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Preliminaries: The enumeration degrees

Definition
@ A<, Biffthere is a c.e. set W, such that
A= W(B)={x|Ju((x,u) € WA D, C B)}.
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0 do(A) = {B|A<cB& B <, A}
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A= W(B)={x|Ju((x,u) € WA D, C B)}.

® do(A) = {B| A< B& B <, A}
o dy(A) < ds(B) iff A<, B.

@ 0 =de(0)={W | Wisc.e. }.
0 do(A)V do(B) = ds(A® B).
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Preliminaries: The enumeration degrees

Definition
@ A<, Biffthere is a c.e. set W, such that
A= W(B)={x|Ju((x,u) € WA D, C B)}.

do(A) = {B| A<e B& B <o A}
do(A) < do(B) iff A < B.

0. =de(0)={W | Wisc.e. }.
do(A) V do(B) = do(A @ B).

de(A) = dg(A'), where A' = La® Lyand Ly = {x | x € Wy(A)}.
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Preliminaries: The enumeration degrees

Definition
@ A<, Biffthere is a c.e. set W, such that
A= W(B)={x|Ju((x,u) € WA D, C B)}.

do(A) = {B| A< B& B <o A}

de(A) < dg(B) iff A <¢ B.

0. =de(0)={W | Wisc.e. }.

de(A) V de(B) = de(A & B).

de(A) = de(A'), where A' = Ly ® Ly and La = {x | x € Wy(A)}.

De = (De, <,V,',0¢) is an upper semi-lattice with jump operation
and least element.
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The total degrees

Proposition

The embedding . : D1 — De, defined by 1(d7(A)) = de(A D A),
preserves the order, the least upper bound and the jump operation:

The sub structure of the total e-degrees is defined as TOT = «(Dr).
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Oe
The local structure of the enumeration degrees G, = Dg(< 05,)
consists of all degrees below 0.
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into three classes.

Oe
With respect to the arithmetic hierarchy the degrees can be partitioned
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Oe
The total degrees below 0/, are images of the Turing degrees below 0’
Every total degree is A9, but not all AJ are total.
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Oe
A degree is low if its jump is as low as possible: 0,. Every low degree
is AJ.
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The upwards properly £3 have no incomplete A above them. The
downwards properly ):‘2’ have no nonzero Ag below them.
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KC-pairs

Iskander Kalimullin: Definability of the jump operator in the
enumeration degrees
Journal of Mathematical Logic (2003)

Definition

Let A, B and U be sets of natural numbers. The pair (A, B) is a K-pair
over U if there exists a set W <, U, such that Ax B C W and
AxBCW.

A and B are a K-pair if they are a K-pair over (.
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IC-pairs: A trivial example

Example
Let V be a c.e set. Then (V, A) is a K-pair (over @) for any set of
natural numbers A.

let W=V xN.ThenVxACWand VxACW.

We will only be interested in non-trivial K-pairs.
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IC-pairs: A more interesting example

Definition (Jockusch)
A set of natural numbers A is semi-recursive if there is a computable
function s, such that for every pair of natural numbers (x, y):

o SA(Xay) € {X?y}'
Q lfxe Aory e Athen sa(x,y) € A
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IC-pairs: A more interesting example

Definition (Jockusch)
A set of natural numbers A is semi-recursive if there is a computable
function s, such that for every pair of natural numbers (x, y):

o SA(va) € {X?y}'

Q lfxe Aory e Athen sa(x,y) € A

Example
Let A be a semi-recursive set. Then (A, A) is a K-pair.

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set A=t B
such that both A and A are not c.e. )
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An order theoretic characterization of K-pairs

Kalimullin has proved that the property of being a K-pair is degree
theoretic and first order definable in De.

Theorem (Kalimullin)

(A, B) is a K-pair over U if and only if the degrees a = dg(A),
b = d¢(B) and u = dg(U) have the following property:

K(a,b,u) = (Vx € Dg)((uvavx)A(uvbvx)=uVx)
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Properties of K-pairs in the local structure

@ The enumeration degrees of the elements of a K-pair are quasi
minimal, i.e. the only total degree bounded by either of them is 0.
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Properties of K-pairs in the local structure

@ The enumeration degrees of the elements of a K-pair are quasi
minimal, i.e. the only total degree bounded by either of them is 0.

© The enumeration degrees of the elements of a K pair are low.
@ Every AJ degree bounds a K-pair.

