
An automorphism analysis for the ∆0
2 Turing degrees

Mariya I. Soskova1

joint work with Theodore Slaman

Sofia University

2015 Spring Eastern Sectional Meeting, Georgetown University

1Supported by a Marie Curie International Outgoing Fellowship STRIDE (298471).
Mariya I. Soskova joint work with Theodore Slaman (SU)An automorphism analysis for the ∆0

2 Turing degrees 1 / 1



Understanding the structure of the Turing degrees

1 Understanding the expressive power of the theory of the Turing degrees.

Simpson (1977?) proved: The theory of DT is computably isomorphic to
the theory of second order arithmetic

2 Understanding the definable relations in the structure of the Turing
degrees.

Slaman and Woodin (1995) conjectured: The definable relations in DT

are the ones induced by degree invariant relations on sets definable in
second order arithmetic.

3 Understanding the automorphism group of the Turing degrees.

Slaman and Woodin (1995) conjectured: There are no non-trivial
automorphisms of DT .
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Automorphism bases

Definition
Let A be a structure. A set B ⊆ |A| is an automorphism base for A if
whenever f and g are automorphisms of A such that (∀x ∈ B)(f (x) = g(x)),
then f = g.

Equivalently if f is an automorphism of A and (∀x ∈ B)(f (x) = x) then f is
the identity.

Theorem (Slaman and Woodin)

There is an element g ≤ 0(5) such that {g} is an automorphism base for the
structure of the Turing degrees DT .

Aut(DT) is countable and every member has an arithmetically definable
presentation.

Every relation induced by a degree invariant definable relation in Second
order arithmetic is definable with parameters.
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Local structure of the Turing degrees

Definition
DT(≤ 0′) is the substructure of all degrees that are bounded by 0′, the ∆0

2
Turing degrees.

Shore (1981) proved that the theory of DT(≤ 0′) is computably isomorphic to
the theory of first order arithmetic.

Question
Can we show that DT(≤ 0′) relates to first order arithmetic in the same way
that DT relates to second order arithmetic?
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The local coding theorem

Definition
A set of degrees Z contained in DT(≤ 0′) is uniformly low if it is bounded by
a low degree and there is a sequence {Zi}i<ω, representing the degrees in Z ,
and a computable function f such that {f (i)}∅′ is the Turing jump of

⊕
j<i Zj.

Example: If
⊕

i<ω Ai is low then A = {dT(Ai) | i < ω} is uniformly low.

Theorem (Slaman and Woodin)
If Z is a uniformly low subset of DT(≤ 0′) then Z is definable from finitely
many parameters in DT(≤ 0′).
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Applications of the coding theorem

Using parameters we can code a
model of arithmeticM =
(NM, 0M, sM,+M,×M,≤M).

1 The set NM is definable with
parameters ~p.

2 The graphs of s, +, × and the
relation ≤ are definable with
parameters ~p.

3 N |= ϕ iff DT(≤ 0′) |= ϕT(~p)
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Applications of the coding theorem
If Z ⊆ DT(≤ 0′) is uniformly low and represented by the sequence {Zi}i<ω

then there are parameters that code a model of arithmeticM and a function
ϕ : NM → DT(≤ 0′) such that ϕ(iM) = dT(Zi).

We call such a function an indexing of Z .

Consider the set K =
⊕

e<ω We. By Sacks’ Splitting theorem there are low
disjoint c.e. sets A and B such that K = A ∪ B.

Represent A and B as
⊕

e<ω Ae and
⊕

e<ω Be.

Then A = {dT(Ae) | e < ω} and B = {dT(Be) | e < ω} are uniformly low
and hence definable with parameters and dT(We) = dT(Ae) ∨ dT(Be).

Theorem (Slaman and Woodin)
There are finitely many ∆0

2 parameters which code a model of arithmeticM
and an indexing of the c.e. degrees: a function ψ : NM → DT(≤ 0′) such that
ψ(eM) = dT(We).

Mariya I. Soskova joint work with Theodore Slaman (SU)An automorphism analysis for the ∆0
2 Turing degrees 7 / 1



Applications of the coding theorem
If Z ⊆ DT(≤ 0′) is uniformly low and represented by the sequence {Zi}i<ω

then there are parameters that code a model of arithmeticM and a function
ϕ : NM → DT(≤ 0′) such that ϕ(iM) = dT(Zi).

We call such a function an indexing of Z .

Consider the set K =
⊕

e<ω We. By Sacks’ Splitting theorem there are low
disjoint c.e. sets A and B such that K = A ∪ B.

Represent A and B as
⊕

e<ω Ae and
⊕

e<ω Be.

Then A = {dT(Ae) | e < ω} and B = {dT(Be) | e < ω} are uniformly low
and hence definable with parameters and dT(We) = dT(Ae) ∨ dT(Be).

Theorem (Slaman and Woodin)
There are finitely many ∆0

2 parameters which code a model of arithmeticM
and an indexing of the c.e. degrees: a function ψ : NM → DT(≤ 0′) such that
ψ(eM) = dT(We).

