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Preliminaries: The enumeration degrees

Definition
A ≤e B iff there is a c.e. set W , such that
A = W (B) = {x | ∃u(〈x ,u〉 ∈W ∧ Du ⊆ B)}.
de(A) = {B | A ≤e B & B ≤e A}
de(A) ≤ de(B) iff A ≤e B.

0e = de(∅) = {W |W is c.e. }.
de(A) ∨ de(B) = de(A⊕ B).

de(A)′ = de(A′), where A′ = LA ⊕ LA and LA = {x | x ∈Wx (A)}.
De = 〈De,≤,∨,′ ,0e〉 is an upper semi-lattice with jump operation
and least element.

Mariya I. Soskova (FMI) Definability March 30, 2011 2 / 40



Preliminaries: The enumeration degrees

Definition
A ≤e B iff there is a c.e. set W , such that
A = W (B) = {x | ∃u(〈x ,u〉 ∈W ∧ Du ⊆ B)}.
de(A) = {B | A ≤e B & B ≤e A}
de(A) ≤ de(B) iff A ≤e B.

0e = de(∅) = {W |W is c.e. }.
de(A) ∨ de(B) = de(A⊕ B).

de(A)′ = de(A′), where A′ = LA ⊕ LA and LA = {x | x ∈Wx (A)}.
De = 〈De,≤,∨,′ ,0e〉 is an upper semi-lattice with jump operation
and least element.

Mariya I. Soskova (FMI) Definability March 30, 2011 2 / 40



Preliminaries: The enumeration degrees

Definition
A ≤e B iff there is a c.e. set W , such that
A = W (B) = {x | ∃u(〈x ,u〉 ∈W ∧ Du ⊆ B)}.
de(A) = {B | A ≤e B & B ≤e A}
de(A) ≤ de(B) iff A ≤e B.

0e = de(∅) = {W |W is c.e. }.
de(A) ∨ de(B) = de(A⊕ B).

de(A)′ = de(A′), where A′ = LA ⊕ LA and LA = {x | x ∈Wx (A)}.
De = 〈De,≤,∨,′ ,0e〉 is an upper semi-lattice with jump operation
and least element.

Mariya I. Soskova (FMI) Definability March 30, 2011 2 / 40



Preliminaries: The enumeration degrees

Definition
A ≤e B iff there is a c.e. set W , such that
A = W (B) = {x | ∃u(〈x ,u〉 ∈W ∧ Du ⊆ B)}.
de(A) = {B | A ≤e B & B ≤e A}
de(A) ≤ de(B) iff A ≤e B.

0e = de(∅) = {W |W is c.e. }.
de(A) ∨ de(B) = de(A⊕ B).

de(A)′ = de(A′), where A′ = LA ⊕ LA and LA = {x | x ∈Wx (A)}.
De = 〈De,≤,∨,′ ,0e〉 is an upper semi-lattice with jump operation
and least element.

Mariya I. Soskova (FMI) Definability March 30, 2011 2 / 40



Preliminaries: The enumeration degrees

Definition
A ≤e B iff there is a c.e. set W , such that
A = W (B) = {x | ∃u(〈x ,u〉 ∈W ∧ Du ⊆ B)}.
de(A) = {B | A ≤e B & B ≤e A}
de(A) ≤ de(B) iff A ≤e B.

0e = de(∅) = {W |W is c.e. }.
de(A) ∨ de(B) = de(A⊕ B).

de(A)′ = de(A′), where A′ = LA ⊕ LA and LA = {x | x ∈Wx (A)}.
De = 〈De,≤,∨,′ ,0e〉 is an upper semi-lattice with jump operation
and least element.

Mariya I. Soskova (FMI) Definability March 30, 2011 2 / 40



Preliminaries: The enumeration degrees

Definition
A ≤e B iff there is a c.e. set W , such that
A = W (B) = {x | ∃u(〈x ,u〉 ∈W ∧ Du ⊆ B)}.
de(A) = {B | A ≤e B & B ≤e A}
de(A) ≤ de(B) iff A ≤e B.

0e = de(∅) = {W |W is c.e. }.
de(A) ∨ de(B) = de(A⊕ B).

de(A)′ = de(A′), where A′ = LA ⊕ LA and LA = {x | x ∈Wx (A)}.
De = 〈De,≤,∨,′ ,0e〉 is an upper semi-lattice with jump operation
and least element.

Mariya I. Soskova (FMI) Definability March 30, 2011 2 / 40



Preliminaries: The enumeration degrees

Definition
A ≤e B iff there is a c.e. set W , such that
A = W (B) = {x | ∃u(〈x ,u〉 ∈W ∧ Du ⊆ B)}.
de(A) = {B | A ≤e B & B ≤e A}
de(A) ≤ de(B) iff A ≤e B.

