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Abstract. The jump operator on the ω-enumeration degrees is introduced in
[?]. In the present paper we prove a jump inversion theorem which allows us
to show that the enumeration degrees are first order definable in the structure
D′ω of the ω-enumeration degrees augmented by the jump operator. Further on
we show that the groups of the automorphisms of D′ω and of the enumeration
degrees are isomorphic.

In the second part of the paper we study the jumps of the ω-enumeration
degrees below 0ω

′. We define the ideal of the almost zero degrees and obtain a
natural characterization of the class H of the ω-enumeration degrees below 0ω

′

which are high n for some n and of the class L of the ω-enumeration degrees
below 0ω

′ which are low n for some n.

1. Introduction

The upper semi-lattice Dω of ω-enumeration degrees is introduced by the first
author in [?]. It is an extension of the semi-lattice De of the enumeration degrees
and hence of the semi-lattice DT of the Turing degrees. In [?] a jump operator
on the ω-enumeration degrees is defined and a jump inversion theorem is proved
also from which follows that the range of the jump operator is equal to the cone
of all ω-enumeration degrees greater than the jump 0ω

′ of the least ω-enumeration
degree 0ω, a property true for the Turing jump but not true for the enumeration
jump.

It turns out that the jump on the ω-enumeration degrees has an even stronger
jump inversion property. Namely, for every ω-enumeration degree a above 0ω

′ there
exists a least degree among the degrees whose jump is equal to a. This property is
not true neither for the enumeration jump nor for the Turing jump.

Using the existence of least jump inverts we show in the first part of the paper
that the set of the enumeration degrees is first order definable in the structure D′ω
of the ω-enumeration degrees augmented by the jump operator. This definability
result allows us to obtain further that the groups of the automorphisms of De

′

and D′ω are isomorphic. Since the enumeration jump is first order definable in De,
see [?], it follows that the groups of the automorphisms of De and D′ω are also
isomorphic.

Thus we obtain that the structures De
′ and D′ω are closely related but De

′ and
D′ω are not elementary equivalent.

In the second part of the paper we study the jumps of the ω-enumeration de-
grees below 0ω

′. Here we consider a monotonically decreasing sequence {on}n≥1

of explicitly defined degrees, where on is the least degree with n-th jump equal to
0ω

(n+1). We call a degree a almost zero (a.z.) if for all n, a is below on. We prove
that the a.z. degrees form a non-trivial ideal. The a.z. degrees are used to obtain
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a characterization of the classes H and L, where

H = {a : a ≤ 0ω
′ & (∃n)(a(n) = 0ω

(n+1))} and

L = {a : a ≤ 0ω
′ & (∃n)(a(n) = 0ω

(n))}
Namely, we show that a degree a ≤ 0ω

′ belongs to H if and only if a is above all
a.z. degrees and a ∈ L if and only if there are no nonzero a.z. degrees below a.

Since the ω-enumeration jump agrees with the enumeration jump and with the
Turing jump the characterization of the classes H and L remains the same also for
the enumeration and for the Turing degrees.

The last result shows that the study of the ω-enumeration degrees can provide
us with tools which are useful for the study of the enumeration degrees and of the
Turing degrees. A similar methodological observation about the usefulness of the
study of the enumeration degrees for obtaining results about the Turing degrees
was recently made by Soskova and Cooper [?].

2. Preliminaries

2.1. The enumeration degrees. We shall assume that an effective coding of all
finite sets of natural numbers is fixed and shall identify the finite sets and their
codes. Finite sets will be denoted by the letters D, F and S.

2.1. Definition. Given sets A and B of natural numbers, let

A(B) = {x : (∃D)(〈x,D〉 ∈ A & D ⊆ B}
Let W0, . . . , Wa, . . . be a Gödel enumeration of the recursively enumerable (r.e.)

sets of natural numbers.
The operators λB.Wa(B) are called enumeration operators. For A,B ⊆ N,

A ≤e B (A is enumeration reducible to B) if there exists an r.e. set W such that
A = W (B). Let A ≡e B ⇐⇒ A ≤e B & B ≤e A. The relation ≡e is an
equivalence relation and the respective equivalence classes are called enumeration
degrees. Given a set A of natural numbers, by de(A) we shall denote the enumer-
ation degree containing A. Let de(A) ≤e de(B) if A ≤e B. Clearly ≤e is a partial
ordering with least element 0e which is equal to the set of all r.e. sets. The set
of all enumeration degree is denoted by De. We shall use the same notation and
for the structure (De;0e;≤e). For an introduction to the enumeration degrees the
reader might consult [?].

For every set A of natural numbers let A+ = A⊕ (N\A). Then a set B is r.e. in
A if and only if B ≤e A+ and A is Turing reducible to B if and only if A+ ≤e B+.

Denote by DT = (DT ;0T ;≤T ) the partial ordering of the Turing degrees. Let
ι : DT → De be defined by ι(dT (A)) = de(A+). Then ι is an isomorphic embedding
of DT into De called the Rogers’ embedding. The enumeration degrees which belong
to the range of ι are called total. Notice that an enumeration degree a is total if
and only if for some A ⊆ N, A+ ∈ a.

The enumeration jump operator is defined in [?] and further studied in [?]. Here
we shall use the following definition of the enumeration jump which is m-equivalent
to the original one, see [?].

2.2. Definition. Given a set A of natural numbers, set LA = {〈a, x〉 : x ∈ Wa(A)}
and let the enumeration jump of A be the set L+

A.
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One can easily check that for every A ⊆ N, A �e L+
A and if A ≤e B then

L+
A ≤e L+

B . So we may define a jump operation on De by letting de(A)′ = de(L+
A).

Clearly the jump of every enumeration degree is a total degree. Since there exist
enumeration degrees above 0e

′ which are not total, not every enumeration degree
above 0e

′ is in the range of the enumeration jump operator. The enumeration jump
agrees with the Turing jump under Rogers’ embedding i.e.

(∀a ∈ DT )(ι(a′) = ι(a)′).

To simplify the notation, given A ⊆ N, by A′ we shall denote the enumeration
jump of A. Let A(0) = A and A(n+1) = (A(n))′.

We shall need the following Jump inversion theorem proved in [?].
Given a sequence B = {Bk}k<ω of sets of natural numbers we define the respec-

tive jump sequence P(B) = {Pk(B)}k<ω by induction on k:
(i) P0(B) = B0;
(ii) Pk+1(B) = Pk(B)′ ⊕Bk+1.

2.3. Theorem. Let B = {Bk}k<ω be a sequence of sets of natural numbers. Sup-
pose that for some X ⊆ N and for some n ∈ N, Pn(B) ≤e X+. Then there exists
F ⊆ N satisfying the following conditions:

(1) (∀k ≤ n)(Bk ≤e (F+)(k))
(2) (∀k < n)((F+)(k+1) ≡e (F+)⊕ Pk(B)′).
(3) (F+)(n) ≡e X+.

