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PART I

THE ENUMERATION DEGREES
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Preliminaries: The enumeration degrees

Definition
A ≤e B iff there is a c.e. set W , such that
A = W (B) = {x | ∃u(〈x ,u〉 ∈W ∧ Du ⊆ B)}.
de(A) = {B | A ≤e B & B ≤e A}
de(A) ≤ de(B) iff A ≤e B.

0e = de(∅) = {W |W is c.e. }.
de(A) ∨ de(B) = de(A⊕ B).

de(A)′ = de(A′), where A′ = LA ⊕ LA and LA = {x | x ∈Wx (A)}.
De = 〈De,≤,∨,′ ,0e〉 is an upper semi-lattice with jump operation
and least element.
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The total degrees

Proposition

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕ A),
preserves the order, the least upper bound and the jump operation:

The sub structure of the total e-degrees is defined as T OT = ι(DT ).
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0′e

0e

The local structure of the enumeration degrees Ge = De(≤ 0′e)
consists of all degrees below 0′e.
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0′e

0e

Σ2 ∆2 Π1

With respect to the arithmetic hierarchy the degrees can be partitioned
into three classes.
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0′e

0e

Σ2 ∆2 Π1

T OT

The total degrees below 0′e are images of the Turing degrees below 0′.
Every total degree is ∆0

2, but not all ∆0
2 are total.
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0′e

0e

Σ2 ∆2 Π1

T OT

Low

A degree is low if its jump is as low as possible: 0′e. Every low degree
is ∆0

2.
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0′e

0e

Σ2 ∆2 Π1

T OT

Low

Up-Σ2

Dn-Σ2

Up-Σ2

Dn-Σ2

The upwards properly Σ0
2 have no incomplete ∆0

2 above them. The
downwards properly Σ0

2 have no nonzero ∆0
2 below them.
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K-pairs

Iskander Kalimullin: Definability of the jump operator in the
enumeration degrees
Journal of Mathematical Logic (2003)

Definition
Let A, B and U be sets of natural numbers. The pair (A,B) is a K-pair
over U if there exists a set W ≤e U, such that A× B ⊆W and
A× B ⊆W .

A and B are a K-pair if they are a K-pair over ∅.
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K-pairs: A trivial example

Example
Let V be a c.e set. Then (V ,A) is a K-pair (over ∅) for any set of
natural numbers A.

Let W = V × N. Then V × A ⊆W and V × A ⊆W .

We will only be interested in non-trivial K-pairs.

Mariya I. Soskova (FMI) Definability 10.03.2011 11 / 49



K-pairs: A more interesting example

Definition (Jockusch)
A set of natural numbers A is semi-recursive if there is a computable
function sA such that for every pair of natural numbers (x , y):

1 sA(x , y) ∈ {x , y}.
2 If x ∈ A or y ∈ A then sA(x , y) ∈ A.

Example

Let A be a semi-recursive set. Then (A,A) is a K-pair.

Theorem (Jockusch)
For every noncomputable set B there is a semi recursive set A ≡T B
such that both A and A are not c.e.
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An order theoretic characterization of K-pairs

Kalimullin has proved that the property of being a K-pair is degree
theoretic and first order definable in De.

Theorem (Kalimullin)
(A,B) is a K-pair over U if and only if the degrees a = de(A),
b = de(B) and u = de(U) have the following property:

K(a,b,u) � (∀x ∈ De)((u ∨ a ∨ x) ∧ (u ∨ b ∨ x) = u ∨ x)
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Properties of K-pairs in the local structure

1 The enumeration degrees of the elements of a K-pair are quasi
minimal, i.e. the only total degree bounded by either of them is 0e.

2 The enumeration degrees of the elements of a K pair are low.
3 Every ∆0

2 degree bounds a K-pair.
4 The class of the enumeration degrees of sets that form a K-pair

with a fixed set A is an ideal.
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0′e

0e

Σ2 ∆2 Π1

T OT

LowK K

Up-Σ2

Dn-Σ2

Up-Σ2

Dn-Σ2

The K-pairs in the local structure Ge.
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Local definability of K-pairs

K(a,b) � (∀x)((a ∨ x) ∧ (b ∨ x) = x)

Is it enough to require that this formula is satisfied by all Σ0
2 e-degrees?

Could there be a fake K-pair {a,b}, such that:

Ge |= K(a,b) & ¬(De |= K(a,b))?

