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1 Introduction

Sacks [14] showed that every computably enumerable (c.e.) degree ≥ 0 has a
c.e. splitting. Hence, relativising, every c.e. degree has a Δ2 splitting above each
proper predecessor (by ‘splitting’ we understand ‘nontrivial splitting’). Arslanov
[1] showed that 0′ has a d.c.e. splitting above each c.e. a < 0′. On the other hand,
Lachlan [9] proved the existence of a c.e. a > 0 which has no c.e. splitting above
some proper c.e. predecessor, and Harrington [8] showed that one could take
a = 0′. Splitting and nonsplitting techniques have had a number of consequences
for definability and elementary equivalence in the degrees below 0′.

Heterogeneous splittings are best considered in the context of cupping and
noncupping. Posner and Robinson [13] showed that every nonzero Δ2 degree can
be nontrivially cupped to 0′, and Arslanov [1] showed that every c.e. degree > 0
can be d.c.e. cupped to 0′ (and hence since every d.c.e., or even n-c.e., degree has
a nonzero c.e. predecessor, every n-c.e. degree > 0 is d.c.e. cuppable.) Cooper
[2] and Yates (see Miller [11]) showed the existence of degrees noncuppable in
the c.e. degrees. Moreover, the search for relative cupping results was drastically
limited by Cooper [3], and Slaman and Steel [15] (see also Downey [7]), who
showed that there is a nonzero c.e. degree a below which even Δ2 cupping of
c.e. degrees fails.

We prove below what appears to be the strongest possible of such nonsplitting
and noncupping results.

Theorem 1. There exists a computably enumerable degree a < 0′ such that
there exists no nontrivial cuppings of c.e. degrees in the Δ2 degrees above a.

In fact, if we consider the extended structure of the enumeration degrees,
Theorem 1 is a corollary of the even stronger result:

Theorem 2. There exists a Π1 e-degree a < 0′
e such that there exist no non-

trivial cuppings of Π1 e-degrees in the Δ2 e-degrees above a.

This would appear to be the first example of a structural feature of the
Turing degrees obtained via a proof in the wider context of the enumeration
degrees (rather than the other way round).

Notation and terminology below is based on that of [5].
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2 Requirements and Strategies

We assume a standard listing of all quadruples (Ψ, Θ, U, W ) of enumeration op-
erators Ψ and Θ, Σ2 sets U and c.e. sets W . We will construct Π1 sets A and E
to satisfy the corresponding list of requirements:

NΨ : E �= ΨA,

PΘ,U,W : E = ΘU,W ∧ U ∈ Δ2 ⇒ (∃Γ, Λ)[K = ΓU,A ∨ K = ΛW,A],

where ΓU,A, for example, denotes an e-operator enumerating relative to the data
enumerated from two sources U and A. We describe the basic strategy to satisfy
these requirements, only using U ∈ Δ2 for satisfying P in the case of a successful
Γ -strategy.

2.1 The naive NΨ -Strategy

Select a witness x for NΨ and wait for x ∈ ΨA. Then extract x from E while
restraining each y ∈ A � use(Ψ, A, x) (the use function use(Ψ, A, x) is defined in
the usual way by use(Ψ, A, x) = μy[x ∈ ΨA�y]).

2.2 The naive PΘ-Strategy

Definition 1. Let Φ be an enumeration operator and A a set. We will consider
a generalised use function ϕ defined as follows:

ϕ(x) = max
{
use(Φ, A, y)|(y ≤ x) ∧ (y ∈ ΦA)

}
We progressively try to rectify ΓΘ at each stage by ensuring that z ∈ K ⇔ z ∈

ΓU,A for each z below l(E, ΘU,W ). The definition of the enumeration operator
Γ involves axioms with two types of markers u(y) ∈ U and γ(y) ∈ A - the
generalised use functions for the operator Γ . Given a suitable choice of a marker
γ(y) ∈ A when y ∈ K, Γ can be rectified via A-extraction.

