Definability of the jump classes in the local structure of the enumeration degrees

Mariya I. Soskova¹

Sofia University

Logic Seminar, University of Siena

¹Supported by a Marie Curie International Outgoing Fellowship STRIDE (298471) and Sofia University Science Fund project 81/2015.

Definition

- \bullet $A \leq_T B$ if A c.e. in B and \overline{A} c.e. in B.
- ② $A \leq_e B$ if there is a c.e. set W, such that $A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}$.

Definition

- \bullet $A \leq_T B$ if A c.e. in B and \overline{A} c.e. in B.
- ② $A \leq_e B$ if there is a c.e. set W, such that $A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}$.

Definition

• $A \equiv B$ if $A \leq B$ and $B \leq A$.

Definition

- \bullet $A \leq_T B$ if A c.e. in B and \overline{A} c.e. in B.
- ② $A \leq_e B$ if there is a c.e. set W, such that $A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}$.

- $A \equiv B$ if $A \leq B$ and $B \leq A$.
- $\bullet \ d(A) = \{B \mid A \equiv B\}.$

Definition

- ② $A \leq_e B$ if there is a c.e. set W, such that $A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}$.

- $A \equiv B$ if $A \leq B$ and $B \leq A$.
- $d(A) = \{B \mid A \equiv B\}.$
- $d(A) \le d(B)$ if and only if $A \le B$.

Definition

- \bullet $A \leq_T B$ if A c.e. in B and \overline{A} c.e. in B.
- ② $A \leq_e B$ if there is a c.e. set W, such that $A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}$.

- $A \equiv B$ if $A \leq B$ and $B \leq A$.
- $d(A) = \{B \mid A \equiv B\}.$
- $d(A) \le d(B)$ if and only if $A \le B$.
- There is a least upper bound operation \vee .

Definition

- ② $A \leq_e B$ if there is a c.e. set W, such that $A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}$.

- $A \equiv B$ if $A \le B$ and $B \le A$.
- $d(A) = \{B \mid A \equiv B\}.$
- $d(A) \le d(B)$ if and only if $A \le B$.
- There is a least upper bound operation \vee .
- There is a jump operation '.

Definition

- \bullet $A \leq_T B$ if A c.e. in B and \overline{A} c.e. in B.
- ② $A \leq_e B$ if there is a c.e. set W, such that $A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}$.

- $A \equiv B$ if $A \le B$ and $B \le A$.
- $d(A) = \{B \mid A \equiv B\}.$
- $d(A) \le d(B)$ if and only if $A \le B$.
- There is a least upper bound operation \vee .
- There is a jump operation '.

$$(\mathcal{D}_T, \leq_T, \vee, ', \mathbf{0}_T)$$
 $(\mathcal{D}_e, \leq_e, \vee, ', \mathbf{0}_e)$

Proposition

 $A \leq_T B \Leftrightarrow A \oplus \overline{A} \text{ is c.e. in } B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \text{ is c.e. in } B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

The embedding $\iota: \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \text{ is c.e. in } B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

The embedding $\iota: \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

 $TOT = \iota(D_T)$ is the set of total enumeration degrees.

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \text{ is c.e. in } B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

The embedding $\iota: \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

 $\mathcal{TOT} = \iota(\mathcal{D}_T)$ is the set of total enumeration degrees.

$$(\mathcal{D}_T, \leq_T, \vee, ', \mathbf{0}_T) \cong (\mathcal{TOT}, \leq_e, \vee, ', \mathbf{0}_e) \subseteq (\mathcal{D}_e, \leq_e, \vee, ', \mathbf{0}_e)$$

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \text{ is c.e. in } B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

The embedding $\iota: \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

 $TOT = \iota(D_T)$ is the set of total enumeration degrees.

$$(\mathcal{D}_T, \leq_T, \vee, ', \mathbf{0}_T) \cong (\mathcal{TOT}, \leq_e, \vee, ', \mathbf{0}_e) \subseteq (\mathcal{D}_e, \leq_e, \vee, ', \mathbf{0}_e)$$

Theorem (Selman)

A is enumeration reducible to B if and only if

$$\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$$

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \text{ is c.e. in } B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

The embedding $\iota: \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

 $TOT = \iota(\mathcal{D}_T)$ is the set of total enumeration degrees.

$$(\mathcal{D}_T, \leq_T, \vee, ', \mathbf{0}_T) \cong (\mathcal{TOT}, \leq_e, \vee, ', \mathbf{0}_e) \subseteq (\mathcal{D}_e, \leq_e, \vee, ', \mathbf{0}_e)$$

Theorem (Selman)

A is enumeration reducible to B if and only if

$$\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$$

TOT is an automorphism base for D_e .

Theorem (Simpson)

The first order theory of \mathcal{D}_T is computably isomorphic to the theory of second order arithmetic.

Theorem (Simpson)

The first order theory of \mathcal{D}_T is computably isomorphic to the theory of second order arithmetic.

Theorem (Slaman, Woodin: Biinterpretability with parameters)

There is a way within \mathcal{D}_T to represent the standard model of arithmetic $\langle \mathbb{N}, +, *, <, 0, 1 \rangle$ and each set of natural numbers X so that the relation

 $\vec{\mathbf{p}}$ represents the set X and \mathbf{x} is the Turing degree of X.