Theorem (G, S)

There is a first order formula LK, such that for any Σ0
2 sets A and B,

{A,B} is a non-trivial K-pair if and only if Ge |= LK(de(A),de(B)).
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Cupping properties

Definition
A Σ0

2 enumeration degree a is called cuppable if there is an incomplete
Σ0

2 e-degree b, such that a ∨ b = 0′e.
If furthermore b is low, then a will be called low-cuppable.

Theorem (G, S)

If u and v are Σ0
2 enumeration degrees such that u ∨ v = 0′e then u is

low-cuppable or v is low-cuppable.

Theorem (G, S)

For every nonzero ∆0
2 degree b there is a nontrivial K-pair, (c,d), such

that
b ∨ c = c ∨ d = 0′e.
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0′e

0e

Σ2 ∆2 Π1

T OT

LowK K

Up-Σ2

Dn-Σ2

Up-Σ2

Dn-Σ2

The first example of a definable class of degrees in the local structure:
K-pairs.
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An easy consequence

If a bounds a nonzero ∆0
2 degree then it bounds a nontrivial K-pair.

If a is a downwards properly Σ0
2 degree, then it bounds no K-pair.

Corollary

The class of downwards properly Σ0
2 is first order definable in Ge by the

formula:

DPΣ0
2(x) 
 ∀b,c[(b ≤ x & c ≤ x)⇒ ¬LK(b,c)].
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0′e

0e

Σ2 ∆2 Π1

T OT

LowK K

Up-Σ2

Dn-Σ2

Up-Σ2

Dn-Σ2

The second example of a definable class of degrees in the local
structure: Downwards properly Σ0

2 degrees.
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The upwards properly Σ0
2 degrees

Definition
x is upwards properly Σ0

2 every y ∈ [x,0′e) is properly Σ0
2.

Theorem (Jockusch)
For every noncomputable set B there is a semi recursive set A ≡T B
such that both A and A are not c.e.

Corollary
Every nonzero total enumeration degree can be represented as the
least upper bound of a nontrivial K-pair.
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The upwards properly Σ0
2 degrees

Theorem (Arslanov, Cooper, Kalimullin)

For every ∆0
2 enumeration degree a < 0′e there is a total enumeration

degree b such that a ≤ b < 0′e.

So a degree a is upwards properly Σ0
2 if and only if no element above it

other than 0′e can be represented as the least upper bound of a
nontrivial K-pair.

Corollary

The class of upwards properly Σ0
2 is first order definable in Ge by the

formula :

UPΣ0
2(x) 
 ∀c,d(LK(c,d) & x ≤ c ∨ d⇒ c ∨ d = 0′e).
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0′e

0e

Σ2 ∆2 Π1

T OT

LowK K

Up-Σ2

Dn-Σ2

Up-Σ2

Dn-Σ2

The third example of a definable class of degrees in the local structure:
Upwards properly Σ0

2 degrees.
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Semi-recursive sets revisited

Proposition (Kalimullin )

If A and B form a nontrivial ∆0
2 K-pair then A ≤e B and B ≤e A.

Consider a nontrivial K-pair of a semi recursive set and its
complement: {A,A}.
Assume that there is a K-pair {C,D} such that A <e C and A <e D.
By the ideal property A forms a K-pair with D.
Hence D ≤e A.
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Maximal K-pairs

Definition
We say that {A,B} is a maximal K-pair if for every K-pair {C,D}, such
that A ≤e C and B ≤e D, we have A ≡e C and B ≡e D.

Corollary
Every nonzero total set is enumeration equivalent to the join of a
maximal K-pair.
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Local definability of the total degrees

Theorem (G, S)

For every nontrivial ∆0
2 K-pair {A,B} there is a K-pair {C,C}, such

that A ≤e C and B ≤e C.

Denote byMK(x,y) the first order formula that defines in Ge the set of
degrees of maximal K-pairs.

Corollary
The class of total degrees is first order definable in Ge by the formula:

T OT (x) 
 x = 0e ∨ ∃c∃d[MK(c,d) & x = c ∨ d.]
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The fourth example of a definable class of degrees in the local
structure: The total degrees.
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One final consequence

Theorem (Giorgi, Sorbi, Yang)

Every non-low total degree bounds a downwards properly Σ0
2

enumeration degree.

Corollary
The class of low total e-degrees is first order definable in Ge by the
formula:

T L(x) 
 T OT (x) & ∀c ≤ x[¬DPΣ0
2(c)]
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One final consequence

Theorem (Soskov)
For every enumeration degree x there is a total enumeration degree y,
such that x < y and x′ = y′.

Thus a Σ0
2 enumeration degree is low if and only if there is a low total

Σ0
2 enumeration degree above it.

