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Abstract. We prove that no subclass of the Σ0
2 enumeration degrees

containing the 3-c.e. enumeration degrees can be cupped to 0′e by a
single Σ0

2 enumeration degree.

1 Introduction

In an upper semi-lattice with greatest element 〈A,≤,∨, 1〉 we say that an ele-
ment a is cuppable if there exists an element b 6= 1 such that a∨b = 1. Posner
and Robinson showed that every degree in DT (≤ 0′) is cuppable. Cooper and
Yates [5] showed the existence of a non-cuppable c.e. degree in the semi-lattice
of the computably enumerable degrees. Meanwhile Cooper, Seetapun and (inde-
pendently) Li proved that there exists a single ∆0

2 Turing degree that cups every
non-zero c.e. degree.

In this paper we consider cupping properties of the local degree structure of
the enumeration degrees below 0′e. Intuitively we say that a set A is enumeration
reducible to a set B, denoted as A ≤e B, if there is an effective procedure to
enumerate A given any enumeration of B. By identifying sets that are reducible
to each other we obtain a degree structure, the structure of the enumeration
degrees 〈De,≤〉. It is an upper semi-lattice with jump operator and least element
0e, the collection of all computably enumerable sets. The semi-lattice of the
enumeration degrees can be considered as an extension of the semi-lattice of
the Turing degrees, as the second semi-lattice can be embedded in the first, via
an order theoretic embedding ι preserving the least upper bound and the jump
operator.

An important substructure of De is given by the Σ0
2 enumeration degrees.

Cooper [2] proved that the Σ0
2 enumeration degrees are the enumeration degrees

below 0′e. There is a natural hierarchy of classes of enumeration degrees within
this substructure. The Π0

1 enumeration degrees, which are exactly the images of
the c.e. Turing degrees under ι, form the smallest class. Further classes can be
obtained by considering the n-c.e. degrees for every n ≤ ω. Cooper [3] proved that
the 2-c.e. enumeration degrees coincide with the Π0

1 enumeration degrees. Thus
the second class in our hierarchy consists of all 3-c.e. enumeration degrees. The
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last proper subclass of the Σ0
2 enumeration degrees in this hierarchy comprises

of all ∆0
2 enumeration degrees.

In [6], Cooper, Sorbi and Yi proved that every nonzero ∆0
2 enumeration

degree can be cupped by a total ∆0
2 enumeration degree, in contrast to the

Σ0
2 enumeration degrees where non-cuppable degrees exist. Soskova and Wu

[10] examined the cupping properties of the ∆0
2 enumeration degrees further and

showed that every non-zero ∆0
2 enumeration degree can be cupped by a 1-generic

∆0
2, hence partial and low, enumeration degree. Furthermore they showed that

every non-zero ω-c.e. enumeration degree can be cupped by a 3-c.e enumeration
degree. These results exhibit the flexibility that we have when searching for
cupping partners of enumeration degrees in each of the proper subclasses of the
Σ0

2 enumeration degrees and motivate the initial goal of this project: to find a
single degree from a larger class that cups all non-zero enumeration degrees from
a smaller class. One such example we obtain immediately by transferring Cooper,
Seetapun and Li’s result to the enumeration degrees via ι, namely that there
exists a single ∆0

2 enumeration degree which cups all non-zero Π0
1 enumeration

degrees. In this paper we prove that any other attempt at a result of this kind is
doomed to failure as for every incomplete Σ0

2 enumeration degree a there exists
a non-zero member of the second class, a non-zero 3-c.e. enumeration degree b,
such that b is not cupped by a to 0′e.

Theorem 1. Let a be an incomplete Σ0
2 enumeration degree. There exists a

non-zero 3-c.e enumeration degree b such that a ∨ b 6= 0′e.

Notation and terminology below are based on that of [4] and [9].

2 Requirements and Strategies

We shall start by giving a formal definition of enumeration reducibility and the n-
c.e. degrees and then move on to establish the requirements and basic strategies
for the proof of the main theorem.

Definition 1. A set A is enumeration reducible (≤e) to a set B if there is a
c.e. set Φ such that:

n ∈ A ⇔ ∃u(〈n, u〉 ∈ Φ ∧Du ⊆ B),

where Du denotes the finite set with code u under the standard coding of finite
sets. We will refer to the c.e. set Φ as an enumeration operator and its elements
will be called axioms.

