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This paper continues the project, initiated in [ACK], of describing general
conditions under which relative splittings are derivable in the local structure of
the enumeration degrees.

The main results below include a proof that any high total e-degree below 0′e
is splittable over any low e-degree below it, and a construction of a Π0

1 e-degree
unsplittable over a ∆2 e-degree below it.

In [ACK] it was shown that using semirecursive sets one can construct min-
imal pairs of e-degrees by both effective and uniform ways, following which new
results concerning the local distribution of total e-degrees and of the degrees
of semirecursive sets enabled one to proceed, via the natural embedding of the
Turing degrees in the enumeration degrees, to results concerning embeddings of
the diamond lattice in the e-degrees. A particularly striking application of these
techniques was a relatively simple derivation of a strong generalisation of the
Ahmad Diamond Theorem.

This paper extends the known constraints on further progress in this direc-
tion, such as the result of Ahmad and Lachlan [AL98] showing the existence of a
nonsplitting ∆0

2 e-degree > 0e, and the recent result of Soskova [Sos07] showing
that 0′e is unsplittable in the Σ0

2 e-degrees above some Σ0
2 e-degree < 0′e. This

work also relates to results (e.g. Cooper and Copestake [CC88]) limiting the local
distribution of total e-degrees.

For further background concerning enumeration reducibility and its degree
structure, the reader is referred to Cooper [Co90], Sorbi [Sor97] or Cooper [Co04],
chapter 11.

Theorem 1 If a < h ≤ 0′, a is low and h is total and high then there is a low
total e-degree b such that a ≤ b < h.
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Corollary 2 Let a < h ≤ 0′, h be a high total e-degree, a be a low e-degree.
Then there are ∆0

2 e-degrees b0 < h and b1 < h such that a = b0 ∩ b1 and
h = b0 ∪ b1.

Proof. Immediately follows from Theorem 1, and Theorem 6 of [ACK]. ut
Proof of Theorem 1. Assume A has low e-degree, H ⊕H has high e-degree (i.e.,
H has high Turing degree) and A ≤e H ⊕H.

We want to construct an H-computable increasing sequence of initial seg-
ments {σs}s∈ω such that the set B = ∪sσs satisfies the requirements

Pn : n ∈ A ⇐⇒ (∃y)[〈n, y〉 ∈ B]

and
Rn : (∃σ ⊂ B)[n ∈ Wσ

n ∨ (∀τ ⊃ σ)[τ ∈ SA =⇒ n /∈ W τ
n ]]

for each n ∈ ω, where

SA = {τ : (∀x)(∀y)[τ(〈x, y〉) ↓= 1 =⇒ x ∈ A]}.

Note that Pn-requirements guarantee that A ≤e B, and hence A ≤e B ⊕B.

To prove that the Rn-requirements provide B′ ≡T ∅′, first note that SA ≡e A,
which has low e-degree, and

X = {〈σ, n〉 : (∃τ ⊃ σ)[τ ∈ SA & n ∈ W τ
n ]} ≤e SA.

Then X ∈ ∆0
2 and

n /∈ B′ ⇐⇒ (∃σ ⊂ B)[〈σ, n〉 /∈ X],

so that B′ is co-c.e. in B ⊕ ∅′ ≡T ∅′. Thus B′ ≤T ∅′ by Post’s Theorem.
Since the set B will be computable in H, the set

Q = {n : (∀σ ⊂ B)(∃τ ⊃ σ)[τ ∈ SA & n ∈ W τ
n ]}

will be computable in (H ⊕ ∅′)′ ≡T H ′ – indeed, we have n ∈ Q ⇐⇒ (∀σ ⊂
B)[〈σ, n〉 ∈ X], so that Q is co-c.e. in H⊕∅′. Now to construct the desired set B

we can apply the Recursion Theorem and fix an H-computable function g such
that Q(x) = lims g(x, s).

Let {As}s∈ω and {SA
s }s∈ω be respective H-computable enumerations of A

and SA.
Construction.
Stage s = 0. σ0 = λ.

Stage s + 1 = 2〈n, z〉 (to satisfy Pn). Given σs define l = |σs|.



If n /∈ As, then let σs+1 = σŝ0.