2.3 NΨ below PΘ

In combining these two strategies the A-restraint for NΨ following the extraction
of x from E conflicts with the need to rectify ΓΘ. We try to resolve this by
choosing a threshold d for NΨ , and try to achieve γ(z′) > use(Ψ, A, x) for all z′ �
d at a stage previous to the imposition of the restraint. We try to maintain θ(x) <

u(d), in the hope that after we extract x from E, each return of l(E, ΘU,W ) will
produce an extraction from U � θ(x) which can be used to avoid an A-extraction
in moving γ(d).

In the event that some such attempt to satisfy NΨ ends with a W � θ(x)-
change, then we must implement the ΛΘ,Ψ -strategy which is designed to allow



lower priority N -requirements to work below the ΓΘ-activity, using the W � θ(x)-
changes thrown up by ΓΘ to move ΛΘ,Ψ -markers. Each time we progress the
ΛΘ,Ψ -strategy, we cancel the current witness of (NΨ , Γ ), and if this happens
infinitely often, NΨ might not be satisfied. This means that NΨ must be ac-
companied by an immediately succeeding copy (NΨ , Λ), say, designed to take
advantage of the improved strategy for NΨ without any other PΘ′ intervening
between (NΨ , Γ ) and (NΨ , Λ).

2.4 The Approximations

During the construction we approximate the given sets at each stage. We need
to choose these approximating sequences very carefully. Consider a PΘ,U,W re-
quirement.

Definition 2. We inductively say that a stage s + 1 is PΘ-expansionary if and
only if l(E[s + 1], ΘU,W [s + 1]) attains a greater value at stage s + 1 than at any
previous PΘ-expansionary stage.

If the length of agreement is bounded, PΘ,U,W is trivially satisfied and we do
not have to act on its behalf. The strategies act only on PΘ,U,W - expansionary
stages. It is essential that if PΘ,U,W turns out to be equal to E we have infinitely
many expansionary stages. We will work with a good approximating sequence
to U ⊕ W (basically one with sufficient thin stages, in the sense of Cooper [4])
as defined in [10]:

Consider a Δ2 approximating sequence {U ′
s} to U and the standard ap-

proximating sequence {W ′
s} to the c.e. set W . We define

{
W

∗
s

}
to be the Δ2

approximating sequence to W constructed in the following way: W
∗
s = W ′

s � s.
Joining the two Δ2 approximating sequences, we get

{
U ′

s ⊕ W
∗
s

}
– that is, a Δ2

approximating sequence to U ⊕ W . It follows from [10] that we can construct
a good approximating sequence to U ⊕ W in the following way: (U ⊕ W )s =
U ′

s ⊕ W
∗
s � (μn[U ′

s ⊕ W
∗
s(n) �= U ′

s+1 ⊕ W
∗
s+1(n)]). The resulting good approxi-

mating sequence has the following properties:

1. ∀n∃s(U ⊕W � n ⊆ (U ⊕W )s ⊆ U ⊕W ). Such stages are called good stages
and hence there are infinitely many of them.

2. ∀n∃s0∀s > s0(U ⊕ W � n = (U ⊕ W )s � n)
3. If G is the set of all good stages of the approximation, then ∀n∃s0∀s >

s0(s ∈ G ⇒ Θs((U ⊕ W )s) � n = Θ(U ⊕ W ) � n). This is also a result from
[10].

From these properties and the fact that E is a Π1 set, we can conclude that
if Θ(U ⊕ W ) = E then there are infinitely many expansionary stages.

We will use more information about the sequence
{
(U ⊕ W )s

}
– it will be

considered as a pair ((U ⊕ W )s, aps) = (U ′
s ⊕ W

∗
s � (μn[U ′

s ⊕ W
∗
s(n) �= U ′

s+1 ⊕
W

∗
s+1(n)]), μn[U ′

s ⊕ W
∗
s(n) �= U ′

s+1 ⊕ W
∗
s+1(n)]).

