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Abstract. We discuss a notion of forcing that characterises enumeration 1-
genericity and we investigate the immunity, lowness and quasiminimality prop-
erties of enumeration 1-generic sets and their degrees. We construct an enu-
meration operator ∆ such that, for any A, the set ∆A is enumeration 1-generic
and has the same jump complexity as A. We also prove that every nonzero
∆0

2
degree bounds a nonzero enumeration 1-generic ∆0

2
degree. We deduce

from these results and the properties of good degrees that, not only does every
degree a bound an enumeration 1-generic degree b such that a′ = b′, but also
that, if a is good and nonzero, then we can find such b satisfying 0e < b < a.
We conclude by proving the existence of both a nonzero low and a properly

Σ0
2 nonsplittable enumeration 1-generic degree hence proving that the class of

1-generic degrees is properly subsumed by the class of enumeration 1-generic
degrees.

1. Introduction.

Enumeration 1-genericity, a form of 1-genericity appropriate for positive re-
ducibilities, was introduced in [BH12] and used as a tool to show that there exists a
properly Π0

2 degree b such that any x ≤ b contains only Π0
2 sets. In [BH12] various

questions about the basic properties of enumeration 1-genericity in the enumeration
and singleton degrees, as also its relationship with 1-genericity, were investigated.
We continue this investigation in Section 3 where in particular we look at immunity
and lowness properties of enumeration 1-generic sets. We also address the question
of the distribution of the class of enumeration 1-generic degrees and show that it
resembles to some extent the distribution of the class of 1-generic degrees, not only
over the Π0

2 degrees, but also globally with respect to the class of total degrees.
In Section 4 we study downward density and jump inversion of the enumeration
1-generic degrees. In the context of the Σ0

2 degrees this work can be seen as an
extension of results in [McE85] and [CM85] to the effect that that every Π0

2 degree
b ≥ 0′

e is the jump of a Π0
1 degree and that every ∆0

2 degree bounds a nonzero
low degree. Indeed, it follows from the results of Section 4, in combination with
those of [McE85], that every Π0

2 degree b ≥ 0′

e is also the jump of a Σ0
2 enumera-

tion 1-generic (and hence quasiminimal) degree and that every ∆0
2 degree bounds
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a nonzero low enumeration 1-generic degree. Furthermore we will see that our re-
sults also throw light on the phenomenom of Σ0

2 highness introduced in [McE85].
Section 5, which concludes the present paper, is motivated by the question of how
enumeration 1-genericity and 1-genericity may be separated within the enumeration
degrees. We approach this question locally, bearing in mind that every 1-generic
degree is splittable, by showing the existence of both low and properly Σ0

2 nonsplit-
table enumeration 1-generic degrees.

2. Preliminaries.

We assume {We}e∈ω to be a standard listing of c.e. sets with associated c.e.
approximations {We,s}s∈ω, and {Dn}n∈ω to be the computable listing of finite sets
where Dn denotes the finite set with canonical index n. We also assume 〈x, y〉 to
be a standard computable pairing function over the integers. We use X [e] to denote
the set { 〈e, x〉 | 〈e, x〉 ∈ X } and χY to denote the characteristic function of Y . We
say that the set Y is characteristic if Y = X ⊕X for some set X , and we note that
X ⊕X ≡e χX . We use α, β, σ, etc. to denote finite binary strings (i.e. members of
2<ω). |α| denotes the length of α, so that |α| = µx[x /∈ dom α]. α ⊆ β denotes
that α is an initial segment of β (similarly we use α ⊆ f if f ∈ 2ω).

A set A is defined to be enumeration reducible to a set B (A≤eB) if there exists
an effective procedure that, given any enumeration of B, enumerates A. More
formally [FR59], A≤eB iff there exists a c.e. set W such that, for all x ∈ ω,

x ∈ A iff ∃n [ 〈x, n〉 ∈ W & Dn ⊆ B ] . (2.1)

We define {Φe}e∈ω to be the effective listing of enumeration operators such that
for any set X ,

ΦX
e = { x | ∃n [ 〈x, n〉 ∈ We & Dn ⊆ X ] } .

Also , for any e, we use the notation ΦX
e,s to define the finite approximation to ΦX

e ,
derived from We,s. For simplicity we allow a certain amount of ambiguity in our
notation, by sometimes equating We with the operator Φe, and in the case of finite
sets, using the letter D or similar to denote both a finite set and its index in the
listing of finite sets specified above.

We use the notation x for the equivalence classes of ≤e or, in other words, the
enumeration degrees, whereas dege(X) is notation for the ≤e degree of X . 0e is
the degree of the c.e. sets, De denotes the structure of enumeration degrees, and
De(≤x) denotes the substructure of De over the class of degrees {y | y ≤ x } (we
say that such a class is a prime ideal of De). We remind the reader that De and
the substructures of the form De(≤x) are upper semilattices.

We assume the reader to be conversant with Turing (≤T) and other basic re-
ducibilities for which we use similar notation to the above. K denotes the standard
halting set for Turing machines whereas the enumeration semihalting set relative
to X is defined to be the set KX = { x | x ∈ ΦX

x } and the enumeration jump of
X is defined to be the set JX = KX ⊕KX . The jump of enumeration degree x is

written x′. 0′

e denotes dege(J∅) and 0′′

e denotes dege(J
(2)
∅ ). x is said to be low if

x′ = 0′

e , and high if x′ = 0′′

e . Using the notation specified above De(≤0′

e) denotes
the upper semilattice of enumeration degrees comprising precisely the class of Σ0

2

enumeration degrees. Note that we refer to the latter as the local structure of the
enumeration degrees, as opposed to the global structure De.
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ι denotes the canonical embedding of the Turing degrees into the enumeration
degrees induced by the map X 7→ X ⊕X. We note that ι preserves join and jump.

Definition 2.1 ([LS92, Har10]). A uniformly computable sequence of finite sets
{Xs}s∈ω is said to be a good approximation to the set X if:

(1) ∀s (∃t ≥ s)[Xt ⊆ X ]

(2) ∀x [ x ∈ X iff ∃t (∀s ≥ t)[Xs ⊆ X ⇒ x ∈ Xs ] ].

In this case we say that X is good approximable. Moreover, if (2) is replaced by the
condition ∀x [x ∈ X iff ∃t(∀s ≥ t)[x ∈ Xs ] then {Xs}x∈ω is said to be a good
Σ0

2 approximation.

Lemma 2.2 ([Joc68]). X is Σ0
2 iff X has a good Σ0

2 approximation.

In other words the sets underlying De(≤0′

e) all have good Σ0
2 approximations.

Lemma 2.3 ([BH12]). If a is a good enumeration degree then, for every A ∈ a,
KA≤eKA. In other words, JA ≡e KA.

Lemma 2.4 ([CM85]). Enumeration degree x is low iff x only contains ∆0
2 sets.

Definition 2.5. An enumeration degree x containing only Σ0
2 (Π0

2) sets is properly
Σ0

2 (Π0
2) if it contains no ∆0

2 sets, and is downwards properly Σ0
2 if every y ∈

{z | 0e < z ≤ x} is properly Σ0
2. x < 0′

e is cuppable if there exists y < 0′

e such
that 0′

e = x ∪ y and is noncuppable otherwise.

Lemma 2.6 ([CSY96]). If 0e < x < 0′

e is ∆0
2 then x is cuppable.

Corollary 2.7 ([CSY96]). Every noncuppable 0e < x < 0′

e is downwards properly
Σ0

2.

Given an arithmetical predicate Γ (e.g. Γ ∈ {∆0
2,Π

0
2}) we sometimes use the

shorthand A ∈ Γ if A is a Γ set. Moreover we say that an enumeration degree a is
Γ if a contains a set A ∈ Γ.

Notation. Suppose that {Xs}s∈ω and {Φs}s∈ω are approximations to some set X
and enumeration operator Φ. We use the shorthand ΦX [s] =def Φ

Xs
s . For clarity

we also sometimes use the shorthand X [s] instead of Xs.

3. Enumeration 1-genericity

We now define the notion of enumeration 1-genericity. We discuss the basic
properties of this notion and investigate its relationship with 1-genericity. We also
delineate restrictions to the class of enumeration 1-generic degrees by exhibiting two
properties inherent to it. We begin with a reminder of the definition of 1-genericity.

Definition 3.1. A set A is said to be 1-generic if for any c.e. set W ⊆ 2<ω there
exists α ⊆ χA such that either α ∈ W or for all β such that α ⊆ β, β /∈ W .

Notation. We use F to denote the class of finite subsets of ω. We will follow
the convention that the letters D,E, F always denote members of F (although we
often also specify that the set denoted is finite). In particular “∃E ” is shorthand
for “∃E ∈ F ”.

Definition 3.2. A set A is defined to be enumeration 1-generic if, for all c.e. sets
W ⊆ F , either there exists a finite set D ⊆ A such that D ∈ W or a finite set
E ⊆ A such that, for every D ∈ W , D ∩E 6= ∅.
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Forcing and Enumeration 1-Genericity. We start by inspecting a notion of forcing
which gives rise to the enumeration 1-generic sets. We assume that the reader is
familiar with forcing in arithmetic and refer to Shore [Sho10] for an introduction
on this topic. Let P be a partial ordering. V ⊆ P is open if for every p, q ∈ P if
p ≤ q and q ∈ V then p ∈ V . V is dense along A ⊆ P if, for every p ∈ A, there is
a q ≤ p, q ∈ V . A meets V if A ∩ V 6= ∅. A ⊆ P is a filter if A is closed upwards
with respect to the partial ordering and every two conditions in A have a common
lower bound in A. A filter A is generic if A meets every open set V , which is dense
along A.

The standard definition of a 1-generic set is derived from Cohen’s notion of
forcing on the partial ordering of finite binary strings 2<ω ordered by inclusion, by
limiting the amount of genericity required. G is 1-generic if it is derived from a filter
G on 2<ω, which meets every Σ0

1 open subset of 2<ω which is dense along G. One
of the key features of 1-generic sets of natural numbers is that every Σ0

1 statement
in the language of arithmetic with an additional predicate for G is decided by some
initial segment of G, i.e. either it or its negation is forced by some finite binary
string σ ∈ G.

An equivalent way to define a 1-generic set G is as follows. Let PF be the partial
ordering with elements pairs of disjoint finite sets 〈D,E〉 ordered by 〈D1, E1〉 ≤
〈D2, E2〉 if and only if E1 ⊇ E2 and D1 ⊇ D2. A filter G ⊆ PF which for every n
meets the set Vn = {〈D, ∅〉 | n ∈ D}, whenever it is dense along G, defines a set G
and its complement G - namely G =

⋃
〈D,E〉∈G D and G =

⋃
〈D,E〉∈G E. It is fairly

easy to check that a set G is 1-generic if and only if it is obtained from a filter
G ⊆ PF which meets every Σ0

1 open subset of PF , which is dense along G.
Enumeration 1-generic sets are also obtained from filters G ⊆ PF . The genericity

requirements for these filters are limited further to only positive requirements. Let
us call a set of condition V ⊆ PF positive if and only if whenever 〈D,E〉 ∈ V ,
we also have that 〈D, ∅〉 ∈ V . Then G is enumeration 1-generic if and only if it
is obtained from a filter G ⊆ PF which meets every Σ0

1 positive open subset of
PF , which is dense along G. Similarly we can characterize enumeration 1-genericity
syntactically: a filter G gives rise to an enumeration 1-generic set if and only if every
positive Σ0

1 statement in the language of arithmetic with an additional predicate for
G is decided by some condition in G, where a positive Σ0

1 statement is one obtained
from Σ0

1 statements in arithmetic (that do not mention G) and statements of the
form “〈D, ∅〉 ∈ G”, closed under conjunctions and existential quantification.