If n ∈ As, then choose the least k ≥ l such that k = 〈n, y〉 for some y ∈ ω

and define σs+1 = σŝ0k−l̂1 (so that σs+1(k) = 1).
Stage s + 1 = 2〈n, z〉+ 1 (to satisfy Rn). H-computably find the least stage

t ≥ s such that either g(n, t) = 0, or n ∈ W τ
n,t for some τ satisfying τ ∈ SA

t and
τ ⊃ σs. (Such stage t exists since if lims g(n, s) = 1 then n ∈ Q, and hence there
exists some τ ⊃ σs such that n ∈ W τ

n and τ ∈ SA.)
If g(n, t) = 0 then define σs+1 = σŝ0.

Otherwise, choose the first τ ⊃ σs such that τ ∈ SA
t and n ∈ W τ

n,t. Define
σs+1 = τ.

This completes the description of the construction.

Let B = ∪sσs. Clearly B ≤T H since each σs is obtained effectively in H.

Each Pn-requirement is satisfied by the even stages of the construction since
σs ∈ SA for any s ∈ ω.

To prove that each Rn-requirement is met suppose that

(∀σ ⊂ B)(∃τ ⊇ σ)[τ ∈ SA & n ∈ W τ
n ]

for some n. This means that n ∈ Q. Choose any odd stage s = 2〈n, z〉+ 1 such
that g(n, t) = 1 for all t ≥ s. Then by the construction n ∈ Wσs

n .

Hence A ≤e B ⊕B ≤e H ⊕H, and dege(B ⊕B) is low. ut
Theorem 3 There is a Π0

1 e-degree a and a 3-c.e. e-degree b < a such that a
is not splittable over b.

Proof. We construct a Π0
1 set A and 3-c.e. set B satisfying both the global

requirement:
G : B = Ω(A),
and the requirements

RΞ,Ψ,Θ : A = Ξ(Ψ(A)⊕Θ(A)) =⇒ (∃ e-operator Γ )A = Γ (Ψ(A)⊕B)∨
(∃ e-operator Λ)A = Λ(Θ(A)⊕B)

for each triple of e-operators Ξ, Ψ, Θ, and

NΦ : A 6= Φ(B)

for each e-operator Φ.

In fact A will be constructed as a 2-c.e. set. Note that the e-degrees of Π1

sets coincide with the e-degrees of 2-c.e. sets. Hence this will still produce the
desired enumeration degrees.



Basic Strategies

Suppose we have an effective listing of all requirements R1, R2, . . . and N1, N2, . . .

The requirements will then be arranged by priority in the following way: G <

R1 < N1 < R2 < N2 < . . .

To satisfy the requirement G we will make sure that every time we enumerate
an element into the set B, we enumerate a corresponding axiom into the set Ω;
and every time we extract an element from B, we make the corresponding axiom
invalid by extracting elements from A. More precisely every element y that enters
B will have a corresponding marker m in A and an axiom 〈y, {m}〉 in Ω. If y

is extracted from B then we extract m from A. If y is later re-enumerated into
B – this can happen since B is 3-c.e. – then we will just enumerate the axiom
〈y, ∅〉 into Ω.

To satisfy the requirements Ri we will initially try to construct an operator Γ

using information from both of sets B and Ψ(A). Again, enumeration of elements
into A is always accompanied by enumeration of axioms into Γ , and extraction
of elements from A can be rectified via B-extractions.

The N -strategies follow a variant of the Friedberg -Muchnik strategy while
at the same time respecting the Γ -rectification, so we will call them (NΦ, Γ )-
strategies. They choose a follower x, enumerate it in A, then wait until x ∈ Φ(B).
If this happens - they extract the element x from A while restraining B ¹ ϕ(x) in
B. The need to rectify Γ after the extraction of the follower x from A can be in
conflict with the restraint on B. To resolve this conflict we try to obtain a change
in the set Ψ(A) which would enable us to rectify Γ without any extraction from
the set B. To do this we monitor the length of agreement

lΞ,Ψ,Θ(s) = max{y : (∀y < x)[y ∈ A[s] ⇐⇒ y ∈ Ξ(Ψ(A)⊕Θ(A))[s]]}.

We only proceed with actions directed at a particular follower once it is below
the length of agreement. This ensures that the extraction of x from A will have
one of the following consequences

1. The length of agreement will never return so long as at least one of the
axioms that ensure x ∈ Ξ(Ψ(A)⊕Θ(A)) remains valid.