We will modify the definition of expansionary stages to incorporate the true-
ness of the approximations.



Definition 3. We inductively say that a stage s + 1 is PΘ-expansionary if and
only if l(E[s + 1], ΘU,W [s + 1]) attains a greater value at stage s + 1 than at any
previous PΘ-expansionary stage and aps+1 > l(E[s + 1], ΘU,W [s + 1]).

Note that if U is a properly Σ2 set, then we can still obtain a modified
approximation to it in the way described above, but will not need to satisfy its
requirement P in that case.

2.5 The Basic Module for one PΘ- and one NΨ - requirement

The (PΘ, Γ )-strategy tries to maintain the equality between K and ΓU,A at
expansionary stages. It scans elements n < l(ΘU,W , E) fixing their axioms as
appropriate.

Every strategy works below a right boundary R, assuming that as the stages
grow the right boundary will grow unboundedly.

(PΘ, Γ ) builds an operator Γ by defining marker us(n) and γs(n) and corre-
sponding axioms for elements n ∈ K of the form 〈n, Us � us(n), As � γs(n)〉 at
stage s.

It may happen that the two strategies (PΘ, Γ ) and (PΘ, Λ) influence each
other by extracting markers from A. In order to prevent that we define two
nonintersecting infinite computable sets AG and AL for the possible values of A-
markers for (PΘ, Γ ) and (PΘ, Λ) respectively. Each time (PΘ, Γ ) defines a new
marker for some n, it defines γ(n) big (bigger than any number that appeared
in the construction until now) and γ(n) ∈ AG.

Each time (PΘ, Λ) defines a new marker for some n, it defines λ(n) big and
λ(n) ∈ AL.

We will describe the modules in a more general way, so that we can use them
later in the construction involving all requirements.

The (PΘ, Γ ) - strategy

1. Wait for an expansionary stage. (o = l)
2. Choose n < l(ΘU,W , E) in turn (n = 0, 1, . . . ) and perform the following

actions:
– If u(n) ↑, then define it anew as u(n) = u(n−1)+1 (if n = 0, then define

u(n) = 1). If u(n) is defined, but aps < u(n) skip to the next element.
– If n ∈ K:

• If γ(n) ↑, then define it anew, and define an axiom 〈n, (U � u(n) +
1, A � γ(n) + 1)〉 ∈ Γ .

• If γ(n) ↓, but Γ (U,A)(n) = 0 (due to a change in U or in A), then
enumerate the old axiom in a special parameter Old(n) – this being
a collection of all axioms that might later on turn out to be valid.
The element enumerated in Old(n) is of the form (γ(n), 〈n, (U �
u(n) + 1, A � γ(n) + 1)〉) – the pair of the old marker and old axiom.
Then define γ(n) anew and define an axiom 〈n, (U � u(n) + 1, A �
γ(n) + 1)〉 ∈ Γ .



– If n /∈ K, but n ∈ Γ (U,A) then look through all axioms defined for n in
Old(n) and extract the γ(n) markers for any axiom that is valid.

Module for (NΨ , Γ ) The basic module acts only at PΘ- expansionary stages.
If there are only finitely many expansionary stages, then PΘ is trivially satisfied
and NΨ moves to a truer path through the tree of outcomes.

At the beginning of each stage we check if the thresholds are correct, i.e. if
K � d has not changed since the last true stage. If so we initialize all strategies
below this one and start from initialization.

– Initialization
1. If a threshold has not yet been defined or is cancelled, choose a new

threshold d bigger than any defined until now.
2. If a witness has not yet been defined or is cancelled, choose a new witness

x > d, x ∈ E.
3. Wait for x < l(E, ΘU,W ) . (o = w)
4. Extract all markers γ(d) – old and new – and empty the list Old(n) for

n ≥ d. Define u(d) anew, bigger than θ(x). This gives us control over
any axiom enumerated in Γ for the elements we are monitoring.