In the same way that 1-genericity has a natural characterisation in terms of
Turing functionals we find that enumeration 1-genericity can be characterised in
terms of enumeration operators as follows.

Lemma 3.3 ([BH12]). A set A is enumeration 1-generic iff, for every e ∈ ω, either
e ∈ ΦA

e or, for some finite set E ⊆ A, e /∈ Φω−E
e .

Remark. Note that, if A is enumeration 1-generic then A is infinite. Indeed, suppose
that A ⊆ ω↾n for some n ≥ 0. Then, by enumeration 1-genericity of A there
exists a finite set E such that D ∩ E 6= ∅ for every D ∈ { {m} | m ≥ n }, an
obvious contradiction. However the notion of enumeration 1-genericity is weak
in the sense that there are clearly enumeration 1-generic sets which are c.e.—the
obvious example being ω itself.
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In view of the above observations we now consider how the definition of enumera-
tion 1-genericity might be strengthened. The next Lemma shows that coinfiniteness
is an obvious candidate for this.

Lemma 3.4. If A is enumeration 1-generic and coinfinite, then A is hyperimmune.
Thus A is not Π0

1.

Proof. Suppose that there exists a sequence of mutually disjoint finite sets {Df(i)}i∈ω

with f computable such that, for all i, Df(i) ∩ A 6= ∅. Let W = {Df(i) | i ∈ ω }.

By enumeration 1-genericity there exists a finite set E ⊆ A such that for all D ∈ W ,
D ∩ E 6= ∅. This is an obvious contradiction since W contains mutually disjoint
finite sets. Hence A is hyperimmune. �

However, in the context of the enumeration degrees, coinfiniteness does not confer
nontriviality to the notion of enumeration 1-genericity, as we now see.

Lemma 3.5. There exists a coinfinite c.e. enumeration 1-generic set A.

Proof. The proof involves enumerating a set A in stages so as to satisfy, for all
e ∈ ω, the following requirements.

R : |A| is infinite,

Pe : (∃D ∈ We)[D ⊆ B ] ∨ (∃E ⊆ B)(∀D ∈ We)[D ∩ E 6= ∅ ]

To do this we use a standard finite injury construction in which at every stage s a
finite approximation As is defined such that A =

⋃
s∈ω As. Each requirement Pe

works with its own restraint witness x(e, s) ∈ ω defined at the end of stage s and
its avoidance parameter Ω(e, s + 1) = { x(i, s) | i ≤ e } defined at the beginning
of stage s + 1. Pe is said to be satisfied at stage s + 1 if there exists D ∈ We[s]
such that D ⊆ As. Likewise Pe is said to require attention at at stage s+ 1 if it is
not satisfied and there exists D ∈ We[s + 1] such that D ∩ Ω(e, s + 1) = ∅. The
construction is defined as follows.

Stage 0. Define x(e, 0) = e for all e ≥ 0.

Stage s+ 1. If there is no e < s such that Pe requires attention reset x(e, s+ 1) =
x(e, s) for all e ≥ 0 and go to stage s+ 2. Otherwise let e be the least such index.
Enumerate into A the least set D ∈ We[s + 1] such that D ∩ Ω(e, s + 1) = ∅,
i.e. set As+1 = As ∪ D. Reset x(i, s + 1) = x(i, s) for all i ≤ e and, letting
ŝ = max {x(e, s), s}, set x(j, s + 1) = ŝ+ j for all j > e, and go to stage s+ 2.

The verification of the construction is a straightforward induction argument over
index e. Note firstly that

x(i, s) /∈ As for all i, s ≥ 0. (3.1)

Proceed by assuming that index e and stage se are such that x(i, s) = x(i, se) for all
i ≤ e and s ≥ se—and accordingly let x(i) = x(i, se)—and are also such that, for all
j < e, Pj does not require attention at any such stage s. Let Ω(e) = { x(i) | i ≤ e }
and note that it follows from (3.1) that Ω(e) ⊆ A. Clearly if there exists D ∈ We

such that D ∩ Ω(e) = ∅ and Pe has not been satisfied before stage se then Pe

will receive attention at some stage s ≥ se. Thus clearly Pe will be satisfied in
the limit (since D ∩ Ω(e) 6= ∅ for all D ∈ We otherwise). Moreover, as Pe only
requires attention at most once after stage se there exists a corresponding stage
se+1 ≥ se such that x(i, s) = x(i, se+1) for all i ≤ e + 1 and s ≥ se+1 and such



6 LILIANA BADILLO†, CHARLES M. HARRIS‡, AND MARIYA I. SOSKOVA§∗

that, at any such stage s, and any index j < e + 1 no requirement Pj requires
attention at stage s. We can therefore conclude that x(e) is defined for all e, that
Ω = { x(e) | e ∈ ω } ⊆ A, so that R is satisfied (since clearly x(i) 6= x(j) for all
i 6= j by construction), and that Pe is satisfied for all e ≥ 0. �

Remark. It follows from Lemma 3.4 that every coinfinite c.e. enumeration 1-generic
set is hypersimple.

Another obvious way of strengthening enumeration 1-genericity is to impose
symmetricity of this notion over a set A and its complement.

Definition 3.6 ([BH12]). A set A is defined to be symmetric enumeration (s.e.)
1-generic if both A and A are enumeration 1-generic.

Now, unlike enumeration 1-genericity alone, s.e. 1-genericity does confer nontriv-
iality in the context of the enumeration degrees.

Lemma 3.7 ([BH12]). If A is s.e. 1-generic then A /∈ Σ0
1 ∪ Π0

1.

Remark. Note that the above Lemma follows directly from Lemma 3.4.

Notice that by definition the class of enumeration 1-generic degrees subsumes
the class of s.e. degrees. Similarly we find that the class of s.e. degrees subsumes
the class of 1-generic degrees.

Lemma 3.8 ([BH12]). If A is 1-generic then A is s.e. 1-generic.

On the other hand we find that enumeration 1-generic sets display a certain form
of lowness.

Lemma 3.9. For every enumeration 1-generic set A, JA ≡e A⊕A⊕ J∅.

Proof. We know that KA ≡e A. Moreover, for every finite set E, the set Φω−E
e is

enumeration reducible to J∅ uniformly in e and E, via (say) the operator Φg(e,E).

By enumeration 1-genericity of A, KA = { e | ∃E[ e ∈ Φ
J∅

g(e,E) & E ⊆ A ] } and

hence KA≤eA⊕ J∅.
We conclude that JA = KA ⊕KA ≡e A⊕A⊕ J∅. �

Corollary 3.10. If G is s.e. 1-generic then JG ≡e JG. If G is 1-generic, then
JG ≡e JG ≡e JG⊕G.

Proof. If G is s.e. 1-generic then both G and G are enumeration 1-generic. By the
previous Lemma, JG ≡e G⊕G⊕ J∅ ≡e JG.

If G is 1-generic, then we know that its jump in the Turing degrees also behaves
this way: G′ ≡T G⊕∅′. Thus, as ι preserves join and jump, JG⊕G ≡e G⊕G⊕J∅. �

Corollary 3.11. If A ∈ Π0
2 is enumeration 1-generic, then JA ≡e A ⊕ J∅. In

particular, if A is ∆0
2 then dege(A) is low.

Remark. A straightforward argument shows that any ∆0
2 approximation to A is in

fact both low—in the sense of [CM85]—and good as defined in Definition 2.1.

Corollary 3.11 suggests a way of delineating the distribution of enumeration
1-generic degrees within the ∆0

2 degrees. However, we will see below in Proposi-
tion 4.11 that there exists a Σ0

2 enumeration 1-generic degree in which not every
set is enumeration 1-generic. Accordingly Corollary 3.11 could be applied directly
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to the ∆0
2 degrees themselves (and not just to individual sets) only if the latter

phenomenom can be ruled out in the case of the ∆0
2 degrees. Indeed its presence in

this context would suggest the existence of ∆0
2 enumeration 1-generic degrees that

are nonlow.
The above discussion leads us on to the question of what overall restrictions

there are to the distribution of the enumeration 1-generic degrees.

Lemma 3.12 ([BH12]). If B ∈ Π0
2 is enumeration 1-generic, then the class B =

{X | X≤eB } is (uniform) Π0
2.

Notice that this Lemma is a simple corollary of Corollary 3.11 if every such B
is in fact ∆0

2. We now see that that this is not the case.

Proposition 3.13 ([BH12]). There exists a properly Π0
2 enumeration degree b such

that the prime ideal De(≤b) only contains Π0
2 sets.

Proof. Let A be a set such that dege(A) is properly Σ0
2 and A is enumeration 1-

generic. For example take A to be the 1-generic set with noncuppable enumeration
degree constructed in the proof of Theorem 3.2 in [BH12]. Let B = A and b =
dege(B). Then B is enumeration 1-generic and hence De(≤b) only contains Π0

2 sets
by Lemma 3.12. Moreover no set X in b is ∆0

2 since this would imply that B is ∆0
2

in contradiction with the definition of A = B. �

The above is a first illustration of a natural restriction of the class of enumera-
tion 1-generic degrees within De. However these results tell us nothing further (to
Corollary 3.11) about the local structure of Σ0

2 degrees. For example is 0′

e enu-
meration 1-generic? The final result of this section not only settles this question
but also shows that the distribution of the enumeration 1-generic degrees bears a
certain resemblance to the distribution of the 1-generic degrees, both globally and
locally within De.

Proposition 3.14. Every enumeration 1-generic degree 0e < a is quasiminimal.

Proof. Suppose that A is an enumeration 1-generic set and that C is a characteristic
set such that C≤eA. Accordingly let Φ witness this reduction (i.e. C = ΦA) and
consider the c.e. set

S = {D | ∃F ∃F ′[ 〈2x, F 〉 ∈ Φ & 〈2x+ 1, F ′〉 ∈ Φ & D = F ∪ F ′ ] }

Since C is characteristic, it follows that D * A for all D ∈ S. Hence, by

enumeration 1-genericity of A, there exists a finite set E ⊆ A such that for all
D ∈ S, D ∩ E 6= ∅. However, this implies that C = Φω−E .

Indeed, clearly C ⊆ Φω−E (as A ⊆ ω − E). Suppose that there exists y ∈
Φω−E \C. Then, y = 2x+ i for some i ∈ {0, 1}. Without loss of generality, suppose
that i = 0. Accordingly there is a finite set F ⊆ ω−E such that 〈2x, F 〉 ∈ Φ. Since
C is characteristic and 2x /∈ C it follows that 2x+1 ∈ C = ΦA. Hence there exists
a finite set F ′ such that 〈2x+ 1, F ′〉 ∈ Φ and F ′ ⊆ A ⊆ ω − E. Set D = F ∪ F ′.
Clearly D ∈ S whereas, by the above, D ∩ E = ∅. This contradicts the definition
of E. Thus Φω−E ⊆ C and so C = Φω−E , i.e. C is c.e. �

4. Enumeration 1-genericity and Jump Inversion.

In this Section we show that there is a uniform method for constructing, below
any enumeration degree a, an enumeration 1-generic degree b having the same jump
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complexity as a. We also show that below any nonzero ∆0
2 degree there exists a

nonzero ∆0
2 enumeration 1-generic degree of lowest possible jump complexity. These

results allow us to conclude that every nonzero good enumeration degree stricly
bounds a nonzero enumeration 1-generic degree of the same jump complexity. We
also consider the relationship between enumeration 1-genericity and Σ0

2 highness
(defined below) which is brought to light by these results. We begin with some
further background material.