2. There is a useful change in the set Ψ(A).
3. There is a useful change in the set Θ(A).

We will initially assume that it is the case that the third consequence is
true and commence a backup strategy (NΦ, Λ) which is devoted to building an
enumeration operator Λ with information from A and Θ(A). This is a new copy



of the N -strategy working with the same follower. It will try to make use of
this change in Θ(A) to satisfy the requirement. Only when we are provided with
evidence that our assumption is wrong will we return to the initial strategy
(NΦ, Γ ).

Basic module for an NΦ-strategy below one RΞ,Ψ,Θ-strategy

We will first consider the simple case involving just two requirements. Assume
we have NΦ, which we refer to as the N -requirement, below RΞ,Ψ,Θ, which we
refer to as the R-requirement.

At the root we have the R-strategy denoted by (R, Γ ). It will have two
outcomes e <L gw. The R-strategy will monitor all elements x /∈ A. In the case
in which there is an element x /∈ A such that x ∈ Γ (Ψ(A) ⊕ B) the operator
Γ cannot be rectified. The (R, Γ )-strategy will then have outcome gw, and we
will be able to argue that x ∈ Ξ(Ψ(A)⊕Θ(A)), which indicates a global win for
the R-requirement. Strategies working below this outcome will follow a simple
Friedberg-Muchnik strategy and preserve the difference at x by using followers
of big enough value. In case there is no such x the operator, Γ can be rectified
and the (R, Γ )-strategy will have outcome e.

Below e we will try to meet N satisfying A = Γ (Ψ(A) ⊕ B). The (N, Γ )-
strategy will have four outcomes: three finitary outcomes, f , w and l, and one
infinitary outcome λ. The outcomes are arranged in the following way: λ <L

f <L w <L l. Outcome l indicates that at that node the R-requirement is
globally satisfied since the follower x enumerated in A is not in Ξ(Ψ(A)⊕Θ(A)).
Outcome w indicates that Γ is correct on x and the N -requirement is satisfied as
x ∈ A−Φ(B). Outcome f is only accessible once a follower x has been returned.
It will indicate that Γ is again correct on x and the N -requirement is satisfied
via x ∈ Φ(B)−A.

Below outcome λ strategies will be devoted to constructing an operator Λ

with A = Λ(Θ(A)⊕B) where they will receive their followers from (N, Γ ). Again
we have a controlling strategy (R,Λ) with only one outcome e which makes sure
that the operator Λ can be rectified at all times. In case it sees an element x /∈ A

for which the axiom enumerated in Λ is valid, it will send x back to (N,Γ ). We
will be able to argue that x has provided evidence of a useful change in Ψ(A).

Below (R, Λ)’s only outcome e we try to meet N by (N, Λ) with A =
ΛΦ(Θ(A) ⊕ B). The strategy below the outcome λ acts only when the (N, Γ )-
strategy sends its follower x. It performs similar actions with regard to (N, Γ )
and has two outcome f <L w both indicating that the N -requirement is satisfied
and the operator Λ remains intact.



The R strategy:

1. Scan all followers x /∈ A defined up to the current stage.
2. If x ∈ Γ (Ψ(A)⊕B), then let the outcome be o = gw.
3. If all followers are scanned and none has produced an outcome o = gw, then

let the outcome be o = e.

The (N, Γ ) strategy:

At stage s the strategy will start its work at the step of the module indicated
at the previous stage.

Setup 1) Choose a new follower x as a fresh number (bigger than any previously
set up restraint). Enumerate it into As.
2) If there are finite sets G(x),H(x), L(x) with x ∈ Ξ(G(x)⊕H(x)), G(x) ⊂
Ψ(L(x)), H(x) ⊂ Θ(L(x)) and L(x) ⊂ A then restrain A on max(L(x)) and
go to Setup 3. Otherwise let the outcome be o = l and return to Setup2) at
the next stage.
3 ) Define x′s B-marker y(x), along with its corresponding A-marker m(x), as
fresh numbers bigger than any previously set restraint on A or B. Enumerate
y(x) in Bs and m(x) in As. Define a new axiom 〈y(x), {m(x)}〉 for Ωs.
Enumerate each 〈z,Gx ⊕B ¹ y(x)〉 into Γ where z is either x, or m(x), or a
follower z ∈ A from a previous cycle of the strategy. Note that we enumerate
axioms for previous followers as well. So at this point the operator Γ is
rectified. Let the outcome be o = w. Go to Wait at the next stage.

