An automorphism analysis for the A) Turing degrees

Mariya I. Soskova!
joint work with Theodore Slaman

Sofia University

2015 Spring Eastern Sectional Meeting, Georgetown University

!'Supported by a Marie Curie International Outgoing Fellowship STRIDE (298471).

Mariya I. Soskova joint work with Theodore SlanAn automorphism analysis for the Ag Turing deg

1/1



Understanding the structure of the Turing degrees

@ Understanding the expressive power of the theory of the Turing degrees.

© Understanding the definable relations in the structure of the Turing
degrees.

© Understanding the automorphism group of the Turing degrees.
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Understanding the structure of the Turing degrees

@ Understanding the expressive power of the theory of the Turing degrees.

» Simpson (1977) proved: The theory of Dy is computably isomorphic to
the theory of second order arithmetic

© Understanding the definable relations in the structure of the Turing
degrees.

» Slaman and Woodin (1991) conjectured: The definable relations in Dy are
the ones induced by degree invariant relations on sets definable in second
order arithmetic.

© Understanding the automorphism group of the Turing degrees.

» Slaman and Woodin (1991) conjectured: There are no non-trivial
automorphisms of Dr.
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Automorphism bases

Definition

Let A be a structure. A set B C |.A| is an automorphism base for A if
whenever f and g are automorphisms of A such that (Vx € B)(f(x) = g(x)),
then f = g.
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Definition

Let A be a structure. A set B C |.A| is an automorphism base for A if
whenever f and g are automorphisms of A such that (Vx € B)(f(x) = g(x)),
then f = g.

Equivalently if f is an automorphism of A and (Vx € B)(f(x) = x) then f is
the identity.
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Automorphism bases

Definition

Let A be a structure. A set B C |.A| is an automorphism base for A if
whenever f and g are automorphisms of A4 such that (Vx € B)(f(x) = g(x)),
then f = g.

Equivalently if f is an automorphism of A and (Vx € B)(f(x) = x) then f is
the identity.

Theorem (Slaman and Woodin)

There is an element g < 0 such that {g} is an automorphism base for the
structure of the Turing degrees Dr.
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Automorphism bases

Definition

Let A be a structure. A set B C |.A| is an automorphism base for A if
whenever f and g are automorphisms of A4 such that (Vx € B)(f(x) = g(x)),
then f = g.

Equivalently if f is an automorphism of A and (Vx € B)(f(x) = x) then f is
the identity.

Theorem (Slaman and Woodin)

There is an element g < 0 such that {g} is an automorphism base for the
structure of the Turing degrees Dr.

Aut(Dr) is countable and every member has an arithmetically definable
presentation.

Every relation induced by a degree invariant definable relation in Second
order arithmetic is definable with parameters.
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Local structure of the Turing degrees

Definition

Turing degrees.

Dr(< 0) is the substructure of all degrees that are bounded by 0, the Ag
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Local structure of the Turing degrees

Definition

Dr(< 0) is the substructure of all degrees that are bounded by 0, the Ag
Turing degrees.

Shore (1981) proved that the theory of D7 (< () is computably isomorphic to
the theory of first order arithmetic.
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Local structure of the Turing degrees

Definition

Dr(< 0) is the substructure of all degrees that are bounded by 0, the Ag
Turing degrees.

Shore (1981) proved that the theory of D7 (< () is computably isomorphic to
the theory of first order arithmetic.

Question

Can we show that Dr(< ') relates to first order arithmetic in the same way
that Dr relates to second order arithmetic?
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The local coding theorem

Definition

A set of degrees Z contained in Dz (< 0') is uniformly low if it is bounded by
a low degree and there is a sequence {Z; };<,, representing the degrees in Z,
and a computable function f such that {f(i)}?" is the Turing jump of Dz
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The local coding theorem
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A set of degrees Z contained in Dz (< 0') is uniformly low if it is bounded by
a low degree and there is a sequence {Z; };<,, representing the degrees in Z,
and a computable function f such that {f(i)}?" is the Turing jump of Dz

Example: If @,_,, A; is low then A = {dr(A;) | i < w} is uniformly low.
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The local coding theorem

Definition

A set of degrees Z contained in Dz (< 0') is uniformly low if it is bounded by
a low degree and there is a sequence {Z; };<,, representing the degrees in Z,
and a computable function f such that {f(i)}?" is the Turing jump of Dz

Example: If @,_,, A; is low then A = {dr(A;) | i < w} is uniformly low.