Theorem (G, S)
The class of low e-degrees is first order definable in Ge by the formula:

LOW(x) 
 ∃y[x ≤ y & T L(y)]
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PART II

THE ω-ENUMERATION DEGREES
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The ω e-degrees: Basic definitions

Let S be the set of all sequences of sets of natural numbers.

Definition
Let A = {An}n<ω ∈ S and V be an e-operator. The result of applying
the enumeration operator V to the sequence A, denoted by V (A), is
the sequence {V [n](An)}n<ω. We say that V (A) is enumeration
reducible (≤e) to the sequence A.

So A ≤e B is a combination of two notions:

Enumeration reducibility: for every n we have that An ≤e Bn via,
say, Γn.
Uniformity: the sequence {Γn}n<ω is uniform.
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Basic definitions: The jump sequence

With every member A ∈ S we connect a jump sequence P(A).

Definition
The jump sequence of the sequence A, denoted by P(A) is the
sequence {Pn(A)}n<ω defined inductively as follows:

P0(A) = A0.
Pn+1(A) = An+1 ⊕ P ′n(A), where P ′n(A) denotes the enumeration
jump of the set Pn(A).

The jump sequence P(A) transforms a sequence A into a monotone
sequence of sets of natural numbers with respect to ≤e. Every
member of the jump sequence contains full information on previous
members.
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The ω-enumeration degrees

Let A,B ∈ S.

Definition
ω-enumeration reducibility: A ≤ω B, if A ≤e P(B).
ω-enumeration equivalence: A ≡ω B if A ≤ω B and B ≤ω A.
ω-enumeration degrees: dω(A) = {B | A ≡ω B}.
The structure of the ω-enumeration degrees:
Dω = 〈{dω(A) | A ∈ S} ,≤ω〉, where dω(A) ≤ω dω(B) if A ≤ω B.
The least ω-enumeration degree: 0ω = dω({∅, ∅, ∅, . . . }) or
equivalently dω({∅, ∅′, ∅′′, . . . }).
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Dω as an upper semi-lattice with jump operation

The join and least upper bound: A⊕ B = {An ⊕ Bn}n<ω.
dω(A⊕ B) = dω(A) ∨ dω(B).
The jump operation: dω(A)′ = dω(A′), where A′ = {Pn+1(A)}n<ω.
Iterating the jump: for every k , dω(A)k = dω(Ak ), where
Ak = {Pn+k (A)}n<ω.
The jump inversion operation: for every k , let
Ik (dω(Ak )) = dω({∅, . . . , ∅︸ ︷︷ ︸

k

,Pk (A),Pk+1(A), . . . }).

Then Ik (ak ) is the least degree b, such that bk = ak .
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The e-degrees as a substructure of Dω

〈De,≤e,∨,′ 〉 can be embedded in 〈Dω,≤ω,∨,′ 〉 via the embedding κ
defined as follows:

κ(de(A)) = dω({A, ∅, ∅, . . . }) = dω({A,A′,A′′, . . . }).

Theorem (Soskov, Ganchev)
The structure D1 = κ(De) is first order definable in Dω.
The structures De and Dω with jump operation have isomorphic
automorphism groups.
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The Local structure Gω

Consider the structure Gω consisting of all degrees reducible to
0′ω = dω((∅′, ∅′′, ∅′′′, . . . )) also called the Σ0

2 ω-enumeration degrees.
The degrees in this local structure can as well be partitioned in terms
of the high-low jump hierarchy.

Definition
Let a ∈ Gω.

1 a is lown if an = 0n
ω. The class of all lown degrees is denoted by Ln.

2 a is highn if an = 0n+1
ω . The class of all highn degrees is denoted

by Hn.

There is a copy of the Σ0
2 enumeration degrees G1 = D1 ∩ Gω.
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The on degrees

Definition
For every n let on = In(0n+1

ω ) = dω((∅, . . . , ∅︸ ︷︷ ︸
n

, ∅n+1, ∅n+2, . . . )).

Theorem
Let a ∈ Gω.

1 a ∈ Hn if and only if on ≤ω a
2 a ∈ Ln if and only if a ∧ on = 0ω

Proof: 1: If on ≤ω a then 0n+1
ω = on

n ≤ω an. Hence a ∈ Hn.
If a ∈ Hn then an = 0n+1

ω . But on is the least degree whose n-th jump is
0n+1
ω , so on ≤ω a.
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The on degrees
Definition
For every n let on = In(0n+1

ω ) = dω({∅, . . . , ∅︸ ︷︷ ︸
n

, ∅n+1, ∅n+2, . . . }).

Theorem
Let a ∈ Gω.

