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Outline

I Historical background (Ambos Spies, Fejer: Degrees of
unsolvability).

I Main definition: Enumeration reducibility, Enumeration
degrees, etc.

I Properties of the local structure.
I The priority method using a tree of strategies.



The beginning

A.Turing, 1936: On computable numbers, with an application to
the Entscheidungsproblem, Proc. Lond. Math. Soc., II. Ser.,
42, 230––265.

I Solves the Entscheidungs problem.
I Introduces relativized computation with oracle Turing

machines.



Degree Theory

S. C. Kleene, 1936: General recursive functions of natural
numbers.
S. C. Kleene, 1943: Recursive predicates and quantifiers.
E. L. Post, 1944: Recursively enumerable sets of positive
integers and their decision problems.
E. L. Post, 1948: Degrees of recursive unsolvability: preliminary
report.
S. C. Kleene, 1952: Introduction to Metamathematics.
S. C. Kleene and E. L. Post, 1954: The upper semi-lattice of
degrees of recursive unsolvability.



The computably enumerable degrees

I Natural problems from other parts of mathematics.
I Post’s theorem: The degrees below 0′ are exactly the ∆0

2
Turing degrees.

I Post’s Problem: Are there intermediate c.e. Turing
degrees?

I Friedberg and Muĉnik 1956-7: The priority method, the
hallmark of the field.



Structural properties

Let 〈A, 0, 1, <,∨〉 be an upper semi-lattice.

Definition
If a ∨ b = c and a, b < c then we shall say that a cups b to c.
We shall also say that the pair (a, b) is a splitting of c.
In the special case when c = 1, we shall simply say that a cups
b.

Definition
If a ∧ b = c and a, b > c then we shall say that a caps b to c.
We shall also say that a and b form a minimal pair above c.
In the special case when c = 0, we shall simply say that a caps
b and that (a, b) is a minimal pair.



Further advancements

I Infinite injury priority method.
I Sack’s Density (1963) and Splitting (1964) theorems.
I Shoenfield’s conjecture 1965: The c.e. Turing degrees are

a decidable dense homogeneous partial order, reminiscent
of the rational numbers.

I Lachlan and Yates 1966: There are minimal pairs of c.e.
Turing degrees.
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Complications

I 0′′′ priority method.
I Lachlan’s Non-diamond theorem (1966).
I Cooper and Yates’ Non-cuppable theorem (1973).
I Lachlan’s Non-bounding theorem (1979).



The monster paper

I Density and splitting cannot be combined, Lachlan’s
Non-splitting theorem(1975):
There is a pair of c.e. Turing degrees a < b such that b
cannot be split in the c.e. Turing degrees above a.

I First use of a tree of strategies.



The monster paper: consequences

I Harrington’s non-splitting theorem (1980): There is a c. e.
degree a < 0′ such that no pair of c.e. degrees b, c ≥ a
split 0′.

I Harrington and Shelah (1982): The theory of the c.e.
Turing degrees is not decidable.

I Harrington and Slaman: The theory of first order arithmetic
can be interpreted in the theory of the c.e. Turing degrees.
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Underlying idea

Developing the methods

Structural properties

Strength of the theory Finding definable classes

Understand the structure



Alternative approaches to formalizing information content

I Algorithmic randomness.
I Low for random degrees: zooming into the Turing structure

I Strong reducibilities: restricted computation.
I Many-one reducibility, Truth table reducibility.
I Computational complexity: P =?NP.



Enumeration reducibility

Definition (Friedberg, Rogers 1959)
A set B is enumeration reducible (≤e) to a set A if there is a c.e.
set Φ (e-operator) such that:

n ∈ B ⇔ ∃u(〈n, u〉 ∈ Φ ∧ Du ⊆ A),

where Du denotes the finite set with code u under the standard
coding of finite sets.



Enumeration Degrees

“... enumeration reducibility is the fundamental, general
concept of relative computability in as much as the nature of
the computable universe is intimately bound up with the set of
enumeration operators.”