Theorem (Simpson)

The first order theory of \mathcal{D}_T is computably isomorphic to the theory of second order arithmetic.

Theorem (Slaman, Woodin: Biinterpretability with parameters)

There is a way within \mathcal{D}_T to represent the standard model of arithmetic $\langle \mathbb{N}, +, *, <, 0, 1 \rangle$ and each set of natural numbers X so that the relation

 $\vec{\mathbf{p}}$ represents the set X and \mathbf{x} is the Turing degree of X.

can be defined using a parameter \mathbf{g} in \mathcal{D}_T as a property of $\vec{\mathbf{p}}$ and \mathbf{x} .

• There are at most countably many automorphisms of \mathcal{D}_T .

Theorem (Simpson)

The first order theory of \mathcal{D}_T is computably isomorphic to the theory of second order arithmetic.

Theorem (Slaman, Woodin: Biinterpretability with parameters)

There is a way within \mathcal{D}_T to represent the standard model of arithmetic $\langle \mathbb{N}, +, *, <, 0, 1 \rangle$ and each set of natural numbers X so that the relation

 $\vec{\mathbf{p}}$ represents the set X and \mathbf{x} is the Turing degree of X.

- There are at most countably many automorphisms of \mathcal{D}_T .
- Relations on degrees induced by a relations on sets definable in second order arithmetic are definable with parameters in \mathcal{D}_T .

Theorem (Simpson)

The first order theory of \mathcal{D}_T is computably isomorphic to the theory of second order arithmetic.

Theorem (Slaman, Woodin: Biinterpretability with parameters)

There is a way within \mathcal{D}_T to represent the standard model of arithmetic $\langle \mathbb{N}, +, *, <, 0, 1 \rangle$ and each set of natural numbers X so that the relation

 $\vec{\mathbf{p}}$ represents the set X and \mathbf{x} is the Turing degree of X.

- There are at most countably many automorphisms of \mathcal{D}_T .
- Relations on degrees induced by a relations on sets definable in second order arithmetic are definable with parameters in \mathcal{D}_T .
- The degrees below $\mathbf{0}^{(5)}$ form an automorphism base.

Theorem (Simpson)

The first order theory of \mathcal{D}_T is computably isomorphic to the theory of second order arithmetic.

Theorem (Slaman, Woodin: Biinterpretability with parameters)

There is a way within \mathcal{D}_T to represent the standard model of arithmetic $\langle \mathbb{N}, +, *, <, 0, 1 \rangle$ and each set of natural numbers X so that the relation

 $\vec{\mathbf{p}}$ represents the set X and \mathbf{x} is the Turing degree of X.

- There are at most countably many automorphisms of \mathcal{D}_T .
- Relations on degrees induced by a relations on sets definable in second order arithmetic are definable with parameters in \mathcal{D}_T .
- The degrees below $\mathbf{0}^{(5)}$ form an automorphism base.
- Rigidity is equivalent to full biinterpretability.

Definability in the Turing degrees

Theorem (Shore, Slaman)

The Turing jump is first order definable in \mathcal{D}_T .

Definability in the Turing degrees

Theorem (Shore, Slaman)

The Turing jump is first order definable in \mathcal{D}_T .

Method: "Involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic."

Definition (Jockusch)

A is semi-computable if there is a total computable function s_A , such that $s_A(x,y) \in \{x,y\}$ and if $\{x,y\} \cap A \neq \emptyset$ then $s_A(x,y) \in A$.

Definition (Jockusch)

A is semi-computable if there is a total computable function s_A , such that $s_A(x,y) \in \{x,y\}$ and if $\{x,y\} \cap A \neq \emptyset$ then $s_A(x,y) \in A$.

Example:

• A *left cut* in a computable linear ordering is a semi-computable set.

Definition (Jockusch)

A is semi-computable if there is a total computable function s_A , such that $s_A(x,y) \in \{x,y\}$ and if $\{x,y\} \cap A \neq \emptyset$ then $s_A(x,y) \in A$.

Example:

- A *left cut* in a computable linear ordering is a semi-computable set.
- For all A the set $L_A = \{ \sigma \mid \sigma \leq_L \chi_A \}$ is semi-recursive.

Definition (Jockusch)

A is semi-computable if there is a total computable function s_A , such that $s_A(x,y) \in \{x,y\}$ and if $\{x,y\} \cap A \neq \emptyset$ then $s_A(x,y) \in A$.

Example:

- A *left cut* in a computable linear ordering is a semi-computable set.
- For all A the set $L_A = \{ \sigma \mid \sigma \leq_L \chi_A \}$ is semi-recursive.
- Every nonzero Turing degree contains a semi-computable set that is not c.e. or co-c.e.

Definition (Jockusch)

A is semi-computable if there is a total computable function s_A , such that $s_A(x,y) \in \{x,y\}$ and if $\{x,y\} \cap A \neq \emptyset$ then $s_A(x,y) \in A$.

Example:

- A *left cut* in a computable linear ordering is a semi-computable set.
- For all A the set $L_A = \{ \sigma \mid \sigma \leq_L \chi_A \}$ is semi-recursive.
- Every nonzero Turing degree contains a semi-computable set that is not c.e. or co-c.e.