© The class of the enumeration degrees of sets that form a K-pair
with a fixed set A is an ideal.
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The K-pairs in the local structure Ge.
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Local definability of C-pairs

K(a,b) = (¥x)((aVvx) A (bVXx)=Xx)

=] = = E E ©aQe
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Local definability of C-pairs

K(a,b) = (¥x)((aVvx) A (bVX)=Xx)

Is it enough to require that this formula is satisfied by all 9 e-degrees?
Could there be a fake K-pair {a, b}, such that:

Ge = K(a,b) & —(De = K(a,b))?
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Local definability of C-pairs

K(a,b) = (vx)((aV x) A (bV X) = X)

Is it enough to require that this formula is satisfied by all 9 e-degrees?
Could there be a fake K-pair {a, b}, such that:

Ge = K(a,b) & —(De = K(a,b))?

Theorem (G, S)

There is a first order formula LK, such that for any zg sets A and B,
{A, B} is a non-trivial K-pair if and only if Ge = LIK(de(A), de(B)).
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Cupping properties

Definition

A zg enumeration degree a is called cuppable if there is an incomplete
¥9 e-degree b, such thata v b = 07,

If furthermore b is low, then a will be called low-cuppable.
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Cupping properties

Definition

A zg enumeration degree a is called cuppable if there is an incomplete
¥9 e-degree b, such thata v b = 07,
If furthermore b is low, then a will be called low-cuppable.

Theorem (G, S)

Ifu and v are 3 enumeration degrees such thatu v v = 0, then u is
low-cuppable or v is low-cuppable.
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Cupping properties

Definition
A zg enumeration degree a is called cuppable if there is an incomplete

¥9 e-degree b, such thata v b = 07,
If furthermore b is low, then a will be called low-cuppable.

Theorem (G, S)

Ifu and v are 3 enumeration degrees such thatu v v = 0, then u is
low-cuppable or v is low-cuppable.

Theorem (G, S)

For every nonzero AJ degree b there is a nontrivial K-pair, (¢, d), such
that

bve=cvd=0,.
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Oe
The first example of a definable class of degrees in the local structure:
K-pairs.
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An easy consequence

If a bounds a nonzero AS degree then it bounds a nontrivial K-pair.

If a is a downwards properly £3 degree, then it bounds no K-pair.
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An easy consequence

If a bounds a nonzero AS degree then it bounds a nontrivial K-pair.

If a is a downwards properly £3 degree, then it bounds no K-pair.

Corollary

The class of downwards properly ¥3 is first order definable in G¢ by the
formula:

DPYI(x) = Vb, c[(b < x & ¢ < X) = —~LK(b,c)].
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Oe
The second example of a definable class of degrees in the local
structure: Downwards properly ¥3 degrees.
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The upwards properly ¥9 degrees

Definition
x is upwards properly X9 every y € [x,0}) is properly 9. J
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The upwards properly ¥9 degrees

Definition
x is upwards properly X9 every y € [x,0}) is properly 9.

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set A=t B
such that both A and A are not c.e.
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The upwards properly 9 degrees

Definition
x is upwards properly X9 every y € [x,0}) is properly 9.

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set A=t B
such that both A and A are not c.e.

Corollary

Every nonzero total enumeration degree can be represented as the
least upper bound of a nontrivial K-pair.
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The upwards properly ¥9 degrees

Theorem (Arslanov, Cooper, Kalimullin)

For every A enumeration degree a < 0, there is a total enumeration
degree b such thata < b < 0.
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The upwards properly 9 degrees

Theorem (Arslanov, Cooper, Kalimullin)

For every A3 enumeration degree a < 0, there is a total enumeration
degree b such thata < b < 0.

So a degree a is upwards properly T3 if and only if no element above it
other than 0/, can be represented as the least upper bound of a
nontrivial C-pair.
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The upwards properly 9 degrees

Theorem (Arslanov, Cooper, Kalimullin)

For every A3 enumeration degree a < 0, there is a total enumeration
degree b such thata < b < 0.

So a degree a is upwards properly T3 if and only if no element above it
other than 0/, can be represented as the least upper bound of a
nontrivial C-pair.