We say that an enumeration degree is n-c.e. (n ≤ ω) if it contains an n-c.e.
set:

Definition 2. 1. For n < ω a set A is n-c.e. if there is a computable function
f such that for each x, f(x, 0) = 0, |{s | f(x, s) 6= f(x, s + 1)}| ≤ n and
A(x) = lims f(x, s).



2. A is ω-c.e. if there are two computable functions f(x, s), g(x) such that for
all x, f(x, 0) = 0, |{s | f(x, s) 6= f(x, s+1)}| ≤ g(x) and A(x) = lims f(x, s).

Let A be a representative of the given Σ0
2 enumeration degree. Let {As}s<ω

be a good Σ0
2 approximation to A as defined in [7]. A good Σ0

2 approximation to
A is a Σ0

2 approximation with infinitely many good stages s at which As ⊆ A.
We shall construct two 3-c.e sets X and Y , so that ultimately the degree of

one of them will have the requested properties. Consider the following group of
requirements:

• Let {Θi}i<ω and {Ψi}i<ω be enumerations of all enumeration operators. For
every i we will have a pair of requirements:

P0
i : ΘA,X

i 6= K.

P1
i : ΨA,Y

i 6= K.

• Let {We}e<ω be an enumeration of all c.e. sets. For every natural number e
we have a requirement:

Ne : We 6= X ∧We 6= Y.

We shall construct the sets X and Y so that for all e the requirement Ne is
satisfied, thus both X and Y have non-zero e-degree, and if Pj

i is not satisfied
then for all i′ the requirement P1−j

i′ is satisfied, thus the degree of at least one
of the sets A ⊕ X or A ⊕ Y is incomplete. The construction shall be carried
out on a tree of strategies. Each node of the tree shall be assigned either an
N -requirement or a P0- and a P1-requirement. On each stage we shall construct
a finite path in the tree of strategies visiting some of the nodes and allowing
them to act towards satisfying one of the assigned requirements. The intention
is that there will be a leftmost path of nodes that is visited on infinitely many
stages, providing a successful outcome to all strategies on it.

Each P-node in the tree of strategies α is associated with a pair of require-
ments: P0

α and P1
α. It will prove that at least one of them is satisfied. To do this

the strategy constructs an e-operator Γα, threatening to prove that A ≥e K.
The strategy α performs cycles of increasing length. On the k-th cycle it exam-
ines all elements n = 0, 1, . . . k in turn. If the element n belongs to K and to
both sets ΘA,X

α and ΨA,Y
α then it will enumerate an axiom in Γα which com-

prises of the A-parts of the two axioms for n in Θα and in Ψα that have been
valid the longest. If later the element n leaves the approximation of K then the
strategy shall restore one of the axioms in either Θα or Ψα by enumerating the
corresponding X-part back in X or Y -part back in Y . The strategy shall then
wait until it has observed a change in A that rectifies the operator Γα. As A is
incomplete the strategy will eventually include in its cycles an element n such
that ΓA

α (n) 6= K(n). If n ∈ ΓA
α then n ∈ ΓA

α [s] on all but finitely many stages
s. Thus eventually ΓA

α (n) will not be rectified by any change in A and α will
have a finitary outcome proving the successful diagonalization. If n /∈ ΓA

α by the



properties of a good approximation we have that on infinitely many stages s, in
fact on all good stages, n /∈ ΓA

α [s]. Thus infinitely often α will discover that at
least one of the operators Θα or Ψα has failed to provide it with an axiom that
is permanently valid, i.e. infinitely often α will have proof that ΘA,X

α (n) = 0 or
ΨA,Y

α (n) = 0. This will give an infinitary outcome.
An N -strategy β working on Wβ would like to prove that Wβ 6= X and

Wβ 6= Y . The obvious strategy for β would be to select a witness xβ and wait
until xβ ∈ Wβ . We assume that the sets X and Y start off as ω, then during
the construction the strategies extract or enumerate back elements in the sets.
Thus if xβ never enters Wβ the strategy will be successful. If the element does
enter Wβ then the strategy will extract xβ from both sets X and Y and again
will have proved a difference. This strategy is in conflict with the need of higher
priority P-strategies to restore axioms by enumerating elements back in one of
the sets X or Y . Therefore the strategy for β will have to be more elaborate.