Notation. Given a Σ0
2 approximation {As}s∈ω to a set A we use the shorthand1 cA

to denote the computation function relative to {As}s∈ω defined by setting, for all
x ∈ ω, cA(x) = (µs > x )[As↾x ⊆ A ].

Definition 4.1. A Σ0
2 approximation {As}s∈ω is said to be high if its associated

computation function cA is total and dominates every computable function f (i.e.
cA(x) > f(x) for almost every x). A set A is said to Σ0

2 high if it has a Σ0
2

approximation (and so, using standard terminology, an enumeration degree is Σ0
2

high if it contains such a set).

Lemma 4.2 ([SS99]). A degree a ≤ 0′

e is high if and only if it is Σ0
2 high.

We now proceed with the main result of this section.

Proposition 4.3. There exists an enumeration operator ∆, such that for every A,
∆A is enumeration 1-generic and J∆A ≡e JA.

Proof. We construct a c.e. operator ∆ so that for every e the following requirement
is met:

Pe : ∀A
[
(∃D ∈ We)[D ⊆ ∆A ] ∨ (∃E ⊆ ∆A)(∀D ∈ We)[D ∩ E 6= ∅ ]

]
.

The construction is a finite injury construction in stages. At every stage s we
construct a c.e. set ∆s. The intent is that ∆ =

⋃
s∈ω ∆s is the required operator.

For every e we will have a coding location de. The coding locations are our tool
to code, for every A, the bits of KA. Fe = {dj | j ≤ e} is the set of all coding
locations for higher priority requirements. Note that Fe is restrained in the sense
that, if we are acting to satisfy the e + 1-th genericity requirement Pe+1, then we
are not allowed to enumerate into ∆ axioms for the elements in Fe. Depending on

the oracle A each nonempty set E ⊆ Fe may, or may not, also be a subset of ∆A. In

fact it may be the case that E = ∅ is the only subset of both Fe and ∆A. So we will
make sure that all possibilities are covered in the way that we meet the requirement
Pe. In particular, at any moment in the construction we will know the status of a
requirement—satisfied or not—and, if the requirement is not yet satisfied, then we
will know how far we have gone towards satisfying it. Every finite subset of S ⊆ Fe

will be announced as either covered or not yet covered. The intuition behind this
notion is that, if the finite subset S turns out to be a subset of the oracle A and
there is a finite set D in We such that D ∩ (Fe \ S) = ∅, then we will ensure that
D ⊆ ∆A by enumerating axioms for all the elements in D \ S. In other words we
have satisfied the requirement Pe provided S is a subset of the oracle. As there
are finitely many subsets of Fe these actions will be performed finitely many times.
Once every such finite subset is covered, we will announce that Pe is satisfied (for
now). Later in the construction however we might announce that Pe is not yet

1The function cA clearly depends on the approximation {As}s∈ω and not just on A.
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satisfied if a higher priority requirement acts.

The Construction. At stage 0, ∆0 = ∅ and, for all e, de is undefined, Pe

is announced as not yet satisfied, and every subset of Fe is announced as not yet
covered.

Remark. During the construction we only take care to define Fe (as specified above)
when de is defined. If de is not defined the value of Fe is unimportant.

We shall say that Pe requires attention at stage s+1 if Pe is (announced as) not
yet satisfied and one of the following is true:

(1) The coding location de is undefined.
(2) There is a finite set D ∈ We[s] such that D ∩ Fe = S is not yet covered.

At stage s+1 we let e be the least number for which the requirement Pe requires
attention at stage s+ 1.

(1) If the required attention is because the coding location is undefined, then
we define the value of de to be the least number for which there is no axiom
in ∆s. Then we set ∆s+1 = ∆s ∪ {〈de, D〉 | 〈e,D〉 ∈ Φe}. Next we injure all
lower priority requirements by announcing all of them as not yet satisfied,
making dj for j > e undefined and announcing all finite subsets of Fj not
yet covered for j > e. (Note that even though ∆s+1 is not necessarily finite,
it is c.e. and contains axioms for finitely many elements. Thus this step is
computable.)

(2) Otherwise, pick the least finite set D ∈ We[s] such that D ∩ Fe = S is
not yet covered. Announce that all sets X , such that S ⊆ X ⊆ Fe, are
covered. If all subsets of Fe are covered, then announce the requirement Pe

satisfied. Then set ∆s+1 = ∆s ∪ {〈n, ∅〉 | n ∈ D \ S}. Again we injure all
lower priority requirements by announcing all of them as not yet satisfied,
making dj for j > e undefined and announcing all finite subsets of Fj not
yet covered for j > e.

If no requirement requires attention at stage s+ 1, set ∆s+1 = ∆s.

End of Construction.

Lemma 4.4. For every e there is a least stage se, such that Pe does not get injured
by higher priority requirements at stages t > se. Furthermore the function e 7→ se
is computable by K (the Turing halting set).

Proof. The proof is by induction. P0 does not get injured at all so s0 = 0. Suppose
that Pe does not get injured after stage se and se is least with this property. This
means that Pe is injured for the last time at stage se. Then at stage se + 1 Pe

requires attention with undefined coding location de. By definition of se, Ge is the
least requirement that requires attention at this stage and hence receives attention.
At stage se +1 the final value of de and the final value of the set Fe are defined. K
can answer recursively every question of the following “Does there exists a finite set
D in the c.e set We which covers the finite set S?”. Here D covers S if D∩Fe ⊆ S.
So K can compute which of the finite subsets of Fe get covered by asking 2|Fe| such
questions. Note that if S can be covered, then it will be covered, because after
stage se, whenever Pe requires attention, it receives attention. Now K can run the
construction for the number of stages necessary until it reaches a stage at which
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the last finite set which can be covered, gets covered. This stage is se+1, the last
stage at which Pe+1 is injured. �

Lemma 4.5. For every A the set ∆A is enumeration 1-generic.

Proof. Fix A and We. Let Fe be the final value of this parameter obtained at stage
se + 1. Suppose that there is a finite set D ∈ We, such that D ∩ Fe ⊆ ∆A. Then
S = D ∩ Fe can be covered. By the properties of the construction, it will be covered
at some stage t (> se + 1). At stage t we have found a (possibly different) finite
set D∗ such that D∗ ∩ Fe ⊆ S ⊆ ∆A and for every element n ∈ D∗ \ Fe we have
enumerated the axiom 〈n, ∅〉 ∈ ∆t, hence D∗ ⊆ ∆A.

Otherwise for every D ∈ We we have that D ∩ Fe ∩ ∆A 6= ∅, i.e. the finite set

E = Fe ∩∆A intersects every member of We. �

Lemma 4.6. For every A, JA ≡e J∆A .

Proof. J∆A ≤eJA by monotonicity of the enumeration jump. So we only need to
show that JA≤eJ∆A .

We will show that KA≤T∆A ⊕ K. Now again, using the fact that ι preserves
join and jump and maps degT(KA) to dege(KA ⊕ KA) as also degT(∆

A ⊕ K) to

dege(∆
A⊕∆A⊕J∅), it will follow that JA = KA⊕KA≤e∆

A⊕∆A⊕J∅. As ∆
A is

enumeration 1-generic, we know from Lemma 3.9 that ∆A ⊕∆A ⊕ J∅ ≡e J∆A and
hence that JA ≤ J∆A .

To compute KA(e) we use K to compute the stage se, the last stage at which Pe

is injured, and then run stage se + 1 at which de is defined. Now de ∈ ∆A if and
only if e ∈ ΦA

e . This is because at stage se + 1 we enumerate the only axioms for
de that ever get enumerated in ∆ and they mirror exactly the axioms for e in Φe.
We use ∆A to determine this last membership question. �

This concludes the proof of Proposition 4.3. �

Corollary 4.7. For every enumeration degree a ∈ De there exists enumeration
1-generic b ≤ a such that b′ = a′.

Remark. Notice that in the case that a is low, Corollary 4.7 does not guarantee
that b > 0e. However we can deduce from our next result that such a degree b

does indeed exist.

Proposition 4.8. For every ∆0
2 a > 0e there exists low enumeration 1-generic

0e < b ≤ a.

Proof. Given ∆0
2 set B ∈ a the proof of Theorem 7 in [CM85] constructs a non c.e.

low set A ≤e B. We modify this proof by (i) replacing the Pe (lowness) requirements
by

Pe : (∃D ∈ We)[D ⊆ A ] ∨ (∃E ⊆ A)(∀D ∈ We)[D ∩ E 6= ∅ ]

and (ii) redefining (using our current notation) the parameter u(e, s) so that

u(e, s) =

{
µu[Du ∈ We[s] & Du ⊆ ΘB[s] ] if such u exists,

0 otherwise,

and (iii) proceeding with the proof with the appropriate minor adjustments. The
outcome of this version of the proof yields a non c.e. ∆0

2 enumeration 1-generic
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set A≤eB. Accordingly, if we let b = dege(A) we know by Corollary 3.11 that b

witnesses the statement of the Proposition. �

Before proceeding we now pause to remind the reader that the class of good
enumeration degrees subsumes the total degrees as also the n-c.e.a. degrees for all
n—and thus in particular, as already indicated in Lemma 2.2, the Σ0

2 degrees.

Theorem 4.9. (i) For every good degree c > 0e there exists enumeration 1-generic
0e < b < c such that b′ = c′.
(ii) For every ∆0

2 c > 0e there exists low enumeration 1-generic 0e < b < c.

Proof. (i) It follows from Theorem 4.1 of [Gri03] (see also Theorem 4.2 of [Har10])
and density of the Σ0

2 degrees (for the case of low c) that there exists 0e < a < c

such that a′ = c′. For the case c′ > 0′

e apply Corollary 4.7 to a and for the case
c′ = 0′

e apply Proposition 4.8 to a to obtain enumeration 1-generic b such that
0e < b ≤ a < c and b′ = c′.
(ii) Apply Proposition 4.8 to a where a = c if c′ > 0′

e and, if c′ = 0′

e , a is chosen
(using density of the Σ0

2 degrees) to be some nonzero degree strictly below c. �

Given Lemma 4.2 and Corollary 4.7 applied to the special case when a = 0′

e we
might expect there to exist a set A that is both Σ0

2 high and enumeration 1-generic.
We now investigate whether this is the case.

Lemma 4.10. If A is Σ0
2 high then A is not enumeration 1-generic (and hence

neither symmetric enumeration 1-generic, nor 1-generic).

Proof. Let {As}s∈ω be a high Σ0
2 approximation to A with associated computation

function cA. Let sA ∈ ω be such that cA(s) > s+1 (i.e. the successor function) for
all s > sA. Define the c.e. set

W = {As+1↾s | s > sA }

and notice that, by definition of sA, for all D ∈ W , D * A. Suppose that A is

enumeration 1-generic. Then there exists a finite set E ⊆ A such that D ∩ E 6= ∅
for all D ∈ W . Let

m = max
(
E ∪ {sA}

)
+ 1

and let sm be such that sm + 1 = cA(m) (and so sm ≥ m). By definition of cA,
Asm+1↾m ⊆ A (whereas E ⊆ A↾m). Thus, letting D = Asm+1↾sm we see that
D ∈ W and D ∩ E = ∅, a contradiction. Thus A is not enumeration 1-generic. �

Proposition 4.11. There exists a high enumeration 1-generic degree b ≤ 0′

e and
sets B,C ∈ b such that B 6= C, and

(i) B is not Σ0
2 high,

(ii) C is not enumeration 1-generic.