Corollary

The class of upwards properly zg is first order definable in G by the
formula :

UPYI(x) = Ve, d(LK(c,d) &x<cvd=cvd=0,).
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Oe
The third example of a definable class of degrees in the local structure
Upwards properly zg degrees.
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Semi-recursive sets revisited

Proposition (Kalimullin )

If A and B form a nontrivial A3 K-pair then A <¢ B and B <¢ A.
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complement: {A, A}.
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Semi-recursive sets revisited

Proposition (Kalimullin )
If A and B form a nontrivial A3 K-pair then A <¢ B and B <¢ A. J

Consider a nontrivial K-pair of a semi recursive set and its
complement: {A, A}. _
Assume that there is a K-pair {C, D} such that A <¢ C and A <¢ D.
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Semi-recursive sets revisited

Proposition (Kalimullin )
If A and B form a nontrivial A3 K-pair then A <¢ B and B <¢ A. }

Consider a nontrivial C-pair of a semi recursive set and its
complement: {A, A}.

Assume that there is a K-pair {C, D} such that A <, C and A <, D.
By the ideal property A forms a KC-pair with D.
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Semi-recursive sets revisited

Proposition (Kalimullin )
If A and B form a nontrivial A3 K-pair then A <¢ B and B <¢ A. }

Consider a nontrivial C-pair of a semi recursive set and its
complement: {A, A}.

Assume that there is a K-pair {C, D} such that A <, Cand A <. D.
By the ideal property A forms a K-pair with D.

Hence D <, A.
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Maximal KC-pairs

We say that { A, B} is a maximal KC-pair if for every K-pair {C, D}, such

Definition
that A<, Cand B <. D, we have A=, C and B=, D. J
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Maximal KC-pairs

Definition
We say that { A, B} is a maximal KC-pair if for every K-pair {C, D}, such
that A <, Cand B <, D, we have A=, Cand B =, D.

v

Corollary

Every nonzero total set is enumeration equivalent to the join of a
maximal KC-pair.
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Local definability of the total degrees

Theorem (G, S)

For every nontrivial A3 K-pair {A, B} there is a K-pair {C, C}, such
that A<, C and B <, C.
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Local definability of the total degrees

Theorem (G, S)

For every nontrivial A3 K-pair {A, B} there is a K-pair {C, C}, such
that A<, C and B <, C.

Denote by MK(x,y) the first order formula that defines in G, the set of
degrees of maximal K-pairs.

Corollary
The class of total degrees is first order definable in G¢ by the formula:

TOT(xX) =x=0¢ vV Jead[MK(c,d) &x=cVvd]
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Oe
The fourth example of a definable class of degrees in the local
structure: The total degrees.

Mariya I. Soskova (FMI)

Definability



One final consequence

Theorem (Giorgi, Sorbi, Yang)

Every non-low total degree bounds a downwards properly zg
enumeration degree.
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One final consequence

Theorem (Giorgi, Sorbi, Yang)

Every non-low total degree bounds a downwards properly zg
enumeration degree.

Corollary

The class of low total e-degrees is first order definable in G¢ by the
formula:

TL(X) = TOT(x) & Ve < X[-DPEI(c)]
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One final consequence

Theorem (Soskov)

For every enumeration degree x there is a total enumeration degree'y,
suchthatx <y andx' =vy'.
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One final consequence

Theorem (Soskov)

For every enumeration degree x there is a total enumeration degree'y,
suchthatx <y andx' =vy'.

Thus a £ enumeration degree is low if and only if there is a low total
¥ enumeration degree above it.

Theorem (G, S)

The class of low e-degrees is first order definable in G¢ by the formula:

LOW(X) = Fy[x <y & TL(Y)]
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The w e-degrees: Basic definitions

Let S be the set of all sequences of sets of natural numbers.

Definition

Let A = {An}n<w € S and V be an e-operator. The result of applying
the enumeration operator V to the sequence A, denoted by V(A), is
the sequence {V[n]|(An) }n<w- We say that V(.A) is enumeration
reducible (<) to the sequence A.
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The w e-degrees: Basic definitions

Let S be the set of all sequences of sets of natural numbers.
Definition

Let A = {An}n<w € S and V be an e-operator. The result of applying
the enumeration operator V to the sequence A, denoted by V(.A), is

the sequence {V[n]|(An) }n<w- We say that V(.A) is enumeration
reducible (<) to the sequence A.

