Definability of the jump classes in the local structure of
the enumeration degrees

Mariya I. Soskova!
Sofia University

Logic Seminar, University of Siena

'Supported by a Marie Curie International Outgoing Fellowship STRIDE (298471) and
Sofia University Science Fund project 81/2015.



Reducibilities and Degree structures

Definition
Q@ A<r Bif Ace.in Band Ac.e.in B.

2/28



Reducibilities and Degree structures

Definition
Q@ A<r Bif Ace.in Band Ac.e.in B.

Q@ A <, Bifthereisac.e. set W, such that
A=W(B)={z|3D({x,D) e W& D C B)}.

2/28



Reducibilities and Degree structures

Definition
Q@ A<r Bif Ace.in Band Ac.e.in B.

Q@ A <, Bifthereisac.e. set W, such that
A=W(B)={z|3D({x,D) e W& D C B)}.

Definition
e A=Bif A< Band B < A.

2/28



Reducibilities and Degree structures

Definition
Q@ A<r Bif Ace.in Band Ac.e.in B.

Q@ A <, Bifthereisac.e. set W, such that
A=W(B)={z|3D({x,D) e W& D C B)}.

Definition
e A=Bif A< Band B < A.
e d(A)={B| A= B}.

2/28



Reducibilities and Degree structures

Definition
Q@ A<r Bif Ace.in Band Ac.e.in B.

Q@ A <, Bifthereisac.e. set W, such that
A=W(B)={z|3D({x,D) e W& D C B)}.

Definition
e A=Bif A< Band B < A.
e d(A)={B| A= B}.
e d(A) <d(B)ifandonlyif A < B.

2/28



Reducibilities and Degree structures

Definition
Q@ A<r Bif Ace.in Band Ac.e.in B.

Q@ A <, Bifthereisac.e. set W, such that
A=W(B)={z|3D({x,D) e W& D C B)}.

Definition
e A=Bif A< Band B < A.
e d(A)={B| A= B}.
@ d(A) < d(B)ifand only if A < B.

@ There is a least upper bound operation V.




Reducibilities and Degree structures

Definition
Q@ A<r Bif Ace.in Band Ac.e.in B.

Q@ A <, Bifthereisac.e. set W, such that
A=W(B)={z|3D({x,D) e W& D C B)}.

Definition
e A=Bif A< Band B < A.
e d(A)={B| A= B}.
@ d(A) < d(B)ifand only if A < B.

@ There is a least upper bound operation V.

@ There is a jump operation ’.




Reducibilities and Degree structures

Definition
Q@ A<y BifAce.in Band Ac.e.in B.

Q@ A <, Bifthereisac.e. set W, such that
A=W(B)={z|3D({x,D) e W& D C B)}.

Definition
e A=Bif A< Band B < A.
e d(A)={B| A= B}.
@ d(A) < d(B)ifand only if A < B.
@ There is a least upper bound operation V.

@ There is a jump operation ’.

(DT7 ST,\/,/,OT) (D67 §67V7/70€)



What connects Dy and D,

Proposition
A<rB& Ad Aisce.inB& A A<, B®B. J

3/28



What connects Dy and D,

Proposition
A<rB& Ad Aisce.inB& Ad A<, Bd B.

The embedding ¢ : Dy — D, defined by ¢(dp(A)) = d.(A @ A), preserves
the order, the least upper bound and the jump operation.



What connects Dy and D,

Proposition
A<rBs A® Aisce.inBe A®A<.Bo B. J

The embedding ¢ : Dy — D, defined by ¢(dp(A)) = d.(A @ A), preserves
the order, the least upper bound and the jump operation.

TOT = «(Dr) is the set of total enumeration degrees.



What connects Dy and D,

Proposition
A<rBs A® Aisce.inBe A®A<.Bo B. }

The embedding ¢ : Dy — D, defined by ¢(dp(A)) = d.(A @ A), preserves
the order, the least upper bound and the jump operation.

TOT = «(Dr) is the set of total enumeration degrees.

(DTa STv V)/ ) OT) = (TOTu Seu \/7I ) Oe) g (D67 Se: \/7/ ) 06)



What connects Dy and D,

Proposition
A<rBs A® Aisce.inBe A®A<.Bo B. J

The embedding ¢ : Dy — D, defined by ¢(dp(A)) = d.(A @ A), preserves
the order, the least upper bound and the jump operation.