Proof. Choose A = J∅ in Proposition 4.3 and set B = ∆A. Then b = dege(B) is
high. By Lemma 4.2, b contains a Σ0

2 high set C. By Lemma 4.10 if follows that
B 6= C and that B is a witness for (i) whereas C is a witness for (ii). �
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5. Enumeration 1-genericity and Nonsplitting.

We saw in Lemma 3.8 that every 1-generic set A is s.e. 1-generic and hence
enumeration 1-generic. We also saw that the class of nonzero enumeration 1-
generic degrees shares at least two nontrivial structural properties with the 1-
generic degrees, namely quasiminimality (Proposition 3.14) and Π0

2 downwards
closure (Lemma 3.12). So are these two classes identical or is there some other
property that separates them? Consider the following property.

Definition 5.1. A degree a is said to be splittable if there exist incomparable
degrees a0 and a1 such that a = a0 ∪ a1. Otherwise a is said to be nonsplittable.

In this section we show that splittability is just one such property, and that this
separation occurs within the Σ0

2 degrees.

Proposition 5.2 (Folklore). Every 1-generic enumeration degree a is splittable.

Note. The proof below is a straightforward adaptation of the proof of this property
in the context of function 1-genericity given in [Cop88].

Proof. Suppose that A ∈ a is 1-generic. Define the sets A0 and A1 such that, for
i ∈ {0, 1}, Ai = { x | 2x + i ∈ A }. Notice that, by immunity of A, both A0

and A1 are infinite. Clearly A ≡e A0 ⊕ A1. Suppose that A0≤eA1 and let Φ be
the enumeration operator witnessing this reduction. Consider the c.e. set S ⊆ 2<ω

defined by setting

S =
{
τ | ∃x∃D

[
τ(2x) = 0 & x ∈ ΦD & D ⊆ { z | τ(2z + 1) = 1 }

] }
.

Note that, by definition of Φ, τ /∈ S for any τ ⊂ χA. Thus (by 1-genericity of
A) there exists σ ⊂ χA such that, for all τ ⊇ σ, τ /∈ S. Now, as A0 is infinite
we can pick x and D ⊆ A1 such that 2x ≥ |σ| and x ∈ ΦD. Let γ ⊃ σ be any
string defined so that2 γ(2x) = 0 and γ(2z + 1) = 1 for all z ∈ D. Then clearly
γ ∈ S, a contradiction. In other words A0�eA1. By a similar argument A1�eA0.
Therefore, letting a0 = dege(A0) and a1 = dege(A1) we see that the pair a0, a1

witnesses the splittability of a. �

In contrast to this, we will show that there exists both a low and a properly Σ0
2

nonsplittable enumeration 1-generic degree. In order to do this we transpose the
methodology of the low nonsplittability proof of [AL98] onto a tree of strategies
construction using techniques formulated in [Ken08, KS07]. We note that The-
orem 5.3 can in fact be proved by a straightforward modification of Ahmad and
Lachlan’s [AL98] proof. However the reader will notice that the manner in which
the tree of strategies construction is applied here not only clarifies the mechanics
of the proof (in that the streams of free numbers used by the splitting strategies
are precisely reflected in the structure of the tree of strategies itself), but also that
it allows the low nonsplittability version to be easily adapted to show properly Σ0

2

nonsplittability. We also note that the present construction is an adaptation of
Kent’s [Ken08] nonsplittability proofs with the difference that a close interpreta-
tion of the elegant e-states method used in [AL98] is implicitly adhered to in the
definition of the tree of strategies.

2For example, if m = maxD, let γ the the string of length max {2x, 2m+ 1}+ 1 defined such
that γ(n) = σ(n) for all n < |σ| and such that for all |σ| ≤ m < |γ|, γ(m) = 0 if m is even, and
γ(m) = 1 if m is odd.
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Theorem 5.3. There exists a low enumeration 1-generic nonsplittable degree a >
0e.

Proof. We will define a ∆0
2 approximation {As}s∈ω satisfying, for all e ∈ ω, the

following requirements.

RΨ,Ω0,Ω1
: A = ΨΩA

0 ⊕ΩA
1 ⇒ A≤eΩ

A
i for some i ∈ {0, 1} or A c.e.

NW : A 6= W

PW : (∃D ∈ W )[D ⊆ A ] ∨ (∃E ⊆ A)(∀D ∈ W )[D ∩ E 6= ∅ ] .

Note the use of our shorthand notation in the above (introduced to simplify the
presentation) whereby we understand (Ψ,Ω0,Ω1) ∈ {(Ψe,Ωe,0,Ωe,1)}e∈ω where the
latter is a standard effective listing of all triples of enumeration operators. Likewise
W ranges over a standard effective listing of c.e. sets {We}e∈ω. In each case we
assume that the listing is associated with standard uniform c.e. approximations of
the sets/operators involved.

1) The Tree of Strategies.

We define the overall set of outcomes to be Σ = ω ∪ {void} and the set of tree
outcomes to be ω. We fix an arbitrary effective priority ordering {Le}e∈ω of all
R, N and P requirements. We also define T ⊆ ω<ω and we refer to it as the
tree of strategies. Each node α ∈ T will be associated, and so identified, with the
strategy for the satisfaction of R|α|. We use the notation RΨ,Ω0,Ω1

for the set of
RΨ,Ω0,Ω1

strategies and R for the set of all R strategies. Likewise, for (Q, Q) ∈
{(N , N), (P , P )} we will use the notation QW for the set of strategies associated
with QW and we let Q denote the set of all such strategies.

We assign requirements to nodes on T by induction as follows. Define ∅ ∈ T .
Given α ∈ T we distinguish three cases depending on the requirement L associated
with α.

Case 1. α ∈ R: define α̂〈n〉 ∈ T for n ∈ {0, 1, 2}.

Case 2. α ∈ N : define α̂〈n〉 ∈ T for all n ∈ {0, 1}.

Case 3. α ∈ P : define α̂〈n〉 ∈ T for all n ∈ {0, 1}.

2) Notation and Terminology for Strings.

We use standard notation and terminology for strings as found for example in
[Soa87]. Accordingly we use ≤ and < (⊆ and ⊂) to denote respectively nonstrict
and strict lexicographical ordering (inclusion3) on T . σ <L τ denotes σ < τ but
σ 6⊆ τ .

3) Environment Parameters

Local parameters for α ∈ RΨ,Ω0,Ω1
. R(α, s) ∈ {0, 1, 2, void} is the outcome param-

eter, and Γα,0[s] and Γα,1[s] finite approximations to enumeration operators con-
structed so as to (possibly) witness A≤eΩ

A
0 or A≤eΩ

A
1 . (Note that, for i ∈ {0, 1},

we use Γi as shorthand for Γα,i when there is no danger of ambiguity.) Out-

come R(α, s) = j for j ≤ 1 corresponds to α’s belief that, if A = ΨΩA
0 ⊕ΩA

1 , then
ΩA

j ≤eA (as witnessed by Γj in the limit). Likewise, under the same assumption,

R(α, s) = 2 corresponds to α’s belief that A is c.e. (contradicting the definition of

3For inclusion, ⊂ is only used when strictness is important.
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a). For ease of description in the construction α also has a dummy witness param-
eter x(α, s) = −1.

Local parameters for α ∈ NW . N(α, s) ∈ {0, 1, void} is the outcome parameter,
and x(α, s) ∈ {−1} ∪ ω is the witness parameter associated with α. Outcome
R(α, s) = 0 corresponds to α’s knowledge that x(α, s) ∈ W and belief that x(α, s) /∈
A (which will be vindicated if α is not initialised at any stage t > s). N(α, s) = 1,
on the other hand, means that α believes that x(α, s) ∈ A \W .

Local parameters for α ∈ PW . P (α, s) ∈ {0, 1, void} is the outcome parameter and
x(α, s) = −1 a dummy witness parameter for α. P (α, s) = 0 corresponds to α’s
belief that there is some D ∈ W such that D ⊆ A (which will be vindicated if α
is on the true path and is not initialised at any stage t > s). P (α, s) = 1, on the
other hand, corresponds to α’s belief that there is no such D in W .

The stream for any α ∈ T . S(α, s) = { x(β, s) | x(β, s) ≥ 0 & α ⊆ β } is the

(finite) stream associated with α at stage s and corresponds to the set of num-
bers already processed by the construction at stage s and which are (roughly
speaking) available for processing by α at stage s + 1. Note that by definition
x(α, s) /∈ S(α̂〈n〉, s) for any n ∈ {0, 1, 2}. (This observation is significant for the
construction for the case α ∈ N and trivial otherwise.)

Global parameters for stage s+ 1. Each stage s+1 has the following parameters.

(i) z(s + 1, t) ∈ ω ∪ {break} is a floating witness which is passed down the s + 1
stage approximation to the true path. When t = 0, z(s+1, t) starts life by denoting
the number s. For t ≥ 0, the witness z(s+1, t) is passed to the strategy α of length
t eligible to act at substage t + 1 provided that z(s + 1, t) 6= break. The strategy
α decides whether (a) to set z(s + 1, t + 1) = break, thus causing stage s + 1 to
terminate4, or (b) to reallocate z(s + 1, t + 1) to some number belonging to its s
stage stream, or (c) to reset z(s+ 1, t+ 1) = z(s+ 1, t). In case (a) the strategy α
either sets5 x(α, s+1) = z(s+1, t) or dumps z(s+1, t) into A, whereas in case (b)
α always dumps z(s+ 1, t) into A. Note that case (a) corresponds to α ∈ N ∪ P ,
case (b) to α ∈ R whereas case (c) may apply to any strategy α. Also notice that
in cases (b) and (c) the new value of the floating witness z(s+1, t+1) is passed to
the strategy α̂〈i〉 of length t+ 1 eligible to act at stage t+ 2.

(ii) D(s + 1, t) ∈ F is a record, established at substage t, that defines a set of
numbers that will be dumped at the end of stage s. When t = 0, D(s+ 1, t) starts
life as ∅. D(s+ 1, t+ 1) is defined provided that z(s+ 1, t) 6= break (i.e. the stage
has not yet terminated) and in this case D(s+ 1, t) ⊆ D(s+ 1, t+ 1).

(iii) D(s+1) is the overall set of numbers dumped into A at the end of stage s+1.
Thus by definition D(s + 1) = D(s + 1, |βs| + 1) where βs is the s stage approxi-
mation to the true path.

Initialisation. For (Q,Q) ∈ {(R,R), (N,N ), (P,P)} and any α ∈ Q we say that
‘void’ is the initial value of Q(α, s) and that −1 is the initial value of x(α, s). For

4Note that termination of a stage is determined by the value of z(s + 1, t) only, not by the
length of the strategies eligible to act.

5This first case (i.e. x(α, s+ 1) = z(s+ 1, t)) happens only if α ∈ N .
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α ∈ R we say that ∅ is the initial value of Γα,i for i ∈ {0, 1}. Initialisation of a node
α ∈ T is the process of resetting its associated parameters to their initial values.