So A <, B is a combination of two notions:

@ Enumeration reducibility: for every n we have that A, <¢ By, via,
say, .
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The w e-degrees: Basic definitions

Let S be the set of all sequences of sets of natural numbers.
Definition

Let A = {An}n<w € S and V be an e-operator. The result of applying
the enumeration operator V to the sequence A, denoted by V(.A), is

the sequence {V[n]|(An) }n<w- We say that V(.A) is enumeration
reducible (<) to the sequence A.

So A <, B is a combination of two notions:

@ Enumeration reducibility: for every n we have that A, <¢ By, via,
say, .

@ Uniformity: the sequence {I',}n<., is uniform.
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Basic definitions: The jump sequence

With every member A € S we connect a jump sequence P(A).
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Basic definitions: The jump sequence

With every member A € S we connect a jump sequence P(A).
Definition

The jump sequence of the sequence A, denoted by P(.A) is the
sequence {Pp(A)}n<. defined inductively as follows:

(*] Po(.A) = Ao.

@ Ppi1(A) = An1 @ P, (A), where P;(.A) denotes the enumeration
jump of the set Pp(\A).
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Basic definitions: The jump sequence

With every member A € S we connect a jump sequence P(A).
Definition

The jump sequence of the sequence A, denoted by P(.A) is the
sequence {Pp(A)}n<. defined inductively as follows:

(*] Po(.A) = Ao.

@ Ppi1(A) = An1 @ P, (A), where P;(.A) denotes the enumeration
jump of the set Pp(\A).

The jump sequence P(A) transforms a sequence A into a monotone
sequence of sets of natural numbers with respect to <.. Every

member of the jump sequence contains full information on previous
members.
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The w-enumeration degrees

Let A,B € S.

Definition
@ w-enumeration reducibility: A <, B, if A <o P(B).
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The w-enumeration degrees

LetA,BeS.
Definition
@ w-enumeration reducibility: A <, B, if A <o P(B).
@ w-enumeration equivalence: A =, Bif A <, Band B <, A.
@ w-enumeration degrees: d,(A) = {B | A =, B}.
@ The structure of the w-enumeration degrees:
D, = ({d,(A) | A € S}, <), where d,(A) <, d.(B) if A <, B.

@ The least w-enumeration degree: 0, = d,,({0,0,0,...}) or
equivalently d,,({0,0,0”,...}).
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D, as an upper semi-lattice with jump operation

@ The join and least upper bound: A& B = {A; ® Bn}n<w-
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D, as an upper semi-lattice with jump operation

@ The join and least upper bound: A& B = {A; ® Bn}n<w-
duy(A @ B) = d,(A)V d,(B).
@ The jump operation: d,(A) = d,(A"), where A" = {Pp11(A)} n<w-
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D, as an upper semi-lattice with jump operation

@ The join and least upper bound: A& B = {A; ® Bn}n<w-

d,(A® B) =d,(A)V d,(B).
@ The jump operation: d,(A) = d,(A"), where A" = {Pp11(A)} n<w-
@ lterating the jump: for every k, d,,(A)K = d,(A¥), where

AF = {Pry(A)} e
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D, as an upper semi-lattice with jump operation

@ The join and least upper bound: A& B = {A; ® Bn}n<w-
d,(A® B) = d,(A) VvV d,(B).
@ The jump operation: d,(A) = d,(A"), where A’ = {Pnp1(A) }new-
@ lterating the jump: for every k, d,(A)X = d,(A¥), where
A* = {Pryic(A)nee
@ The jump inversion operation: for every k, let
F(du(A)) = ({0, .0 Pu(A), Picea(A). - })-
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D, as an upper semi-lattice with jump operation

@ The join and least upper bound: A& B = {A; ® Bn}n<w-
d,(A® B) = d,(A) VvV d,(B).
@ The jump operation: d,(A) = d,(A"), where A" = {Pp11(A)} n<w-
@ lterating the jump: for every k, d,(A)X = d,(A¥), where
A* = {Pryic(A)nee
@ The jump inversion operation: for every k, let
F(du(A)) = ({0, .0 Pu(A), Picea(A). - })-

et
Then /%(a*) is the least degree b, such that b¥ = a*.
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The e-degrees as a substructure of D,

(De, <e, V,') can be embedded in (D,,, <., V,") via the embedding ~
defined as follows:

K(de(A)) = d,({A0,0,...}) = d,({A A, A", ... }).
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The e-degrees as a substructure of D,

(De, <e, V,') can be embedded in (D,,, <., V,") via the embedding ~
defined as follows:

K(de(A)) = d,({A0,0,...}) = d,({A A, A", ... }).