TOT = «(Dr) is the set of total enumeration degrees.
(DT7 STv V)/ ) OT) = (TOTu Seu \/7I ) Oe) g (D67 Se: \/7/ ) 06)

Theorem (Selman)

A is enumeration reducible to B if and only if

(x € TOT | do(A) < x} D {x € TOT | de(B) < x}.




What connects Dy and D,

Proposition
A<rBs A® Aisce.inBe A®A<.Bo B. }

The embedding ¢ : Dy — D, defined by ¢(dp(A)) = d.(A @ A), preserves
the order, the least upper bound and the jump operation.

TOT = «(Dr) is the set of total enumeration degrees.
(DTa STv V)/ ) OT) = (TOTu Seu \/7I ) Oe) g (D67 Se: \/7/ ) 06)

Theorem (Selman)

A is enumeration reducible to B if and only if

(x € TOT | do(A) < x} D {x € TOT | de(B) < x}.

TOT is an automorphism base for D,.
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(N, +, %, <,0, 1) and each set of natural numbers X so that the relation

P represents the set X and x is the Turing degree of X.

can be defined using a parameter g in Dy as a property of p and x.

@ There are at most countably many automorphisms of Dr.

@ Relations on degrees induced by a relations on sets definable in second
order arithmetic are definable with parameters in Dr.

@ The degrees below 0®) form an automorphism base.
e Rigidity is equivalent to full biinterpretability.
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Definability in the Turing degrees

Theorem (Shore, Slaman)
The Turing jump is first order definable in Dr. }

Method: “Involves explicit translation of automorphism facts in definability
facts via a coding of second order arithmetic.”
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Definition (Jockusch)

A is semi-computable if there is a total computable function s 4, such that
sa(z,y) € {z,y} and if {z,y} N A # () then s4(z,y) € A.

Example:
@ A left cut in a computable linear ordering is a semi-computable set.
@ Forall Atheset Ly = {0 | 0 <r, xa} is semi-recursive.

@ Every nonzero Turing degree contains a semi-computable set that is not
c.e. Or co-c.e.

Theorem (Arslanov, Cooper, Kalimullin)

If A is a semi-computable set then for every X:

(de(X) v de(A)) A (de(X) \ de(A)) = de(X)'
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A pair of sets A, B are called a K-pair if there is a c.e. set W, such that
AxBCWand Ax BCW.

Example:
Q A trivial example is {A, U}, where U isc.e: W =N x U.

@ If Ais a semi-computable set, then {4, A} is a K-pair:
W = {(m,n) | sa(m,n) = m}.

Theorem (Kalimullin)
A pair of sets A, B is a K-pair if and only if their enumeration degrees a and
b satisfy:

K(a,b) = (Vx € D.)((aVx) A (bVx) =x).
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Definability of the enumeration jump

Theorem (Kalimullin)

0., is the largest degree which can be represented as the least upper bound of a
triple a, b, ¢, such that K(a, b), (b, c) and K(c, a).

v

Corollary (Kalimullin)

The enumeration jump is first order definable in D,.
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Definition
A K-pair {a, b} is maximal if for every K-pair {c,d} witha < cand b < d,
we have thata = cand b = d.

Example: A semi-computable pair is a maximal /C-pair.
Total enumeration degrees are joins of maximal K-pairs.

Theorem (Gancheyv, S)

A nonzero degree a < 0/, is total if and only if it is the least upper bound of a
maximal KC-pair.
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The main definability question

Question (Rogers 1967) J

Are the total enumeration degrees first order definable in D, ?

@ The total degrees above 0., are definable as the range of the jump
operator.

@ The total degrees below 0/, are definable as joins of maximal KC-pairs.

Every total degree is the join of a maximal C-pair.

Is the the join of every maximal K-pair total?

Question (Ganchev, S) J
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Defining totallity in D,

Theorem (Cai, Ganchev, Lempp, Miller, S)

If {A, B} is a nontrivial K-pair in D, then there is a semi-computable set C,
such that A <. C'and B <. C.

Proof flavor: Let W be a c.e. set witnessing that a pair of sets { A, B} forms a
nontrivial K-pair.

@ The countable component: we use W to construct an effective labeling
of the computable linear ordering Q.

@ The uncountable component: C' will be a left cut in this ordering.