Cooper, 1990

I Enumeration equivalence: A ≡e B ⇔ A ≤e B ∧ B ≤e A.
I Enumeration degree: de(A) = { B| A ≡e B}.
I Least upper bound: de(A) ∨ de(B) = de(A⊕ B).
I Jump operator: de(A)′ = de(KA ⊕ A).
I Upper semi-lattice with jump: 〈De, 0e,≤,∪,′ 〉.



The local structure of the enumeration degrees De(≤ 0′
e)

0′e

0e

Σ0
2 e-degrees

∆0
2 e-degrees

Π0
1 e-degrees



Transferring results from the Turing degrees
Natural embedding: ι(dt(A)) = de(A⊕ A).

0′e0′

0

Π0
1

Tot-∆0
2

∆0
2

Σ0
2

C.E

∆0
2

DT De

ι

0e



Putting words into actions

Theorem (S, Cooper)
There exists a Π0

1 enumeration degree a < 0′e such that there
exists no nontrivial splitting of 0′e by a pair of a Π0

1 enumeration
degree and a Σ0

2 enumeration degree both above a.

Corollary (Extending Harrington’s Non-splitting Theorem)
There exists a computably enumerable degree a < 0′ such that
there is no nontrivial splitting of 0′ by a pair of a c.e. degree and
a ∆0

2 degree both above a.



Putting words into actions

0′e

0

Π0
1

∆0
2

Σ0
2

C.E

∆0
2

0e

0′

De ←↩ DT : ι

a ι−1(a)

ι(u) u
wι(w)

u ∨ w 6= 0′ι(u ∨ w) 6= 0′e



Zooming in: The ∆0
2 enumeration degrees

I Cooper, Sorbi, Yi (1996): Every nonzero ∆0
2 enumeration

degree is cuppable.
I Cooper, Sorbi, Li, Yang (2006): Every nonzero ∆0

2
enumeration degree bounds a minimal pair.

I Arslanov, Sorbi (1999): There is a ∆0
2 splitting of 0′e above

each incomplete ∆0
2 enumeration degree.

I Arslanov, Sorbi, Kalimullin (2001): The ∆0
2 enumeration

degrees are dense.
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Zooming out: The Σ0
2 enumeration degrees

I Cooper (1984): The Σ0
2 enumeration degrees are dense.

I Cooper, Sorbi, Yi (1996): There is a non-cuppable nonzero
Σ0

2 enumeration degree.
I Cooper, Sorbi, Li, Yang (2006): There is a nonzero Σ0

2
enumeration degree that does not bound a minimal pair.

I An ideal of properly Σ0
2 enumeration degrees and 0e:

I = { a| a > 0e ⇒ (∀x , y ≤ a)
[0e < x ∧ 0e < y ⇒ (∃d)[d ≤ x ∧ d ≤ y ∧ d 6= 0e]]}.



Genericity

Definition
A set A is 1-generic if for every c.e. set W there exists a finite
string λ ⊂ χA such that:

λ ∈W ∨ (∀µ ⊇ λ)(µ /∈W ).

Degrees of 1-generic sets are called 1-generic degrees.

Theorem (S)
There exists a 1-generic Σ0

2 enumeration degree a that does
not bound a minimal pair in the semi-lattice of the enumeration
degrees.



Completing the picture

Theorem (S)
There is a Σ0

2 enumeration degree a < 0′e such that 0′e cannot
be split in the enumeration degrees above the degree a.

A filter of properly Σ0
2 enumeration degrees and 0′e:

F = { a| a < 0′e ⇒ (∀u, v)
[a ≤ u < 0′e ∧ a ≤ v < 0′e ⇒ u ∨ v 6= 0′e]}.



Things are not so simple

I Slaman, Woodin (1997): The theory of the Σ0
2 enumeration

degrees is undecidable.
I Cooper’s conjecture: The structures of the Σ0

2 e-degrees
and the c.e. Turing degrees are elementary equivalent.