Theorem (Soskov, Ganchev)
@ The structure D1 = k(De) is first order definable in D,,.
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The e-degrees as a substructure of D,

(De, <e, V,') can be embedded in (D,,, <., V,") via the embedding ~
defined as follows:

K(de(A)) = d,({A0,0,...}) = d,({A A, A", ... }).

Theorem (Soskov, Ganchev)
@ The structure D1 = k(De) is first order definable in D,,.

@ The structures De and D,, with jump operation have isomorphic
automorphism groups.
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The Local structure G,

Consider the structure G, consisting of all degrees reducible to
0/, = d.((",0”,0",...)) also called the £3 w-enumeration degrees.
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The Local structure G,

Consider the structure G, consisting of all degrees reducible to

0/, = d.((",0”,0",...)) also called the £3 w-enumeration degrees.
The degrees in this local structure can as well be partitioned in terms
of the high-low jump hierarchy.

Definition
Leta € G,..

@ ais low, ifa” = 07. The class of all low, degrees is denoted by L.

@ ais highy if a” = 07+'. The class of all high, degrees is denoted
by Hp.

Mariya I. Soskova (FMI) Definability 10.03.2011 38/49




The Local structure G,

Consider the structure G, consisting of all degrees reducible to
0/, = d.((",0”,0",...)) also called the £3 w-enumeration degrees.

The degrees in this local structure can as well be partitioned in terms
of the high-low jump hierarchy.

Definition
Leta € G,.

@ ais low, ifa” = 07. The class of all low, degrees is denoted by L.

@ ais highy if a” = 07+'. The class of all high, degrees is denoted
by Hp.

There is a copy of the zg enumeration degrees Gy = D1 N G,,.
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The o, degrees

Definition

For every nleto, = I"(07+") = d,((

0, ..

1 2
°9 (Z)v Q)fH— ) Q)n+ )
n

).

Mariya I. Soskova (FMI)

Definability



The o, degrees

Definition
For every nleto, = I"(07t") = d,,((0,..., 0,01 gn+2 ).
y n=1"(05"") (( )
n

Theorem
Letac G,.

@ ac H,ifandonlyifo, <, a

Q@ acl,ifandonlyifano,=0, )
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The o, degrees

Definition
For every nlet o, = I"(0"t1) = d,,((0,...,0,0"1, 072 ).
——
n
Theorem
Leta e G,.

@ ac H,ifandonlyifo, <, a
Q@ acl,ifandonlyifano,=0,

Proof: 1: If o, <, athen 07" = 07 <, a". Hence a € H),.
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The o, degrees

Definition
For every nleto, = I"(07t") = d,,((0,..., 0,01 gn+2 ).
y n=1"(05"") (( )
n
Theorem
Leta e G,.

@ ac H,ifandonlyifo, <, a
@ acl,ifandonlyifano, =0,

Proof: 1: If o, <, athen 07+ = 07 <, a". Hence a € H),.
If a € H, then a” = 07+'. But o, is the least degree whose n-th jump is
0"+, so 0, <, a.
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The o, degrees

Definition
For every nleto, = I"(07t1) = d,({0,...,0,0"1, 0"t2 . }).
~——
n
Theorem
Letac G,.

@ acH,ifandonlyifo, <, a
@ aclL,ifandonlyifano,=0,

Proof: For every A=, P(A) € a € G,:

(Ao, ArooAn Anits YA 007072,
n
={®7"'7®7AH7AH+17---}=ln(An)

n

Hence a A 0, = 0, if and only if /"(a"”) = 0,,, if and only ifa” = 0.
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A new “lowness” property

Definition
A sequence A is called almost zero (a.z.) if for every n, A, <¢ 0. A
degree is a.z. if it contains an a.z. sequence.
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A new “lowness” property

Definition
A sequence A is called almost zero (a.z.) if for every n, A, <¢ 0. A
degree is a.z. if it contains an a.z. sequence.

@ The a.z. degrees form an ideal.
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A new “lowness” property

Definition
A sequence A is called almost zero (a.z.) if for every n, A, <¢ 0. A
degree is a.z. if it contains an a.z. sequence.

@ The a.z. degrees form an ideal.
e Ifaeg,thenaisa.z. ifand only if a <, o, for all n.
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A new “lowness” property

Definition
A sequence A is called almost zero (a.z.) if for every n, A, <o 0". A
degree is a.z. if it contains an a.z. sequence.