2.2. The ω-enumeration degrees. Denote by S the set of all sequences B =
{Bk}k<ω of sets of natural numbers. Consider an element B of S and let the jump
class JB defined by B be the set of the Turing degrees of all X ⊆ N such that
(∀k)(Bk is r.e. in X(k) uniformly in k).

Given two sequences A and B let A ≤u B (A is uniformly reducible to B) if
JB ⊆ JA and A ≡u B if JB = JA. Clearly ”≤u” is a reflexive and transitive
relation on S and ”≡u” is an equivalence relation on S.

For every sequence B let dω(B) = {A : A ≡u B} and let Dω = {dω(B) : B ∈ S}.
The elements of Dω are called the ω-enumeration degrees.

The ω-enumeration degrees can be ordered in the usual way. Given two elements
a = dω(A) and b = dω(B) of Dω, let a ≤ω b if A ≤u B. Clearly Dω = (Dω,≤ω)
is a partial ordering with least element 0ω = dω(∅ω), where all members of the
sequence ∅ω are equal to ∅.

Given two sequences A = {Ak} and B = {Bk} of sets of natural numbers let
A ⊕ B = {Ak ⊕ Bk}. Is it easy to see that JA⊕B = JA ∩ JB and hence every
two elements a = dω(A) and b = dω(B) of Dω have a least upper bound a ∪ b =
dω(A⊕ B).

Given a set W of natural numbers and k ∈ N, let W [k] = {u : 〈k, u〉 ∈ W}.
2.4. Definition. For every W ⊆ N and every sequence B = {Bk}k<ω of sets of
natural numbers, let W (B) = {W [k](Bk)}k<ω.

2.5. Definition. Let A = {Ak}k<ω and B = {Bk}k<ω be elements of S. Then
A ≤e B (A is enumeration reducible to B) if A = W (B) for some r.e. set W .

A simple application of the Sm
n -Theorem shows that A ≤e B if and only if there

exists a primitive recursive function h such that (∀k)(Ak = Wh(k)(Bk)).
Let A ≡e B if A ≤e B and B ≤e A.
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The following facts follow easily from the definitions.

2.6. Proposition. Let A,B ∈ S. Then the following assertions hold:
(1) A ≤e P(A);
(2) P(P(A)) ≤e P(A).
(3) A ≤e B ⇒ P(A) ≤e P(B).

The following Theorem from [?] gives an explicit characterization of the uniform
reducibility.

2.7. Theorem. For every two sequences A and B of sets of natural numbers

A ≤u B ⇐⇒ A ≤e P(B).

2.8. Corollary.
(1) For all A ∈ S, A ≡u P(A).
(2) For all A,B ∈ S, A ≤e B ⇒ A ≤u B.

There is a natural embedding of the enumeration degrees into the ω-enumeration
degrees. Given a set A of natural numbers denote by A ↑ ω the sequence {Ak}k<ω,
where A0 = A and for all k ≥ 1, Ak = ∅.
2.9. Proposition. For every A,B ⊆ N, A ↑ ω ≤u B ↑ ω ⇐⇒ A ≤e B.

Proof. Suppose that A ↑ ω ≤u B ↑ ω. Then JB↑ω ⊆ JA↑ω and hence for every
X ⊆ N, B is r.e. in X implies A is r.e. in X. By the Selman’s Theorem [?],
A ≤e B.

The implication A ≤e B ⇒ JB↑ω ⊆ JA↑ω is obvious. ¤

Let D1 = {dω(A ↑ ω) : A ⊆ N} and D1 = (D1;0ω;≤ω¹ D1).
Define the mapping κ : De → D1 by κ(de(A)) = dω(A ↑ ω). Then κ is an

isomorphism from De to D1 and hence κ is an embedding of De into Dω.
Recall the Rogers’ embedding ι of the Turing degrees into the enumeration

degrees defined by ι(dT (X)) = de(X+) and let λ : DT → Dω be defined by
λ(x) = κ(ι(x)). Clearly λ is an isomorphic embedding of DT into Dω.

2.10. Proposition. Let A ∈ S. Then JA = {x : x ∈ DT & dω(A) ≤ω λ(x)}.
Proof. Let x ∈ JA. Fix an element X of x. Then for all k, Ak ≤e (X+)(k) uniformly
in k. Clearly P(X+ ↑ ω) ≡e {(X+)(k)}k<ω. From here it follows that A ≤u X+ ↑ ω
and hence dω(A) ≤ω λ(x).

Let dω(A) ≤ω λ(x). Consider a X ∈ x. Then A ≤e P(X+ ↑ ω) and hence for
all k, Ak ≤e (X+)(k) uniformly in k. So, x ∈ JA. ¤

2.11. Corollary. Let a,b ∈ Dω. Then

a ≤ω b ⇐⇒ (∀x ∈ DT )(b ≤ω λ(x) ⇒ a ≤ω λ(x)).

For every A ∈ S set Je
A = {x : x ∈ De & dω(A) ≤ω κ(x)}.

Clearly JA = {x : x ∈ DT & ι(x) ∈ Je
A}. Hence for every two sequences A and

B we have that
A ≤u B ⇐⇒ Je

B ⊆ Je
A.

2.12. Corollary. Let a,b ∈ Dω. Then

a ≤ω b ⇐⇒ (∀x ∈ De)(b ≤ω κ(x) ⇒ a ≤ω κ(x)).
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2.13. Proposition. D1 is a base of the automorphisms of Dω.

Proof. Suppose that ϕ is an automorphism of Dω and ϕ(y) = y for y ∈ D1.
Consider an element a ∈ Dω. Then for all x ∈ De,

a ≤ω κ(x) ⇐⇒ ϕ(a) ≤ω ϕ(κ(x)) ⇐⇒ ϕ(a) ≤ω κ(x).

Hence a = ϕ(a). ¤

3. The jump operator

In this section we shall give the definition of the jump operator on the ω-
enumeration degrees and study it’s properties.

3.1. Definition. For every A ∈ S let A′ = {Pk+1(A)}k<ω.

3.2. Proposition. Let A = {Ak}k<ω ∈ S. Then JA′ = {a′ : a ∈ JA}.
Proof. Let a ∈ JA. Since P(A) ≡u A, a ∈ JP(A) and hence for some X ∈ a we
have that for all k, Pk(A) ≤e (X+)(k) uniformly in k. From here it follows that for
all k, Pk+1(A) ≤e ((X+)′)(k) uniformly in k. Thus a′ ∈ JA′ .

Suppose now that b ∈ JA′ . Then for some X ∈ b and for all k, Pk+1(A) ≤e

(X+)(k) uniformly in k. In particular P1(A) ≤e X+. By Theorem 2.3 there exists
F ⊆ N such that A0 ≤e F+ and (F+)′ ≡e X+. Let a = dT (F ). Then a ∈ JA and
a′ = b. ¤
3.3. Proposition. Let A,B ∈ S. Then the following assertions are true:

(J0) A �u A′
(J1) A ≤u B ⇒ A′ ≤u B′

Proof. Clearly A ≤e P(A) ≤e A′. Hence A ≤u A′. Assume that A′ ≤u A. Then
A′ ≤e P(A) and hence P1(A) = P0(A)′ ⊕ A1 ≤e P0(A). By the properties of the
enumeration jump the last is not possible.