Mariya I. Soskova joint work with Theodore Slaman (SU)An automorphism analysis for the ∆0
2 Turing degrees 7 / 1



Applications of the coding theorem
If Z ⊆ DT(≤ 0′) is uniformly low and represented by the sequence {Zi}i<ω

then there are parameters that code a model of arithmeticM and a function
ϕ : NM → DT(≤ 0′) such that ϕ(iM) = dT(Zi).

We call such a function an indexing of Z .

Consider the set K =
⊕

e<ω We.

By Sacks’ Splitting theorem there are low
disjoint c.e. sets A and B such that K = A ∪ B.

Represent A and B as
⊕

e<ω Ae and
⊕

e<ω Be.

Then A = {dT(Ae) | e < ω} and B = {dT(Be) | e < ω} are uniformly low
and hence definable with parameters and dT(We) = dT(Ae) ∨ dT(Be).

Theorem (Slaman and Woodin)
There are finitely many ∆0

2 parameters which code a model of arithmeticM
and an indexing of the c.e. degrees: a function ψ : NM → DT(≤ 0′) such that
ψ(eM) = dT(We).

Mariya I. Soskova joint work with Theodore Slaman (SU)An automorphism analysis for the ∆0
2 Turing degrees 7 / 1



Applications of the coding theorem
If Z ⊆ DT(≤ 0′) is uniformly low and represented by the sequence {Zi}i<ω

then there are parameters that code a model of arithmeticM and a function
ϕ : NM → DT(≤ 0′) such that ϕ(iM) = dT(Zi).

We call such a function an indexing of Z .

Consider the set K =
⊕

e<ω We. By Sacks’ Splitting theorem there are low
disjoint c.e. sets A and B such that K = A ∪ B.

Represent A and B as
⊕

e<ω Ae and
⊕

e<ω Be.

Then A = {dT(Ae) | e < ω} and B = {dT(Be) | e < ω} are uniformly low
and hence definable with parameters and dT(We) = dT(Ae) ∨ dT(Be).

Theorem (Slaman and Woodin)
There are finitely many ∆0

2 parameters which code a model of arithmeticM
and an indexing of the c.e. degrees: a function ψ : NM → DT(≤ 0′) such that
ψ(eM) = dT(We).

Mariya I. Soskova joint work with Theodore Slaman (SU)An automorphism analysis for the ∆0
2 Turing degrees 7 / 1



Applications of the coding theorem
If Z ⊆ DT(≤ 0′) is uniformly low and represented by the sequence {Zi}i<ω

then there are parameters that code a model of arithmeticM and a function
ϕ : NM → DT(≤ 0′) such that ϕ(iM) = dT(Zi).

We call such a function an indexing of Z .

Consider the set K =
⊕

e<ω We. By Sacks’ Splitting theorem there are low
disjoint c.e. sets A and B such that K = A ∪ B.

Represent A and B as
⊕

e<ω Ae and
⊕

e<ω Be.

Then A = {dT(Ae) | e < ω} and B = {dT(Be) | e < ω} are uniformly low
and hence definable with parameters and dT(We) = dT(Ae) ∨ dT(Be).

Theorem (Slaman and Woodin)
There are finitely many ∆0

2 parameters which code a model of arithmeticM
and an indexing of the c.e. degrees: a function ψ : NM → DT(≤ 0′) such that
ψ(eM) = dT(We).

Mariya I. Soskova joint work with Theodore Slaman (SU)An automorphism analysis for the ∆0
2 Turing degrees 7 / 1



Applications of the coding theorem
If Z ⊆ DT(≤ 0′) is uniformly low and represented by the sequence {Zi}i<ω

then there are parameters that code a model of arithmeticM and a function
ϕ : NM → DT(≤ 0′) such that ϕ(iM) = dT(Zi).

We call such a function an indexing of Z .

Consider the set K =
⊕

e<ω We. By Sacks’ Splitting theorem there are low
disjoint c.e. sets A and B such that K = A ∪ B.

Represent A and B as
⊕

e<ω Ae and
⊕

e<ω Be.

Then A = {dT(Ae) | e < ω} and B = {dT(Be) | e < ω} are uniformly low
and hence definable with parameters

and dT(We) = dT(Ae) ∨ dT(Be).

Theorem (Slaman and Woodin)
There are finitely many ∆0

2 parameters which code a model of arithmeticM
and an indexing of the c.e. degrees: a function ψ : NM → DT(≤ 0′) such that
ψ(eM) = dT(We).

Mariya I. Soskova joint work with Theodore Slaman (SU)An automorphism analysis for the ∆0
2 Turing degrees 7 / 1



Applications of the coding theorem
If Z ⊆ DT(≤ 0′) is uniformly low and represented by the sequence {Zi}i<ω

then there are parameters that code a model of arithmeticM and a function
ϕ : NM → DT(≤ 0′) such that ϕ(iM) = dT(Zi).

We call such a function an indexing of Z .

Consider the set K =
⊕

e<ω We. By Sacks’ Splitting theorem there are low
disjoint c.e. sets A and B such that K = A ∪ B.