Wait If x ∈ Φ(Bs) then go to Attack. Otherwise let the outcome be o = w and
return to Wait at the next stage.

Attack 1) Check if any previously sent follower has been returned. If so go to Result.
Otherwise go to Attack2.
2)Let v(x) = max(ϕ(x), y(x)) and restrain B on v(x). Extract y(x) from Bs

and m(x) from As, noting that x is still in Ξ(Ψ(A) ⊕ Θ(A)) as the marker
m(x) is chosen as a fresh number after G(x) and H(x) are already defined.
Send x. Let the outcome be o = λ. At the next stage start from Setup1,
choosing a new current follower. The strategy working below outcome λ

will believe B only below a right boundary Rs = y(x). Note that the next
follower will choose its B-marker of greater value. So if the outcome λ is
visited infinitely often then the right boundary R will grow unboundedly.

Result Let the returned follower be x. Put y(x) into Bs and 〈y(x), ∅〉 into Ωs. For
each follower z of this strategy such that z ∈ A put the axiom 〈z, ∅〉 into Γs.



1) For the returned follower we know that x /∈ As and H(x) ⊂ Θ(As). The
outcome λ will not be accessible anymore so we can preserve H(x) ⊆ Θ(At)
at further stages t. Also if G(x) ⊆ Ψ(As) then the (R, Γ )-strategy would
have outcome gw preserving the difference and satisfying R globally. The
(N, Γ )-strategy would not be accessible any longer. Otherwise G(x) * A

and the outcome is o = f . Return at Result1 at the next stage.

The (R, Λ)-strategy below outcome λ :

1. Scan all followers x /∈ A.
2. If x ∈ Λ(Θ(A)⊕B) then return x. End this stage.
3. If all followers are scanned and none have been returned then let the outcome

be e.

The (N, Λ)-strategy below outcome λ :

Setup 1) Let x ∈ A be a new integer which was sent by the (N, Γ )-strategy. Now
x becomes the follower of the (N,Λ)-strategy. Go to Setup2.
2) Put 〈x,Hx ⊕B ¹ v(x)〉 into Λ. Go to Wait.

Wait If x ∈ Φ(B) with use ϕ(x) < Rs then go to Attack. Otherwise the outcome
is o = w, return to Wait at the next stage.

Attack Extract x from A. Go to result.
Result Let the outcome be o = f . Return to Result at the next stage.

The (N, FM)-strategy below outcome l or gw :

Setup Choose a new follower x bigger than any previously set restraint on A and
enumerate it into A. Go to Wait.

Wait If x ∈ Φ(B) go to Attack. Otherwise the outcome is o = w, return to Wait

at the next stage.
Attack Extract x from A and go to Result.
Result Let the outcome be o = f . Return to Result at the next stage.

Now the (N, FM) strategy below outcome l will also be changing A. To keep
Γ and Λ rectified, every time we initialise the (N, FM)-strategy and cancel its
follower x, if x ∈ A we will add the axiom 〈x, ∅〉 in Γ and Λ.

If the (R,Γ )-strategy has outcome gw on stage s for the first time, then the
(N, FM)-strategy working below will will be initialised on the previous stage
and will choose its follower x anew, respecting the restraint on A that (N, Γ )
has set up. So (R, Γ ) will have outcome gw on all further stages and B will



not be modified any longer. The (N, FM)-strategy will be able to satisfy its
requirement.

Suppose that (R, Γ )-strategy never has outcome gw. We will analyse all
possible outcomes of the N -strategies and see that in each case the requirements
are satisfied.

Consider first the possible outcomes of the strategy (N, Γ ). If one of the
cycles stops at Setup2, i.e. on all stages t > s the strategy has outcome l, then
the true outcome will be (o = l). The length of agreement lΞ,Ψ,Θ(s) = max{y :
(∀y < x)[y ∈ A[s] ⇐⇒ y ∈ Ξ(Ψ(A) ⊕ Θ(A))[s]]} is bounded and hence the
requirement R is trivially satisfied.