5. For every element y ≤ x, y ∈ E, enumerate into the list Axioms the
current valid axiom from Θ that has been valid longest.

– Honestification

Scan the list Axioms. If for any element y ≤ x, y ∈ E, the listed axiom is
not valid anymore, then update the list Axioms, let (o = h) and
1. Extract γ(d) from A for all markers of axioms – the current one and the

old ones. Empty the list Old(d). Redefine u(d) = max(θ(x), u(d)) + 1.
2. Cancel all markers u(n) for n > d and n ∈ K. Empty the list Old(n).

Notice that the extraction of all markers γ(d) guarantees that the old
axioms for elements n > d will never again be valid. Hence at the next
expansionary stage u(n) and γ(n) will be defined anew, bigger than θ(x).
This ensures the following property: for all elements z ≥ d, z ∈ K, the
U -parts of axioms both old and new in Γ include the U -parts of all
axioms listed in Axioms for elements y ≤ x, y ∈ E.

Otherwise go to:

– Waiting

If Γ is honest, i.e. u(d) > θ(x), and all the axioms enumerated in Axioms
have remained unchanged since the last stage, then wait for x ∈ ΨA with
use(Ψ, A, x) < R, returning at each successive stage to Honestification (o =
w).

– Attack

1. If x ∈ ΨA and u(d) > θ(x), then extract x from E and restrain A on
use(Ψ, A, x). (o = g)

2. Wait until the length of agreement has returned and aps > u(d).



3. Result –
Let x′ ≤ x be the least element that has been extracted from E during
the stage of the Attack. When the length of agreement returns x′ /∈
ΘU,W . Hence all axioms for x′ in Θ are not valid, in particular the one
enumerated in Axioms, say 〈x′, Ux′ ,W x′〉.
If W x′ ⊂ W s then the attack is successful and the activity at (PΘ, Γ )
lifts the γ-markers of all elements greater than d above the restraint to
maintain A � ψ(x). Note that this change affects not only the current
axiom, but also all axioms enumerated in Old, because we insured that
all possibly valid axioms in Γ – old and current – contain as a subset Ux′ .
If the change in Ux is permanent, then this will lead to success for NΨ .
Otherwise the attack is unsuccessful, and we are forced to capriciously
destroy Γ by extracting markers γ(d) from A, and to start over with a
bigger witness.

4. Successful attack: Then all valid axioms in Γ for n ≥ d have γ(n) >
use(Ψ, A, x). (o = f) Return to Result at the next stage. Note that the
Σ2-nature of the set U can trick us into believing that an attack is
successful, whereas in fact it later turns out not to be. This is why
we keep monitoring the witness and trying to prove that the attack is
unsuccessful.

5. Unsuccessful attack: Extract all γ- markers γ(d) from A for both the
current and the old axioms. Empty Old(n) for n ≥ d. Remove the re-
straint on A. Cancel the current witness x. Return to Initialization at
the next stage (choosing a new big enough witness) (o = g).

Analysis Of Outcomes: PΘ has two possible outcomes:

[l] – there is a stage after which l(ΘU,W , E) remains bounded by its previous
expansionary value say L. Then PΘ is trivially satisfied as if U is Δ2, then
ΘU,W �= E. In this case we implement a simple ‘Friedberg- Muchnik’ strategy
for NΨ working below (R = ∞).