I Ahmad: The diamond can be embedded in the Σ0
2

enumeration degrees.
I Ahmad and Lachlan: Non-splittable degrees exist.
I Kent 2005: The theory of the ∆0

2 enumeration degrees is
undecidable.
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Cupping properties of the ∆0
2 enumeration degrees

Theorem (S, Wu)
Every nonzero ∆0

2 enumeration
degree can be cupped by a
partial low ∆0

2 enumeration
degree.



Reaching the first limit

Theorem (S)
Let {ai}i<ω be a ∆0

2-computably enumerable sequence of
enumeration degrees. There exists a nonzero ∆0

2 enumeration
degree b such that for every i < ω if ai is incomplete then
ai ∨ b 6= 0′e.

Here a class {ai}i<ω of ∆0
2 enumeration degrees is

∆0
2-computably enumerable if there is a computable sequence

of ∆0
2 approximations {Ai [s]}i,s<ω to representatives Ai of every

degree ai in the class.



The Difference Hierracy

Definition (Ershov)

1. A set A is n-c.e. if there is a computable function f such
that for each x , f (x , 0) = 0,
|{s + 1 | f (x , s) 6= f (x , s + 1)}| ≤ n and A(x) = lims f (x , s).

2. A is ω-c.e. if there are two computable functions
f (x , s), g(x) such that for all x , f (x , 0) = 0,
|{s + 1 | f (x , s) 6= f (x , s + 1)}| ≤ g(x) and
lims f (x , s) = A(x).

3. A degree a is n-c.e.(ω-c.e.) if it contains a n-c.e.(ω-c.e.)
set.



The Difference Hierracy
0′e

0e

Π0
1 = 2-c.e

3-c.e

0e

∆0
2

ω-c.e.

Σ0
2



Consequences

Corollary
There exists a nonzero ∆0

2 enumeration degree that cannot be
cupped by any incomplete ω-c.e. degree.

Theorem (S, Wu)
For every nonzero ω-c.e. enumeration degree a there exists an
incomplete 3-c.e. enumeration degree b that cups a.



Cupping classes of enumeration degrees
0′e

Π0
1 = 2-c.e

3-c.e

0e

∆0
2

ω-c.e.

Σ0
2

(Cooper, Seetapun and Li): There exists a single incomplete
∆0

2 Turing degree that cups every nonzero c.e. Turing degree.



The second limitation

For any larger subclass, which contains the nonzero 3-c.e
enumeration degrees this cannot be done as:

Theorem (S)
Let a be an incomplete Σ0

2 enumeration degree. There exists a
nonzero 3-c.e. enumeration degree b such that a ∨ b 6= 0′e.



The n-c.e. enumeration degrees are far from simple

An analog of Lachlan’s non-splitting theorem for every class of
n-c.e. enumeration degrees, where n ≥ 3.

Theorem (Arslanov, Cooper, Kalimullin, S)
There exists a pair of a Π0

1 enumeration degree a and a 3-c.e.
enumeration degree b < a such that a cannot be split by a pair
of enumeration degrees above b.



Questions

1. What is the exact theoretical complexity of any of the
classes we considered?

2. Can we define a smaller class within a larger class?
3. What is the precise role of genericity in the enumeration

degrees?
4. What is the mathematical reason for the similarities and

differences between the local structures DT (≤ 0′) and
De(≤ 0′e)?



The priority method

I Friedberg and Muĉnik 1956-7. Solution to Post’s problem.
I The main method used in DT (≤ 0′) and De(≤ 0′e).
I Construction of representatives of degrees in the local

structure.

Theorem
There exist incomparable Π0

1 enumeration degrees.