Theorem (Arslanov, Cooper, Kalimullin)

If A is a semi-computable set then for every X:

$$(d_e(X) \vee d_e(A)) \wedge (d_e(X) \vee d_e(\overline{A})) = d_e(X).$$

Definition (Kalimullin)

A pair of sets A, B are called a K-pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Definition (Kalimullin)

A pair of sets A, B are called a K-pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Example:

• A trivial example is $\{A, U\}$, where U is c.e. $W = \mathbb{N} \times U$.

Definition (Kalimullin)

A pair of sets A, B are called a K-pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Example:

- A trivial example is $\{A, U\}$, where U is c.e. $W = \mathbb{N} \times U$.
- ② If A is a semi-computable set, then $\{A, \overline{A}\}$ is a \mathcal{K} -pair: $W = \{(m,n) \mid s_A(m,n) = m\}.$

Definition (Kalimullin)

A pair of sets A, B are called a K-pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Example:

- **1** A trivial example is $\{A, U\}$, where U is c.e. $W = \mathbb{N} \times U$.
- ② If A is a semi-computable set, then $\{A, \overline{A}\}$ is a K-pair: $W = \{(m, n) \mid s_A(m, n) = m\}.$

Theorem (Kalimullin)

A pair of sets A, B is a K-pair if and only if their enumeration degrees \mathbf{a} and \mathbf{b} satisfy:

$$\mathcal{K}(\mathbf{a}, \mathbf{b}) \leftrightharpoons (\forall \mathbf{x} \in \mathcal{D}_e)((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x}).$$

Definability of the enumeration jump

Theorem (Kalimullin)

 $\mathbf{0}_e'$ is the largest degree which can be represented as the least upper bound of a triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$, such that $\mathcal{K}(\mathbf{a}, \mathbf{b}), \mathcal{K}(\mathbf{b}, \mathbf{c})$ and $\mathcal{K}(\mathbf{c}, \mathbf{a})$.

Definability of the enumeration jump

Theorem (Kalimullin)

 $\mathbf{0}_e'$ is the largest degree which can be represented as the least upper bound of a triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$, such that $\mathcal{K}(\mathbf{a}, \mathbf{b}), \mathcal{K}(\mathbf{b}, \mathbf{c})$ and $\mathcal{K}(\mathbf{c}, \mathbf{a})$.

Corollary (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

Maximal K-pairs

Definition

A \mathcal{K} -pair $\{a,b\}$ is maximal if for every \mathcal{K} -pair $\{c,d\}$ with $a \leq c$ and $b \leq d$, we have that a = c and b = d.

Maximal K-pairs

Definition

A \mathcal{K} -pair $\{a, b\}$ is maximal if for every \mathcal{K} -pair $\{c, d\}$ with $a \leq c$ and $b \leq d$, we have that a = c and b = d.

Example: A semi-computable pair is a maximal K-pair. Total enumeration degrees are joins of maximal K-pairs.

Maximal K-pairs

Definition

A \mathcal{K} -pair $\{a,b\}$ is maximal if for every \mathcal{K} -pair $\{c,d\}$ with $a \leq c$ and $b \leq d$, we have that a = c and b = d.

Example: A semi-computable pair is a maximal K-pair. Total enumeration degrees are joins of maximal K-pairs.

Theorem (Ganchev, S)

A nonzero degree $\mathbf{a} \leq \mathbf{0}_e'$ is total if and only if it is the least upper bound of a maximal \mathcal{K} -pair.

Question (Rogers 1967)

Are the total enumeration degrees first order definable in \mathcal{D}_e ?

Question (Rogers 1967)

Are the total enumeration degrees first order definable in \mathcal{D}_e ?

 $lackbox{0}$ The total degrees above $lackbox{0}_e'$ are definable as the range of the jump operator.

Question (Rogers 1967)

Are the total enumeration degrees first order definable in \mathcal{D}_e ?

- $lackbox{0}$ The total degrees above $lackbox{0}_e'$ are definable as the range of the jump operator.
- ② The total degrees below $\mathbf{0}'_e$ are definable as joins of maximal \mathcal{K} -pairs.

Question (Rogers 1967)

Are the total enumeration degrees first order definable in \mathcal{D}_e ?

- \bullet The total degrees above $\mathbf{0}_e'$ are definable as the range of the jump operator.
- ② The total degrees below $\mathbf{0}'_e$ are definable as joins of maximal \mathcal{K} -pairs.

Every total degree is the join of a maximal K-pair.

Question (Rogers 1967)

Are the total enumeration degrees first order definable in \mathcal{D}_e ?

- $lackbox{0}$ The total degrees above $lackbox{0}_e'$ are definable as the range of the jump operator.
- f 0 The total degrees below $f 0'_e$ are definable as joins of maximal ${\cal K}$ -pairs.

Every total degree is the join of a maximal K-pair.

Question (Ganchev, S)

Is the the join of every maximal K-pair total?

Theorem (Cai, Ganchev, Lempp, Miller, S)

If $\{A,B\}$ is a nontrivial \mathcal{K} -pair in \mathcal{D}_e then there is a semi-computable set C, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Theorem (Cai, Ganchev, Lempp, Miller, S)

If $\{A,B\}$ is a nontrivial \mathcal{K} -pair in \mathcal{D}_e then there is a semi-computable set C, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Proof flavor: Let W be a c.e. set witnessing that a pair of sets $\{A,B\}$ forms a nontrivial \mathcal{K} -pair.