The Construction. The construction proceeds in stages s ∈ ω. At each stage s
the construction defines the following finite sets. DA[s] is the set of numbers already
Dumped into A while FA[s] is the set of numbers already used by the construction
(i.e. having visited A during at least one stage) but still Free, i.e. nondumped.
IA[s] is the set of (free) numbers Inside A and OA[s] is the set of (free) numbers
Outside A. The intention here is that IA[s] ∩ OA[s] = ∅, FA[s] = IA[s] ∪ OA[s],
FA[s] ∩DA[s] = ∅, and FA[s] ∪DA[s] = ω↾s. The s stage approximation to A will
be defined to be A[s] = IA[s] ∪DA[s].

We say that a number x ∈ ω is new if it is greater than any number used in the
construction so far.

To facilitate understanding of the construction we suggest that the reader also con-
sult the informal observations relative to stage s+ 1 made on page 17.

Stage s = 0.

Set A[s] = IA[s] = OA[s] = FA[s] = DA[s] = ∅ and initialise all α ∈ T .

Stage s+ 1.

This stage consists of substages t ≥ 0 such that some strategy α ∈ T acts (i.e. is
processed) at substage t+ 1 provided that z(s+ 1, t) 6= break. If so, α decides the
value of z(s + 1, t + 1) and D(s + 1, t + 1), the value of its local parameters and
(accordingly), if z(s+ 1, t+ 1) ∈ ω, which strategy α̂〈n〉 is eligible to act next.

Substage 0.

Set z(s+ 1, 0) = s and D(s+ 1, 0) = ∅.

Substage t+ 1. (Under the assumption that z(s+ 1, t) ∈ ω.)

We suppose that α is the strategy of length t which is eligible to act at this sub-
stage. We distinguish cases depending on the requirement R assigned to α.

Case 1. α ∈ RΨ,Ω0,Ω1
. Process the first of the following cases applicable.

Reminder. We are using the notation Ψ and Ωi as shorthand for Ψe and Ωe,i for
some index e and Γi as shorthand for Γα,i.

Case 1.1 There is a number z ∈ S(α̂〈1〉, s) such that z /∈ A[s] but z ∈ Γ
ΩA

1

1 [s].

Then set z(s+ 1, t+ 1) = z for the least such z, define

D(s+1, t+1) = D(s+1, t) ∪ {z(s+1, t)} ∪


 ⋃

1≤i≤2

S(α̂〈i〉, s) \ {z(s+ 1, t+ 1)}


 ,

and Γ1[s+ 1] = ∅. Also reset Γ0[s+ 1] = Γ0[s]. Set R(α, s+ 1) = 0.

Remark. R(α, s + 1) = 0 indicates that α̂〈0〉 will be eligible to act at substage
t + 2. (See Ending substage t + 1 on page 17.) Note that the floating witness
z(s+ 1, t+ 1) will be passed to α̂〈0〉.

Case 1.2 There is a number z ∈ S(α̂〈2〉, s) such that z ∈ A[s] ∩ΨΩA
0 ⊕ΩA

1 [s].
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Then set z(s+ 1, t+ 1) = z for the least such z, define

D(s+ 1, t+ 1) = D(s+ 1, t) ∪ {z(s+ 1, t)} ∪
(
S(α̂〈2〉, s) \ {z(s+ 1, t+ 1)}

)
,

and, for 0 ≤ i ≤ 1 define Γi[s+ 1] = Γi[s] ∪ {〈z(s+ 1, t+ 1),ΩA
i [s]〉}.

Set R(α, s+ 1) = 1.

Case 1.3 Otherwise.

Then reset z(s+1, t+1) = z(s+1, t), D(s+1, t+1) = D(s+1, t), Γi[s+1] = Γi[s]
for 0 ≤ i ≤ 1 and set R(α, s+ 1) = 2.

Case 2. α ∈ NW . Process the first of the following cases applicable.

Case 2.1. N(α, s) = 0.

(Note that this means that x(α, s) ∈ OA[s] ⊆ ω\A[s].) Set z(s+1, t+1) = z(s+1, t),
D(s+ 1, t+ 1) = D(s+ 1, t) and reset x(α, s + 1) = x(α, s) and N(α, s+ 1) = 0.

Case 2.2. N(α, s) = 1 and x(α, s) ∈ W [s].

Set z(s+ 1, t+ 1) = break and

D(s+ 1, t+ 1) = D(s+ 1, t) ∪ {z(s+ 1, t)} ∪ S(α̂〈1〉, s) .
(Note that S(α, s) = S(α̂〈1〉, s)\{x(α, s)} in this case.) Reset x(α, s+1) = x(α, s)
and set N(α, s+ 1) = 0.

Case 2.3. N(α, s) = 1 and x(α, s) /∈ W [s].

Reset z(s + 1, t + 1) = z(s + 1, t) and D(s + 1, t + 1) = D(s + 1, t). Also reset
x(α, s+ 1) = x(α, s) and N(α, s+ 1) = 1.

Case 2.4. N(α, s) = void and z(s+ 1, t) ≥ |α|.

Set z(s+ 1, t+ 1) = break and D(s+ 1, t+ 1) = D(s+ 1, t). Also set x(α, s+ 1) =
z(s+ 1, t) and N(α, s+ 1) = 1.

Case 2.5. Otherwise (i.e. N(α, s) = void and z(s+ 1, t) < |α|).

Set z(s+ 1, t + 1) = break and D(s + 1, t+ 1) = D(s + 1, t) ∪ {z(s+ 1, t)}. Also
reset x(α, s+ 1) = −1 and N(α, s+ 1) = void.

Case 3. α ∈ PW . Process the first of the following cases applicable.

Notation. For the sake of Cases 3.2 and 3.3 we use the notation

Ωα,s+1 = { x(β, s) | x(β, s) ≥ 0 & N(β, s) = 1 & β <L α }

∪ { x(β, s+ 1) | x(β, s+ 1) ≥ 0 & N(β, s+ 1) = 1 & β ⊂ α } .

(Note that N(β, s+ 1) = 1 and β ⊂ α implies that β̂〈1〉 ⊆ α.)

Case 3.1. P (α, s) = 0.

(Note that the implication here is that there is some D ∈ W [s] such that D ⊆ A[s].)
Reset z(s+1, t+1) = z(s+1, t),D(s+1, t+1) = D(s+1, t) and reset P (α, s+1) = 0.

Case 3.2. P (α, s) = 1 and for some D ∈ W [s].

D ⊆ Ωα,s ∪ DA[s] ∪ D(s+ 1, t) ∪ {z(s+ 1, t)} ∪ S(α, s) . (5.1)

(Note that S(α, s) = S(α̂〈1〉, s) in this case.) Set z(s+ 1, t+ 1) = break,

D(s+ 1, t+ 1) = D(s+ 1, t) ∪ {z(s+ 1, t)} ∪ S(α, s) ,
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and set P (α, s+ 1) = 0.

Case 3.3. Otherwise. (I.e. P (α, s) ∈ {1, void} and (5.1) holds for no D ∈ W [s].)
Reset z(s+1, t+1) = z(s+1, t), D(s+1, t+1) = D(s+1, t) and set P (α, s+1) = 1.

Ending substage t+1. Supposing that α ∈ Q withQ ∈ {R,N ,P}, if z(s+1, t+1) ∈
ω then define α̂〈Q(α, s + 1)〉 to be eligible to act next and go to substage t + 2.
Otherwise (i.e. if z(s+ 1, t+ 1) = break) go to End of Stage s+ 1.

Remark. The last node eligible to act, and hence processed, at stage s+1 is either
an N node via Case 2.2, 2.4 or 2.5 or otherwise a P node via Case 3.2.

End of Stage s+ 1. Supposing that α of length t is the last strategy to be processed

define βs+1 = α. Set D(s + 1) = D(s + 1, t+ 1) and initialise all nodes in the set
G = { β | α < β } (i.e. all nodes β such that α <L β or α ⊂ β). For every
β ∈ T such that β <L α reset β’s parameters for stage s + 1 to their value at
stage s. Before proceeding note that, by initialisation, for any β ∈ N such that
N(β, s+ 1) ∈ {0, 1}, β ≤ α. Define

IA[s+ 1] = { x(β, s+ 1) | x(β, s+ 1) ≥ 0 & N(β, s+ 1) = 1 } ,

OA[s+ 1] = { x(β, s+ 1) | x(β, s+ 1) ≥ 0 & N(β, s+ 1) = 0 } ,

FA[s+ 1] = IA[s+ 1] ∪ OA[s+ 1] ,

DA[s+ 1] = DA[s] ∪ D(s+ 1) ,

and

A[s+ 1] = IA[s+ 1] ∪ DA[s+ 1] .

(And note that FA[s + 1] = { x(β, s + 1) | x(β, s + 1) ≥ 0 }.) For every γ ∈ T
redefine the stream for γ as follows.

SA(γ, s+ 1) = { x(β, s+ 1) | x(β, s+ 1) ∈ FA[s+ 1] & γ ⊆ β } .

Note that by resetting, if γ <L α then S(γ, s+1) = S(γ, s) whereas, by initialistion,
if α < γ then S(γ, s+ 1) = ∅.

Go to stage s+ 2.

Verification.

The following informal observations clarify the mechanics of the construction and
underline its inherent simplicity.

Some properties of stage s+ 1.

(i) FA[s+ 1] comprises precisely the set of witnesses x(γ, s+ 1) ≥ 0 such that
γ ≤ βs+1.

(ii) At most one number is removed from A at stage s + 1. Indeed, this can
only happen if Case 2.2 applies at substage |βs+1| + 1 and the witness6

x = x(βs+1, s) is extracted from A.
(iii) FA[s+ 1] \ FA[s] ⊆ {s}. And if indeed s ∈ FA[s+ 1] then Case 2.4 applies

at substage |βs+1| + 1 and s = x(βs+1, s + 1). Also this means that the
floating witness z(s + 1, t) never changes value. I.e. z(s + 1, t) = s for all
0 ≤ t ≤ |βs+1|.

6x = x(βs+1, s) = x(βs+1, s+ 1) in this case.
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(iv) If z(s + 1, |βs+1|) 6= s (i.e. if the floating witness changes value at least
once) then z(s + 1, |βs+1|) = x(γ, s) for some βs+1 <L γ. Likewise each
intermediate value of the floating witness z(s + 1, t) is a witness x(γ′, s)
for some βs+1 <L γ′. Moreover, the only one of the values of the floating
witness that (possibly) remains in FA[s + 1] is x(γ, s). Note that this
happens if Case 2.4 applies at substage |βs+1|+ 1 forcing x(βs+1, s+ 1) =
x(γ, s). All other values (including s) of z(s+ 1, t) are dumped into A.

(v) Nontrivial cases of (ii), (iii) and (iv) are mutually exclusive. In other words,
extraction of a number from A (see (ii)) forces s and all x(γ, s) ≥ 0, such
that βs+1 < γ to be dumped into A. On the other hand s ∈ FA[s + 1]
(see (iii)) precludes any extraction from A and forces all x(γ, s) ≥ 0 such
that βs+1 < γ to be dumped into A. Likewise x(γ, s) ∈ FA[s+ 1] for some
βs+1 <L γ (see (iv)) precludes any extraction from A and forces s (as well
as all other x(γ̂, s) ≥ 0 such that βs+1 < γ̂) to be dumped into A.

(vi) βs+1 is either in N and Case 2.2, 2.4 or 2.5 applies at substage |βs+1| + 1
or otherwise βs+1 is in P and Case 3.2 applies at substage |βs+1|+ 1.