[e] – infinitely many expansionary stages, on which (NΨ , Γ ) acts:

The possible outcomes of the (NΨ , Γ )- strategy are:

[w] – There is an infinite wait at Waiting for ΨA(x) = 1. Then NΨ is satisfied
because E(x) = 1 �= ΨA(x) and the ΓΘ-strategy remains intact. Successive
strategies work below R = ∞)

[f] – There is a stage after which the last attack remains successful. At suffi-
ciently large stages K � d has its final value. So there is no injury to the outcomes
below f , ΨA(x) = 1, NΨ is satisfied, leaving the ΓΘ- strategy intact. Successive
strategies work below (R = ∞)

[h] – There are infinitely many occurrences of Honestification, precluding an
occurrence of Attack. Then there is a permanent witness x, which has unbounded
limsupθ(x). This means that ΘU,V (y) = 0 for some y ≤ x,y ∈ E. Thus PΘ

is again satisfied. In this case we also implement a simple Friedberg–Muchnik
strategy for NΨ working below (R = γ(d)).



[g] – We implement the unsuccessful attack step infinitely often. As antici-
pated, we must activate the ΛΘ,Ψ -strategy for PΘ. NΨ is not satisfied, but we
have a copy of NΨ designed to take advantage of the switch of strategies for PΘ

below NΨ . It works below (R = x).

Module for the strategies below outcome g: Notice that the outcome g
is visited in two different cases – at the beginning of an attack and when the
attack turns out to be unsuccessful. The first case starts a nonactive stage for
the subtree below g, allowing the other N -strategies to synchronize their attacks.
The second case starts an active stage for the strategies in the subtree below g.

The (PΘ, Λ) acts only on active stages in a similar but less complicated way
than (PΘ, Γ ). Namely it does not have a list Old as any change in W � aps is
permanent.

The (NΨ , Λ)-strategy is again similar to the (NΨ , Γ )-strategy. It has its own
threshold d̂ > d and witness x̂ < x. It has the Initialization, Honestification and
Waiting modules which it executes on active stages. The corresponding outcomes
are h and w.

It attacks on nonactive stages. The next stage at which this strategy is acces-
sible after an attack will be an active stage – an unsuccessful attack for (NΨ , Γ ).
Note that the least element extracted during the attack is x′ ≤ x̂ < x. So we
have a W � θ(x̂) - change. Hence there will be no unsuccessful attacks and no
outcome g, but only successful attacks and outcome f .

The tree of outcomes at this point looks as follows:

(PΘ,Γ )

l - (NΨ ,FM)

wf

e-(NΨ ,Γ )

wfh - (NΨ ,FM)

wf

g-(PΘ,Λ)

(NΨ ,Λ)

wfh- (NΨ ,FM)

wf

It is worth noticing that the outcomes on the tree, strictly speaking, are
outcomes relating to strategies, rather than outcomes telling us exactly how
the requirement is satisfied, and these subsume the “not Δ2” case of the P -
requirements. The properly Σ2 case only needs to be specially factored in when
one considers in the verification what the strategies deliver.



2.6 All requirements

When all requirements are involved the construction becomes more complicated.
We will start by describing the tree of outcomes.

The requirements are ordered in the following way:

N0 < P0 < N1 < P1 . . .

Each P -requirement has at least one node along each path in the tree. Each
N -requirement has a whole subtree of nodes along each path, the size of which
depends on the number of P -requirements of higher priority.

Consider the requirement Ni. It has to clear the markers from A of i P -
requirements P0, P1, . . . Pi−1. Each of them can follow one of the three strategies
(NΨ , Γi), (NΨ , Λi) or (NΨ , FMi). There will be nodes for each of the possible
combinations in the subtree.

We distinguish between the following strategies:

1. For every Pi-requirement we have two different strategies: (Pi, Γ ) with out-
comes e <L l and (Pi, Λ) with one outcome s.

2. For every Ni-requirement, where i > 0, we have strategies of the form
(Ni, S0, . . . Si−1), where Sj ∈ {Γj , Λj , FMj}. They are all equipped with
working boundaries (L, R). The requirement N0 has one strategy (N0, FM)
with (L = 0, R = ∞). The outcomes are f , w and for each j < i if
Sj ∈ {Γj , Λj} there is an outcome hj , if Sj = Γj , there is an outcome
gj . They are ordered according to the following rules:
– For all j1 and j2, gj1 <L hj2 <L f <L w
– If j1 < j2 then gj2 <L gj1 and hj1 <L hj2 .