@ The a.z. degrees form an ideal.
e Ifaeg,thenaisa.z. ifand only if a <, o, for all n.
@ Nonzero a.z. degrees exist.
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IC-pairs in G,

Definition
A pair of degrees a,b € G, is called a K-pair if

K(a,b) = (¥x € G.)((aVx) A (bVX) = X)
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IC-pairs in G,

Definition
A pair of degrees a,b € G, is called a K-pair if

K(a,b) = (¥x € G.)((aVx) A (bVX) = X)

Theorem (G,S)

Ifd,(A) and d,,(B) form a nontrivial K-pair in G,, then both A and B are
a.z. or for some n there exists a K-pair in De A, B over )\") such that
0" < A B, A =B =0"" and:

A=,{0,...,0,A,0,...,0,...} and
n
B=,{0,...,0,B,0,...,0,...}.
~——

n

Mariya I. Soskova (FMI) Definability 10.03.2011 44 /49



Mariya I. Soskova (FMI)

Definability

A2 N Ge



Distinguishing between different types of K-pairs
Theorem (G,S)

Leta,b € G, form a nontrivial minimal pair. Then for every natural
number n

VX <, 0plaVvx<,0n < ab<,0n1.
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Distinguishing between different types of K-pairs
Theorem (G,S)

Leta,b € G, form a nontrivial minimal pair. Then for every natural
number n

VX <, 0plaVvx<,0n < ab<,0n1.

Proof:
Suppose thata,b <, 0, and a,b £, 0,.1. Then

a=d,({0,....0,A,0,....0,...})

n

and 0" < A< 0™t and A = 9"+,
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Distinguishing between different types of K-pairs

Theorem (G,S)

Leta,b € G, form a nontrivial minimal pair. Then for every natural
number n

VX <, 0plaVvx<,0n < ab<,0n1.

Proof:
Suppose thata,b <, 0, and a,b £, 0,.1. Then

a=d,({0,....0,A,0,....0,...})

n

and 0" < A < ¢! and A’ = )"+, Relativising the low cupping
theorem for the AS enumeration degrees, there is an X such that
X =01 and X v A=, (0",

Mariya I. Soskova (FMI) Definability 10.03.2011 46 /49



Distinguishing between different types of K-pairs

Theorem (G,S)

Leta,b € G, form a nontrivial minimal pair. Then for every natural
number n

VX <, 0plaVvx<,0n < ab<,0n1.

Proof:
Suppose thata,b <, 0, and a,b £, 0,.1. Then

a=d,({0,....0,A,0,....0,...})

n

and 0" < A < ¢! and A’ = )"+, Relativising the low cupping
theorem for the AS enumeration degrees, there is an X such that
X =01 and X v A=, (0",

du({0,...,0.A,... )V d,({0,...,0,X,0,...}) = op.

n n
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Definability of o,

Theorem (G,S)

For every n o, is first order definable in G,,.
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Definability of o,

Theorem (G,S)

For every n oy, is first order definable in G,,.

J

Proof Sketch: Fix n > 0. Then 0,4 is the greatest degree which is the
least upper bound of a nontrivial K-pair {a,b} in G, such that

VX <, Opla Vv X <, 0p).
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Definability of o,

Theorem (G,S)
For every n oy, is first order definable in G,,. J

Proof Sketch: Fix n > 0. Then 0,4 is the greatest degree which is the
least upper bound of a nontrivial K-pair {a,b} in G, such that

VX <, Opla Vv X <, 0p).

Corollary
For all n the classes H, and L,, are first order definable in G,,. J
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Definability of G;

For every sequence A = {Ap, A1, Ao, ... } we have that:

do(A) Vo1 = du({Ae,0",0", ... }).

If A* € Gy and A* = {Ap,0,0,...} then d,(A*) Vvoy = d,(A) Vo and
Ay, (A*) <, dy(A).
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Definability of G;

For every sequence A = {Ap, A1, Ao, ... } we have that:

do(A) Vo1 = du({Ae,0",0", ... }).

If A* € Gy and A* = {Ap,0,0,...} then d,(A*) Vvoy = d,(A) Vo and
Ay, (A*) <, dy(A).

Theorem (G,S)
Gy is first order definable in G, by:

acg; < Vy(@@avoi=yvoi=a<,Yy).
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The end

Thank you!
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