0e = de(∅) = {W |W is c.e. }.
de(A) ∨ de(B) = de(A⊕ B).

de(A)′ = de(A′), where A′ = LA ⊕ LA and LA = {x | x ∈Wx (A)}.
De = 〈De,≤,∨,′ ,0e〉 is an upper semi-lattice with jump operation
and least element.

Mariya I. Soskova (FMI) Definability March 30, 2011 2 / 40



The total degrees

Proposition

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕ A),
preserves the order, the least upper bound and the jump operation:

The sub structure of the total e-degrees is defined as T OT = ι(DT ).
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0′
e

0e

The local structure of the enumeration degrees Ge = De(≤ 0′
e)

consists of all degrees below 0′
e.
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0′
e

0e

Σ2 ∆2 Π1

With respect to the arithmetic hierarchy the degrees can be partitioned
into three classes.
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0′
e

0e

Σ2 ∆2 Π1

T OT

The total degrees below 0′
e are images of the Turing degrees below 0′.

Every total degree is ∆0
2, but not all ∆0

2 are total.
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0′
e

0e

Σ2 ∆2 Π1

T OT

Low

A degree is low if its jump is as low as possible: 0′
e. Every low degree

is ∆0
2.
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0′
e

0e

Σ2 ∆2 Π1

T OT

Low

Up-Σ2

Dn-Σ2

Up-Σ2

Dn-Σ2

The upwards properly Σ0
2 have no incomplete ∆0

2 above them. The
downwards properly Σ0

2 have no nonzero ∆0
2 below them.

Mariya I. Soskova (FMI) Definability March 30, 2011 8 / 40



K-pairs

Iskander Kalimullin: Definability of the jump operator in the
enumeration degrees
Journal of Mathematical Logic (2003)

Definition
Let A, B be sets of natural numbers. The pair (A,B) is a K-pair if there
exists a c.e. set W , such that A× B ⊆W and A× B ⊆W .
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K-pairs: A trivial example

Example
Let V be a c.e set. Then (V ,A) is a K-pair (over ∅) for any set of
natural numbers A.

Let W = V × N. Then V × A ⊆W and V × A ⊆W .

We will only be interested in non-trivial K-pairs.
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K-pairs: A more interesting example

Definition (Jockusch)
A set of natural numbers A is semi-recursive if there is a computable
function sA such that for every pair of natural numbers (x , y):

1 sA(x , y) ∈ {x , y}.
2 If x ∈ A or y ∈ A then sA(x , y) ∈ A.

Theorem (Jockusch)
For every noncomputable set B there is a semi recursive set A ≡T B
such that both A and A are not c.e.
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K-pairs: A more interesting example

Example

Let A be a semi-recursive set. Then (A,A) is a K-pair.

Proof:

s̄A(x , y) =

{
x , if sA(x , y) = y
y , if sA(x , y) = x .

.

Let W = {〈sA(x , y), s̄A(x , y)〉 | x , y ∈ N}.

Then A× A ⊆W and A× A = A× A ⊆W .
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An order theoretic characterization of K-pairs

Kalimullin has proved that the property of being a K-pair is degree
theoretic and first order definable in De.

Theorem (Kalimullin)
(A,B) is a K-pair if and only if the degrees a = de(A), b = de(B) have
the following property:

K(a,b) � (∀x ∈ De)((a ∨ x) ∧ (b ∨ x) = x).
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Properties of K-pairs in the local structure

Let A and B be Σ0
2 degree which form a nontrivial K-pair.

1 A ≤e B and A ≤e K .

Fix x and let W [x ] = {y | 〈x , y〉} ∈W .

If x ∈ A then B ⊂W [x ].

If x ∈ A then W [x ] ⊂ B.

x ∈ A iff ∃y(y ∈W [x ] & y ∈ B).

x ∈ A iff ∃y(y ∈ B & y ∈W [x ]).
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Properties of K-pairs in the local structure

Let A and B be Σ0
2 degrees which form a nontrivial K-pair.

1 A ≤e B and A ≤e K .
2 If C ≤e A the C and B form a K-pair.

Let a = de(A),b = de(B) and c = de(C).

Then for all x:

x ≤ (c ∨ x) ∧ (b ∨ x) ≤ (a ∨ x) ∧ (b ∨ x) = x.

3 The degrees of A and B form a minimal pair.

0e = (a ∨ 0e) ∧ (b ∨ 0e) = a ∧ b.
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Properties of K-pairs in the local structure

Let A and B be Σ0
2 degrees which form a nontrivial K-pair.