The condition (J1) follows by Proposition 3.2. ¤
From (J1) it follows that A ≡u B ⇒ A′ ≡u B′. So we may define a jump

operation on the ω-enumeration degrees by dω(A)′ = dω(A′).
From Proposition 3.2 we get immediately the following characterization of the

jump:

3.4. Proposition. Let a,b ∈ Dω. Then

a ≤ω b′ ⇐⇒ (∀x ∈ DT )(b ≤ω λ(x) ⇒ a ≤ω λ(x′)).

Proof. Let A ∈ a and B ∈ b. Then

a ≤ω b′ ⇐⇒ A ≤u B′ ⇐⇒ JB′ ⊆ JA ⇐⇒ {x′ : x ∈ JB} ⊆ JA.

¤
Next we show that the jump on the ω-enumeration degrees agrees with the

enumeration jump and hence with the Turing jump.

3.5. Proposition. Let x ∈ De. Then κ(x′) = κ(x)′.

Proof. Let x ∈ De and X ∈ x. Clearly

P(X ′ ↑ ω) ≡e {X(k+1)}k<ω ≡e {P1+k(X ↑ ω)}k<ω = (X ↑ ω)′

Hence κ(x′) = κ(x)′. ¤
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Using the agreement of the enumeration jump with the Turing jump under the
Rogers’ embedding we obtain and the following:

3.6. Corollary. For every x ∈ DT , λ(x′) = λ(x)′

Combining Proposition 3.5 and Proposition 3.4 we get also

3.7. Proposition. For any two ω-enumeration degrees a and b,

a ≤ω b′ ⇐⇒ (∀x ∈ De)(b ≤ω κ(x) ⇒ a ≤ω κ(x′)).

Proof. Let a ≤ω b′. Consider a x ∈ De and suppose that b ≤ω κ(x). Then
b′ ≤ω κ(x)′ = κ(x′). Hence a ≤ω b′ ≤ω κ(x′).

Suppose now that for all x ∈ De, b ≤ω κ(x) implies a ≤ω κ(x′). Then for all
x ∈ DT , b ≤ω λ(x) implies a ≤ω λ(x′). Hence a ≤ω b′. ¤

Given n ≥ 0, setA(n) = {Pn+k(A)}k<ω. One can easily check thatA(0) ≡e P(A)
and for all n ≥ 0, A(n+1) ≡e (A(n))

′
.

For every ω-enumeration degree a = dω(A), let a(n) = dω(A(n)). Then a(0) = a
and for all n, a(n+1) = (a(n))′.

Next we turn to the jump inversion problem.
Let us fix a sequence A = {Ak}k<ω of sets of natural numbers.

3.8. Definition. Let B ∈ S and n ≥ 1. Then set In
A(B) = {Ck}k<ω, where

(∀k < n)(Ck = Ak) and (∀k ≥ n)(Ck = Pn−k(B)).

3.9. Proposition. Let A(n) ≤u B. Then the following assertions hold:
(1) A ≤u In

A(B).
(2) In

A(B)(n) ≡u B.
(3) If A ≤u C and B ≤u C(n) then In

A(B) ≤u C.
Proof. The assertions (1) and (2) follow directly from the definitions. To prove (3)
suppose that A ≤u C and B ≤u C(n). Then for all k, Pk(B) ≤e Pn+k(C) uniformly
in k. Since A ≤u C, for all k < n, Ak ≤e Pk(C). Thus In

A(B) ≤e P(C) and hence
In
A(B) ≤u C. ¤

Let us mention some other obvious but useful properties of the invert operation
In
A:

(I0) In
A(A(n)) ≡u A.

(I1) Let A,A∗ ∈ S. If for some B, C ∈ S, In
A(B) ≡u In

A∗(C), then

(∀k < n)(Pk(A) ≡e Pk(A∗)).
(I2) If B ≡u C then In

A(B) ≡u In
A(C).

(I3) If (∀k < n)(Pk(A) ≡e Pk(A∗)) then for all B ∈ S, In
A(B) ≡u In

A∗(B).
Let a,b ∈ Dω and n ≥ 1. Let A ∈ a and B ∈ b. Set In

a (b) = dω(In
A(B)). By

(I2) and (I3) In
a (b) is a correctly defined binary operation on Dω.

Proposition 3.9 has several corollaries which look surprising and show that the
jump operator on the ω-enumeration degrees possesses some nice properties which
are not true neither for the Turing nor for the enumeration jump.

3.10. Proposition. Let a,b ∈ Dω and a(n) ≤ω b. Then In
a (b) is the least element

of the set {x : a ≤ω x & x(n) = b}.



THE JUMP OPERATOR ON THE ω-ENUMERATION DEGREES 7

3.11. Proposition. For every a ∈ Dω and n ≥ 1,

{x(n) : a ≤ω x ≤ω a′} = {y : a(n) ≤ω y ≤ω a(n+1)}.
Proof. Clearly for every x ∈ [a,a′], x(n) ∈ [a(n),a(n+1)].

Suppose now that a(n) ≤ω y ≤ω a(n+1) and set x = In
a (y). Then a ≤ω x and

x(n) = y. It remains to show that x ≤ω a′. Indeed, we have that a(n) ≤ω y and
y ≤ω a(n+1) = (a′)(n). Hence, by Proposition 3.9, x ≤ω a′. ¤

Given ω-enumeration degrees a ≤ω b, denote by Dω[a,b] the structure ({x :
a ≤ω x ≤ω b},≤ω¹ [a,b]).

3.12. Proposition. Let a ∈ Dω and n ≥ 1. Then

Dω[a(n),a(n+1)] ' Dω[a, In
a (a(n+1))].

Proof. It follows easily from Proposition 3.9 that if a(n) ≤ω x,y then

x ≤ω y ⇐⇒ In
a (x) ≤ω In

a (y).

So to conclude the proof it is enough to show that if a ≤ω x ≤ω In
a (a(n+1)) then

x = In
a (x(n)). Indeed, let A ∈ a and X ∈ x. Then A ≤u X and X ≤u In

A(A(n+1)).
From here it follows that for all k < n, Pk(A) ≤e Pk(X ) ≤e Pk(A). Therefore
(∀k < n)(Pk(X ) ≡e Pk(A)). Then X ≡u In

A(X (n)) and hence x = In
a (x(n)). ¤

The last Proposition shows that Dω[a,a′] contains a substructure isomorphic to
Dω[a(n),a(n+1)].

Denote by Dω
′ the structure (Dω;0ω;≤ω;′ ) of the ω-enumeration degrees aug-

mented by the jump operation.
In the remaining part of this section we shall show that D1 is first order definable

in Dω
′.

3.13. Definition. Given a a,x ∈ Dω, set Ia(x) = I1
a(x) and let

Ia = {Ia(x) : a′ ≤ω x}.
Notice that

z ∈ Ia ⇐⇒ a ≤ω z & (∀y)(a ≤ω y & y′ = z′ ⇒ z ≤ω y).