Theorem (Cai, Ganchev, Lempp, Miller, S)

If $\{A,B\}$ is a nontrivial \mathcal{K} -pair in \mathcal{D}_e then there is a semi-computable set C, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Proof flavor: Let W be a c.e. set witnessing that a pair of sets $\{A, B\}$ forms a nontrivial \mathcal{K} -pair.

• The countable component: we use W to construct an effective labeling of the computable linear ordering \mathbb{Q} .

Theorem (Cai, Ganchev, Lempp, Miller, S)

If $\{A,B\}$ is a nontrivial \mathcal{K} -pair in \mathcal{D}_e then there is a semi-computable set C, such that $A\leq_e C$ and $B\leq_e \overline{C}$.

Proof flavor: Let W be a c.e. set witnessing that a pair of sets $\{A,B\}$ forms a nontrivial \mathcal{K} -pair.

- The countable component: we use W to construct an effective labeling of the computable linear ordering \mathbb{Q} .
- $oldsymbol{0}$ The uncountable component: C will be a left cut in this ordering.

Theorem (Cai, Ganchev, Lempp, Miller, S)

If $\{A,B\}$ is a nontrivial \mathcal{K} -pair in \mathcal{D}_e then there is a semi-computable set C, such that $A\leq_e C$ and $B\leq_e \overline{C}$.

Proof flavor: Let W be a c.e. set witnessing that a pair of sets $\{A,B\}$ forms a nontrivial \mathcal{K} -pair.

- The countable component: we use W to construct an effective labeling of the computable linear ordering \mathbb{Q} .
- ② The uncountable component: C will be a left cut in this ordering.

Theorem (Cai, Ganchev, Lempp, Miller, S)

The set of total enumeration degrees is first order definable in \mathcal{D}_e .

Definition

A Turing degree ${\bf a}$ is c.e. in a Turing degree ${\bf x}$ if some $A\in {\bf a}$ is c.e. in some $X\in {\bf x}$.

Definition

A Turing degree ${\bf a}$ is *c.e.* in a Turing degree ${\bf x}$ if some $A \in {\bf a}$ is c.e. in some $X \in {\bf x}$.

Recall that ι is the standard embedding of \mathcal{D}_T into \mathcal{D}_e .

Definition

A Turing degree ${\bf a}$ is *c.e.* in a Turing degree ${\bf x}$ if some $A \in {\bf a}$ is c.e. in some $X \in {\bf x}$.

Recall that ι is the standard embedding of \mathcal{D}_T into \mathcal{D}_e .

Theorem (Cai, Ganchev, Lempp, Miller, S)

The set $\{\langle \iota(\mathbf{a}), \iota(\mathbf{x}) \rangle \mid \mathbf{a} \text{ is c.e. in } \mathbf{x} \}$ is first order definable in \mathcal{D}_e .

Definition

A Turing degree ${\bf a}$ is *c.e.* in a Turing degree ${\bf x}$ if some $A \in {\bf a}$ is c.e. in some $X \in {\bf x}$.

Recall that ι is the standard embedding of \mathcal{D}_T into \mathcal{D}_e .

Theorem (Cai, Ganchev, Lempp, Miller, S)

The set $\{\langle \iota(\mathbf{a}), \iota(\mathbf{x}) \rangle \mid \mathbf{a} \text{ is c.e. in } \mathbf{x} \}$ is first order definable in \mathcal{D}_e .

- Ganchev, S had observed that if TOT is definable by maximal K-pairs then the image of the relation 'c.e. in' is definable for non-c.e. degrees.
- ② A result by Cai and Shore allowed us to complete this definition.

Theorem (Selman)

A is enumeration reducible to B if and only if

$$\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$$

Theorem (Selman)

A is enumeration reducible to B if and only if

$$\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$$

Corollary

The total enumeration degrees form a definable automorphism base of the enumeration degrees.

Theorem (Selman)

A is enumeration reducible to B if and only if

$$\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$$

Corollary

The total enumeration degrees form a definable automorphism base of the enumeration degrees.

• If \mathcal{D}_T is rigid then \mathcal{D}_e is rigid.

Theorem (Selman)

A is enumeration reducible to B if and only if

$$\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$$

Corollary

The total enumeration degrees form a definable automorphism base of the enumeration degrees.

- If \mathcal{D}_T is rigid then \mathcal{D}_e is rigid.
- The automorphism analysis for the enumeration degrees follows.

Theorem (Selman)

A is enumeration reducible to B if and only if

$$\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$$

Corollary

The total enumeration degrees form a definable automorphism base of the enumeration degrees.

- If \mathcal{D}_T is rigid then \mathcal{D}_e is rigid.
- The automorphism analysis for the enumeration degrees follows.
- The total degrees below $\mathbf{0}_e^{(5)}$ are an automorphism base of \mathcal{D}_e .

Theorem (Selman)

A is enumeration reducible to B if and only if

$$\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$$

Corollary

The total enumeration degrees form a definable automorphism base of the enumeration degrees.

- If \mathcal{D}_T is rigid then \mathcal{D}_e is rigid.
- The automorphism analysis for the enumeration degrees follows.
- The total degrees below $\mathbf{0}_e^{(5)}$ are an automorphism base of \mathcal{D}_e .

Question

Can we improve this bound further?

Definition

 $\ensuremath{\mathcal{R}}$ is the substructure consisting of all Turing degrees that contain c.e. sets.