1 A ≤e B and A ≤e K .
2 If C ≤e A the C and B form a K-pair.
3 The degrees of A and B form a minimal pair.
4 The enumeration degrees of A and B are quasi minimal, i.e. the

only total degree bounded by either of them is 0e.

Assume towards a contradiction that C ⊕ C ≤e A.

Then C ⊕ C and B form a K-pair.

So B ≤e C ⊕ C = C ⊕ C ≤e A.
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2 If C ≤e A the C and B form a K-pair.
3 The degrees of A and B form a minimal pair.
4 The enumeration degrees of A and B are quasi minimal, i.e. the

only total degree bounded by either of them is 0e.
5 The enumeration degrees of the elements of a K pair are low.

Recall that A′ = LA ⊕ LA.

LA ≡e A, so LA forms a K-pair with B.

Hence LA ≤ K .

A′ = LA ⊕ LA is Σ0
2.
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Properties of K-pairs in the local structure

Let A and B be Σ0
2 degrees which form a nontrivial K-pair.

1 A ≤e B and A ≤e K .
2 If C ≤e A the C and B form a K-pair.
3 The degrees of A and B form a minimal pair.
4 The enumeration degrees of A and B are quasi minimal, i.e. the

only total degree bounded by either of them is 0e.
5 The enumeration degrees of the elements of a K pair are low.
6 Every nonzero ∆0

2 enumeration degree bounds a nontrivial K-pair.
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0′
e

0e

Σ2 ∆2 Π1

T OT

LowK K

Up-Σ2

Dn-Σ2

Up-Σ2

Dn-Σ2

The K-pairs in the local structure Ge.
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Local definability of K-pairs

K(a,b) � (∀x)((a ∨ x) ∧ (b ∨ x) = x)

Is it enough to require that this formula is satisfied by all Σ0
2 e-degrees?

Theorem (Kalimullin)
If (A,B) is not a K-pair then there is a witness C computable from
A⊕ B ⊕ K such that:

(de(A) ∨ de(C)) ∧ (de(B) ∨ de(C)) 6= de(C)

If a and b are ∆0
2 then C is also ∆0

2 and K(a,b) ensures “a and b
are a true K-pair”.
Every K-pair in Ge consists of low (hence ∆0

2) e-degrees.
If a and b are properly Σ0

2 then C is at best ∆0
3. So it is possible

that there is a fake K-pair a and b such that

Ge |= K(a,b), but De |= ¬K(a,b)
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Cupping properties
Definition
A Σ0

2 enumeration degree a is called cuppable if there is an incomplete
Σ0

2 e-degree b, such that a ∨ b = 0′
e.

If furthermore b is low, then a will be called low-cuppable.

Proposition (The K-cupping property)

Let a and b are Σ0
2 degrees such that Ge |= K(a,b).

If c is a Σ0
2 degree, such that c ∨ b = 0′

e then a ≤ c.

Proof:

c = (a ∨ c) ∧ (b ∨ c) = (a ∨ c) ∧ 0′
e = a ∨ c

a ≤ c.

Note! If c is low then a ≤ c is low.
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Step 1: Inspired by non-splitting

Theorem
If u and v are Σ0

2 enumeration degrees such that u ∨ v = 0′
e then u is

low-cuppable or v is low-cuppable.

Proof:
Uses a construction very similar to the construction of a non-splitting
enumeration degree.

Theorem (S)

There is a degree a < 0′
e such that for every pair of Σ0

2 degrees u and
v with u ∨ v = 0′

e then a cups u or v to 0′
e.
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Step 2: Improving the low cupping result

Theorem (Cooper, Sorbi, Yi)

Every nonzero ∆0
2 degree is cuppable.

Theorem (S,Wu)

Every nonzero ∆0
2 degree is low-cuppable.

Theorem
Every for every nonzero ∆0

2 degree a there is a nontrivial K-pair {b,c}
such that a ∨ b = c ∨ b = 0′

e.
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Local definability of K-pairs

Theorem (G, S)

There is a first order formula LK, such that for any Σ0
2 sets A and B,

{A,B} is a non-trivial K-pair if and only if Ge |= LK(de(A),de(B)).

Step 1: Define a nonempty subclass L of halves of nontrivial K-pairs
by:

L(a) � ∃b(K(a,b) ∧ a ∨ b = 0′
e).

Step 2: Show that every half of a nontrivial K-pair is bounded by some
element in L.
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0′
e

0e

Σ2 ∆2 Π1

T OT

LowK K

Up-Σ2

Dn-Σ2

Up-Σ2

Dn-Σ2

The first example of a definable class of degrees in the local structure:
K-pairs.
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An easy consequence

If a bounds a nonzero ∆0
2 degree then it bounds a nontrivial K-pair.