We now verify the construction via the Lemmas below. Note firstly that Lem-
mas 5.4-5.6 are proved by inspection (only, for some of the statements involved)
and straightforward induction arguments over the stages of the construction, using
the observations above. (Detailed proofs are given in [Bad].)

Lemma 5.4. For all stages s > 0 and x ∈ FA[s] both (1) and (2) are true.

(1) One of the three following (mutually exclusive) cases applies for x.
(a) x = s− 1, βs ∈ N and x = x(βs, s).
(b) There exists γ ∈ N such that γ ≤ βs−1, βs <L γ, x = x(γ, s − 1),

x(γ, s) = void and x(βs, s) = x.
(c) There exists γ ∈ N such that γ ≤ βs−1, γ ≤ βs and x = x(β, s− 1) =

x(β, s).
(2) For all γ1, γ2 ∈ N such that x = x(γ1, s) = x(γ2, s), γ1 = γ2.

Remark. By Lemma 5.4, and the definition of FA[s] we can now assume that x ∈
FA[s] if and only if there exists a unique (N strategy) γ ≤ βs such that x = x(γ, s).
Clearly also in this case for (L, i) ∈ {(I, 1), (O, 0)}, we have that x ∈ LA[s] if and
only if N(γ, s) = i.

Lemma 5.5. For all s ≥ 0, the following statements are true.

(1) D(s) ⊆ DA[s] ⊆ DA[s+ 1].
(2) FA[s] = IA[s] ∪ OA[s] and IA[s] ∩ OA[s] = ∅.
(3) DA[s] ∩ FA[s] = ∅.
(4) {n | 0 ≤ n < s } = FA[s] ∪DA[s].
(5) For any α ∈ T such that α ⊆ βs,

FA[s] = S(α, s) ∪ { x(γ, s) | x(γ, s) ≥ 0 & γ < α } .

Lemma 5.6. Suppose that β ∈ T is such that x(β, s) ≥ 0. Then for all γ ⊆ β such
that γ ∈ N , N(γ, s) ∈ {0, 1} and x(γ, s) ≥ 0.

Lemma 5.7. For any α ∈ T and stage s ≥ 0, |S(α, s+ 1) \ S(α, s)| ≤ 1.

Proof. This follows by inspection of the construction at stage s + 1. Indeed, if
z ∈ S(α, s + 1) \ S(α, s) then for some substage t of stage s + 1, z(s + 1, t) = z.
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However at most one such z survives without being dumped into D(s + 1). (And
in this case z = x(βs+1, s+ 1).) �

Lemma 5.8. For all stages s ≥ 0 and any strategies α, β ∈ T such that S(α, s) 6= ∅
and S(β, s) 6= ∅, if α <L β, then maxS(α, s) < minS(β, s).

Proof. By induction over stages s ≥ 0. The case s = 0 is trivially true. So
consider case s+ 1. For the hypotheses of the Lemma to be true at stage s+ 1 it
must be the case that β ≤ βs+1 (otherwise S(β, s + 1) = ∅). if β <L βs+1 then
S(α, s+1) = S(α, s) and S(β, s+1) = S(β, s) and the result follows by the induction
hypothesis. Otherwise β ⊆ βs+1. As seen in Lemma 5.7, if D = S(β, s+1)\S(β, s),
then |D| ≤ 1. If |D| = 0 then the result follows as above. Otherwise suppose that
z is the number contained in D. Then either z = s and so z > maxS(α, s) ⊆
{n | n < s } or z ∈ S(γ, s) for some β <L γ (via Case 1.1 or 1.2 applied at some
substage 1 ≤ t ≤ |β| of stage s + 1) in which case z > maxS(β, s) > maxS(α, s),
by application of the induction hypothesis. �

From inspection of Lemma 5.8 and its proof we have the following Corollary.

Corollary 5.9. For any stage s ≥ 0, strategy α ∈ T , and number z, if z ∈
S(α, s+ 1) \ S(α, s) then z > maxS(α, s).

Lemma 5.10. For all x, y ∈ ω, stages 0 ≤ s < t and nodes α ∈ T , if x ∈
S(α, s) ∩ IA[s], y ∈ S(α, s+ 1) \ S(α, s), and {x, y} ⊆ S(α, t), then x ∈ IA[t].

Remark 1. Less formally Lemma 5.10, says that if y enters7 a stream to which x
already belongs as well as already belonging to A (at this point in the construction)
then, for as long as both x and y remain in the stream, x remains in A.

Remark 2. Notice that, by Corollary 5.9, x < y.

Proof. We reason by induction over stages t ≥ s+ 1.

Case t = s + 1. By inspection of the construction we see that y = x(βs+1, s+ 1).
Let β ∈ N be such that x = x(β, s + 1). From Lemma 5.6 and the definition of
Case 2.4 of the construction we can deduce that it is not the case that βs+1 ⊆ β.
Moreover βs+1 6<L β since then β would be initialised at stage s + 1 forcing x ∈
D(s + 1) ⊆ DA[s + 1] and hence x /∈ S(α, s + 1) ⊆ FA[s + 1] by Lemma 5.5(3).
Thus there are two subcases as follows.

Subcase β <L βs+1. Then x = x(β, s + 1) by Lemma 5.4(1)(c) and N(β, s + 1) =
N(β, s) by resetting. Hence x ∈ IA[s+ 1] by definition.

Subcase β ⊂ βs+1. Then, as above, x = x(β, s + 1). Moreover, notice that if
x ∈ OA[s + 1], then Case 2.2 applies at substage |β| + 1 forcing βs+1 = β, a
contradiction. Hence x ∈ IA[s+ 1].

Case t > s + 1. We assume the extended induction hypothesis that, not only
does the Lemma hold for stage t − 1, but also that the nodes β, γ ∈ N such that
x(β, t − 1) = x and x(γ, t − 1) = y satisfy β < γ. (Notice that we have already
seen that the extended induction hypothesis is true when t− 1 = s+ 1.) Again we
reason by subcases.

Subcase βt < β. Notice that βt ⊂ β can only happen via Case 3.2 of the construction

7By Lemma 5.7 y is the unique such number.
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in which case β is initialised forcing x ∈ D(t). So we can suppose that βt <L β.
However in this case there is at most one strategy βt <L µ such that8 x(µ, t − 1)
is not forced into D(t) by initialisation. However, βt <L β < γ and we have
{x, y} ∩ D(t) = ∅ by hypothesis; a contradiction. Thus βt < β does not happen.

Remark. We can now assume that β ≤ βt and, by Lemma 5.4, that x(β, t) =
x(β, t− 1).

Subcase βt < γ. As above we can suppose that βt <L γ. As y = x(γ, t − 1),
for y to survive in S(α, t) ⊆ FA[t] it must be the case that y = x(βt, t) (since
otherwise y ∈ D(t)) via Case 2.4 applied to z(t, |βt|) = y at substage |βt| + 1.
Thus Case 2.2 does not occur at any substage9 of stage t. In particular (under the
inductive assumption that x ∈ IA[t− 1]) this means that x ∈ IA[t]. Also βt 6= β (as
x(βt, t− 1) = void by definition of Case 2.4). Hence β < βt.

Subcase βt ≥ γ. In this subcase, Case 2.2 of the construction does not apply
to node β during stage t since this would force βt = β < γ. Moreover, x(β, t) =
x(β, t−1) = x and x(γ, t) = x(γ, t−1) = y (by Lemma 5.4(1)(c)). Combining these
two observations we see that x ∈ IA[t] and that the extended induction hypothesis
is again satisfied. �

Notation, Assumptions and Definitions. For n ≥ 0 we define

True∞,n := {α | |α| = n & ∀t(∃s ≥ t)[α ⊆ βs ] } .

If True∞,n 6= ∅, letting β = min<L
True∞,n (i.e. the least strategy of length n under

<L), we define δn = β if there exists sβ such that, for all s ≥ sβ , β is not initialised
at stage10 s. Otherwise δn is undefined.

For any γ ∈ T and parameter p(γ, s). If lims→∞p(γ, s) exists we define p(γ) to
be this value (otherwise we say that p(γ) is undefined). We define

DA =
⋃

s∈ω

DA[s]

FA = {n | ∃s(∀t ≥ s)[n ∈ FA[t] ] }

and define IA and OA likewise (so that FA = IA ∪ OA). Define

A = {n | ∃s(∀t ≥ s)[n ∈ A[t] ] } .

Also for all α ∈ T define,

S(α) = {n | ∃s(∀t ≥ s)[n ∈ S(α, t) ] } .

Lemma 5.11. For all n ≥ 0, δn is defined.

8x(µ, t − 1) /∈ D(t) if and only if (i) Case 1.1 or 1.2 applies at some stage r ≤ |βt| and (ii)
z(t, p) = x(µ, t − 1) for all r ≤ p ≤ |βt| and (iii) x(βt, t) = x(µ, t − 1) via Case 2.4 at substage
|βt|+ 1.

9Case 2.2 can only happen at substage |βt|+ 1 since it induces z(t, |βt|+ 1) = break.
10I.e. such that for all s ≥ sβ , βs 6<L β and, if |βs| < |β|, then β <L βs. Note that this

observation does not apply to the tree construction of Theorem 5.20 where it may be the case
that βs ⊂ δn for infinitely many s. (In this case in the tree construction of Theorem 5.20 any
such βs is an N node and it is in fact the case that βs ̂ 〈0〉 ⊆ δn.)
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Proof. By induction on n. The case n = 0 is obvious. So suppose that α = δn is
defined and let sn be a stage such that βs ≥ α for all s ≥ sn. There are three cases
to consider.

Case α ∈ R. By construction, at each α-true stage s, |βs| > α. Hence, by the
induction hypothesis β̂〈i〉 ∈ True∞,n+1 for some i ∈ {0, 1, 2}. Thus δn+1 is
defined.

Case α ∈ N . Inspection of the construction shows that, for any α-true stage s > 0,
if m = z(s, |α|) then either m = s − 1, or m = x(γ, s − 1) for some α <L γ
whereas, for all t ≥ s, either m ∈ DA[t] or m = x(β, t) for some11 α ⊆ β. It
follows that for all α-true stages sn < p < r, z(p, |α|) 6= z(r, |α|), and (and in fact
z(p, |α|) < z(r, |α|)). Hence at one such α-true stage s (if N(α, s− 1) = void), Case
2.4. of the construction will apply, so that x(α, s) = z(s, |α|). Moreover, clearly for
all t ≥ s, x(α, t) = x(α, s). Notice also that Case 2.2 can apply at most once after
stage s. In other words, there is a stage s′ such that at every α true stage t ≥ s′,
|βt| > |α|. Thus (as in the first case) δn+1 is defined to be α̂〈i〉 for some i ∈ {0, 1}.

Case α ∈ P . Clearly Case 3.2 applies at most once after stage sn. Thus, as above,
δn+1 is defined to be α̂〈i〉 for some i ∈ {0, 1}.

Note that to each case there corresponds a stage sn+1 as in the induction hypothesis.
Thus the latter is validated. This concludes the proof of the Lemma. �

Corollary 5.12. For all n ≥ 0, S(δn) is infinite.

Proof. It follows from Lemma 5.11 that, for all n such that δn ∈ N , x(δn) is
defined (with value in ω). Moreover, a straightforward argument by induction
using Lemma 5.4(2) implies that, for all such p 6= m, x(δp) 6= x(δm). It now suffices
to notice that { x(δm) | δm ∈ N & m > n } ⊆ S(δn). �

Lemma 5.13. The following statements are true.