Definition

 ${\cal R}$ is the substructure consisting of all Turing degrees that contain c.e. sets.

 $\mathcal{D}_T(\leq \mathbf{0}')$ is the substructure consisting of all Turing degrees that are bounded by $\mathbf{0}'_T$.

Definition

 ${\cal R}$ is the substructure consisting of all Turing degrees that contain c.e. sets.

 $\mathcal{D}_T(\leq \mathbf{0}')$ is the substructure consisting of all Turing degrees that are bounded by $\mathbf{0}_T'$.

 $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is the substructure consisting of all enumeration degrees that are bounded by $\mathbf{0}'_e$.

Definition

 \mathcal{R} is the substructure consisting of all Turing degrees that contain c.e. sets.

 $\mathcal{D}_T(\leq \mathbf{0}')$ is the substructure consisting of all Turing degrees that are bounded by $\mathbf{0}_T'$.

 $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is the substructure consisting of all enumeration degrees that are bounded by $\mathbf{0}'_e$.

Theorem (Harrington, Slaman; Shore; Ganchev, S)

The theory of each local structure is computably isomorphic to first order arithmetic.

Definition

 \mathcal{R} is the substructure consisting of all Turing degrees that contain c.e. sets.

 $\mathcal{D}_T(\leq \mathbf{0}')$ is the substructure consisting of all Turing degrees that are bounded by $\mathbf{0}_T'$.

 $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is the substructure consisting of all enumeration degrees that are bounded by $\mathbf{0}'_e$.

Theorem (Harrington, Slaman; Shore; Ganchev, S)

The theory of each local structure is computably isomorphic to first order arithmetic.

$$\mathcal{R} \subseteq \mathcal{D}_T(\leq \mathbf{0}') \hookrightarrow \mathcal{D}_e(\leq \mathbf{0}'_e)$$

Definition

A set of degrees \mathcal{Z} contained in $\mathcal{D}_T(\leq \mathbf{0}')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i<\omega}$, representing the degrees in \mathcal{Z} , and a computable function f such that $\{f(i)\}^{\emptyset'}$ is the Turing jump of $\bigoplus_{i< i} Z_j$.

Definition

A set of degrees \mathcal{Z} contained in $\mathcal{D}_T(\leq \mathbf{0}')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i<\omega}$, representing the degrees in \mathcal{Z} , and a computable function f such that $\{f(i)\}^{\emptyset'}$ is the Turing jump of $\bigoplus_{i< i} Z_j$.

Example: If $\bigoplus_{i<\omega} A_i$ is low then $\mathcal{A} = \{d_T(A_i) \mid i < \omega\}$ is uniformly low.

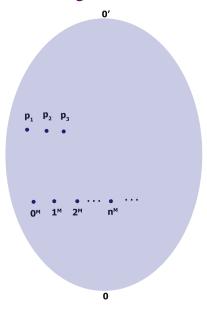
Definition

A set of degrees \mathcal{Z} contained in $\mathcal{D}_T(\leq \mathbf{0}')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i<\omega}$, representing the degrees in \mathcal{Z} , and a computable function f such that $\{f(i)\}^{\emptyset'}$ is the Turing jump of $\bigoplus_{j< i} Z_j$.

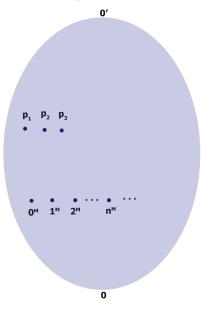
Example: If $\bigoplus_{i<\omega} A_i$ is low then $\mathcal{A} = \{d_T(A_i) \mid i < \omega\}$ is uniformly low.

Theorem (Slaman and Woodin)

If \mathcal{Z} is a uniformly low subset of $\mathcal{D}_T(\leq \mathbf{0}')$ then \mathcal{Z} is definable from parameters in $\mathcal{D}_T(\leq \mathbf{0}')$.

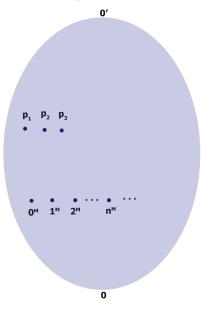


Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^{\mathcal{M}}, 0^{\mathcal{M}}, s^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, \leq^{\mathcal{M}}).$



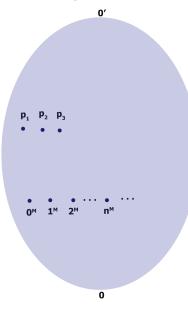
Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^{\mathcal{M}}, 0^{\mathcal{M}}, s^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, \leq^{\mathcal{M}}).$

• The set $\mathbb{N}^{\mathcal{M}}$ is definable with parameters $\vec{\mathbf{p}}$.



Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^{\mathcal{M}}, 0^{\mathcal{M}}, s^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, \leq^{\mathcal{M}}).$

- The set $\mathbb{N}^{\mathcal{M}}$ is definable with parameters $\vec{\mathbf{p}}$.
- ② The graphs of $s, +, \times$ and the relation \leq are definable with parameters $\vec{\mathbf{p}}$.