Hence there exists a fist order formula Φ with two free variables such that

Dω
′ |= Φ(z,a) ⇐⇒ z ∈ Ia.

3.14. Proposition. Let a = dω(A) and b = dω(B). Then

Ia ⊆ Ib ⇐⇒ b ≤ω a & A0 ≡e B0.

Proof. Let Ia ⊆ Ib. By (I0) a ∈ Ia and hence a ∈ Ib. Then a = Ib(x) for some
x such that b′ ≤ω x. Therefore b ≤ω a. On the other hand a = Ia(a′) = Ib(x).
Hence by (I1) A0 = P0(A) ≡e P0(B) = B0.

Suppose now that b ≤ω a and A0 ≡e B0. We have to show that for every x such
that a′ ≤ω x, Ia(x) ∈ Ib. Indeed, note that b′ ≤ω a′ ≤ω x and hence Ib(x) ∈ Ib.
From A0 ≡e B0 by (I3) we get that Ib(x) = Ia(x). ¤
3.15. Corollary. If Ia = Ib then a = b.

3.16. Proposition. For all a ∈ Dω,

a ∈ D1 ⇐⇒ (∀b)(Ia ⊆ Ib ⇒ Ia = Ib).
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Proof. Let a = dω(A ↑ ω) ∈ D1. Suppose that b = dω(B) and Ia ⊆ Ib. Then
A ≡e B0 and hence A ↑ ω ≤u B. So a ≤ω b. By the proposition above Ib ⊆ Ia.

Suppose now that (∀b)(Ia ⊆ Ib ⇒ Ia = Ib). Consider a sequence A ∈ a. Set
B = A0 ↑ ω and let b = dω(B). Notice that b ∈ D1. Clearly b ≤ω a. Therefore by
the proposition above Ia ⊆ Ib. Then Ia = Ib. From here we get that a = b and
hence a ∈ D1 ¤

3.17. Corollary. D1 is first order definable in Dω
′.

4. The automorphisms of Dω
′

The definability of D1 shows that every automorphism of Dω
′ induces an auto-

morphism of the structure D1 and hence of the structure De. On the other hand,
since D1 is a base of the automorphisms of Dω we have that if two automorphisms
of Dω

′ induce the same automorphism of De then they coincide. In particular every
nontrivial automorphism of Dω

′ induces a nontrivial automorphism of De.
Now we shall show that every automorphism of De can be extended to an au-

tomorphism of Dω
′. We start by recalling some facts about the automorphisms of

DT .
Denote by DT

′ the structure of the Turing degrees augmented by the Turing
jump operator and by De

′ the structure of the enumeration degrees augmented by
the enumeration jump.

The following Theorem is proved by Richter[?], see also [?]:

4.1. Theorem. Let a,b ∈ DT . Suppose that DT
′[a,∞] ' DT

′[b,∞]. Then
a(2) ≤T b(3).

As a corollary Richter obtained the following fact about the automorphisms of
DT

′:

4.2. Theorem. Let ϕ be an automorphism of DT
′. Then ϕ(a) = a for all a above

0(3).

Using Theorem 4.1 one cane obtain similar results about De
′.

4.3. Theorem. Let a,b ∈ De are such that De
′[a,∞] ' De

′[b,∞]. Then a(3) ≤e

b(4).

Proof. Let ϕ be an isomorphism from De
′[a,∞] to De

′[b,∞].
We shall show that ϕ maps the total enumeration degrees above a′ onto the

total enumeration degrees above b′. Indeed, consider a total degree x above a′. By
Theorem 2.3 there exists a y such that a ≤e y and y′ = x. Then

ϕ(x) = ϕ(y′) = ϕ(y)′.

Since every jump is a total degree ϕ(x) is total. Clearly b′ = ϕ(a′) ≤e ϕ(y′) = ϕ(x).
Suppose now that b′ ≤e y and y is total. Since ϕ−1 is an isomorphism from

De
′[b,∞] to De

′[a,∞], ϕ−1(y) is total and a′ ≤e ϕ−1(y).
Define the mapping γ on DT [ι−1(a′),∞] by γ(x) = ι−1(ϕ(ι(x))). Clearly γ is an

isomorphism fromDT
′[ι−1(a′),∞] toDT

′[ι−1(b′),∞]. By Theorem 4.1 ι−1(a′)(2) ≤T

ι−1(b′)(3). Hence a(3) ≤e b(4). ¤

As a corollary we obtain the following property of the automorphisms of De
′

whose proof follows along the lines the proof of Theorem 4.2 presented in [?].
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4.4. Theorem. Let ϕ be an automorphism of De
′. Then ϕ(x) = x for all x above

0e
(4).

Proof. Consider first a total degree c greater than 0e
(4). By Theorem 2.3 there

exists an enumeration degree a such that c = a ∪ 0e
(4) = a(4).

Let d = ϕ(c) and b = ϕ(a). By the previous Theorem b ≤e b(3) ≤e a(4).
Clearly b(4) = ϕ(a(4)) = ϕ(c) = d.
On the other hand,

b(4) = ϕ(a(4)) = ϕ(a ∪ 0e
(4)) = ϕ(a) ∪ 0e

(4) = b ∪ 0e
(4).

Hence d = b ∪ 0e
(4) ≤e a(4) = c.

Using the fact that ϕ−1 is also an automorphism of De
′ we obtain by the same

reasoning that c ≤e d. Thus c = d.
Let x be an arbitrary enumeration degree greater than 0e

(4). By Rozinas[?]
there exist total enumeration degrees a and b such that x = a ∩ b. Then

ϕ(x) = ϕ(a ∩ b) = ϕ(a) ∩ ϕ(b) = a ∩ b = x.

¤

Now we are ready to show that every automorphism of De
′ can be extended to

an automorphism of Dω
′. Let us fix an automorphism ϕ of De

′.
Consider a sequence A = {Ak}k<ω of sets of natural numbers. We shall show,

that one can construct a sequence B such that Je
B = {ϕ(x) : x ∈ Je

A}. Indeed, let
pk = de(Pk(A)). Notice that if k ≥ 4 then pk ≥ 0(4) and hence ϕ(pk) = pk.

Fix some elements B0, B1, B2, B3 of ϕ(p0), ϕ(p1), ϕ(p2) and ϕ(p3) respectively
and let for k ≥ 4, Bk = Pk(A).