(1) A = DA ∪ FA.
(2) FA = IA ∪ OA and IA ∩ OA = ∅.
(3) DA ∩ FA = ∅.
(4) ω = FA ∪ DA.
(5) For any α ∈ T such that α ⊆ δ,

FA = S(α) ∪ { x(γ) | x(γ) ≥ 0 & γ < α } .

Proof. (1) and (2) are obvious by definition, whereas (3), (4) and (5) follow by
application of Lemma 5.5 using induction over the stages of the construction. �

Notation. For G ∈ {F, I,O} and α ∈ T we use the notation G<α
A [s] to denote the

set GA[s] ∩ { x(γ, s) | β < α }.

Lemma 5.14. For G ∈ {F, I,O}, any α ⊆ δ and stage sα such that α ≤ βs for all
s ≥ sα, G

<α
A [s] = G<α

A [sα].

Proof. A straightforward induction over s ≥ sα. �

By definition of T and δ, for any requirement Q there is precisely one strategy α
associated with Q such that α ⊆ δ. Accordingly we consider each such α by cases.

11Note that α ⊂ β implies that x(α, t− 1) ≥ 0, i.e. is already defined (see Lemma 5.6).
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Lemma 5.15. α ∈ RΨ,Ω0,Ω1
. If A = ΨΩA

0 ⊕ΩA
1 and A is not c.e. then A≤eΩ

A
i for

some i ∈ {0, 1}.

Proof. Define Λ = { 〈z, ∅〉 | z ∈ DA }. There are three cases to consider.

Case α̂〈2〉 ⊂ δ. Consider x ∈ S(α̂〈2〉). Clearly x /∈ A. Indeed it cannot

be the case that x ∈ A ∩ ΨΩA
0 ⊕ΩA

1 since then x would have been removed from
α̂〈2〉’s stream via Case 1.2 of the construction. Moreover, if x ∈ A \ ΨΩA

0 ⊕ΩA
1

then A 6= ΨΩA
0 ⊕ΩA

1 . A contradiction. We see therefore that α̂〈2〉 ⊆ δ implies that
A =∗ DA, i.e. that A is c.e. Hence α̂〈2〉 ⊂ δ cannot apply (under the assumptions
of the Lemma).

Case α̂〈1〉 ⊂ δ. Consider x ∈ S(α̂〈1〉). By construction there exists a unique
stage sx and, for i ∈ {0, 1}, a unique axiom 〈x, Fi,x〉, such that Fi,x =def ΩA

i [sx]
was enumerated into Γi at stage sx + 1 via Case 1.2 of the construction. Now, it
follows from Lemma 5.8, Corollary 5.9 and the dumping activity at stage sx + 1
that { z | z > x & z ∈ A[sx] } ⊆ DA ⊆ A. On the other hand we can also
deduce from Lemma 5.14, Lemma 5.10 and the dumping activity at stage sx + 1
that { z | z < x & z ∈ A[sx] } ⊆ A. Notice now that these observations imply
that, for each i ∈ {0, 1},

Fi,x ⊆ Ω
A∪{x}
i (5.2)

whereas the definition of Case 1.2 implies that

x ∈ ΨF0,x⊕F1,x (5.3)

• Suppose that x ∈ A. Then by (5.2), F1,x ⊆ ΩA
1 , and so x ∈ Γ

ΩA
1

1 .

• Now suppose that x /∈ A. Then x /∈ Γ
ΩA

1

1 . Indeed x ∈ Γ
ΩA

1

1 would imply the
transfer of x from α̂〈1〉’s stream to α̂〈0〉’s stream at some stage s > sx (via Case
1.1).

We see therefore that α̂〈1〉 ⊆ δ implies (by Lemma 5.13) that A =∗ Φ
ΩA

1

1 where
Φ1 =def Γ1 ∪ Λ.

Case α̂〈0〉 ⊂ δ. Consider x ∈ S(α̂〈0〉) and (for i ∈ {0, 1}) let sx and Fi,x

be defined as above. Also let tx + 1 be the stage at which the application of
Case 1.1 caused x to be transferred from α̂〈1〉’s stream to α̂〈0〉’s stream. Note
that, similarly to the argument used in the last case, it follows from Lemma 5.8,
Corollary 5.9, Lemma 5.14, Lemma 5.10 and the dumping activity at stage tx + 1
that

F1,x ⊆ ΩA
1 (5.4)

(i.e. whether or not x ∈ A).

• Suppose that x ∈ A. Then by (5.2), F0,x ⊆ ΩA
0 , and so x ∈ Γ

ΩA
0

0 .

• Now suppose that x /∈ A. Then x /∈ Γ
ΩA

0

0 . Indeed, if x ∈ Γ
ΩA

0

0 , then F0,x ⊆ ΩA
0 .

However, by (5.4), F1,x ⊆ ΩA
1 and by (5.3) x ∈ ΨF0,x⊕F1,x . Thus x ∈ ΨΩA

0 ⊕ΩA
1 \A.

A contradiction.

We see therefore that α̂〈0〉 ⊆ δ implies (by Lemma 5.13) that A =∗ Φ
ΩA

0

0 where
Φ0 =def Γ0 ∪ Λ. �

Lemma 5.16. α ∈ NW . Then x(α) ∈ A if and only if x(α) /∈ W .
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Proof. Inspection of the construction shows that if α̂〈1〉 ⊆ δ, then x(α) ∈ A \W
whereas if α̂〈0〉 ⊆ δ then x(α) ∈ W \A. �

Notation. For G ∈ {F, I,O} and α ⊆ δ we define (on the strength of Lemma 5.14)
G<α

A = lims→∞G<α
A [s]

Note that, for any α ⊆ δ, O<α
A ⊆ A.

Lemma 5.17. α ∈ PW . Let E = O<α
A . If there is no D ∈ W such that D ⊆ A

then, for all D ∈ W , D ∩ E 6= ∅.

Proof. Let sα be the least stage such that βs ≥ α for all s ≥ sα.

Case α̂〈0〉 ⊆ δ. Then Case 3.2 applied relative to α at some stage s ≥ sα and it
follows by Lemma 5.14 and the dumping activity at stage s that there is a finite
set D ∈ W such that D ⊆ A.

Case α̂〈1〉 ⊆ δ. Then Case 3.2 applies at no stage s ≥ sα and we can deduce
from Lemmas 5.5 and 5.13 in conjunction with Lemma 5.14 that D ∩ E for all
D ∈ W . �

Lemma 5.18. All the requirements are satisfied.

Proof. For the N and P requirements this is immediate by Lemmas 5.16 and 5.17.
Satisfaction of each R requirement follows from the conjunction of Lemma 5.15
with the fact that all the N requirements are satisfied (and hence A is not c.e.). �

Lemma 5.19. A is low.

Proof. Consider n ∈ ω. Notice that by construction n can only be extracted from
A by N strategies of length ≤ n and moreover that each such strategy extracts n
at most once. It follows that n can be extracted from A at most 2n+1 times. Since
this is true for all n ∈ ω, the construction defines a ∆0

2 approximation to A. Since
A is also enumeration 1-generic, A is low (by Corollary 3.11). �

This concludes the proof of Theorem 5.3. �

Theorem 5.20. There exists a properly Σ0
2 enumeration 1-generic nonsplittable

degree.

Proof. We proceed as in the proof of Theorem 5.3 but replacing requirements NW

by requirements of the form

NB,Φ,Ψ : B = ΦA & A = ΨB ⇒ (∃x ∈ B)[ lims→∞Bs(x)↑ ]

where (B,Φ,Ψ) ∈ {(Be,Φe,Ψe)}e∈ω where the latter is a standard listing of triples
of Σ0

2 sets and enumeration operators with associated uniform approximations (Σ0
2

for the sets Be and c.e. for the Φ and Ψ operators) under the standard proviso that,
for every ∆0

2 set C there is an index i such that {Bi,s}s∈ω is a ∆0
2 approximation

to C.

Strategy for node α ∈ NB,Φ,Ψ [CC88].

In the following outline we use z for the momentary value of the floating witness
passed to α (so that the value of z in (1) below is different to its value in (2)) and
S(α) for the momentary value of α’s stream etc. Each strategy α will have two
parameters whose roles are as a witness x(α) and an oracle witness F (α).

(1) Set x(α) = z and put x(α) in A.
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(2) Wait for a minimal finite set F such that

〈x(α), F 〉 ∈ Ψ and F ⊆ B ∩ ΦA∪S(α)∪{z} .

(3) Set F (α) = D and dump12
(
S(α) \ {x(α)}

)
∪ {z} into A.

(4) Remove x(α) from A.
(5) Wait for x(α) /∈ ΨB.
(6) Put x(α) into A.
(7) Wait for F (α) ⊆ B.
(8) Go back to Step 4.

Finitary Outcomes. There are three finitary outcomes to the strategy, each corre-
sponding to either A 6= ΨB or B 6= ΦA.

(i) The strategy gets stuck at Step 2. In this case x(α) ∈ A and either x(α) /∈ ΨB

(so that x(α) ∈ A \ ΨB) or otherwise x(α) ∈ ΨB but for every finite set F such
that 〈x(α), F 〉 ∈ Ψ and F ⊆ B, F * ΦA (so that, for some d, d ∈ B \ ΦA).

(ii) The strategy gets stuck at Step 5. In this case x(α) ∈ ΨB \A.
(iii) The strategy gets stuck at Step 7. In this case F (α) ⊆ ΦA, so there is some
d ∈ F (α) such that d ∈ ΦA \B.

Infinitary Outcome. There is one infinitary outcome as follows.

(iv) The strategy loops through Step 4 via Step 8 infinitely often. In this case, dur-
ing each loop the passage from Step 5 to 6 corresponds to some x ∈ F (α) having
left B and the passage from Step 7 to 8 to x having reentered B. Thus there is
some x ∈ D(α) such that lims→∞Bs(x)↑.

In the Tree of Strategies (see page 13), for α ∈ N , we define α̂〈n〉 ∈ T for all
n ∈ {0, 1, 2}.

The strategy α ∈ NB,Ψ,Φ has several local parameters as follows. N(α, s) ∈
{0, 1, 2, void} is the outcome parameter, x(α, s) ∈ {−1} ∪ ω is the witness and
F (α, s) ∈ {−1} ∪ F the oracle witness parameter associated with α. Strategy α
also has a pause switch parameter p(α, s) ∈ {continue, pause}. When α is in its
initialised state, N(α, s) = void, x(α, s) = D(α, s) = −1 and p(α, s) = continue.
Strategy α works with its own relativised approximation {B[α, s]}s∈ω defined pre-
cisely as in (??) on page ?? with B replacing A. Likewise ΨB[α, s] is defined in a
similar way to ΘA[α, s].

At substage t + 1 of stage s + 1 of the construction Case 2 of the construction
on page 16 is replaced by the following.

Case 2. α ∈ NB,Φ,Ψ. Process the first of the following cases applicable.

For clarity notes are added below following each case. In these notes we use the
shortand x(α) to denote x(α, s + 1) provided that x(α, s + 1) = x(α, s) and z to
denote z(s + 1, t + 1) provided that z(s + 1, t + 1) = z(s + 1, t). Moreover for
0 ≤ n ≤ 8, “Step n” refers to the strategy for α described above.

Case 2.1. N(α, s) = 0, p(α, s) = continue, and x(α, s) ∈ ΨB[α, s+ 1].