1 a ∈ Hn if and only if on ≤ω a
2 a ∈ Ln if and only if a ∧ on = 0ω

Proof: For every A ≡e P(A) ∈ a ∈ Gω:

{A0,A1 . . . ,An,An+1, . . . } ∧ {∅, . . . , ∅︸ ︷︷ ︸
n

, ∅n+1, ∅n+2, . . . }

= {∅, . . . , ∅︸ ︷︷ ︸
n

,An,An+1, . . . } = In(An)

Hence a ∧ on = 0ω if and only if In(an) = 0ω, if and only if an = 0n
ω.
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A new “lowness” property

Definition
A sequence A is called almost zero (a.z.) if for every n, An ≤e ∅n. A
degree is a.z. if it contains an a.z. sequence.

The a.z. degrees form an ideal.
If a ∈ Gω then a is a.z. if and only if a <ω on for all n.
Nonzero a.z. degrees exist.
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K-pairs in Gω

Definition
A pair of degrees a,b ∈ Gω is called a K-pair if

K(a,b) � (∀x ∈ Gω)((a ∨ x) ∧ (b ∨ x) = x)

Theorem (G,S)
If dω(A) and dω(B) form a nontrivial K-pair in Gω then both A and B are
a.z. or for some n there exists a K-pair in De A,B over ∅(n) such that
∅n < A,B, A′ = B′ = ∅n+1 and:

A ≡ω {∅, . . . , ∅︸ ︷︷ ︸
n

,A, ∅, . . . , ∅, . . . } and

B ≡ω {∅, . . . , ∅︸ ︷︷ ︸
n

,B, ∅, . . . , ∅, . . . }.
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Distinguishing between different types of K-pairs
Theorem (G,S)
Let a,b ∈ Gω form a nontrivial minimal pair. Then for every natural
number n

∀x �ω on[a ∨ x �ω on] ⇐⇒ a,b ≤ω on+1.

Proof:
Suppose that a,b <ω on and a,b �ω on+1. Then

a = dω({∅, . . . , ∅︸ ︷︷ ︸
n

,A, ∅, . . . , ∅, . . . })

and ∅n < A < ∅n+1 and A′ = ∅n+1. Relativising the low cupping
theorem for the ∆0

2 enumeration degrees, there is an X such that
X ′ = ∅n+1 and X ∨ A ≡e ∅n+1.

dω({∅, . . . , ∅︸ ︷︷ ︸
n

,A, . . . }) ∨ dω({∅, . . . , ∅︸ ︷︷ ︸
n

,X , ∅, . . . }) = on.
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theorem for the ∆0

2 enumeration degrees, there is an X such that
X ′ = ∅n+1 and X ∨ A ≡e ∅n+1.

dω({∅, . . . , ∅︸ ︷︷ ︸
n

,A, . . . }) ∨ dω({∅, . . . , ∅︸ ︷︷ ︸
n

,X , ∅, . . . }) = on.
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Definability of on

Theorem (G,S)
For every n on is first order definable in Gω.

Proof Sketch: Fix n ≥ 0. Then on+1 is the greatest degree which is the
least upper bound of a nontrivial K-pair {a,b} in Gω, such that

∀x �ω on[a ∨ x �ω on].

Corollary
For all n the classes Hn and Ln are first order definable in Gω.
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Definability of G1

For every sequence A = {A0,A1,A2, . . . } we have that:

dω(A) ∨ o1 = dω({A0, ∅′′, ∅′′′, . . . }).

If A∗ ∈ G1 and A∗ = {A0, ∅, ∅, . . . } then dω(A∗) ∨ o1 = dω(A) ∨ o1 and
dω(A∗) ≤ω dω(A).

Theorem (G,S)
G1 is first order definable in Gω by:

a ∈ G1 ⇐⇒ ∀y(a ∨ o1 = y ∨ o1 ⇒ a ≤ω y).

Mariya I. Soskova (FMI) Definability 10.03.2011 48 / 49



Definability of G1

For every sequence A = {A0,A1,A2, . . . } we have that:

dω(A) ∨ o1 = dω({A0, ∅′′, ∅′′′, . . . }).

If A∗ ∈ G1 and A∗ = {A0, ∅, ∅, . . . } then dω(A∗) ∨ o1 = dω(A) ∨ o1 and
dω(A∗) ≤ω dω(A).

Theorem (G,S)
G1 is first order definable in Gω by:

a ∈ G1 ⇐⇒ ∀y(a ∨ o1 = y ∨ o1 ⇒ a ≤ω y).

Mariya I. Soskova (FMI) Definability 10.03.2011 48 / 49



The end

Thank you!
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