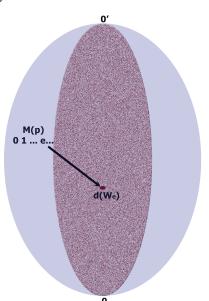
Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^{\mathcal{M}}, 0^{\mathcal{M}}, s^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, \leq^{\mathcal{M}}).$

- The set $\mathbb{N}^{\mathcal{M}}$ is definable with parameters $\vec{\mathbf{p}}$.
- ② The graphs of s, +, × and the relation \leq are definable with parameters $\vec{\mathbf{p}}$.

An indexing of the c.e. degrees

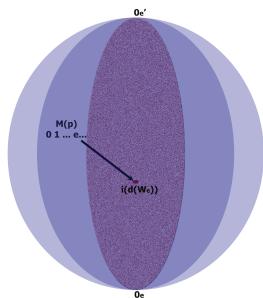
Theorem (Slaman, Woodin)

There are finitely many Δ_2^0 parameters which code a model of arithmetic \mathcal{M} and an indexing of the c.e. degrees: a function $\psi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$ such that $\psi(e^{\mathcal{M}}) = d_T(W_e)$.



Towards a better automorphism base of \mathcal{D}_e

Theorem (Slaman, Woodin) There are total Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and an indexing of the image of the c.e. Turing degrees.

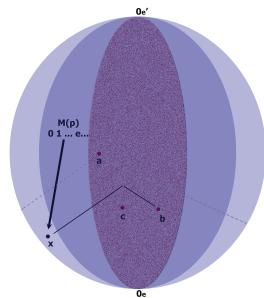


Towards a better automorphism base of \mathcal{D}_e

Theorem (Slaman, Woodin)

There are total Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and an indexing of the image of the c.e. Turing degrees.

Idea: Can we extend this indexing to capture more elements in \mathcal{D}_e ?



Towards a better automorphism base of \mathcal{D}_e

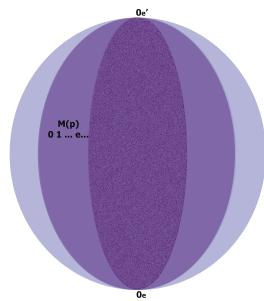
Theorem (Slaman, S)

If \vec{p} defines a model of arithmetic \mathcal{M} and an indexing of the image of the c.e. Turing degrees then \vec{p} defines an indexing of the total Δ_2^0 enumeration degrees.

Proof flavour:

The image of the c.e. degrees

- \rightarrow The low co-d.c.e. e-degrees
- \rightarrow The low Δ_2^0 e-degrees
- \rightarrow The total Δ_2^0 e-degrees



The priority constructions

Theorem (Slaman, S)

Suppose \mathbf{x} is a co-d.c.e. enumeration degree, $\mathbf{x}' = \mathbf{0}'_e$ and \mathbf{y} is a Δ_2^0 enumeration degree, such that $\mathbf{y} \nleq \mathbf{x}$. There are Δ_2^0 enumeration degrees \mathbf{g}_i and Π_1^0 enumeration degrees \mathbf{a}_i , \mathbf{c}_i , \mathbf{b}_i for i = 1, 2, such that:

- $\mathbf{0}$ \mathbf{g}_i is the least element below \mathbf{a}_i which joins \mathbf{b}_i above \mathbf{c}_i ;
- **2** $\mathbf{x} \leq \mathbf{g}_1 \vee \mathbf{g}_2;$
- **3** $\mathbf{y} \nleq \mathbf{g}_1 \vee \mathbf{g}_2$.

The priority constructions

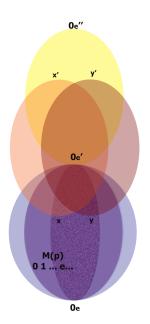
Theorem (Slaman, S)

Let \mathbf{x}, \mathbf{y} be Δ_2^0 enumeration degrees, such that $\mathbf{x}' = \mathbf{0}'_e$ and $\mathbf{y} \nleq \mathbf{x}$. There are Δ_2^0 enumeration degrees \mathbf{g}_i , Π_1^0 enumeration degrees \mathbf{a}_i and low co-d.c.e. enumeration degrees \mathbf{c}_i , \mathbf{b}_i for i = 1, 2, such that:

- $\mathbf{0}$ \mathbf{g}_i is the least element below \mathbf{a}_i which joins \mathbf{b}_i above \mathbf{c}_i ;
- **2** $\mathbf{x} \leq \mathbf{g}_1 \vee \mathbf{g}_2;$
- **3** $y \nleq g_1 \lor g_2$.

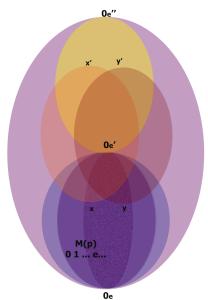
Moving outside the local structure

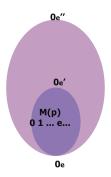
- Extend to an indexing of all total degrees that are "c.e. in" and above some total Δ_2^0 enumeration degree.
 - ► The jump is definable.
 - ► The image of the relation "c.e. in" is definable.
- **②** Relativizing the previous theorem extend to an indexing of $\bigcup_{\mathbf{x} < \mathbf{0}'} \iota([\mathbf{x}, \mathbf{x}'])$.