Let O be the set of all possible outcomes and S be the set of all possible
strategies.

Definition 4. The tree of outcomes is a computable function T : D(T ) ⊂ O
∗ →

S which has the following properties:
1. T (∅) = (N0, FM)
2. T (α) = S and OS is the set of outcomes for the strategy S, then for every

o ∈ OS, αˆo ∈ D(T ).
3.If S = (Ni, S0, S1, . . . , Si−1), then
T (αˆgj) = (Pj , Λj) and T (αˆgj ŝ) = (Pj+1, Γj+1) . . . T (αˆgj ŝ̂ oj+1ˆoi−2) =

(Pi−1, Γi−1), where ok ∈ {ek, lk} for j + 1 ≤ k ≤ i − 2.
All this means that, under an outcome gj the strategy Pj starts its work on

building the second possible functional Λj, and all strategies Pk for k > j start
their work from the beginning, i.e., start building the functional Γk again.

T (αˆgj ŝ̂ oj+1ˆoi−1) = (Ni, S0, . . . , Λj , . . . , Si−1), where Sk = Γk if ok = ek

and Sk = FMk if ok = lk for every k such that j < k < i.
Then there is a copy of the strategy Ni which starts work with the old strate-

gies Sl for l < j and the new strategies Sk for k ≥ j.
To illustrate this complicated definition here is a picture of this part of the

tree in the simpler case of only two P - requirements.



(N2,Γ0, Γ1)

wfh1h0g0-(P0,Λ0)

s-(P1,Γ1)

l-(N2,Λ0,FM1)e -(N2,Λ0,Γ1)

g1-(P1,Λ1)

s- (N2,Γ0,Λ1)

The tree under outcome hj is built in a similar fashion.
T (αˆhj) = (Pj+1, Γj+1) . . . T (αˆhjˆoj+1ˆoi−2) = (Pi−1, Γi−1), where ok ∈

{ek, lk} for j + 1 ≤ k ≤ i − 2.
Hence all strategies Sk for k > j start their work from the beginning, building

a new functional Γk.
T (αˆhjˆoj+1ˆoi−1) = (Ni, S0, . . . , FMj , . . . , Si−1), where Sk = Γk if ok = ek

and Sk = FMk if ok = lk for every k such that j < k < i.
T (αˆf) = (Pi, Γi)
T (αˆw) = (Pi, Γi)
Say S = (Pi, Γ ), and α = α′ˆf or α = α′ˆw, and T (α′) = (Ni, S0, S1, . . . , Si1).

It follows that this is not the case described and (Pi, Γ ) appears for the first time,
and then

T (α ê) = (Ni+1, S0, . . . , Si−1, Γi)
T (α l̂) = (Ni+1, S0, . . . , Si−1, FMi).

Interaction between strategies: In order to prevent unwanted interaction
between the different strategies on different nodes we will do the following:

Different P -strategies define and extract different A-markers at stages of the
construction. Extraction of markers for one P -strategy may influence the validity
of axioms for another P -strategy. Again we deal with this problem by separating
the A-markers for the different possible strategies. We have countably many
different nodes in the tree of outcomes, whose values are P -strategy. For each
such node α we define an infinite computable set Aα, from which the strategy
T (α) can choose A-markers. If α �= β then Aα ∩ Aβ = ∅.

Similarly we define separate nonintersecting sets Dα and Xα for the different
nodes on the tree which are labelled with N - strategies, from which they choose
their thresholds and witnesses.

As usual we give higher priority to nodes that are to the left or higher up in
the tree of strategies. This is achieved via two forms of initialization.