The set B is not modified after stage s and the simple strategy (N, FM),
active on all stages t ≥ s succeeds to satisfy the requirement N .

Suppose now that no cycle of the (N, Γ )-strategy stops at Setup2. In this
case the (N, FM)-strategy may be activated infinitely many times and will be
initialised every time the (NΓ )-strategy moves on to Wait. The current follower
x of the (N,FM)-strategy will be cancelled and if it is not yet extracted from A

the corresponding axiom 〈x, ∅〉 will be enumerated in Γ and Λ. This ensures that
both operators will be correct at x for all cancelled followers x of the strategy
(N, FM).

We first consider the case when the (N,Γ )-strategy during its work sends
only finitely many integers. Then some cycle with a follower x stops either at
Wait or reaches Result. If the cycle stops at Wait then the outcome is o = w

and x ∈ A− Φ(B), hence the N -requirement is satisfied. On the other hand for
all followers z we have z ∈ A ⇐⇒ z ∈ Γ (Ψ(A) ⊕ B) and m(z) ∈ A ⇐⇒
m(z) ∈ Γ (Ψ(A) ⊕ B) since y(z) ∈ B ⇐⇒ z = x. Hence Γ is correct at all
followers z.

If the cycle reaches Result then we have y(x) ∈ B and hence x ∈ Φ(B)−A,
so N is satisfied. Also Hx ⊆ Θ(A) via some finite set Px ⊂ A. If Gx ⊆ Ψ(A) then
this will be apparent at some finite stage s, i.e. on stage s we will see a finite
set Qx ⊂ A such that Gx ⊆ Ψ(Qx). Then from stage s on the (R, Γ )-strategy
will have outcome o = gw, contradicting our assumption. So Gx * Ψ(A) giving
x /∈ Γ (Ψ(A) ⊕ B). Since again y(z) ∈ B ⇐⇒ z = x we have z ∈ A ⇐⇒ z ∈
Γ (Ψ(A)⊕B) and m(z) ∈ A ⇐⇒ m(z) ∈ Γ (Ψ(A)⊕B) for any follower z. Hence
the operator Γ remains correct at all further stages.

Suppose now that the (N,Γ )-strategy during its work sends infinitely many
integers. In particular, no x is returned to (N,Γ ). Then the true outcome is
o = λ and we will see that the (N,Λ)-strategy is successful.



If the (N,Λ)- strategy stops at Wait then x ∈ A − Φ(B). Indeed if we
assume that x ∈ Φ(B) then there is some finite Mx ⊂ B such that x ∈ Φ(Mx).
The right boundary R grows unboundedly, so eventually there will be a stage s

with Rs > max(Mx) and the strategy will move on to Attack.
The second case is if the strategy reaches Result. Then x ∈ Φ(B)−A because

at some stage s we found a set Mx ⊂ Bs with maxMx < R such that x ∈ Φ(Mx).
The strategy (N, Γ ) will not extract any more markers from B after stage s that
are below the right boundary Rs, hence x ∈ Φ(B).

At this stage of the construction we can only prove that Λ will be correct
at the follower x and all cancelled followers of the strategy (NΦ, FM). To prove
that the operator is correct at the rest of the followers enumerated in A by the
(N, Γ )-strategy we will need to consider how all N -strategies will work together.

Basic module for many NΦ-strategies under one RΞ,Ψ,Θ-strategy

We will try to meet all requirements NΦ1 , NΦ2 , . . . . Each requirement NΦj will
be denoted by Nj and met by one of the following strategies:

1. (Nj , Γ ) with outcomes λ, f , w and l;
2. (Nj , FM) with outcomes f and w and situated in the subtree of the strategy

(Ni, Γ ) with outcome l, where i ≤ j.
3. (Nj , Λ) with outcomes f and w and situated in the subtree of the strategy

(Ni, Γ ) with outcome λ where where i ≤ j.

We now need to be more careful as more strategies will enumerate and extract
markers from A and B. We will have to ensure that the operator constructed on
the true path is correct and manages to satisfy the R-requirement.

The first rule that we will implement in order to achieve this follows the
idea of cancelling followers of the (N,FM)-strategy from the previous section.
Namely, whenever we initialise a strategy (Nj , S) on an node α in the tree of
strategies whose follower x is in A we will enumerate an axiom 〈x, ∅〉 into all
operators Γ and Λ that are constructed on nodes β < α. If m(x) is in A we will
also enumerate an axiom 〈m(x), ∅〉 into these operators.