4.5. Lemma. Je
B = {ϕ(x) : x ∈ Je

A}.
Proof. Let x ∈ Je

A and let X ∈ x. Then A ≤u X ↑ ω and hence P(A) ≤e

{X(k)}k<ω. Consider a set Y ∈ ϕ(x). By Theorem 4.4 X(4) ≡e Y (4). Therefore
for all k ≥ 4, X(k) ≡e Y (k) uniformly in k. Clearly Bk ≤e Y (k) for k ≤ 3. So,
B ≤u {Y (k)}k<ω. Thus ϕ(x) ∈ Je

B.
Suppose now that y ∈ Je

B and let y = ϕ(x). Let X ∈ x and Y ∈ y. Then again
X(4) ≡e Y (4). From here it follows as in he previous case that P(A) ≤e {X(k)}k<ω

and hence x ∈ Je
A. ¤

Let us define the mapping Φ on Dω as follows. Given an element a ∈ Dω, consider
a sequence A ∈ a and construct the sequence B as above. Let Φ(b) = dω(B). By
the Lemma the mapping Φ is correctly defined, it is injective and preserves the
partial ordering ” ≤ω ”. So to prove that Φ is an automorphism of Dω it is enough
to show that Φ is onto. Indeed, let b = dω(B). Since ϕ−1 is an automorphism of
De

′ there exist a sequence A such that Je
A = {ϕ−1(x) : x ∈ Je

B}. Let a = dω(A)
and Φ(a) = dω(B∗), where Je

B∗ = {ϕ(x) : x ∈ Je
A}. Then Je

B = Je
A and hence

Φ(a) = b.
The following Lemma follows directly from the definition of Φ:

4.6. Lemma. For every a ∈ Dω,

{y : y ∈ De & Φ(a) ≤ω κ(y)} = {ϕ(x) : x ∈ De & a ≤ω κ(x)}.
4.7. Corollary. For every a ∈ De, Φ(κ(a)) = κ(ϕ(a)).
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Proof. Let a ∈ De. Clearly for every y ∈ De,

Φ(κ(a)) ≤ω κ(y) ⇐⇒ κ(a) ≤ω κ(ϕ−1(y)) ⇐⇒
a ≤e ϕ−1(y) ⇐⇒ ϕ(a) ≤e y ⇐⇒ κ(ϕ(a)) ≤ω κ(y).

Thus Φ(κ(a)) = κ(ϕ(a)). ¤

4.8. Corollary. For every a ∈ De, Φ−1(κ(a)) = κ(ϕ−1(a)).

Proof. Let a ∈ De. Then κ(a) ∈ D1 and hence by the definability ofD1, Φ−1(κ(a)) ∈
D1. Then ϕ(κ−1(Φ−1(κ(a))) = κ−1(Φ(Φ−1(κ(a)))) = a.

Hence κ−1(Φ−1(κ(a))) = ϕ−1(a). From the last equality it follows immediately
that Φ−1(κ(a)) = κ(ϕ−1(a)). ¤

It remains to show that Φ preserves the jump operator.

4.9. Lemma. For every a ∈ Dω, Φ(a′) = Φ(a)′.

Proof. Let us fix an element a of Dω. First we shall show that Φ(a′) ≤ω Φ(a)′. For
we are going to use Proposition 3.7. We need to show that for all x ∈ De,

Φ(a) ≤ω κ(x) ⇒ Φ(a′) ≤ω κ(x′).

Notice that ϕ−1 is an automorphism of De
′. Let x ∈ De. Then

Φ(a) ≤ω κ(x) ⇒ a ≤ω Φ−1(κ(x)) ⇒ a ≤ω κ(ϕ−1(x)) ⇒
a′ ≤ω κ(ϕ−1(x))′ ⇒ a′ ≤ω κ(ϕ−1(x′)) ⇒ Φ(a′) ≤ω κ(x′).

To prove the reverse inequality we shall show that for all x ∈ DT ,

Φ(a′) ≤ω λ(x) ⇒ Φ(a)′ ≤ω λ(x).

Let x ∈ DT and Φ(a′) ≤ω λ(x). We have that 0ω
′ ≤ω a′ and hence

Φ(0ω
′) = κ(ϕ(0e

′)) = κ(0e
′) ≤ω Φ(a′) ≤ω λ(x).

So κ(0e
′) ≤ω λ(x). Since λ(x) = κ(ι(x)) and 0e

′ = ι(0T
′), we get from here that

0T
′ ≤T x. By the Friedberg’s Jump inversion Theorem there exists a y ∈ DT such

that y′ = x. Then

Φ−1(λ(x)) = κ(ϕ−1(ι(y′))) = κ(ϕ−1(ι(y))′).

Clearly b = ϕ−1(ι(y))′ is a total enumeration degree and a′ ≤ω κ(b). By
Theorem 2.3 there exists a total enumeration degree z such that z′ = b and a ≤ω

κ(z). So

Φ(a)′ ≤ω Φ(κ(z))′ = κ(ϕ(z))′ = κ(ϕ(z′)) = κ(ϕ(b)) = λ(x).

¤

Combining all sofar proved properties of Φ we obtain the following:

4.10. Theorem. For every isomorphism ϕ of De
′ there exists a unique automor-

phism Φ of Dω
′ such that:

(1) (∀x ∈ De)(Φ(κ(x)) = κ(ϕ(x))).

Proof. We need to show only that Φ is unique. Indeed let us suppose that Φ1 and
Φ2 are automorphisms of Dω

′ satisfying (1). Then for all y ∈ D1, Φ1(y) = Φ2(y).
Since D1 is a base of the automorphisms of Dω, Φ1 = Φ2. ¤
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4.11. Corollary. The groups of the automorphisms of De
′ and of the automor-

phisms of Dω
′ are isomorphic.

Proof. Given an automorphism ϕ of De
′, let Λ(ϕ) be the automorphism Φ of Dω

′

satisfying (1). Clearly Λ is well defined and injective.
Suppose that Φ is an automorphism of Dω

′. By the definability of D1, Φ(y) ∈ D1

for every y ∈ D1. Define ϕ on De by

ϕ(x) = κ−1(Φ(κ(x))).

On can easily see that ϕ is an automorphism of De
′ and that ϕ and Φ satisfy (1).

So Λ is one to one.
It remains to show that for any two automorphisms ϕ1 and ϕ2 of De

′,

Λ(ϕ1 ◦ ϕ2) = Λ(ϕ1) ◦ Λ(ϕ2).

Set Φ = Λ(ϕ1 ◦ ϕ2), Φ1 = Λ(ϕ1) and Φ2 = Λ(ϕ2). It is enough to show that for
all x ∈ De, Φ(κ(x)) = Φ2(Φ1(κ(x)). Indeed, let x ∈ De. Then

Φ(κ(x)) = κ(ϕ2(ϕ1(x))) = Φ2(κ(ϕ1(x))) = Φ2(Φ1(κ(x))).

¤

In [?] Kalimullin proved that the enumeration jump operator is first order
definable in De. Hence the groups of the automorphisms of De and De

′ coincide.
So we may reformulate the last Corollary as follows:

4.12. Theorem. The groups of the automorphisms of De and of Dω
′ are isomor-

phic.

The established connection between the automorphisms of Dω
′ and De

′ has the
following corollary which shows that every automorphism of Dω

′ is the identity on
the cone above 0ω

(4).

4.13. Theorem. Let Φ be an automorphism of Dω
′. Then Φ(a) = a for all a

greater than 0ω
(4).