Theorem (Cai, Ganchev, Lempp, Miller, S) J

The set of total enumeration degrees is first order definable in De.
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The relation c.e. in

A Turing degree a is c.e. in a Turing degree x if some A € a is c.e. in some

Definition
X € x. J

Recall that ¢ is the standard embedding of Dy into De.

Theorem (Cai, Ganchev, Lempp, Miller, S)
The set {(c(a), t(x)) | ais c.e. in x} is first order definable in D,. J

@ Gancheyv, S had observed that if 7OT is definable by maximal K-pairs
then the image of the relation ‘c.e. in’ is definable for non-c.e. degrees.

© A result by Cai and Shore allowed us to complete this definition.
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The total degrees as an automorphism base

Theorem (Selman)

A is enumeration reducible to B if and only if

(x € TOT | do(A) < x} D {x € TOT | do(B) < x}.

Corollary

The total enumeration degrees form a definable automorphism base of the
enumeration degrees.

o If Dy is rigid then D, is rigid.

@ The automorphism analysis for the enumeration degrees follows.

@ The total degrees below 0£5) are an automorphism base of D,.

Question
Can we improve this bound further?
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Definition
‘R is the substructure consisting of all Turing degrees that contain c.e. sets.

Dr(< 0') is the substructure consisting of all Turing degrees that are bounded
by 0/..

D.(<0.) is the substructure consisting of all enumeration degrees that are
bounded by 0.

Theorem (Harrington, Slaman; Shore; Gancheyv, S)

The theory of each local structure is computably isomorphic to first order
arithmetic.

R CDr(<0) — D(<L0))
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The local coding theorem

Definition

A set of degrees Z contained in Dy (< 0') is uniformly low if it is bounded by
a low degree and there is a sequence {Z; };<.,, representing the degrees in Z,
and a computable function f such that {f(i)}? is the Turing jump of

@j<i Zj.

Example: If @,_  A; is low then A = {dr(A4;) | i < w} is uniformly low.

<w

Theorem (Slaman and Woodin)

If Z is a uniformly low subset of Dy (< 0) then Z is definable from
parameters in Dy (< 0).
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The local coding theorem of Slaman and Woodin
o

Using parameters we can code a
model of arithmetic M =
(NM,OM,SM, _|_M’ XM, SM)
p, P, Ps
o e e @ The set NM is definable with
parameters p.
© The graphs of s, 4+, x and the
relation < are definable with
oW o parameters p.
@ N E piff
Dr(<0') = »7r(P)
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An indexing of the c.e. degrees

Theorem (Slaman, Woodin)

There are finitely many A M(p)
parameters which code a Ly
model of arithmetic M and an
indexing of the c.e. degrees: a
function ¢ : NM — Dp(< 0)
such that 1 (eM) = dp(W,).
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Towards a better automorphism base of D,

Theorem (Slaman, Woodin)

There are total AY parameters
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M and an indexing of the
image of the c.e. Turing
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Towards a better automorphism base of D,

Theorem (Slaman, Woodin)

There are total A9 parameters
that code a model of arithmetic
M and an indexing of the
image of the c.e. Turing
degrees.

Idea: Can we extend this
indexing to capture more
elements in D.?
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Towards a better automorphism base of D,

Theorem (Slaman, S)

If p’ defines a model of
arithmetic M and an indexing
of the image of the c.e. Turing
degrees then p’defines an
indexing of the total AY
enumeration degrees.

Proof flavour:

The image of the c.e. degrees
— The low co-d.c.e. e-degrees
— The low AY e-degrees

— The total AJ e-degrees
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The priority constructions

Theorem (Slaman, S)

Suppose x is a co-d.c.e. enumeration degree, X’ = 0, and y is a A
enumeration degree, such that y £ x. There are Ag enumeration degrees g;
and H(l) enumeration degrees a;, ¢;, b; for ¢ = 1,2, such that:

@ g; is the least element below a; which joins b; above c;;
QO x<gi Ve
QO yLe Ve
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The priority constructions

Theorem (Slaman, S)

Let x,y be AJ enumeration degrees, such that x’ = 0/, and y £ x. There are
AY enumeration degrees g;, I enumeration degrees a; and low co-d.c.e.
enumeration degrees c;, b; for i = 1, 2, such that:

@ g; is the least element below a; which joins b; above c;;
QO x<gi Ve
QO yLe Ve
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Moving outside the local structure

@ Extend to an indexing of all
total degrees that are “c.e. in”
and above some total A9
enumeration degree.