Secondly we will be more careful when enumerating axioms in the corre-
sponding operators. Instead of just using the sets G(x) and H(x), we will use
the information from all axioms defined up until now. More precisely we will
modify the modules of the strategies from the previous section in the following
way:

The (Nj , Γ )-strategy is the same as the as the (NΦ, Γ )-strategy with the
exception of step Setup3, which is now as follows:



Setup3) Enumerate all 〈z, Gx ⊕B ¹ yx ∪ U〉 into Γ where z is either x, or
mx, or a follower z ∈ A from a previous cycle of the strategy and U is the union
of all sets D such that 〈v, D〉 is a valid axiom in Γ , where v ∈ A is a follower of
the strategy (Ni, Γ ) with i < j.

The (NΦj
, Λ)-strategy is the same as the (NΦ, Λ)-strategy with the excep-

tion of Setup2), which is now as follows:
Setup2) Enumerate 〈x, (Hx ⊕B ¹ v(x)) ∪ U〉 into Λ where U is the union of

all finite sets D such that 〈v, D〉 ∈ Λ for some follower v ∈ A of an (Nk, Λ)-
strategy with k < j.

The main idea behind the added sets U in the axioms is that a strategy α

working below another strategy β where α and β construct the same operator O

believes that β′s work is final and the axioms enumerated in O by β will remain
true. In the case that β changes its mind and invalidates one of these axioms α

will be initialised as β will have an outcome to the left of α. If α′s followers are
still in A then an axioms for them will be enumerated in the operator as stated
in above. But if α′s follower is not in A, then we need to ensure that there isn’t a
valid axiom in O for it. α will not be able to monitor this follower any longer, so
the job is going to be transferred to β automatically via the set U which includes
an axiom for β′s follower, which β observes and makes sure is invalid.

Two R-requirements

Now we need to consider the case when there are two R-requirements. Cor-
responding to them there are nodes on the tree: an (R1, Γ1)-strategy and an
(R2, Γ2)-strategy along each path, scanning for an appropriate global win for
the R-requirements. Below outcome gw for an Ri-strategy the N -requirements
simply ignore the requirement Ri and act as in the previous section.

There now more possibilities for an N -strategy working below outcomes e of
both (Ri, Γi)-strategies depending on how it believes the Ri-requirements will
be satisfied.

The main strategy will be again the one that deals with operators Γ1 and
Γ2. It will try to obtain the necessary changes in the sets Ψ1(A) and Ψ2(A) using
backup strategies that try to satisfy the R requirements in a different manner.
The requirement R1 is of higher priority. The method for satisfying the lower
priority requirement R2 will be decided after we have established the method
for satisfying R1 unless we have already evidence that the R2-requirement is
trivially satisfied. The N -strategy starts off assuming that the requirements will
be satisfied via operators Γ1 and Γ2. It will be denoted by (N,Γ1, Γ2). Its out-
comes are λ2 <L f <L w <L l2 <L l1. Outcomes w and f will represent the fact



that the strategy has succeeded in satisfying its requirement while keeping both
operators rectified.

Outcome l1 will represent a global win for R1. The price we pay for it is
that the operator Γ2 will not be rectified. Below this outcome there will be a
backup (N, FM1, Γ

′
2)-strategy. It will construct a new operator Γ ′2 and meet the

requirement N . Its outcomes are λ2 <L f <L w <L l2 and it acts just as the
(N, Γ )-strategy from the previous section.

Outcome l2 will represent a global win for R2. Below it we have a strat-
egy (N, Γ1, FM2) which continues to construct the same operator Γ1 as the
(N, Γ1, Γ2)-strategy. Strategies below will simply treat R2 as satisfied - that is,
this requirement will be invisible to them.

Below outcome λ2 is the (R2, Λ2)-strategy followed by a backup strategy
(N, Γ1, Λ2). It continues to construct the same operator for the first strategy
Γ1 but switches the method for the second strategy to Λ2. Its outcomes are
λ1 <L f <L w.