It will start off as the original strategy: select a witness xβ as a fresh number
and wait until xβ ∈ Wβ . If this never happens then the requirement will be
satisfied. Otherwise extract xβ from both sets X and Y . Suppose a higher priority
strategy α requires that xβ be enumerated back in X or Y . In this case β shall
choose a new witness yβ that has not been used in any axiom sofar, restrain X
and let xβ be enumerated back in Y . From this point on any axiom that appears
in the construction shall necessarily have xβ /∈ X, thus xβ and yβ cannot appear
in the same axiom. The strategy β will wait again until yβ enters Wβ and then
extract it from Y . Should a higher priority α require that yβ be enumerated back
in one of the sets then β will only give permission to enumerate back in X.

3 Outcomes, Parameters and the Tree of Strategies

Consider first a P-strategy α working on P0
α and P1

α. It will have infinitely many
outcomes: for every n ∈ ω ∪ {w} two outcomes 〈X, n〉 and 〈Y, n〉 arranged as
follows:

〈X, 0〉 <L 〈Y, 0〉 <L 〈X, 1〉 <L 〈Y, 1〉 . . . <L 〈X,w〉 <L 〈Y, w〉
For each outcome the first element of the pair indicates which requirement

has been satisfied. Let OP denote the set of all possible outcomes of α. The
next P-strategy below outcomes 〈X,n〉 shall be associated with a new P0-
requirement and the same P1-requirement. Similarly the next P-strategy below
outcomes 〈Y, n〉 will be associated with the same P0-requirement and a different
P1-requirement. Thus if Pj

i never gets satisfied then all P1−j
i must be.

The strategy α will have a parameter Γα, the e-operator that it will construct
when visited. At initialization Γα is set to the empty set. The strategy will also
have parameters kα denoting the current cycle of the strategy and nα < kα

denoting the current element of the cycle that α is working with. On initialization
the values of the parameters are set to kα = 1 and nα = 0. Furthermore for each
element n < ω the strategy α shall have one more parameter Dα(n), a list of all
pairs of X- and Y -parts of axioms from Θα and Ψα respectively, for which the



A-parts are used in axioms for n in Γα. Initially the values of all such lists will
be ∅. Finally it will have two parameters Axθ

α(n) and Axψ
α(n) denoting axioms

in Θα and Ψα respectively which will be candidates for the construction of a new
axiom in Γα, initially undefined.

An N -strategy β shall have two outcomes d <L w, ON = {d,w}. It has
parameters xβ , yβ , which will be undefined when β is initialized. Furthermore
on initialization β will give up any restraint it has imposed sofar.

Let O = OP ∪ ON be the collection of all possible outcomes and R the
collection of all requirements. The tree of strategies is a computable function T
with domain a downwards closed subset of O<ω and range a subset of R2 ∪ R
with the following inductive definition:

1. T (∅) = 〈P0
0 ,P1

0 〉.
2. Let α be in the domain of T and α be a 〈P0

i ,P1
j 〉-node. Then α ô, where

o ∈ OP , is also in the domain of T and T (α ô) = N|α|/2.
3. Let β be anN -node in the domain of T . Then β = α ô, where α is a 〈P0

i ,P1
j 〉-

node for some i and j. Then β ô′, where o′ ∈ ON , is in the domain of T . If
o = 〈X, n〉 for some n ∈ ω ∪ {w} then T (β ô′) = 〈P0

i+1,P1
j 〉. If o = 〈Y, n〉 for

some n ∈ ω ∪ {w} then T (β ô′) = 〈P0
i ,P1

j+1〉.

4 Construction

We shall perform the construction on stages. On each stage s we shall approx-
imate the sets X and Y by constructing cofinite sets Xs and Ys. We shall also
construct a string δs of length s through the domain of T . We shall say that a
node γ ⊂ δs is visited on stage s, also that s is a γ-true stage. On true stages
strategies will be allowed to modify their parameters and choose an outcome. At
the end of stage s we shall initialize all nodes to the right of δs.

On stage 0 all nodes are initialized and X0 = Y0 = ω, δ0 = ∅.
Suppose we have constructed δt, Xt and Yt for t < s. We construct δs(n) with

an inductive definition. The sets Xs and Ys shall be obtained by allowing the
strategies visited on stage s to modify the approximations Xs−1, Ys−1 obtained
on the previous stage. Define δs(0) = ∅. Suppose that we have constructed δs ¹ n.
If n = s, we end this stage and move on to s+1. Otherwise we visit the strategy
δs ¹ n and let it determine its outcome o. Then δs(n) = o. We have two cases
depending on the type of the node δs ¹ n.