1. On each stage initialization is performed on all nodes that are bigger than
the last node visited on that stage.



2. The second case in which initialization is performed is when the thresholds
are not correct:
Every strategy α with T (α) = (Ni, S1, . . . , Sj , . . . , Si−1) has a threshold
dj for each strategy Sj . If K � (dj + 1) changes, then all successors of α
that assume that dj does not change infinitely many times are initialized.
These are strategies γ such that γ ⊇ α ĝk for k ≤ j or γ ⊇ α ô, where
o ∈ {hl, s, w|l < j}. And hence are all strategies below and to the right of
outcome gj .
If α has not yet started an attack, then it continues from the Initialization
step.
If α has started an attack, and this change injures the equation that α is
trying to preserve, then α will choose a new witness and start from Initial-
ization. If the equation is not injured, then α will continue to restrain A in
the hope that no later change in K will ever destroy its work.

The construction: At each stage s of the construction we build inductively a
string δs ∈ D(T ) of length s, by visiting nodes from the tree and acting according
to their corresponding strategies.

δs(0) = ∅.
Let δs � n = α.

1. T (α) = (Pi, Γ ) – on active stages we perform the actions as stated in the
main module. δs(n + 1) = l at nonexpansionary stages. At expansionary
stages δs(n + 1) = e and Rαˆδs(n+1) = Rα.
At nonactive stages no actions are performed. The strategy will have the
same outcome as it did on the previous active stage.

2. T (α) = (Pi, Λ) – on active stages we perform the actions as stated in the
main module. δ(n + 1) = s and Rαˆδs(n+1) = Rα.
At nonactive stages no actions are performed, δ(n + 1) = s.

3. T (α) = (Ni, S0, . . . , Si−1) –
Let Zj = U if Sj = Γ and Zj = W if Sj = Λ.

– Initialization

On active stages:
Each strategy Sj �= FMj picks a threshold if it is not already defined.
The different thresholds must be in the following order:

L < di−1 < di−2 < · · · < d0 < R

Strategy Sj picks its threshold so that it is bigger than any threshold it
has picked before and such that its marker has not yet been defined.
After all thresholds have been chosen, the strategy picks a witness x,
bigger than any witness used until now and such that d0 < x and waits
until l(E, Θ

Uj ,W j

j ) > x for all j < i. δ(n + 1) = w, working below
(R = Rα).



On the first stage on which l(E, Θ
Uj ,W j

j ) > x for all j < i, extract
all markers for all axioms old and new for all thresholds dj , cancel all
markers zj(n) for n ≥ dj and let zj(dj) > θj(x).
For every element y ≤ x, y ∈ E enumerate in the list Axiomsj the
current valid axiom from Θj , that has been valid the longest.
Go to honestification at the next stage. Notice that this guarantees that
any axiom 〈n, Zn, An〉 enumerated in Sj for an element n ≥ dj , n ∈ K
will have the property that for any y ≤ x, x ∈ E with axiom 〈y, Zy, Vy〉 ∈
Axiomsj , we will have that Zy ⊂ Zn.
δ(n + 1) = w, working below (R = Rα).

– Honestification

On active stages:
Scan all strategies from the list S0 . . . Si−1 in turn (j = 0, 1, . . . i − 1).
Perform Honestificationj from the main module for each Sj �= FMj .
If the outcome of Honestificationj is w go on to the next strategy. If it
is h, then extract all markers old and new sk(dk) for k > j from A and
empty their corresponding lists Oldk(n) for elements n ≥ dk.
The outcome is δ(n + 1) = hj working below (R = min(Rα, sj(dj))).
Start from Honestification at the next stage.

– Waiting

If all outcomes of all Honestificationj-modules are w, i.e all enumera-
tion operators are honest, then wait for x ∈ ΨA

i with use(Ψ, A, x) < Rα.
f(n+1) = w, working within below R = Rα). Return to Honestification
at the next stage.

– Attack

(a) Let β be the biggest node such that α ⊇ β ĝ. If there is such a node
β, then wait for a β-nonactive stage.