Step 1: Formalizing the requirements

We shall construct two Π0
1 sets A and B so that ultimately de(A)

and de(B) are incomparable.
The sets A and B should be incomparable: A �e B and B �e A.
Let {Φe}e<ω be a computable enumeration of all c.e. sets:

1. Pe : A 6= ΦB
e ;

2. Qe : B 6= ΦA
e ,



Approximations: The computable content of the
constructions

Definition
A Π0

1 approximation to a set A is a computable sequence of
cofinite sets {A[s]}s<ω, such that:

I A[0] = N.
I n /∈ A[s]⇒ (∀t ≥ s)[n /∈ A[t ]].
I n ∈ A⇔ (∀t)[n ∈ A[t ]].

The construction runs in stages:

I At every stage s we only have finite (computable)
information to the given sets: Φe[s].

I We construct A[s] and B[s] based on the finite amount of
information given.



Step 2: Designing the basic modules

To every requirement we associate a finite set of instructions:

I Similar requirements have similar basic modules.
I Actions:

I Modify own parameters;
I Modify the approximations to the constructed sets;
I Impose restrictions.

I If executed infinitely many times, guarantee satisfaction of
the corresponding requirement.



Basic module for Pe

Pe : A 6= ΦB
e .

1. If the witness xe is not selected, then let xe be a fresh
number, one that has not appeared in the construction so
far.

2. If xe /∈ ΦB
e [s] then do nothing.

3. If xe ∈ ΦB
e [s] then there is an axiom 〈xe, D〉 ∈ Φe[s] with

D ⊆ B[s]. Extract xe from A[s] and restrain D in B.



Step 3: Identifying the outcomes

I More than one possible method for satisfying a
requirement.

I Strategies choose their method with respect to the current
situation and the methods chosen by other strategies.

I The choice of a particular method corresponds to an
outcome.

I Two outcomes for Pe :
I Wait forever for xe ∈ ΦB

e : Outcome w .
I At some stage x enters ΦB

e : Outcome f .



Conflicts

Pe-strategy
1. If the witness xe is not selected, then let xe be a fresh

number, one that has not appeared in the construction so
far.

2. If xe /∈ ΦB
e [s] then do nothing.

3. If xe ∈ ΦB
e [s] via axiom 〈xe, D〉 then extract xe from A[s] and

restrain D in B.

Qj -strategy
1. If the witness xj is not selected, then let xj be a fresh

number, one that has not appeared in the construction so
far.

2. If xj /∈ ΦA
j [s] then do nothing.

3. If xj ∈ ΦA
j [s] via axiom 〈xj , F 〉 then extract xj from B[s] and

restrain F in A.



Resolving the conflicts: Priority ordering

I We order the set of requirements R linearly:
P0 < Q0 < P1 < Q1 < P2...

I Requirements in earlier positions have higher priority.
I Lower priority requirements respect the restrictions

imposed by higher priority requirements.
I They assume that the method chose by higher priority

strategies is final.
I If they are wrong - we say that they are injured. An injured

requirement is initialized and starts work from the
beginning under the changed assumptions.



Step 4: The tree of strategies

I Injury appears when a strategy decides to change its
method (outcome).

I We order the set of outcomes O = {w , f} linearly:

f <L w
The set O≤ω has an induced lexicographical order <.

Definition
The tree of strategies is a computable function T with domain
D(T ) a downwards closed subset of O<ω and range R(T ) = R,
such that:

I For every path f ⊆ D(T ) we have R(T � f ) = R.
I Higher priority requirements are assigned to nodes at

higher levels of the tree.



Step 4: The tree of strategies
P0

Q0 Q0

P1 P1 P1 P1

f

f w f w

Q1 Q1 Q1 Q1 Q1 Q1 Q1Q1

w

f w f w f w f w

Each node on the tree has its own instance of a strategy
associated with it.



The construction

I At stage 0 all nodes are initialized.
I At each stage s > 0 we construct a finite path δ[s] of length

s through the domain of T starting at the root of the tree.
I Nodes α ⊆ δ[s] are activated at stage s.

I They run their instance of the basic module.
I Select an outcome o.
I Initialize lower priority requirements which have not

predicted the outcome correctly.