I. If δs ¹ n = α is a P-node, we perform the following actions:
Let s− be the previous α-true stage if α has not been initialized since and
s− = s otherwise. The strategy α will inherit the values of its parameters
from stage s− and during its actions it can change their values several times.
Thus we will omit the subscript indicating the stage when we discuss α’s
parameters. If the current element nα does not need further actions we shall
move on to the next element. As we will do this in several cases we shall
describe the actions that we take here and use the phrase reset the param-
eters. Denote the current values of nα by n and of kα by k. We reset the



parameters by changing the values of the parameters as follows: nα := n+1
if n < k, otherwise n = k and we set kα := k + 1, nα := 0. In both cases we
initialize the strategies extending α 〈̂X, w〉 and α 〈̂Y,w〉.
1. Let k = kα and n = nα. Let s−n be the previous stage when n was

examined, if α has not been initialized since, s−n = s otherwise.
2. If n ∈ K[s] and n ∈ ΓA

α [t] for all stages t with s−n < t ≤ s then reset the
parameters and go to step 1.

3. If n ∈ K[s], but n /∈ ΓA
α [t] on some stage t with s−n < t ≤ s then:

a.X If Axθ
α(n) is not defined, then define it as the axiom that has been

valid longest including on all stages s−n < t ≤ s and move on to step
a.Y . If there is no such axiom then let the outcome be 〈X, n〉 and
reset the parameters.

b.X If Axθ
α(n) is defined but was not valid on some stage t with s−n <

t ≤ s, then cancel its value (make it undefined) and let the outcome
be 〈X,n〉, reset the parameters. Otherwise go to step a.Y .

a.Y If Axψ
α(n) is not defined, then define it as the axiom that has been

valid longest including on all stages s−n < t ≤ s and move on to step
c. If there is no such axiom then let the outcome be 〈Y, n〉 and reset
the parameters.

b.Y If Axθ
α(n) is defined but was not valid on some stage t with s−n <

t ≤ s, then cancel its value (make it undefined) and let the outcome
be 〈Y, n〉, reset the parameters. Otherwise go to step c.

c. If both Axθ
α(n) = 〈n,Aθ, Xθ〉 and Axψ

α(n) = 〈n,Aψ, Yψ〉 are defined
and have been valid on all stages t with s−n < t ≤ s then enumerate
in Γα the axiom 〈n,Aθ ∪ Aψ〉. Enumerate 〈Xθ, Yψ〉 in Dα(n). Reset
the parameters and go back to step 1.

4. If n /∈ K[s] and n /∈ ΓA
α [t] on some stage t: s−n < t ≤ s reset the

parameters and go back to step 1.
5. Suppose n /∈ K[s] but n ∈ ΓA

α [t] on all t such that s−n < t ≤ s. For every
pair 〈Xθ, Yψ〉 ∈ Dα(n) find the highest priority N -strategy β ⊃ α that
has permanently restrained an element x ∈ Xθ out of X or y ∈ Yψ out
of Y . If there is such a strategy β and it has a permanent restraint on X,
enumerate Yψ in Y [s]; if it has a permanent restraint on Y , enumerate
Xθ back in X[s]. Otherwise if there is no such strategy enumerate Yψ

back in Y [s]. Choose the axiom 〈n,Aθ ∪ Aψ〉 in ΓA
α that has been valid

the longest. Let Xθ and Yψ be the corresponding X and Y parts of the
axioms 〈n,Aθ, Xθ〉 ∈ Θ and 〈n,Aψ, Yψ〉 ∈ Ψ
a. If Xθ ⊆ X[s] then this will ensure that n ∈ ΘA,X

α [s]. Let the outcome
be 〈X, w〉. Note that we will not reset the parameters at this point,
thus the construction will keep going through this step while there
is no change in A.

b. If Xθ * X[s] then Yψ ⊆ Y [s] and this will ensure that n ∈ ΨA,Y
α [s].

Let the outcome be 〈Y, w〉.
II. If δs ¹ n = β is an N -node, we perform the following actions:

Let s− be the previous β-true stage if β has not been initialized since, go to
the step indicated on stage s−. Otherwise s− = s and go to step 1.



1. Define xβ as a fresh number, one that has not appeared in the construc-
tion so far and is bigger than s. Go to the next step.

2. If xβ /∈ Wβ [s] then let the outcome be o = w, return to this step on the
next stage. Otherwise go to the next step.

3. Extract xβ from X[s] and Y [s]. Restrain permanently xβ out of X. Let
the outcome be o = d, go to the next step on the next stage.