(b) If x ∈ ΨA, use(Ψ, A, x) < Rα and all operators are honest, then ex-
tract x from E and restrain A on use(Ψ, A, x). This starts a nonactive
stage for the strategies below the most recently visited outcome gj

(if none has been visited until now, then g0).
(c) Result –

Wait until the length of agreement has returned for all strategies and
they have been visited at an expansionary stage s with ap

Uj ,Wj
s >

u(dj).
Scan all strategies S0, . . . Si−1 in turn, starting with S0 and perform
the corresponding Resultj from the main module on each.
• If the attack was successful for Sj , continue scan with Sj+1. If

all the strategies are scanned, then δ(n + 1) = f , working below
(R = Rα) go to Result at the next stage.

• If the attack was unsuccessful for Sj , hence Sj = Γj , then γj(dj)
has been extracted from A during Resultj and the correspond-
ing markers have been moved. In addition cancel the thresholds
dk, for k < j, cancel all markers sl(dl) old and new for l > j



and extract them from A, emptying the corresponding lists Oldl.
Cancel the witness. Start from Initialization at the next stage.
δ(n + 1) = gj , working below (R = min(x, Rα)).

Proof: The true path f is defined to be the leftmost path on the tree that
is visited infinitely many times. Such a path exists, because the tree is finitely
branching. We prove that the strategies along the true path satisfy their require-
ments.

Lemma 1. For every n there is a stage sn such that f � n does not get initialized
after stage sn.

Lemma 2. 1. Let α ⊂ f be the biggest (Pj , Γ )-strategy and assume Uj is Δ2.
If γ(n) moves off to infinity, then the following condition holds:
If ΘU,W

j = E and then there is an outcome gj along the true path.
2. Let α ⊂ f be the biggest Pj-strategy. It builds a function M . If m(n) moves

off to infinity then ΘU,W
j �= E.

Corollary 1. Every Pi-requirement is satisfied.

Proof. If ΘUi,W i

i �= E or Ui is properly Σ2, then the requirement is trivially
satisfied. Otherwise let α ⊂ f be the biggest (Pi, M) strategy along the true
path. The properties of the approximation guarantee that there are infinitely
many expansionary stages. According to the previous lemma all markers m used
to build the operator M are bounded, hence for each element n, there are finitely
many axioms in M .

Now it is easy to prove via induction on n that K(n) = MZ,A(n).

Lemma 3. Let α ⊂ f be an Ni requirement along the true path. And let s be a
stage after which α is not initialized. Then

1. None of the nodes to the right or to the left of α extract elements from A
that are less than Rα after stage s.

2. None of the Nj-nodes above α extract elements from A that are less than Rα

after stage s.
3. Suppose β ⊂ α is a Pj node such that there is another Pj node β′, with

β ⊂ β′ ⊂ α. Then β does not extract elements from A that are less than Rα

after stage s.

Hence the strategies that can injure a restraint imposed by an Ni-strategy α
along the true path are the active Pj-strategies at α and α itself.

Lemma 4. Every Ni-requirement is satisfied.

Proof. Let α be the last Ni requirement along the true path. We will prove that
it satisfies Ni.

α has true outcome w or f , or else there will be a successive copy of Ni along
the true path.



In the first case, α waits forever for ΨA(x) = 0. Hence ΨA(x) �= E(x).
Let the true outcome be f . And let s > sαˆf . After stage s, K � d1 will

not change anymore. Hence the active Pj-strategies can only extract markers of
elements n > dj .

If Sj = Γj and the restraint is injured, then α would have outcome to the left,
because this would mean that the attack for x is unsuccessful. Suppose Sj = Λj .
Then α timed its attack, with some β, such that β ĝj ⊂ α. Note that the entries
in both lists Axiomsj at α and β are the same. Hence an unsuccessful β-attack
would mean that α gets the right W -permission.
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