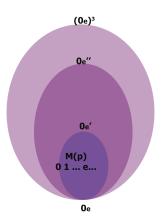


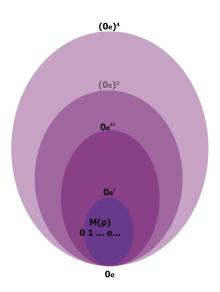
Moving outside the local structure

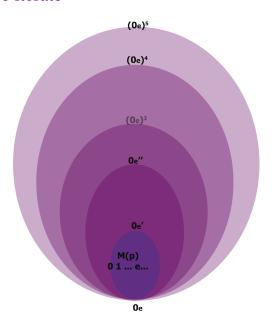
Solution Extend to an indexing of all total degrees below $\mathbf{0}_e''$.

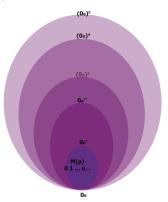












Theorem (Slaman, S)

Let n be a natural number and \vec{p} be parameters that index the image of the c.e. Turing degrees. There is a definable from \vec{p} indexing of the total Δ_{n+1}^0 degrees.

Consequences

Theorem (Slaman, S)

1 The enumeration degrees below $\mathbf{0}'_e$ are an automorphism base for \mathcal{D}_e .

Consequences

Theorem (Slaman, S)

- **1** The enumeration degrees below $\mathbf{0}'_e$ are an automorphism base for \mathcal{D}_e .
- ② The image of the c.e. Turing degrees is an automorphism base for \mathcal{D}_e .

Consequences

Theorem (Slaman, S)

- **1** The enumeration degrees below $\mathbf{0}'_e$ are an automorphism base for \mathcal{D}_e .
- ② The image of the c.e. Turing degrees is an automorphism base for \mathcal{D}_e .
- 1 If the structure of the c.e. Turing degrees is rigid then so is the structure of the enumeration degrees.

Definability in the local structure of the enumeration degrees

Theorem (Ganchev, S)

The class of \mathcal{K} -pairs below $\mathbf{0}'_e$ is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$...

Definability in the local structure of the enumeration degrees

Theorem (Ganchev, S)

The class of \mathcal{K} -pairs below $\mathbf{0}'_e$ is first order definable in $\mathcal{D}_e (\leq \mathbf{0}'_e) \dots$

Theorem (Cai, Lempp, Miller, S)

... by the same formula as in \mathcal{D}_e .

Definability in the local structure of the enumeration degrees

Theorem (Ganchev, S)

The class of \mathcal{K} -pairs below $\mathbf{0}'_e$ is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$...

Theorem (Cai, Lempp, Miller, S)

... by the same formula as in \mathcal{D}_e .

Theorem (Ganchev, S)

The following classes of degrees are definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$

- **1** The downwards properly Σ_2^0 degrees.
- **2** The upwards properly Σ_2^0 degrees.
- **3** The total enumeration degrees.

The jump hierarchy

Definition

- A degree \mathbf{a} is Low_n if $\mathbf{a}^{(n)} = \mathbf{0}_T^{(n)}$.
- A degree **a** is High_n if $\mathbf{a}^{(n)} = \mathbf{0}_T^{(n+1)}$.

The jump hierarchy

Definition

- A degree **a** is Low_n if $\mathbf{a}^{(n)} = \mathbf{0}_T^{(n)}$.
- ullet A degree ${f a}$ is ${
 m High}_n$ if ${f a}^{(n)}={f 0}_T^{(n+1)}.$

Theorem (Ganchev, S)

The Low₁ enumeration degrees are first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$: **a** is low if and only if every $\mathbf{b} \leq \mathbf{a}$ bounds a half of a \mathcal{K} -pair.

The jump hierarchy

Definition

- A degree **a** is Low_n if $\mathbf{a}^{(n)} = \mathbf{0}_T^{(n)}$.
- A degree **a** is High_n if $\mathbf{a}^{(n)} = \mathbf{0}_T^{(n+1)}$.

Theorem (Ganchev, S)

The Low₁ enumeration degrees are first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$: **a** is low if and only if every $\mathbf{b} \leq \mathbf{a}$ bounds a half of a \mathcal{K} -pair.

Corollary (Nies, Shore, Slaman)

The total Low_{n+1} and the total High_n degrees are first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Question

To what extent do the total enumeration degrees determine $\mathcal{D}_e(\leq \mathbf{0}_e')$?

Question

To what extent do the total enumeration degrees determine $\mathcal{D}_e(\leq \mathbf{0}_e')$?

Note that Selman's theorem is not true locally. There are upwards properly Σ_2^0 enumeration degrees, degrees $\mathbf{a} < \mathbf{0}_e'$ such that the only total enumeration degree in $\mathcal{D}_e(\leq \mathbf{0}_e')$ above them is $\mathbf{0}_e'$.

Question

To what extent do the total enumeration degrees determine $\mathcal{D}_e(\leq \mathbf{0}_e')$?

Note that Selman's theorem is not true locally. There are upwards properly Σ_2^0 enumeration degrees, degrees $\mathbf{a}<\mathbf{0}'_e$ such that the only total enumeration degree in $\mathcal{D}_e(\leq \mathbf{0}'_e)$ above them is $\mathbf{0}'_e$.

Theorem (Soskov)

For every $\mathbf{a} \in \mathcal{D}_e$ there is a total $\mathbf{f} \geq \mathbf{a}$ such that $\mathbf{a}' = \mathbf{f}'$.

Question

To what extent do the total enumeration degrees determine $\mathcal{D}_e(\leq \mathbf{0}_e')$?