4. If xβ ∈ Y [s] then define yβ as a fresh number, initialize all strategies of
lower priority than β and go to the next step. Otherwise o = d, return
to this step on the next stage.

5. If yβ /∈ Wβ then let the outcome be o = w. Return to this step on the
next stage. Otherwise go to the next step.

6. If yβ is not yet restrained then restrain yβ permanently out of Y and
extract yβ from Y [s]. Let the outcome be o = d, return to this step on
the next stage.

This completes the construction.

5 Proof

The tree is infinitely branching and therefore there is a risk that there might not
be a path in the tree that is visited infinitely often. However we shall start the
proof by establishing some basic facts about the relationship between strategies.

For clarity we shall define one more notation. Let α be a P-strategy. For
every axiom Ax = 〈n,Aθ ∪ Aψ〉 ∈ Γα we shall connect a corresponding en-
try 〈n,Aθ, Xθ, Aψ, Yψ〉 so that 〈n,Aθ, Xθ〉 ∈ Θα and 〈n,Aψ, Yψ〉 ∈ Ψα are the
corresponding axioms used to construct Ax.

Lemma 1. Let β be an N -strategy, not initialized after stage si. If β has a
witness xβ that is extracted by β on stage sx > si then xβ /∈ X[t] on all t ≥ sx.
If β has a witness yβ that is extracted from Y on stage sy > sx then yβ /∈ Y [t]
on all t ≥ sy.

Proof. Assume inductively that the lemma is true for higher priorityN -strategies.
Let si be the last stage on which β is initialized. Suppose β chooses the

witness xβ on stage s1 > si. By induction the lemma is true for any higher
priority strategy β′ ≥ β, as if β′ is initialized after stage si then β would be
initialized as well and this does not happen by assumption. Furthermore we
claim that:

Claim. Any witness which is permanently extracted by β′ is extracted before
stage s1.

Indeed suppose that β′ permanently extracts a new witness on stage s2 > s1.
Then on stage s2 the strategy β′ has outcome d. Thus if β >L β′ or β ⊇ β′ˆw
then β would be initialized on stage s2 contrary to assumption. This leaves us
with the only possibility that β ⊇ β′ d̂. Then on stage s1, as β was visited,
β′ was visited and had outcome d. As β′ is not initialized after stage s1 and



permanently extracts a new witness on stage s2 it must be the case that β′

permanently extracts a witness yβ′ from Y and xβ′ was already extracted before
or on stage s1. It follows that between stages s1 and s2, β′ has selected this
new witness yβ′ passing through II.4 of the construction and initializing all
lower priority strategies including β. This leads again to a contradiction with
the assumption that β is not initialized after stage s1 and hence the claim is
correct.

Thus on stage s1 all witnesses of higher priority strategies that are ever per-
manently restrained out of either set X or Y are already permanently restrained
out of X or Y . On stage s1 the strategy β selects xβ as a fresh number, i.e. one
that has not appeared in the construction sofar. And on stage sx the witness xβ

is permanently restrained out of X.
Now we will prove again inductively but this time on the stage t, that xβ /∈

X[t] on all stages t ≥ sx.
So suppose this is true for t < s3 and that on stage s3 > sx a P-strategy α is

visited and reaches point I.5 of the construction. Suppose α wants to enumerate
Xθ or Yψ back in X or Y respectively for the axiom 〈n,Aθ ∪ Aψ〉 in Γα with
corresponding entry 〈n,Aθ, Xθ, Aψ, Yψ〉. We have the following cases to consider:

1. Suppose α > β. If α >L β d̂ then α is initialized on stage sx. If α ⊂ β d̂, then
α was initialized on stage si and was not accessible before stage sx. Thus
the axiom 〈n,Aθ ∪ Aψ〉 was enumerated in Γα on stage t with sx ≤ t < s3,
on which both 〈n, Aθ, Xθ〉 and 〈n,Aψ, Yψ〉 were valid i.e. Xθ ⊆ X[t] and
Yψ ⊆ Y [t]. By induction xβ /∈ X[t] hence xβ /∈ Xθ and thus α does not
enumerate xβ back in X.