Theorem (Slaman and Woodin)

If Z is a uniformly low subset of Dp(< 0') then Z is definable from finitely
many parameters in Dr(< 0).
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o’

Applications of the coding theorem

Using parameters we can code a
model of arithmetic M =

(NM,OM,SM, +M7 XM; SM)
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o’

Applications of the coding theorem

Using parameters we can code a
model of arithmetic M =

(NM70M7SM7 +M, XM; SM)

@ The set NM is definable with
parameters p.
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Applications of the coding theorem

o

Using parameters we can code a

model of arithmetic M =

(NM, oM, M M M <M
P, P, P;

© The set NM is definable with
parameters p.

@ The graphs of s, 4+, X and the

O O ©Ooces o ooo relation < are definable with

ol A% 28 s parameters p.

Mariya I. Soskova joint work with Theodore SlanAn automorphism analysis for the Ag Turing deg 6/1



Applications of the coding theorem

o

Using parameters we can code a

model of arithmetic M =

(NM, oM, M M M <M
P, P, P;

© The set NM is definable with
parameters p.

@ The graphs of s, 4+, X and the

O O ©Ooces o ooo relation < are definable with

ol A% 28 s parameters p.

O N iff Dr(<0) = or(p)
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Applications of the coding theorem

If Z C Dy(< 0') is uniformly low and represented by the sequence {Z;}i<.,
then there are parameters that code a model of arithmetic M and a function
¢ : NM — Dr(< 0) such that (i) = dr(Z).
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We call such a function an indexing of Z.
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If Z C Dy(< 0') is uniformly low and represented by the sequence {Z;}i<.,
then there are parameters that code a model of arithmetic M and a function
¢ : NM — Dr(< 0) such that (i) = dr(Z).

We call such a function an indexing of Z.

Consider the set K = @D

€<UJ

Mariya I. Soskova joint work with Theodore SlanAn automorphism analysis for the Ag Turing deg 7/1



Applications of the coding theorem

If Z C Dy(< 0) is uniformly low and represented by the sequence {Z;};<.,
then there are parameters that code a model of arithmetic M and a function
¢ : NM — Dr(< 0) such that (i) = dr(Z).

We call such a function an indexing of Z.

Consider the set K = @, _, W.. By Sacks’ Splitting theorem there are low
disjoint c.e. sets A and B such that K = A U B.
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then there are parameters that code a model of arithmetic M and a function
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We call such a function an indexing of Z.

Consider the set K = @, _, W.. By Sacks’ Splitting theorem there are low
disjoint c.e. sets A and B such that K = A U B.

Represent A and B as p,_ A, and P

e<w

e<w
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Applications of the coding theorem

If Z C Dy(< 0) is uniformly low and represented by the sequence {Z;};<.,
then there are parameters that code a model of arithmetic M and a function
¢ : NM — Dr(< 0) such that (i) = dr(Z).

We call such a function an indexing of Z.

Consider the set K = @, _, W.. By Sacks’ Splitting theorem there are low
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Represent A and B as p,_ A, and P
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Applications of the coding theorem

If Z C Dy(< 0) is uniformly low and represented by the sequence {Z;};<.,
then there are parameters that code a model of arithmetic M and a function
¢ : NM — Dr(< 0) such that (i) = dr(Z).

We call such a function an indexing of Z.

Consider the set K = @, _, W.. By Sacks’ Splitting theorem there are low
disjoint c.e. sets A and B such that K = A U B.