Proof. Let ϕ be an automorphism of De
′ such that for all x ∈ De, Φ(κ(x)) =

κ(ϕ(x)). Let 0ω
(4) ≤ω a. Clearly 0ω

(4) ≤ω Φ(a). Then for all x ∈ De,

a ≤ω κ(x) ⇐⇒ Φ(a) ≤ω Φ(κ(x)) ⇐⇒ Φ(a) ≤ω κ(ϕ(x)) ⇐⇒ Φ(a) ≤ω κ(x).

¤

5. Jumps of the ω-enumeration degrees below 0ω
′

The sofar obtained results show that the structures De
′ and Dω

′ are closely
related but not elementary equivalent. As we shall see in this section the structure
Dω

′ contains new explicitly defined elements which can be used to characterize the
low and the high degrees not only in Dω but also in De and DT .

5.1. Definition. Let n ≥ 1. An ω-enumeration degree a ≤ 0ω
′ is high n if

a(n) = 0ω
(n+1). The degree a is low n if a(n) = 0ω

(n).

Denote by Hn the set of all high n degrees and by Ln set of all low n degrees.
Clearly a Turing degree x is high (low) n if and only if λ(x) ∈ Hn(Ln) and an
enumeration degree y is high (low) n if and only if κ(x) ∈ Hn(Ln).
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Set
H =

⋃

n≥1

Hn; L =
⋃

n≥1

Ln and I = {a ≤ω 0ω
′ : a 6∈ (H ∪ L)}.

Clearly the classes H, L and I are invariant under the automorphisms of Dω
′

and hence one can expect that they admit a natural characterization.
Given a n ≥ 1 set on = In

0ω
(0ω

(n+1)). In other words on is the least among the
degrees a such that a(n) = 0ω

(n+1). Clearly if a ≤ω 0ω
′, then a ∈ Hn ⇐⇒ on ≤ω

a.
It follows from the definition of the invert operation that for every n ≥ 1, on =

dω({On
k}k<ω), where On

k = ∅ if k < n and On
k = ∅(k+1) if n ≤ k.

Set o0 = 0ω
′. The following facts are immediate from the explicit definition of

the degrees on:
(O1) (∀n)(on+1 ≤ω on & on+1 6= on).
(O2) (∀n)(Dω[on+1, on] ' De[0e

(n),0e
(n+1)]).

(O3) If x ∈ De and κ(x) ≤ω o1 then x = 0e.

5.2. Definition. An ω-enumeration degree a is almost zero (a.z.) if (∀n)(a ≤ω on).

Clearly 0ω is a.z. Actually there exist infinitely many a.z. degrees. To prove
this we need the following explicit characterization of the a.z. degrees:

5.3. Proposition. A degree x is a.z. if x ≤ω 0ω
′ and there exists a sequence

{Xk}k<ω ∈ x such that (∀k)(Xk ≤e ∅(k)).

Proof. Suppose that x is a.z. Clearly x ≤ω 0ω
′. Let {Xk}k<ω ∈ x. Fix a k. Since

x ≤ω ok+1, Xk ≤e Pk({Ok+1
n }n<ω) and hence Xk ≤e ∅(k).

Now let {Xk}k<ω be a sequence of sets of natural numbers which is uniformly
reducible to ∅ω

′ and such that (∀n)(Xk ≤e ∅(k)). We shall show that for all n ≥ 1,
{Xk} ≤u {On

k}k<ω. Indeed, fix a n ≥ 1 and set On = {On
k}k<ω. Clearly for all

k ≥ n, Xk ≤e Pk(∅ω
′) ≡e Pk(On) uniformly in k. If k < n then Pk(On) ≡e ∅(k)

and hence Xk ≤e Pk(On). Thus {Xk} ≤u On. ¤
Using Proposition 5.3 and the definition of the invert operation we obtain im-

mediately the following property of the a.z. degrees:

5.4. Proposition. Let d be a.z. then (∀n)(In
0ω

(d(n)) = d).

5.5. Corollary. Let d 6= 0ω be a.z. Then d ∈ I.

Proof. Since (∀n)(d ≤ω on), d 6∈ H. Assume that d ∈ L and let d(n) = 0ω
(n).

Then d = In
0ω

(0ω
(n)) = 0ω. A contradiction. ¤

5.6. Proposition. There exist nonzero a.z. degrees.

Proof. We shall construct a sequence D = {Dk}k<ω of finite sets so that D 6≤u ∅ω

and D ≤u ∅ω
′.

Let g0, . . . , gk, . . . be an effective enumeration of all primitive recursive functions
and W0, . . . , Wk . . . be a Gödel enumeration of the r.e. sets.

Set

Dk =

{
∅, if 0 ∈ Wgk(k)(∅(k));
{0}, if 0 6∈ Wgk(k)(∅(k));

Let D = {Dk}k<ω. From the definition of the sets Dk it follows that there does
not exist a primitive recursive function g such that (∀k)(Dk = Wg(k)(∅(k))). Thus
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D 6≤e P(∅ω) and hence D 6≤u ∅ω. On the other hand, using the oracle ∅(k+1) on can
decide uniformly in k whether 0 ∈ Wgk(k)(∅(k)). Therefore D ≤e P(∅ω

′) and hence
D ≤u ∅ω

′. ¤

5.7. Corollary. There exist infinitely many a.z. degrees.

Proof. Let d 6= 0ω be a.z. By the density of the ω-enumeration degrees below 0ω
′,

see [?], there exists a x such that 0ω <ω x <ω d. Clearly x is also a.z. ¤

In the rest of the paper we are going to prove the following two theorems which
characterize the classes H and L by means of the almost zero degrees:

5.8. Theorem. Let a ≤ω 0ω
′. Then a ∈ H ⇐⇒ (∀ a.z. d)(d ≤ω a).

5.9. Theorem. Let a ≤ω 0ω
′. Then a ∈ L ⇐⇒ (∀ a.z. d)(d ≤ω a ⇒ d = 0ω).

Before starting with the proofs let us mention the following corollary of Theo-
rem 5.8:

5.10. Corollary. The ideal of all a.z. degrees does not have a minimal upper
bound below 0ω

′.

Proof. Let a ≤ω 0ω
′ be an upper bound of all a.z. degrees. By Theorem 5.8 a ∈ H

and hence a ∈ Hn for some n ≥ 1. Then on ≤ a and hence on+1 <ω a. Clearly
on+1 is an upper bound of all a.z. degrees. ¤

The proofs of Theorem 5.8 and Theorem 5.9 use the notion of good approximation
of a sequence of sets of natural numbers. This notion is introduced in [?] and is
based on the notion of good approximation of a set of natural numbers from [?].

5.11. Definition. Let B = {Bk}k<ω be a sequence of sets of natural numbers. A
sequence {Bs

k} of finite sets recursive in k and s is a good approximation of B if the
following three conditions are satisfied:

(i) (∀s)(∀k)[Bs
k ⊆ Bk ⇒ (∀r ≤ k)(Bs

r ⊆ Br)].
(ii) (∀n)(∀k)(∃s)(∀r ≤ k)(Br ¹ n ⊆ Bs

r ⊆ Br).
(iii) (∀n)(∀k)(∃s)(∀t ≥ s)[Bt

k ⊆ Bk ⇒ (∀r ≤ k)(Br ¹ n ⊆ Bt
r)].

