n is the number of the variables of α.

Let α be a formula for L′. Obviously (i) implies (ii). Let (ii) be true. We will prove
(i). Let B be an ECA and v be a valuation in it. We will prove that (B, v) � α.
Let the variables of α be p1, . . . , pn, where n ≥ 0. v(p1), . . . , v(pn) generate a �nite
substructure B1 = (B,≤, 0, 1, ·,+, ∗,`, C, co) of B which is a Boolean algebra with

number of the elements less or equal to 2(2
n). B1 satis�es (1), . . . , (6), (Ax co) be-

cause they are quanti�er-free, true in B and B1 is a substructure of B. We de�ne
a valuation v1 in B1 in the following way:

v1(p) =

{
v(p) if p = p1 or p = p2 or . . . or p = pn
0 otherwise

We have (B, v) � α i� (B1, v1) � α. Let a1, . . . , ak be the elements of B1 for which
¬co. For every i = 1, . . . , k we have ¬co(ai) in B and B is an ECA; so ∃bi, ci ∈ B
such that bi 6= 0, ci 6= 0, ai = bi + ci, bi, ci ` a∗i . Let C = B1 ∪ {bi : i ∈
{1, . . . , k}} ∪ {ci : i ∈ {1, . . . , k}}. We have |C| ≤ 3.hn. C generates a �nite

Boolean subalgebra of B B2 with a number of the elements less or equal to 22
3.hn

.
We de�ne in B2 ` as a restriction of ` in B. Consequently B2 satis�es (1), . . . , (6).

We de�ne co in B2 in the following way: for every a ∈ B2, c
o(a)

def↔ co(a) in B or
(∀b, c ∈ B2)(b 6= 0, c 6= 0, a = b+ c→ b, c 0 a∗). We de�ne C in B2 in the following
way: aCb↔ a, b 0 0 for arbitrary a, b ∈ B2.

We will prove that B1 is a substructure of B2. It su�ces to prove that for every
a ∈ B1 we have: co(a) in B1 ↔ co(a) in B2.
→) Let co(a) in B1. Consequently co(a) in B because B1 is a substructure of B.
Thus co(a) in B2.
←) Let co(a) in B2.
Case 1: co(a) in B
Consequently co(a) in B1 because B1 is a substructure of B.
Case 2: ¬co(a) in B
Since co(a) in B2, we have (∀b, c ∈ B2)(b 6= 0, c 6= 0, a = b + c → b, c 0 a∗).
We have ¬co(a) in B and a ∈ B1. Consequently a = ai for some i ∈ {1, . . . , k}.
Consequently (∃bi, ci ∈ B2)(bi 6= 0, ci 6= 0, a = bi + ci, bi, ci ` a∗). This is a
contradiction. Consequently case 2 is impossible.
Consequently B1 is a substructure of B2; so (B1, v1) � α↔ (B2, v1) � α.



4. A QUANTIFIER-FREE LOGIC FOR EXTENDED CONTACT ALGEBRAS 69

We will prove that B2 satis�es (Ax c
o). Let a, b, c ∈ B2 and c

o(a), b 6= 0, c 6= 0,
a = b+ c. We will prove that b, c 0 a∗.
Case 1: co(a) in B
We have b 6= 0, c 6= 0, a = b + c in B because B2 is a Boolean subalgebra of B.
Using that B is an ECA and co(a) in B, we get that b, c 0 a∗ in B. Consequently
b, c 0 a∗ in B2.
Case 2: ¬co(a) in B
We have (∀b, c ∈ B2)(b 6= 0, c 6= 0, a = b+ c→ b, c 0 a∗). We have b, c 0 a∗ in B2.
Consequently B2 satis�es (Ax co).

Let a ∈ B2 and ¬co(a) in B2. We will prove that there are b, c ∈ B2 such that
b 6= 0, c 6= 0, a = b+ c, b, c ` a∗ in B2. From the de�nition of co in B2 we get that:
¬co(a) in B and (∃b, c ∈ B2)(b 6= 0, c 6= 0, a = b+ c, b, c ` a∗).

Consequently for every a ∈ B2 we have c
o(a)↔ ∀b, c(b 6= 0, c 6= 0, a = b+ c→

b, c 0 a∗).
Consequently B2 is an ECA. B2 has a number of the elements less or equal to

22
3.hn

. So α is true in B2, i.e. (B2, v1) � α. Consequently (B, v) � α. �



CHAPTER 4

Conclusion

In the dissertation have been obtained the following results:
In the �rst part of the �rst chapter the language of distributive contact lattices is
extended by considering as non-de�nable primitives the relations of contact, non-
tangential inclusion and dual contact. It is obtained an axiomatization of the theory

consisting of the universal formulas in the language L(0, 1; +, ·;≤, C, Ĉ,�) true in
all contact algebras. The structures in L, satisfying the axioms in question, are
called extended distributive contact lattices (EDC-lattices). A relational repre-
sentation theorem is proved, stating that each EDC-lattice can be isomorphically
embedded into a contact algebra. The axiomatization and the relational represen-
tation theorem have been obtained by T. Ivanova.

In part II of chapter 1 is obtained topological representation theory of EDC-
lattices and some of their axiomatic extensions yielding representations in T1 and T2
spaces. Special attention is given to dual dense and dense representations (de�ned
in Section 4.1) in contact algebras of regular closed and regular open subsets of
topological spaces. These results are common with Prof. D. Vakarelov.

In chapter 2 is considered the predicate co - internal connectedness. It is proved
that this predicate cannot be de�ned in the language of contact algebras. Because
of this to the language is added a new ternary predicate symbol ` which has the
following sense: in the contact algebra of regular closed sets of some topological
space a, b ` c i� a ∩ b ⊆ c. It turns out that the predicate co can be de�ned
in the new language. It is de�ned extended contact algebra - a Boolean algebra
with added relations `, C and co, satisfying some axioms, and is proved that every
extended contact algebra can be isomorphically embedded in the contact algebra
of the regular closed subsets of some compact, semiregular, T0 topological space
with added relations ` and co. So extended contact algebra can be considered
an axiomatization of the theory, consisting of the universal formulas true in all
topological contact algebras with added relations ` and co. The results in chapter 2
except the idea that co can be de�ned by the relation `, have been obtained by T.
Ivanova.

In chapter 3 is considered a �rst-order language without quanti�ers correspond-
ing to EDCL. Completeness theorems are given with respect to both algebraic and
topological semantics for several logics for this language. It turns out that all these
logics are decidable. It is also considered a quanti�er-free �rst-order language cor-
responding to ECA and a logic for ECA which is decidable. The results in this
chapter have been obtained by T. Ivanova.
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