Represent A and B as P, , A, and

Then A = {dr(A.) | e < w} and B = {dr(B ) | e < w} are uniformly low
and hence definable with parameters and dr(W,) = dr(A.) V dr(B.).

e<w
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Applications of the coding theorem

If Z C Dy(< 0) is uniformly low and represented by the sequence {Z;};<.,
then there are parameters that code a model of arithmetic M and a function
¢ : NM — Dr(< 0) such that (i) = dr(Z).

We call such a function an indexing of Z.

Consider the set K = @, _, W.. By Sacks’ Splitting theorem there are low
disjoint c.e. sets A and B such that K = A U B.

Represent A and B as P, A, and P, , B

Then A = {dr(A.) | e < w} and B = {dr(B ) | e < w} are uniformly low
and hence definable with parameters and dr(W,) = dr(A.) V dr(B.).

e<w

Theorem (Slaman and Woodin)

There are finitely many A9 5 parameters which code a model of arithmetic M
and an indexing of the c.e. degrees: a function 1 : NM — Dr(<L0) such that

(M) = dr(We).
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An indexing of the c.e. degrees

M(p)
01..e..

t work with Theodore SlanAn automorphism analysis for the Ag Turing deg

8/1



The Goal

Extend this result to an indexing ¢
of the A Turing degrees.

We will call e an index for a A9 set
X if {e}" is the characteristic
function of X.
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The Goal

Extend this result to an indexing ¢
of the A Turing degrees.

We will call e an index for a A9 set
X if {e}" is the characteristic
function of X.

Idea: We can use a further
uniformly low set
Z={dr(Z)|i<w}.
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Biinterpretability with parameters

Theorem (Slaman, S)

There are finitely many Ag parameters that code a model of arithmetic M
and an indexing of the Ag degrees.
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Biinterpretability with parameters

Theorem (Slaman, S)

There are finitely many Ag parameters that code a model of arithmetic M
and an indexing of the Ag degrees.

Proof flavour:

QA Ag degree can be defined from four low degrees using meet and join.
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© There exists a uniformly low set of Turing degrees Z, such that every
low Turing degree x is uniquely positioned with respect to the c.e.
degrees and the elements of Z.
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Biinterpretability with parameters

Theorem (Slaman, S)

There are finitely many Ag parameters that code a model of arithmetic M
and an indexing of the Ag degrees.

Proof flavour:
QA Ag degree can be defined from four low degrees using meet and join.

© There exists a uniformly low set of Turing degrees Z, such that every
low Turing degree x is uniquely positioned with respect to the c.e.
degrees and the elements of Z.

Ifx,y <0,x' =0 and y £ x then there are g; < 0, c.e. degrees a; and
Ag degrees ¢;,b; € Z fori = 1,2 such that:

@ g; is the least element below a; which joins b, above c;.

@ x<g Vg.

@ yftaVe.
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Applications

Theorem
Dr(< 0) has a finite automorphism base. J

Proof: Let m be an automorphism that fixes the parameters that code a model
of arithmetic M and an indexing of the Ag degrees.

Mariya I. Soskova joint work with Theodore SlanAn automorphism analysis for the Ag Turing de; 11/1



Applications

Theorem
Dr(< 0) has a finite automorphism base. J

Proof: Let m be an automorphism that fixes the parameters that code a model
of arithmetic M and an indexing of the Ag degrees.

Then 7 fixes every degree that represents a natural number in M.
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Applications

Theorem
Dr(< 0) has a finite automorphism base. }

Proof: Let m be an automorphism that fixes the parameters that code a model
of arithmetic M and an indexing of the Ag degrees.

Then 7 fixes every degree that represents a natural number in M.

Hence 7 fixes every Ag Turing degree.

Corollary
The automorphism group of Dr(< 0) is countable.

Mariya I. Soskova joint work with Theodore SlanAn automorphism analysis for the Ag Turing deg 11/1



Applications

Theorem
Dr(< 0) has a finite automorphism base. J

Proof: Let m be an automorphism that fixes the parameters that code a model
of arithmetic M and an indexing of the Ag degrees.

Then 7 fixes every degree that represents a natural number in M.

Hence 7 fixes every Ag Turing degree.