If {Bs
k} is a good approximation of the sequence B = {Bk}k<ω, then by Gk we

shall denote the set of all k-good stages, i.e the set of all s such that Bs
k ⊆ Bk.

Clearly Gr ⊇ Gk for all r ≤ k.

5.12. Definition. Let A = {Ak}k<ω and B = {Bk}k<ω be sequences of sets of
natural numbers and let {Bs

k} be a good approximation of B. A sequence {As
k} of

finite sets recursive in s and k is a correct (with respect to {Bs
k}) approximation of

A if the following two conditions hold:
(C1) (∀k, s)(Bs

k ⊆ Bk ⇒ (∀r ≤ k)(As
r ⊆ Ar)).

(C2) For all natural numbers k, n there exists a v such that if s ≥ v and Bs
k ⊆ Bk,

then (∀r ≤ k)(Ar ¹ n ⊆ As
r).

Given an r.e. set Wa and s ∈ N, set

Wa,s = {x : x ≤ s & {a}(x) halts in less than s steps}.
The following lemma is an analogue of Lemma 2.2 from [?] and can be proved

by similar arguments.
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5.13. Lemma. Let {Bs
k} be a good approximation of the sequence B. Let Wa be

an r.e. set. Then {Wa,s[k](Bs
k)} is a correct approximation of Wa(A).

The proof of the following proposition can be found in [?].

5.14. Proposition. Let A ≤u ∅ω
′. Then there exists a sequence P of sets of

natural numbers such that P(A) ≡e P and P has a good approximation.

5.15. Theorem. Let a ∈ I. Then there exists an a.z. degree d such that d 6≤ω a.

Proof. Let a ∈ I and A ∈ a. Clearly P(A) ≤e P(∅ω
′). Fix a sequence P = {Pk}k<ω

such that P ≡e P(∅ω
′) and there exists a good approximation {P s

k} of P. Clearly
P(A) ≤e P and hence there exist a correct (with respect to {P s

k}) approximation
{P s

k (A)} of P(A).
We have that for all k, Pk 6≤e Pk(A). Indeed, assume that for some k, Pk ≡e

Pk(A). Since P ≡e P(∅ω
′) and P(∅ω

′) ≡e {∅(k+1)}k<ω, we get that ∅(k+1) ≡e

Pk(A). Then for all r ≥ k, ∅(k+1+r) ≤e Pk+r(A) uniformly in r which shows that
A(k) ≡e ∅ω

(k+1). Hence a ∈ H. A contradiction.

5.16. Lemma. Let V be an r.e. set satisfying the following requirements for all
k < ω:

(Fk) V [k](Pk) is a finite set.
(Nk) Wk(Pk(A)) 6= V [k](Pk).

Then d = dω(V (P)) is a.z. and d 6≤ω a.

Proof. Clearly the sequence V (P) = {V [k](Pk)} is uniformly reducible to ∅ω
′ and

(∀k)(V [k](Pk) ≤e ∅(k)). Thus by Proposition 5.3 d is a.z. Assume that d ≤ω a.
Then V (P) ≤e P(A) and hence there exist a primitive recursive function g such
that for all k, V [k](Pk) = Wg(k)(Pk(A)). By the Recursion Theorem there exists a
k such that Wk = Wg(k) and hence V [k](Pk) = Wk(Pk(A)). A contradiction. ¤

So to conclude the proof of the Theorem it is enough to construct an r.e. set V
satisfying the requirements (Fk) and (Nk) for all k.

The construction of V will be performed on stages. At every stage s we shall
construct effectively a finite set Vs so that Vs ⊆ Vs+1 and set V =

⋃
Vs.

Let V0 = ∅ and suppose that Vs is constructed.

5.17. Definition. Given two sets X and Y of natural number let

ls(X,Y ) = max{n ≤ s : (∀x ≤ n)(x ∈ X ⇐⇒ x ∈ Y )}.
For every k ≤ s we act for the requirement (Nk) as follows. Let

lsk = ls(Wk,s(P s
k (A)), Vs(P s

k )).

For every x ≤ lsk if x ∈ P s
k then we enumerate 〈〈k, x〉, P s

k 〉 in V [k], i.e. we put
〈k, 〈〈k, x〉, P s

k 〉〉 in Vs+1.
End of the construction

5.18. Lemma. All requirements (Nk) are satisfied.

Proof. Fix a k. Assume that Wk(Pk(A)) = V [k](Pk). Recall that a stage s is
k-good if P s

k ⊆ Pk.
We shall show that (∀x)(〈k, x〉 ∈ V [k](Pk) ⇐⇒ x ∈ Pk). Indeed, let 〈k, x〉 ∈

V [k](Pk). Then there exists an axiom 〈〈k, x〉, D〉 ∈ V [k] such that D ⊆ Pk. From
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the construction of V it follows that this axiom is enumerated by the requirement
(Nk) an hence for some s, D = P s

k and x ∈ P s
k . Since P s

k = D ⊆ Pk, x ∈ Pk.
Suppose now that x ∈ Pk. Since Wk(Pk(A)) = V [k](Pk) there exists a k-

good stage s such that x ≤ lsk and x ∈ P s
k . Then, by the construction of V ,

〈k, x〉 ∈ Vs+1[k](P s
k ) and hence 〈k, x〉 ∈ V [k](Pk).

Thus (∀x)(x ∈ Pk ⇐⇒ 〈k, x〉 ∈ V [k](Pk) ⇐⇒ 〈k, x〉 ∈ Wk(Pk(A))). Hence
Pk ≤e Pk(A). A contradiction. ¤

5.19. Lemma. All requirements (Fk) are satisfied.

Proof. Fix a k. By the construction of V for all y,

y ∈ V [k](Pk) ⇐⇒ (∃x, s)(y = 〈k, x〉 & 〈y, P s
k 〉 ∈ V [k] & P s

k ⊆ Pk).

Notice that an axiom of the form 〈〈k, x〉, P s
k 〉 can be enumerated in V [k] only by

the requirement (Nk).
By the previous Lemma Wk(Pk(A)) 6= V [k](Pk). Fix a n such that

Wk(Pk(A))(n) 6= V [k](Pk)(n).

By the definition of the good approximations there exist a stage v such that for all
k-good stages s ≥ v, lsk < n. Hence if at a k-good stage s, 〈〈k, x〉, P s

k 〉 is enumerated
in V [k], then x ≤ s < v or x < n. Thus V [k](Pk) is finite. ¤

The proof of the Theorem is completed. ¤

Proof of Theorem 5.8. Let a ≤ω 0ω
′. Assume that a ∈ H. Then a ∈ Hn for some

n ≥ 1 and hence on ≤ω a. Therefore for all a.z. d, d ≤ω on ≤ω a.
Assume now that a is above all a.z. degrees. Let d be a nonzero a.z. degree.