Represent A and B as
⊕

e<ω Ae and
⊕

e<ω Be.

Then A = {dT(Ae) | e < ω} and B = {dT(Be) | e < ω} are uniformly low
and hence definable with parameters and dT(We) = dT(Ae) ∨ dT(Be).

Theorem (Slaman and Woodin)
There are finitely many ∆0

2 parameters which code a model of arithmeticM
and an indexing of the c.e. degrees: a function ψ : NM → DT(≤ 0′) such that
ψ(eM) = dT(We).

Mariya I. Soskova joint work with Theodore Slaman (SU)An automorphism analysis for the ∆0
2 Turing degrees 7 / 1



Applications of the coding theorem
If Z ⊆ DT(≤ 0′) is uniformly low and represented by the sequence {Zi}i<ω

then there are parameters that code a model of arithmeticM and a function
ϕ : NM → DT(≤ 0′) such that ϕ(iM) = dT(Zi).

We call such a function an indexing of Z .

Consider the set K =
⊕

e<ω We. By Sacks’ Splitting theorem there are low
disjoint c.e. sets A and B such that K = A ∪ B.

Represent A and B as
⊕

e<ω Ae and
⊕

e<ω Be.

Then A = {dT(Ae) | e < ω} and B = {dT(Be) | e < ω} are uniformly low
and hence definable with parameters and dT(We) = dT(Ae) ∨ dT(Be).

Theorem (Slaman and Woodin)
There are finitely many ∆0

2 parameters which code a model of arithmeticM
and an indexing of the c.e. degrees: a function ψ : NM → DT(≤ 0′) such that
ψ(eM) = dT(We).

Mariya I. Soskova joint work with Theodore Slaman (SU)An automorphism analysis for the ∆0
2 Turing degrees 7 / 1



An indexing of the c.e. degrees
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The Goal

The Goal
Extend this result to an indexing ϕ
of the ∆0

2 Turing degrees.

We will call e an index for a ∆0
2 set

X if {e}∅′ is the characteristic
function of X.

Idea: We can use a further
uniformly low set
Z = {dT(Zi) | i < ω}.
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Biinterpretability with parameters

Theorem (Slaman, S)
There are finitely many ∆0

2 parameters that code a model of arithmeticM
and an indexing of the ∆0

2 degrees.

Proof flavour:
1 A ∆0

2 degree can be defined from four low degrees using meet and join.
2 There exists a uniformly low set of Turing degrees Z , such that every

low Turing degree x is uniquely positioned with respect to the c.e.
degrees and the elements of Z .

If x, y ≤ 0′, x′ = 0′ and y � x then there are gi ≤ 0′, c.e. degrees ai and
∆0

2 degrees ci,bi ∈ Z for i = 1, 2 such that:
1 gi is the least element below ai which joins bi above ci.
2 x ≤ g1 ∨ g2.
3 y � g1 ∨ g2.
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Applications

Theorem
DT(≤ 0′) has a finite automorphism base.

Proof: Let π be an automorphism that fixes the parameters that code a model
of arithmeticM and an indexing of the ∆0

2 degrees.

Then π fixes every degree that represents a natural number inM.

Hence π fixes every ∆0
2 Turing degree.

Corollary
The automorphism group of DT(≤ 0′) is countable.
Every automorphism of DT(≤ 0′) has an arithmetic presentation.
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Applications

Definition
We say that a structure is atomic if the complete type of every tuple is
axiomatized by a single formula.

Theorem
DT(≤ 0′) is atomic.

Proof flavour: Transform the indexing of the ∆0
2 degrees into a bijection

θ : N→ DT(≤ 0′).

Now every tuple (x1 . . . xn) corresponds to a unique tuple of natural numbers
(e1, . . . en), such that θ(eMi ) = xi.

The formula for the tuple (x1 . . . xn) expresses this relationship: whenever ~p
are parameters that define a standard model of arithmetic and a bijection θ
that respects the constraints of an indexing, θ maps eMi to xi.
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Applications

Theorem
Every relationR ⊆ DT(≤ 0′) induced by an arithmetically definable degree
invariant relation R is definable with finitely many ∆0

2 parameters.

IfR is invariant under automorphisms, thenR is definable without
parameters.

Proof: LetM be a model of arithmetic and ϕ an indexing of the ∆0
2 degrees.

We define the set of all (ϕ(eM1 ), . . . , ϕ(eMn )) whereM |= R(e1, . . . en).

We use the same trick as in the previous application to defineR in the second
case.
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Applications

Theorem
DT(≤ 0′) is rigid if and only if DT(≤ 0′) is biinterpretable with first order
arithmetic.

Proof: DT(≤ 0′) is biinterpretable with first order arithmetic if there are a
definable model of arithmetic and indexing of the ∆0

2 degrees.

If the empty set
is an automorphism base then DT(≤ 0′) is rigid.

If DT(≤ 0′) is rigid then the tuple of the finitely many indexing parameters is
an example of a relationR that is induced by an arithmetically definable
degree invariant relation R andR is invariant under automorphisms.
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The End

Thank you!
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