2. Suppose α < β. If α <L β then β would be initialized on stage s3, hence
α ⊂ β. Suppose the axiom 〈n,Aθ ∪Aψ〉 was enumerated in Γα on stage t. If
t ≤ s1 then by the choice of xβ as a fresh number on stage s1 we have that
xβ /∈ Xθ. If t > s1 then both 〈n,Aθ, Xθ〉 and 〈n,Aψ, Yψ〉 were valid on stage
t i.e. Xθ ⊆ X[t] and Yψ ⊆ Y [t]. By I.5 of the construction α will consider
all N -strategies that extend it and select the one with highest priority that
has permanently restrained an element out of either set X or Y .
Consider β′ < β. By our Claim any witness xβ′ or yβ′ of β′ that is ever
permanently restrained out of X or Y is already restrained out on stage s1

and by induction on all stages s ≥ s1 including on stage t. Thus Xθ and Yψ

do not contain any witness of β′. As this is true for an arbitrary strategy β′

of higher priority than β, if xβ ∈ Xθ then β will be the strategy selected by
α and α will choose to enumerate Yψ back in Y .
Thus again α does not enumerate xβ back in X.

To prove the second part of the lemma suppose yβ is selected on stage s4

and extracted on stage sy. Because s1 < s4 and all strategies of lower priority
than β are initialized on stage s4 the interactions between β and other strategies
are dealt with in the same way as in the case when we were considering xβ .
The only thing left for us to establish is that β does not come into conflict with
itself. So suppose that on stage s5 > sy a P-strategy α is visited and reaches



point I.5 of the construction. Suppose α wants to enumerate Xθ or Yψ back in
X or Y respectively for the axiom 〈n,Aθ ∪Aψ〉 in Γα with corresponding entry
〈n,Aθ, Xθ, Aψ, Yψ〉. We will prove that if xβ ∈ Xθ then yβ /∈ Yψ. Let t be the
stage on which the axiom 〈n,Aθ ∪ Aψ〉 was enumerated in Γα. If t < s4 then
yβ /∈ Yψ by the choice of yβ on stage s4 as a fresh number. If t ≥ s4 > sx then we
have already proved that xβ /∈ X[t]. The axiom 〈n, Aθ, Xθ〉 was valid on stage t,
thus Xθ ⊆ X[t], and hence xβ /∈ Xθ.

This completes the induction step and the proof of the lemma. ut

Lemma 2. Let α be a P-strategy, visited infinitely often and not initialized after
stage si. If α performs finitely many cycles then:

(1)There is a stage sn ≥ si after which the value of nα does not change.
(2) On all α-true stages t > sn, α has either outcome 〈X,w〉 or outcome

〈Y, w〉.
(3) There is a stage sd ≥ sn such that on all α-true stages t > sd, α has the

same outcome o .
(4) If o = 〈X, w〉 then ΘA,X

α 6= K and if o = 〈Y, w〉 then ΨA,Y
α 6= K.

Proof. It follows from the construction and the definition of the action reset the
parameters that if the value of nα changes infinitely often, then there will be
infinitely many cycles. Thus part (1) of the lemma is true. Let sn be the stage
after which the value of nα does not change. The only case when the value of the
parameter nα = n is not reset is when n /∈ K and n ∈ ΓA

α [t] on all stages t since
the last time n was examined on stage s−n , thus α will have only outcomes 〈X, w〉
or 〈Y, w〉 on all stages after sn and part (2) is true. It follows from part I.5 of
the construction and the fact that nα does not change any longer that on all
stage t > sn, n ∈ ΓA

α [t]. From the properties of a good approximation and under
these circumstances n ∈ ΓA

α . Then there will be an axiom 〈n,Aθ ∪ Aψ〉 ∈ Γα

which is valid on all but finitely many stages. Select the axiom which is valid
longest. This axiom has corresponding entry 〈n,Aθ, Xθ, Aψ, Yψ〉. The strategy
α will eventually be able to spot this precise axiom, after possibly finitely many
wrong guesses. So after a stage sd ≥ sn the strategy α will consider this axiom
to select its outcome.

On stage sn either Xθ ⊂ X[sn] or Yψ ⊂ Y [sn]. As we initialize all strategies
below outcomes 〈X, w〉 and 〈Y, w〉 whenever we reset the parameters, we can
be sure that N -strategies visited on stages t > sn of lower priority than α will
not extract any elements of Xθ ∪ Yψ from X or Y . Higher priority N -strategies
will not extract any elements at all, otherwise α would be initialized. Thus if
Xθ ⊆ X[sn] then for all stages t ≥ sn we have Xθ ⊆ X[t] and similarly if
Yψ ⊆ Y [sn] then for all stages t ≥ sn we have Yψ ⊆ Y [t].