Then for all n, 0ω
(n) <ω d(n) ≤ω a(n) and hence a 6∈ L. By the previous Theorem,

a 6∈ I. Thus a ∈ H. ¤

5.20. Theorem. Let a ∈ I. There exists a nonzero a.z. degree d ≤ω a.

Proof. Fix a sequence A ∈ a and let {P s
k} be a good approximation of a sequence

P such that P ≡e P(A). Clearly P(∅ω) ≤e P and hence there exists a correct (with
respect to {P s

k}) approximation {Zs
k} of P(∅ω).

Given a sequence B = {Bk}k<ω, let B∗ = {Bk+1}k<ω. Notice that B′ = P(B)∗.
Set B(0∗) = B and B((n+1)∗) = B(n∗)∗.

Clearly if B ≤e C then for all n, B(n∗) ≤e C(n∗) and there exists a recursive
function g such that (∀n)(B(n∗) = Wg(n)(C(n∗))). In particular, for all n, B(n∗) ≤e

B(n) = P(B)(n∗).
Clearly (∀n)(A(n) = P(A)(n∗) ≡e P(n∗)).
Notice that if {Bs

k} is a good approximation of B then {Bs
n+k} is a good approx-

imation of B(n∗). Hence {P s
n+k} is a good approximation of P(n∗) and {Zs

n+k} is a
correct (with respect to {P s

n+k}) approximation of ∅ω
(n).

We shall construct an r.e. set V satisfying the following requirements for all
i ∈ N:

(Fi) V [i](Pi) ≤e ∅(i).
(Ni) Wi(∅ω

(i)) 6= V (P)(i∗).

5.21. Lemma. Suppose that V is an r.e. set satisfying for all i the requirements
(Fi) and (Ni). Then d = dω(V (P)) is a nonzero a.z. degree below a.
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Proof. Clearly d ≤ω a. Since V satisfies the requirements (Fi) the degree d is a.z.
It remains to show that d 6= 0ω. Assume that d = 0ω. Then V (P) ≤e P(∅ω) and
hence there exists a recursive function g such that for all i,

V (P)(i∗) = Wg(i)(∅ω
(i)).

By the Recursion Theorem there exists an i such that Wi = Wg(i). Then

V (P)(i∗) = Wi(∅ω
(i)).

A contradiction. ¤

We shall construct V on stages. At every stage s we shall define effectively a
finite set Vs so that Vs ⊆ Vs+1 and let V =

⋃
Vs.

Set V0 = ∅ and suppose that Vs is defined.

5.22. Definition. Given sequences X = {Xk} and Y = {Yk}, let

ls(X ,Y) = max{u : u ≤ s & (∀〈k, x〉 ≤ u)(Xk(x) = Yk(x))}.
For every i ≤ s we act for the requirement (Ni) as follows. Let

lsi = ls(Wi,s({Zs
i+k}k<ω), {Vs[i + k](P s

i+k)}k<ω).

For every pair 〈k, x〉 ≤ lsi such that x ∈ P s
i+k we enumerate the axiom 〈〈i, x〉, P s

i+k〉
in V [i + k].

End of the construction.
Notice that for every j the set V [j] consists of pairs 〈〈i, x〉, P s

j 〉, where i ≤ j.

5.23. Lemma. All requirements (Ni) are satisfied.

Proof. Fix an i and suppose that Wi(∅ω
(i)) = V (P)(i∗). We shall show that for all

k,

(2) 〈i, x〉 ∈ V [i + k](Pi+k) ⇐⇒ x ∈ Pi+k.

Let 〈i, x〉 ∈ V [i + k](Pi+k). Then there exists an axiom 〈〈i, x〉, D〉 ∈ V [i + k] such
that D ⊆ Pi+k. By the construction of V , D = P s

i+k for some s such that x ∈ P s
i+k.

Hence x ∈ Pi+k.
Assume now that x ∈ Pi+k. There exists an (i + k)-good stage s such that

i ≤ s, 〈k, x〉 ≤ lsi and x ∈ P s
i+k. Then 〈〈i, x〉, P s

i+k〉 ∈ Vs+1[i + k] and hence
〈i, x〉 ∈ V [i + k](Pi+k).

It follows from (2) that

(∀k, x)(〈i, x〉 ∈ Wi[k](Pi+k(∅ω)) ⇐⇒ x ∈ Pi+k).

and hence A(i) ≡e P(i∗) ≤e ∅ω
(i). The last shows that a ∈ L. A contradiction. ¤

5.24. Lemma. All requirements (Fj) are satisfied.

Proof. Let us fix a j ∈ N. We need to show that V [j](Pj) ≤e ∅(j). Clearly

V [j](Pj) =
⋃

i≤j

{〈i, x〉 : 〈i, x〉 ∈ V [j](Pj)}.

So it is enough to show that for every i ≤ j,

Xi = {x : 〈i, x〉 ∈ V [j](Pj)} ≤e Pj(∅ω).

Fix an i ≤ j and set k = j − i. We shall consider two cases:
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a) There exists a u ∈ N such that for all j-good stages s ≥ i, lsi ≤ u. Suppose that
〈i, x〉 ∈ V [j](Pj). Then there exist a j-good stage s ≥ i such hat 〈k, x〉 ≤ lsi ≤ u.
Hence Xi is finite.

b) For every u there exists a j-good stage s ≥ i such that u < lsi .
We shall show that V [j](Pj) = Wi[k](Pj(∅ω)).
Let x ∈ Wi[k](Pj(∅ω)). By the properties of the correct approximations there

exists a v such that for all j-good stages s ≥ v, x ∈ Wi,s[k](Zs
j ). Let s be a j-good

stage such that max(v, 〈k, x〉) ≤ lsi . Then v ≤ lsi ≤ s. Clearly x ∈ Wi,s[k](Zs
j ).

Hence x ∈ Vs[j](P s
j ) and therefore x ∈ V [j](Pj).

Let x ∈ V [j](Pj). Fix a v such that for all j-good stages s ≥ v, x ∈ Vs[j](P s
j ).

Consider a j-good stage s ≥ v such that 〈k, x〉 ≤ lsi . Ten x ∈ Wi,s[k](Zs
j ) and hence

x ∈ Wi[k](Pj(∅ω)).
So we obtain that

x ∈ Xi ⇐⇒ 〈i, x〉 ∈ Wi[k](Pj(∅ω))

Hence Xi ≤e Pj(∅ω). ¤
The proof of the Theorem is concluded. ¤

Proof of Theorem 5.9. Let a ≤ω 0ω
′.

Assume that the only a.z. degree below a is 0ω. Since there exist nonzero a.z.
degrees a 6∈ H. By the previous Theorem a 6∈ I. Thus a ∈ L.

Suppose now that a ∈ L. Let d be an a.z. degree below a. Then for some n,
d(n) ≤ω a(n) = 0ω

(n). Hence d(n) = 0ω
(n). Therefore d = 0ω. ¤
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