» The jump is definable.

» The image of the relation
“c.e. in” is definable.

@ Relativizing the previous
theorem extend to an
indexing of | J, ¢ ¢([x,X]).

0e”
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Moving outside the local structure

© Extend to an indexing of all
total degrees below 0.
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And now we iterate
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And now we iterate
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And now we iterate

(0e)

Theorem (Slaman, S)

Let n be a natural number and p'be parameters that index the image of the c.e.
Turing degrees. There is a definable from p indexing of the total A% 11
degrees.
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Consequences

Theorem (Slaman, S)

© The enumeration degrees below 0/, are an automorphism base for D..
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Consequences

Theorem (Slaman, S)
© The enumeration degrees below 0/, are an automorphism base for D..
© The image of the c.e. Turing degrees is an automorphism base for D..

© If the structure of the c.e. Turing degrees is rigid then so is the structure
of the enumeration degrees.




Definability in the local structure of the enumeration
degrees

Theorem (Gancheyv, S)
The class of KC-pairs below 0, is first order definable in D (< 0.,)... J
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Definability in the local structure of the enumeration
degrees

Theorem (Gancheyv, S)
The class of KC-pairs below 0, is first order definable in D (< 0.,)...

Theorem (Cai, Lempp, Miller, S)

... by the same formula as in De.

Theorem (Gancheyv, S)

The following classes of degrees are definable in D, (< 0L,)
@ The downwards properly 39 degrees.
@ The upwards properly X9 degrees.
© The total enumeration degrees.




The jump hierarchy

Definition

o A degree a is Low,, if a(® = 05?).

o A degree a is High,, if a® = ngﬂ).
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The jump hierarchy

Definition

o A degree a is Low,, if a(® = 05?).

o A degree a is High,, if a® = 051”1).

Theorem (Gancheyv, S)

The Low; enumeration degrees are first order definable in D.(<0.): a is low
if and only if every b < a bounds a half of a [C-pair.

Corollary (Nies, Shore, Slaman)

The total Low,,+; and the total High,, degrees are first order definable in
D.(<0)).
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Total degrees in the local structure
Question J

To what extent do the total enumeration degrees determine D, (<0.)?
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Total degrees in the local structure
Question J

To what extent do the total enumeration degrees determine D, (<0.)?

Note that Selman’s theorem is not true locally. There are upwards properly 39
enumeration degrees, degrees a < 0/, such that the only total enumeration
degree in D (< 0.) above them is 0.

Theorem (Soskov) J

For every a € D, there is a total f > a such thata’ = f’.

Is Soskov’s jump inversion theorem true locally?

Question J

If it is true, then the jump classes would be fully definable in D, (< 0.):

a € Low, if and only if there is a total f > a, such that f € Low,, 41

a € High,, if and only if every total f > a are in High,,



The enumeration jump operator

Theorem (Ganchev, Sorbi)

Every nonzero enumeration degree a bounds a nontrivial initial segment of
enumeration degrees whose nonzero elements have all the same jump as a.
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The enumeration jump operator

Theorem (Ganchev, Sorbi)

Every nonzero enumeration degree a bounds a nontrivial initial segment of
enumeration degrees whose nonzero elements have all the same jump as a.

Theorem (Gancheyv, S)

Let A be a X2 set that is not c.e. There is a non c.e. set B <. A and a total set
X such that

Q@ B <. X.
Q@ B =X

v

Proof: Sacks Jump inversion + Good approximations of X2y sets + The ability
to “dump” elements in a constructed set B = I'(A) when they are not needed
anymore.

26/28



. . . /
Defining the jump classes in D.(<0))
a € Low; if and only if

for every nonzero b < a

there is a nonzero x < b, such that x is half of a C-pair.
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. . . /
Defining the jump classes in D.(<0))
a € Low; if and only if

for every nonzero b < a

there is a nonzero x < b, such that x is half of a C-pair.

a € Low,,y; if and only if
for every nonzero b < a

there is a nonzero x < b and a total f > x, such that f € Low, 1.
a € High,, if and only if
there is a nonzero b < a such that
for every nonzero x < b all total f > x are in High,,.

Theorem (Gancheyv, S)
All jump classes are first order definable in D.(<0). J




The end

Thank you!
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