Suppose Xθ ⊆ X[sn]. Then on stages t ≥ sd the strategy α will always have
outcome 〈X, w〉. The axiom 〈n,Aθ, Xθ〉 ∈ Θα will be valid on all stages t ≥ sd,
thus n ∈ ΘA,X , and n /∈ K.

If Xθ * X[sn] then there is a strategy β ⊃ α which is permanently restraining
some element x out of X on stage sn. Then β <L α 〈̂X, w〉 as strategies extending
α 〈̂X, w〉 or to the right of it are in initial state on stage sn and do not have any



restraints. This strategy β will not be initialized on stages t ≥ sn according part
(2) of this lemma and the choice of sn > si. By Lemma 1 x /∈ Xt on all t ≥ sn.

Hence case I.5.b of the construction is valid on all t ≥ sd. Thus α will have
outcome 〈Y, w〉 on all stages t ≥ sd and n ∈ ΨA,Y . This proves parts (3) and (4)
of the lemma. ut

Lemma 3. Let α be a P-strategy, visited infinitely often and not initialized after
stage si. If v is an element such that ΓA

α (v) = K(v) then there is a stage sv after
which the outcomes 〈X, v〉 and 〈Y, v〉 are not accessible any longer.

Proof. If α has finitely many cycles then by Lemma 2 there will be a stage sn

after which 〈X, v〉 and 〈Y, v〉 are not accessible. Suppose there are infinitely many
cycles.

If v /∈ K then there is a stage sv at which v exits K. Then after stage sv the
outcomes 〈X, v〉 and 〈Y, v〉 are not accessible.

If v ∈ ΓA
α then there is an axiom in Γα that is valid on all but finitely many

stages, say on all stages t ≥ s′v. If α is on its k-th cycle during stage s′v then
let sv be the beginning of the (k + 2)-nd cycle. Then after stage sv whenever
α considers v part I.2 of the construction will be valid and hence α will never
have outcome 〈X, v〉 or 〈Y, v〉. ut

Lemma 4. Let α be a P-strategy, visited infinitely often and not initialized after
stage si. If α performs infinitely many cycles, then there is leftmost outcome o
that α has on infinitely many stages and

(1) If o = 〈X, u〉 then ΘA,X
α (u) 6= K(u).

(2) If o = 〈Y, u〉 then ΨA,Y
α (u) 6= K(u).

Proof. The set A is not complete by assumption, hence ΓA
α 6= K. Let u be the

least difference between the sets. By Lemma 3 for every v < u the outcomes
〈X, v〉 and 〈Y, v〉 are not visited on stages t > sv. Let s0 be a stage bigger than
max{sv|v < u}. As α has infinitely many cycles there will be infinitely many
stages t > s0 on which nα[t] = u. If u /∈ K and u ∈ ΓA

α then there is a stage
s1 > s such that on all stages t > s1 we have u ∈ ΓA

α [t] and u /∈ K[t] and when α
considers u on the first stage after s1, it will never move on to the next element,
and α would have finitely many cycles. Hence u ∈ K and u /∈ ΓA

α .
(1) If u /∈ ΘA,X

α then all axioms for u in Θα are invalid on infinitely many
stages. Let t be any stage t ≥ s0. We will prove that there is a stage t′ ≥ t on
which α has outcome 〈X, u〉. As u /∈ ΓA

α and {As}s<ω is a good approximation
to A there are infinitely many stages s on which u /∈ ΓA

α [s] and hence part I.3
of the construction will be valid on infinitely many stages on which we consider
u. Let t1 ≥ t on which nα[t1] = u and part I.3 of the construction is true. If
Axθ

α(u) is not defined and we are not able to define it as there is no appropriate
axiom in Θα valid for long enough then α will have outcome 〈X, u〉 on stage t1,
hence t′ = t1 proves the claim. Otherwise Axθ

α(u) is defined on stage t1 and by
assumption there are infinitely many stages t ≥ t1 on which it is invalid. Let
t2 > t1 be the next stage when Axθ

α(u) is invalid and let t′ ≥ t2 be the first stage



after t2 on which again nα[t′] = u and part I.3 of the construction is true. By
I.3.b.X of the construction α will have outcome 〈X,u〉 on stage t′.