I The next node visited at stage s will be α̂ o.



Visualizing the construction
Stage 0 P0

Q0 Q0

P1 P1 P1 P1

f

f w f w

Q1 Q1 Q1 Q1 Q1 Q1 Q1Q1

w

f w f w f w f w

A = N B = N
Φ0[0] = ∅

All nodes are initialized.



Visualizing the construction
Stage 1 P0

Q0 Q0

P1 P1 P1 P1

f

f w f w

Q1 Q1 Q1 Q1 Q1 Q1 Q1Q1

w

f w f w f w f w

A = N B = N
Φ0[1] = {〈2, {3, 5}〉}

Visit node ∅. Select a witness for node ∅: x∅ = 6.
Check if x∅ ∈ ΦB

0 [1]. The answer is no, outcome is w . End
stage 1.



Visualizing the construction
Stage 2 P0

Q0 Q0

P1 P1 P1 P1

f

f w f w

Q1 Q1 Q1 Q1 Q1 Q1 Q1Q1

w

f w f w f w f w

A = N B = N
Φ0[2] = {〈2, {3, 5}〉, 〈11, {1, 12}〉}

Visit node ∅. Check if x∅ ∈ ΦB
0 [2]. The answer is no, outcome is
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Visualizing the construction
Stage 2 P0

Q0 Q0

P1 P1 P1 P1

f

f w f w

Q1 Q1 Q1 Q1 Q1 Q1 Q1Q1

w

f w f w f w f w

A = N B = N
Φ0[2] = {〈2, {3, 5}〉, 〈11, {1, 12}〉}

Visit node w . Select a witness xw for the node w .
Check if xw ∈ ΦA

0 [2]. The answer is no, outcome is w . End
stage 2.



Visualizing the construction
Stage 19 P0

Q0 Q0

P1 P1 P1 P1

f

f w f w

Q1 Q1 Q1 Q1 Q1 Q1 Q1Q1

w

f w f w f w f w

A = N B = N
Φ0[19] = {〈2, {3, 5}〉, 〈11, {1, 17}〉, 〈13, {2, 21, 88}〉 . . . }

Visit node ∅. Visit node ∅. Check if x∅ ∈ ΦB
0 [19]. The answer is

no, outcome is w .



Visualizing the construction
Stage 19 P0

Q0 Q0

P1 P1 P1 P1

f

f w f w

Q1 Q1 Q1 Q1 Q1 Q1 Q1Q1

w

f w f w f w f w

A = N B = N \ {13}
Φ0[19] = {〈2, {3, 5}〉, 〈11, {1, 17}〉, 〈13, {2, 21, 88}〉 . . . }

Visit node w . Check if xw ∈ ΦA
0 [19]. The answer is Yes. Extract

xw from B, restrain {2, 21, 88} in A. The outcome is f . Initialize
all nodes to the right of f .



Visualizing the construction
Stage 19 P0

Q0 Q0

P1 P1 P1 P1

f

f w f w

Q1 Q1 Q1 Q1 Q1 Q1 Q1Q1

w

f w f w f w f w

A = N B = N \ {13}
Φ0[19] = {〈2, {3, 5}〉, 〈11, {1, 17}〉, 〈13, {2, 21, 88}〉 . . . }
Φ1[19] = {〈1, {2, 4}〉, 〈10, {5, 16}〉, . . . }

Visit node wf . Select a witness xwf . Check if xwf ∈ ΦB
1 [19]. The

answer is no, outcome is w .



The key point: The true path

Lemma (True path lemma)
There exists an infinite path h in the tree of strategies, called
the true path, with the following properties:

1. (∀n)(∃∞s)[ h � n ⊆ δ[s] ];
2. (∀n)(∃si(n))(∀s > si(n))[ h � n is not initialized at stage s ].

In our case: the leftmost path of nodes visited infinitely often is
the true path.
Every node along the true path satisfies its requirement.



Thank you!