Set z(s+ 1, t+ 1) = z(s+ 1, t), D(s + 1, t+ 1) = D(s + 1, t). For q ∈ {N, p, x, F}
reset q(α, s+ 1) = q(α, s).

Thus strategy α̂〈0〉 is eligible to act at substage t + 2 and floating witness z is

12Note that in the construction S(α̂ 〈2〉) = S(α) \ {x(α)}.
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passed to α̂〈0〉. N(α, s + 1) = N(α, s) = 0 means that x(α) remains outside A.
This case corresponds to waiting at Step 5.

Case 2.2. N(α, s) = 0, p(α, s) = continue, and x(α, s) /∈ ΨB[α, s+ 1].

Set z(s+ 1, t+ 1) = z(s+ 1, t), D(s + 1, t+ 1) = D(s+ 1, t). Set N(α, s + 1) = 1
and for q ∈ {p, x, F} reset q(α, s+ 1) = q(α, s).

Thus strategy α̂〈1〉 is eligible to act at substage t + 2 and floating witness z is
passed to α̂〈1〉. N(α, s) = 0 and N(α, s+1) = 1 means that x(α) is put back into
A. This case corresponds to moving from Step 5 to Step 7.

Case 2.3. N(α, s) = 0 and p(α, s) = pause.

Set z(s+1, t+1) = z(s+1, t), D(s+1, t+1) = D(s+1, t). Set p(α, s+1) = continue
and, for q ∈ {N, x, F} reset q(α, s+ 1) = q(α, s).

Thus strategy α̂〈0〉 is eligible to act at substage t + 2 and floating witness z is
passed to α̂〈0〉. N(α, s + 1) = N(α, s) = 0 means that x(α) remains outside A.
In this case α’s strategy was paused at Step 4 at the previous α-true stage but now
resumes and moves to Step 5.

Case 2.4. N(α, s) = 1 and F (α, s) ⊆ B[α, s+ 1].

Set z(s+ 1, t+ 1) = break and

D(s+ 1, t+ 1) = D(s+ 1, t) ∪ S(α̂〈1〉, s) ∪ {z(s+ 1, t)} .

(Note that S(α̂〈2〉, s) = ∅ in this case.) Set N(α, s + 1) = 0, p(α, s + 1) = pause
and, for q ∈ {x, F} reset q(α, s+ 1) = q(α, s).

Thus strategy α = βs+1 and S(α̂〈1〉, s) ∪ {z(s+1, t)} is dumped into A. N(α, s) =
1 and N(α, s+1) = 0 means that x(α) is removed from A. In this case α’s strategy
moved from Step 7 via Step 8 to Step 4 and its processing is paused.

Case 2.5. N(α, s) = 1 and F (α, s) * B[α, s+ 1].

Set z(s+ 1, t+ 1) = z(s+ 1, t), D(s + 1, t+ 1) = D(s + 1, t). For q ∈ {N, p, x, F}
reset q(α, s+ 1) = q(α, s).

Thus strategy α̂〈1〉 is eligible to act at substage t + 2 and floating witness z is
passed to α̂〈1〉. N(α, s + 1) = N(α, s) = 1 means that x(α) remains inside A.
This case corresponds to waiting at Step 7.

Notation. For the sake of Cases 2.6 and 2.7 we use the notation

Ωα,s+1 = { x(β, s) | x(β, s) ≥ 0 & N(β, s) ≥ 1 & β <L α }

∪ { x(β, s+ 1) | x(β, s+ 1) ≥ 0 & N(β, s+ 1) ≥ 1 & β ⊂ α } .

(Note that N(β, s+ 1) = i and β ⊂ α implies that β̂〈i〉 ⊆ α.)

Case 2.6. N(α, s) = 2 and for some finite set F , 〈x(α, s), F 〉 ∈ Ψ[s] and

F ⊆ B[α, s+ 1] ∩ (Φ[s])Ωα,s+1 ∪DA[s]∪D(s+1,t)∪{z(s+1,t)} ∪S(α̂ 〈2〉,s) . (5.5)

Set z(s+ 1, t+ 1) = break and

D(s+ 1, t+ 1) = D(s+ 1, t) ∪ {z(s+ 1, t)} ∪ S(α̂〈2〉, s) .
Set N(α, s + 1) = 0 and F (α, s + 1) = F for the least F satisfying (5.5). For
q ∈ {p, x} reset q(α, s+ 1) = q(α, s).

Thus strategy α = βs+1 and {z(s+1, t)} ∪ S(α̂〈2〉, s) is dumped into A. N(α, s) =
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2 and N(α, s + 1) = 0 means that x(α) is removed from A. This case corresponds
to moving from Step 2 to Step 5.

Case 2.7. N(α, s) = 2 but there is no such finite set F .

Set z(s+ 1, t+ 1) = z(s+ 1, t), D(s + 1, t+ 1) = D(s + 1, t). For q ∈ {N, p, x, F}
reset q(α, s+ 1) = q(α, s). (Note that F (α, s) = −1 in this case.)

Thus strategy α̂〈2〉 is eligible to act at substage t + 2 and floating witness z is
passed to α̂〈2〉. N(α, s + 1) = N(α, s) = 2 means that x(α) remains inside A.
This case corresponds to waiting at Step 2.

Case 2.8. N(α, s) = void.

Set z(s + 1, t + 1) = break, D(s + 1, t + 1) = D(s + 1, t). Set N(α, s) = 2,
x(α, s+ 1) = z(s+ 1, t) and, for q ∈ {p, F}, reset q(α, s+ 1) = q(α, s).

Thus strategy α = βs+1 and α appropriates the floating witness z(s + 1, t) as its
local witness x(α, s+1). N(α, s+1) = 2 means that this new witness x(α, s+1) is
put into A. This case corresponds to application of Step 1 and moving to Step 2.

End of Stage s + 1 is the same as in the proof of Theorem 5.3 with two small
adjustments.

The first involves modifying the set of strategies initialised. Indeed, in the present

context, letting α = βs+1 it is the set Ĝ = { β | α̂〈0〉 <L β } that is initialised.
Note that when α is a P node then the initialisation defined here has the same effect
as initialising the set G = { β | α < β } (since any α̂〈0〉 ⊆ β is in its initial state
anyway in this case). Likewise the same can be said if α is an N node and Case
2.6 or 2.8 is applied (at the last substage |α| + 1). However in Case 2.4 the effect
of restricting initialisation to the set G′ means that the subtree { γ | α̂〈0〉 ⊆ γ }
is protected against initialisation. This is important as the proof may need to
construct an infinite path through this subtree in order to define its true path δ.

The second adjustment relates to the fact that in the present construction, for
any N node α and stage s such that x(α, s) ≥ 0, x(α, s) ∈ A[s] if and only if
N(α, s) ∈ {1, 2} (and not just N(α, s) = 1). Hence the construction defines

IA[s] = { x(β, s+ 1) | x(β, s+ 1) ≥ 0 & N(β, s+ 1) ≥ 1 } .

Verification. Checking thatNB,Φ,Ψ is satisfied is carried out by making the assump-
tion that there exists α ⊆ δ such that α ∈ NB,Φ,Ψ and considering the outcomes
of the strategy for α. This involves a straightforward argument which can be de-
rived from the description of the steps of the strategy for α in conjunction with the
specification of how strategy α is processed (i.e. via Cases 2.1-2.8 above), by taking
into account the notes added to each case. Notice however that the assumption
that α ⊆ δ exists requires us to also prove that, for some i ∈ {0, 1, 2}, α̂〈i〉 ⊆ δ,
i.e. implicitly that δ is infinite (which we do directly via Lemma 5.11 in the proof
of Theorem 5.3).

This is the reason for the introduction of a pause mechanism, i.e. the use of
the pause parameter p(α, s), since it forces δ to be infinite. To see this we first
consider the role of Case 2.4 by supposing that it is applied to α at stage s + 1.
We also assume that α is on the true path and that our work is subsequent to a
stage sα after which α is never in its initial state so that, in particular x(α, s) has
already stabilised at its final value. We denote (as usual) this value as x(α). Notice
firstly that, for any P strategy β and outcome i ∈ {0, 1, 2} such that β̂〈i〉 ⊆ α,
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x(α) ∈ S(β̂〈i〉, s), and that every z ∈ S(α̂〈1〉, s) except at most one number (via
Case 2.2) entered stream β̂〈i〉’s stream (and α̂〈1〉’s stream) at some stage t < s
when x(α) was already in β̂〈i〉’s stream as well as already being in A. Thus the
removal of x(α) from A by Case 2.4 would violate β’s strategy unless all such z are
dumped into A. Likewise the floating witness z = z(s + 1, t) (with t = |α|) was
processed (perhaps trivially) by β earlier in the stage under the assumption that
x(α) ∈ A, and so it also cannot enter β̂〈i〉’s stream at this stage without violating
β’s strategy. Thus we see that the dumping of all of S(α̂〈1〉, s) ∪ {z(s + 1, t)}
by Case 2.4 is fundamental to the preservation of β’s strategy. Moreover, since
there is now no floating witness left to pass to the strategy α̂〈0〉 the inherent role
attributed to the floating witness by the construction dictates that the stage must
be broken at this point. (There is also a principle of simplicity underlying this
approach.)

Suppose now that the pause mechanism is absent, so that in effect p(α, s) =
continue for all s. This means that Case 2.3 will never apply. Notice also that
outcome (iv) of α’s strategy entails that Case 2.2 and Case 2.4 each apply to α at
infinitely many α-true stages. Moreover this outcome does not exclude the situation
in which there is some stage s∗ such that every instance of Case 2.4 being applied to
α is followed, at the next α-true stage, by an instance of Case 2.2 being applied to
α. Observe that, under these conditions, the true path δ = α, i.e. is finite. However,
if we now reintroduce the pause mechanism we see that Case 2.3 applies subsequent
to each instance of Case 2.4 (over the set of α-true stages) meaning that, not only
is α̂〈0〉 ⊆ βs for infinitely many s (assuming that Case 2.4 applies infinitely often)
but also that at each such stage a different floating witness is passed to α̂〈0〉 (and
so into its stream/the subtree below it). Moreover when Case 2.3 applies, x(α) /∈ A
and so the floating witness z that Case 2.3 passes to α̂〈0〉 can safely enter α̂〈0〉’s
stream without violating the strategy of any N node β such that β̂〈i〉 ⊆ α since
any such β processed z under the assumption that x(α) /∈ A. (Remember here that
α̂〈0〉’s stream is a subset of β̂〈i〉’s stream.)

We conclude from this discussion that the pause mechanism enables us to apply
Lemma 5.11 in the present context and so deduce that δ is infinite. We are then
able to prove that all the requirements are satisfied in a similar manner to that
undertaken in Lemmas 5.15-5.18. Note that in particular for any α ∈ NB,Φ,Ψ such
that α ⊆ δ the pause mechanism does not affect the outcome of α’s strategy. Indeed
we find that α̂〈2〉 ⊆ δ corresponds to outcome (i) of α’s strategy and α̂〈1〉 ⊆ δ
corresponds to outcome (iii), whereas α̂〈0〉 ⊆ δ corresponds to (finitary) outcome
(i) or (infinitary) outcome (iv). �

Corollary 5.21. There exist both a low and a properly Σ0
2 enumeration 1-generic

degree 0e < a < 0′

e that is not 1-generic.

Proof. Apply Theorem 5.3 and Theorem 5.20 with the fact that every 1-generic
enumeration degree is splittable. �
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