If a is a downwards properly Σ0
2 degree, then it bounds no K-pair.

Corollary

The class of downwards properly Σ0
2 is first order definable in Ge by the

formula:

DPΣ0
2(x) 
 ∀b,c[(b ≤ x & c ≤ x)⇒ ¬LK(b,c)].
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0′
e

0e

Σ2 ∆2 Π1

T OT

LowK K

Up-Σ2

Dn-Σ2

Up-Σ2

Dn-Σ2

The second example of a definable class of degrees in the local
structure: Downwards properly Σ0

2 degrees.
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The upwards properly Σ0
2 degrees

Definition
x is upwards properly Σ0

2 every y ∈ [x,0′
e) is properly Σ0

2.

Theorem (Jockusch)
For every noncomputable set B there is a semi recursive set A ≡T B
such that both A and A are not c.e.

Corollary
Every nonzero total enumeration degree can be represented as the
least upper bound of a nontrivial K-pair.
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The upwards properly Σ0
2 degrees

Theorem (Arslanov, Cooper, Kalimullin)

For every ∆0
2 enumeration degree a < 0′

e there is a total enumeration
degree b such that a ≤ b < 0′

e.

So a degree a is upwards properly Σ0
2 if and only if no element above it

other than 0′
e can be represented as the least upper bound of a

nontrivial K-pair.

Corollary

The class of upwards properly Σ0
2 is first order definable in Ge by the

formula :

UPΣ0
2(x) 
 ∀c,d(LK(c,d) & x ≤ c ∨ d⇒ c ∨ d = 0′

e).
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0′
e

0e

Σ2 ∆2 Π1

T OT

LowK K

Up-Σ2

Dn-Σ2

Up-Σ2

Dn-Σ2

The third example of a definable class of degrees in the local structure:
Upwards properly Σ0

2 degrees.
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Semi-recursive sets revisited

1 A ≤e B and A ≤e K .
2 If C ≤e A the C and B form a K-pair.

Consider a nontrivial K-pair of a semi recursive set and its
complement: {A,A}.
Assume that there is a K-pair {C,D} such that A <e C and A <e D.

By property (2) A forms a K-pair with D.

By property (1) D ≤e A.
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Maximal K-pairs

Definition
We say that {A,B} is a maximal K-pair if there is no K-pair {C,D},
such that A <e C and B <e D.

Corollary
Every nonzero total set is enumeration equivalent to the join of a
maximal K-pair.

Goal
Prove that the join of every maximal K-pair is e-equivalent to a total
set.
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Extending K-pairs to maximal

Theorem

For every nontrivial ∆0
2 K-pair {A,B} there is a K-pair {C,C}, such

that A ≤e C and B ≤e C.

Basic tool: A dynamic characterization of K-pairs

Lemma (Kalimullin)

A pair of non-c.e. ∆0
2 sets A,B is a K-pair if and only if there are ∆0

2
approximations {As}s<ω to A and {Bs}s<ω to B, such that:

∀s(As ⊆ A ∨ Bs ⊆ B).
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2 sets A,B is a K-pair if and only if there are ∆0

2
approximations {As}s<ω to A and {Bs}s<ω to B, such that:

∀s(As ⊆ A ∨ Bs ⊆ B).
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Local definability of the total degrees

Denote byMK(x,y) the first order formula that defines in Ge the set of
degrees of maximal K-pairs.

Corollary
The class of total degrees is first order definable in Ge by the formula:

T OT (x) 
 x = 0e ∨ ∃c∃d[MK(c,d) & x = c ∨ d.]
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Up-Σ2
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Dn-Σ2

The fourth example of a definable class of degrees in the local
structure: The total degrees.
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One final consequence

Theorem (Giorgi, Sorbi, Yang)

Every non-low total degree bounds a downwards properly Σ0
2

enumeration degree.

Corollary
The class of low total e-degrees is first order definable in Ge by the
formula:

T L(x) 
 T OT (x) & ∀c ≤ x[¬DPΣ0
2(c)]
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One final consequence

Theorem (Soskov)
For every enumeration degree x there is a total enumeration degree y,
such that x < y and x′ = y′.

Thus a Σ0
2 enumeration degree is low if and only if there is a low total

Σ0
2 enumeration degree above it.

Theorem (G, S)
The class of low e-degrees is first order definable in Ge by the formula:

LOW(x) 
 ∃y[x ≤ y & T L(y)]
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The fifth example of a definable class of degrees in the local structure:
The low degrees.
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The end

Thank you!
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