(2) Now assume that u ∈ ΘA,X
α . Then there is an axiom 〈u, Aθ, Xθ〉 ∈ Θα

valid on all but finitely many stages. Select the axiom, say Ax, that is valid the
longest. Then Axθ

α(u) will have a permanent value Ax after a certain stage s1.
It follows that u /∈ ΨA,Y

α as otherwise we would be able to find an axiom in ΨA,Y
α

valid on all but finitely many stages, and construct an axiom in Γα valid on all
but finitely many stages. Now a similar argument as the one used in part (1) of
this lemma proves that α will have outcome 〈Y, u〉 on infinitely many stages. ut

As an immediate corollary from Lemmas 2, 3 and 4 we obtain the existence
of the true path:

Corollary 1. There exists an infinite path through the tree of strategies with the
following properties:

(1) ∀n∃∞s[f ¹ n ⊆ δs]
(2) ∀n∃sl(n)∀t > sl(n)[δt ≮L f ¹ n]
(3) ∀n∃si(n)∀t > si(n)[f ¹ n is not initialized on stage t].

Corollary 2. X and Y are not c.e.

Proof. For every requirement Ne there is an Ne-strategy β along the true path,
visited infinitely often and not initialized on any stage t > si. Let xβ and yβ be
the final values of β’s witnesses. If βˆw ⊂ f then there is an element u ∈ {xβ , yβ}
that never enters We. The way each Ne-strategy chooses its witnesses ensures
that only β can extract u form either of the sets X or Y . The construction and
the definition of the true path ensure that β does not extract u from X and Y
on any stage. Hence u ∈ X ∩ Y and u /∈ We.

If β d̂ ⊂ f then xβ ∈ We and there is a β-true stage sx on which β extracts
xβ from X and Y . By Lemma 1 xβ /∈ X[t] on all stages t ≥ sx. If on any stage
t ≥ sx we have that xβ ∈ Y [t] then β selects yβ on its next true stage. As the
true outcome is d, yβ ∈ We[t′] on some stage t′ ≥ t. Then on the next β-true
stage sy ≥ t′ the strategy β will permanently restrain yβ out of Y and by Lemma
1 we have that yβ /∈ Y . ut
Corollary 3. A⊕X 6= K or A⊕ Y 6= K.

Proof. Consider the P-nodes on the true path. From the definition of the tree it
follows that either for every P0

e -requirement there is a node on the tree α which
is associated with P0

e or there is a fixed requirement P0
e associated with all but

finitely many nodes. In the latter case there is a node on the true path for every
P1

e -requirement.
Suppose there is a node on the tree for each P0

e -requirement then A⊕X 6= K.
Assume for a contradiction ΘA,X

e = K and let α ⊂ f be the last node associated
with P0

e . Then α has true outcome 〈X,u〉 for some u ∈ ω ∪ {w}. It follows from
Lemma 2 and Lemma 4 that ΘA,X

e 6= K.
The case when there is a node for every P1

e -requirement yields by a similar
argument that A⊕ Y 6= K. ut



Lemma 5. The sets X and Y are 3-c.e.

Proof. We can easily obtain a 3-c.e. approximation of each of the sets X and Y
from the one constructed. Define X̂s = Xs ¹ s and Ŷs = Ys ¹ s.

It follows from the construction that elements extracted from X and Y are
necessarily witnesses of N -strategies. An N -strategy extracts a witness n only
once on its entry in the approximation of a fixed c.e. set, hence necessarily after
stage n + 1. The P-strategies only ever enumerate elements back in the sets X
and Y , by their definition.

Suppose therefore that n is the witness xβ for an N -strategy β. Then n

appears in the defined approximations {X̂s}s<ω and {Ŷs}s<ω on stage n + 1. If
β never extracts xβ then we are done - as no other strategy can extract it. If
β extracts xβ then it does so only once on stage sx when it goes through II.3
and moves on to II.4 on the next stage. In order for β to return to step II.3 of
the construction it will have to be initialized and will select new witnesses. Thus
after its extraction on stage sx from both X̂sx

and Ŷsx
, the number xβ can only

be enumerated back in either set and hence |{s |X̂s−1(xβ) 6= X̂s(xβ)}| ≤ 3 and
|{s |Ŷs−1(xβ) 6= Ŷs(xβ)}| ≤ 3.

If n is the witness yβ then it will never be extracted from X thus |{s |X̂s−1(yβ) 6=
X̂s(yβ)}| = 1. If it is ever extracted from Y it is extracted only once by β on
the first stage it reaches step II.6. After that yβ is already restrained by β and
whenever β executes step II.6 it will ignore the first sentence of the instruction
and just have outcome o = d. Thus again |{s |Ŷs−1(yβ) 6= Ŷs(yβ)}| ≤ 3. ut
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