Corollary

The automorphism group of Dr(< 0) is countable.
Every automorphism of Dp(< 0') has an arithmetic presentation.
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Applications

Definition

We say that a structure is atomic if the complete type of every tuple is
axiomatized by a single formula.
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Applications

Definition

We say that a structure is atomic if the complete type of every tuple is
axiomatized by a single formula.

Theorem
Dr(< ) is atomic.

Proof flavour: Transform the indexing of the Ag degrees into a bijection
6:N— Dr(<0).
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Applications

Definition

We say that a structure is atomic if the complete type of every tuple is
axiomatized by a single formula.

Theorem
Dr(< 0) is atomic.

Proof flavour: Transform the indexing of the Ag degrees into a bijection
6:N— Dr(<0).

Now every tuple (X; ...X,) corresponds to a unique tuple of natural numbers
(e1, . ..ey), such that O(elM) =X;.

Mariya I. Soskova joint work with Theodore SlanAn automorphism analysis for the Ag Turing deg 12/1



Applications

Definition

We say that a structure is atomic if the complete type of every tuple is
axiomatized by a single formula.

Theorem
Dr(< 0) is atomic.

Proof flavour: Transform the indexing of the Ag degrees into a bijection
6:N— Dr(<0).

Now every tuple (X; ...X,) corresponds to a unique tuple of natural numbers
(e1, . ..ey), such that O(elM) =X;.

The formula for the tuple (X; .. .X,) expresses this relationship: whenever p
are parameters that define a standard model of arithmetic and a bijection
that respects the constraints of an indexing, § maps elM to x;.
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Applications

Theorem

Every relation R C Dr(< ') induced by an arithmetically definable degree
invariant relation R is definable with finitely many A(z) parameters.
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Applications

Theorem

Every relation R C Dr(< ') induced by an arithmetically definable degree
invariant relation R is definable with finitely many A(z) parameters.

If R is invariant under automorphisms, then R is definable without
parameters.

Proof: Let M be a model of arithmetic and ¢ an indexing of the Ag degrees.
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Applications

Theorem

Every relation R C Dr(< ') induced by an arithmetically definable degree
invariant relation R is definable with finitely many Ag parameters.

If R is invariant under automorphisms, then R is definable without
parameters.

Proof: Let M be a model of arithmetic and ¢ an indexing of the Ag degrees.
We define the set of all (¢(e!), ..., p(ex)) where M = R(ey, ... e,).
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Applications

Theorem

Every relation R C Dr(< ') induced by an arithmetically definable degree
invariant relation R is definable with finitely many Ag parameters.

If R is invariant under automorphisms, then R is definable without
parameters.

Proof: Let M be a model of arithmetic and ¢ an indexing of the Ag degrees.
We define the set of all (¢(e!), ..., p(ex)) where M = R(ey, ... e,).

We use the same trick as in the previous application to define R in the second
case.
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Applications

Theorem

Dr(< V) is rigid if and only if Dr(< 0) is biinterpretable with first order
arithmetic.

Proof: Dr(< () is biinterpretable with first order arithmetic if there are a
definable model of arithmetic and indexing of the Ag degrees.
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Applications

Theorem

Dr(< V) is rigid if and only if Dr(< 0) is biinterpretable with first order
arithmetic.

Proof: Dr(< () is biinterpretable with first order arithmetic if there are a
definable model of arithmetic and indexing of the Ag degrees. If the empty set
is an automorphism base then D7 (< 0') is rigid.
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Applications

Theorem

Dr(< V) is rigid if and only if Dr(< 0) is biinterpretable with first order
arithmetic.

Proof: Dr(< () is biinterpretable with first order arithmetic if there are a
definable model of arithmetic and indexing of the Ag degrees. If the empty set
is an automorphism base then D7 (< 0') is rigid.

If D7 (< 0) is rigid then the tuple of the finitely many indexing parameters is
an example of a relation R that is induced by an arithmetically definable
degree invariant relation R and R is invariant under automorphisms.
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The End

Thank you!
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