Note that Selman's theorem is not true locally. There are upwards properly Σ_2^0 enumeration degrees, degrees $\mathbf{a}<\mathbf{0}_e'$ such that the only total enumeration degree in $\mathcal{D}_e(\leq \mathbf{0}_e')$ above them is $\mathbf{0}_e'$.

Theorem (Soskov)

For every $\mathbf{a} \in \mathcal{D}_e$ there is a total $\mathbf{f} \geq \mathbf{a}$ such that $\mathbf{a}' = \mathbf{f}'$.

Question

Is Soskov's jump inversion theorem true locally?

Question

To what extent do the total enumeration degrees determine $\mathcal{D}_e(\leq \mathbf{0}'_e)$?

Note that Selman's theorem is not true locally. There are upwards properly Σ_2^0 enumeration degrees, degrees $\mathbf{a}<\mathbf{0}_e'$ such that the only total enumeration degree in $\mathcal{D}_e(\leq \mathbf{0}_e')$ above them is $\mathbf{0}_e'$.

Theorem (Soskov)

For every $\mathbf{a} \in \mathcal{D}_e$ there is a total $\mathbf{f} \geq \mathbf{a}$ such that $\mathbf{a}' = \mathbf{f}'$.

Question

Is Soskov's jump inversion theorem true locally?

If it is true, then the jump classes would be fully definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$:

 $\mathbf{a} \in \operatorname{Low}_{n+1}$ if and only if there is a total $\mathbf{f} \geq \mathbf{a}$, such that $\mathbf{f} \in \operatorname{Low}_{n+1}$ $\mathbf{a} \in \operatorname{High}_n$ if and only if every total $\mathbf{f} \geq \mathbf{a}$ are in High_n

The enumeration jump operator

Theorem (Ganchev, Sorbi)

Every nonzero enumeration degree a bounds a nontrivial initial segment of enumeration degrees whose nonzero elements have all the same jump as a.

The enumeration jump operator

Theorem (Ganchev, Sorbi)

Every nonzero enumeration degree a bounds a nontrivial initial segment of enumeration degrees whose nonzero elements have all the same jump as a.

Theorem (Ganchev, S)

Let A be a Σ^0_2 set that is not c.e. There is a non c.e. set $B \leq_e A$ and a total set X such that

- \bullet $B \leq_e X$.
- $B' \equiv_e X'.$

Proof: Sacks Jump inversion + Good approximations of Σ_2^0 sets + The ability to "dump" elements in a constructed set $B = \Gamma(A)$ when they are not needed anymore.

Defining the jump classes in $\mathcal{D}_e(\leq \mathbf{0}'_e)$ $\mathbf{a} \in \mathsf{Low}_1$ if and only if for every nonzero $\mathbf{b} \leq \mathbf{a}$ there is a nonzero $\mathbf{x} \leq \mathbf{b}$, such that \mathbf{x} is half of a \mathcal{K} -pair.

Defining the jump classes in $\mathcal{D}_e(\leq \mathbf{0}'_e)$

 $\mathbf{a} \in \text{Low}_1$ if and only if

for every nonzero $\mathbf{b} \leq \mathbf{a}$

there is a nonzero $x \leq b$, such that x is half of a K-pair.

 $\mathbf{a} \in \text{Low}_{n+1}$ if and only if

for every nonzero $\mathbf{b} \leq \mathbf{a}$

there is a nonzero $x \le b$ and a total $f \ge x$, such that $f \in Low_{n+1}$.

Defining the jump classes in $\mathcal{D}_e(\leq \mathbf{0}'_e)$

 $\mathbf{a} \in \text{Low}_1$ if and only if

for every nonzero $\mathbf{b} \leq \mathbf{a}$

there is a nonzero $x \leq b$, such that x is half of a K-pair.

 $\mathbf{a} \in \text{Low}_{n+1}$ if and only if

for every nonzero $\mathbf{b} \leq \mathbf{a}$

there is a nonzero $\mathbf{x} \leq \mathbf{b}$ and a total $\mathbf{f} \geq \mathbf{x}$, such that $\mathbf{f} \in \text{Low}_{n+1}$.

 $\mathbf{a} \in \mathrm{High}_n$ if and only if

there is a nonzero $b \le a$ such that

for every nonzero $\mathbf{x} \leq \mathbf{b}$ all total $\mathbf{f} \geq \mathbf{x}$ are in High_n.

Defining the jump classes in $\mathcal{D}_e(\leq \mathbf{0}'_e)$

 $\mathbf{a} \in Low_1$ if and only if

for every nonzero $\mathbf{b} \leq \mathbf{a}$

there is a nonzero $x \leq b$, such that x is half of a K-pair.

 $\mathbf{a} \in \text{Low}_{n+1}$ if and only if

for every nonzero $\mathbf{b} \leq \mathbf{a}$

there is a nonzero $\mathbf{x} \leq \mathbf{b}$ and a total $\mathbf{f} \geq \mathbf{x}$, such that $\mathbf{f} \in \text{Low}_{n+1}$.

 $\mathbf{a} \in \text{High}_n$ if and only if

there is a nonzero $\mathbf{b} \leq \mathbf{a}$ such that

for every nonzero $\mathbf{x} \leq \mathbf{b}$ all total $\mathbf{f} \geq \mathbf{x}$ are in High_n.

Theorem (Ganchev, S)

All jump classes are first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

The end

Thank you!