Below outcome λ1 is the (R1, Λ1)-strategy a backup strategy that changes
the method for satisfying the requirement R1. As a consequence the method for
R2 must be decided again. The strategy is (N,Λ2, Γ

′′
2 ) with outcomes λ2 <L

f <L<w<L l2. The method for satisfying R1 cannot be switched anymore.
The method for R2 can be further switched via (N,Λ1, FM2) below l2 and
to (N, Λ1, Λ

′′
2) below outcome λ2.

In this way all possible combinations of methods for satisfying the two R-
requirements are distributed through the tree.

The modules for each of the described strategies above follow the basic steps
as outlined in the previous section. The (N, Γ1, Γ2) strategy chooses a follower
x. It tries to define the parameters for R1 - H1(x), G1(x), y1(x) and m1(x) and
rectifies Γ1. Then it focuses on the second requirement R2. Once R2’s parameters
are defined a new element m2(x) will be enumerated in A. The new point is
that this new change in A must be reflected in the definition of Γ1. So an axiom
〈m2(x), G1(x)⊕ {y2(x)}〉 is enumerated in Γ1. If m2(x) is extracted from A then
we will extract y2(x) from B and this axiom will not be valid. We will enumerate
y2(x) back in B only if x has been returned in which case G1(x) * Ψ1(A).

The axioms enumerated in Γ2 will have to include additionally m1(x) and
all m1(z) for previously defined followers of this strategy from previous cycles,
that are still in A.

Once we have established that x ∈ Φ(B), we start the attack by sending the
follower x with defined v(x) = max(ϕ(x), y1(x), y2(x)) to (N,Γ1, Λ2). This strat-
egy will need to get further permission from Γ1. An axiom 〈z, H2(x)⊕B ¹ v(x)〉



will be enumerated for each z which is a follower from a previous cycle, x or
m1(x). This strategy also starts an attack by sending x to (N, Λ1, Γ

′′
2 ) and ex-

tracting y1(x) and m1(x) from A once it has observed that x ∈ Φ(B). Note that
this will make the axiom for x in Λ2 invalid.

The (N, Λ1, Γ
′′
2 )-strategy now must define parameters G′′2(x) and H ′′

2 (x),
markers y′′2 (x) and m′′

2(x). And then it will initiate the last attack sending x

to (N, Λ1, Λ
′′
2).

Once the follower is extracted from A it can climb back up these strategies.
(R2, Λ

′′
2) will send it back to (N, Λ1, Γ

′′
2 ) in case H ′′

2 (x) ⊂ Θ2(A).
(R1, Λ1) will send the follower x back to (N,Γ1, Λ2) in case H1(x) ⊂ Θ1(A).
Then (R, Λ2) will send it back to (N, Γ1Γ2) in case H2(x) ⊂ Θ2(A).
When the (N, Γ1Γ2)-strategy re-receives x it will have proof that H1(x) ⊆

Θ1(A), so that G1(x) * Ψ1(A) and Γ1 is rectified and H2(x) ⊂ Θ2(A), so G2(x) *
Ψ2(A) and Γ2 is rectified.

Considering two requirements we can justify the need for the (Ri, Λi)-strategies.
Suppose α l̂2 ⊂ β and β is sharing the same method Λ1 as α. If a follower x

of β is extracted from A we must ensure that the axioms for x defined in the
operator Λ1 are invalid. It could be the case that α moves on to outcome w and
initialises β. The follower x will not be observed any longer. But as Θ1(A) is
not in our control it is possible that H1(x) ⊂ Θ1(A) and this is revealed at a
later stage after x has been cancelled. If x is not sent back, then Λ1 will not be
correct. This is why we need the (R1, Λ1) strategy which observes all followers.
It will return x even after x is cancelled.

The (R, Γ1) strategy plays a similar role. Suppose that α l̂2 ⊂ β. Now β is
sharing the same method Γ1 as α. If a follower x of β is extracted from A we
must ensure that the axioms for x defined in the operator Γ1 are invalid. If α

moves on to outcome w thereby initialising β we lose control on x and it could
happen that G1(x) ⊂ Ψ1(A) at a later stage. We will be able to argue that if the
axiom for x in Γ1 is valid, then H1(x) ⊂ Θ1(A) and (R, Γ1) will have outcome
gw at all further stages.

In [ACKS] we combine the ideas from the above description to obtain the
construction that meets all requirements. ut
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