D. Skordev, An axiomatic treatment of recursiveness for some kinds of multi-valued functions. Let \mathscr{F} be a semigroup with an identity I. The elements of \mathscr{F} and their multiplication will play the roles of functions and composition. Let $\mathscr{C} \subseteq \mathscr{F}$ (the elements of \mathscr{C} will be "the single-valued constants"). As variables ranging over \mathscr{F} and \mathscr{C} we shall use φ , ψ , θ , χ and χ , χ respectively. Let φ , $\psi \mapsto (\varphi, \psi)$ and χ , φ , $\psi \mapsto (\chi \supset \varphi, \psi)$ be a binary and a ternary operation on \mathscr{F} ("pairing of the function values" and "definition by cases") and assume that $\forall x \forall y ((x, y) \in \mathscr{C})$. Let L, $R \in \mathscr{F}$, T, $F \in \mathscr{C}$, $T \neq F$ and let the following equations hold identically: xy = x, $(\varphi, \psi)x = (\varphi x, \psi x)$, $(\varphi x, I)\theta = (\varphi x, \theta)$, $(I, \psi(x))\theta = (\theta, \psi x)$, L(x, y) = x, R(x, y) = y, $(\chi \supset \varphi, \psi)x = (\chi x \supset \varphi x, \psi x)$, $(I \supset \varphi x, \psi x)\theta = (\theta \supset \varphi x, \psi x)$, $(I \supset \varphi x, \psi x)\theta = (\theta \supset \varphi x, \psi x)$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi x, \psi x)$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi x, \psi x)$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi x, \psi x)$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi x, \psi x)$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi x, \psi x)$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi x, \psi x)$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi, \psi)\theta = (\theta \supset \varphi, \psi)\theta$, $(I \supset \varphi,$

556

ABSTRACTS OF PAPERS

given operations on \mathscr{F} are monotonic with respect to \leq , (ii) $\forall \varphi \forall \psi (\forall x (\varphi x \leq \psi x) \rightarrow \varphi \leq \psi)$ and (iii) each chain \mathfrak{M} in \mathscr{F} has an upper bound ψ satisfying the condition

$$\forall \varphi \forall x \forall \chi (\forall \theta (\theta \in \mathfrak{M} \to \varphi \theta x \leq \chi) \to \varphi \psi x \leq \chi).$$

The iteration of φ controlled by χ is by definition the least solution θ of the equation $\theta = (\chi \supset I, \theta \varphi)$. A "function" ψ is called recursive in some "functions" ψ_1, \dots, ψ_n iff ψ can be obtained from $I, L, R, T, F, \psi_1, \dots, \psi_n$ by means of the three given operations on \mathscr{F} and iteration. For this notion of recursiveness we prove a normal form theorem, an enumeration theorem and the first and second recursion theorems.

Consider a set M together with a pairing mechanism J, L, R on it and let $c_1 \in M_1 \subseteq M$ $(i = 0, 1), M_0 \cap M_1 = \emptyset$ (using the notations from [1], we can for example take M to be the set B^* corresponding to an arbitrary set B and take $J = \lambda st.(s, t), L = \pi, R = \delta, M_0 = B^0, M_1 = B^* - B^0, c_0 = 0, c_1 = 1$). We obtain a model for the given system of axioms taking \mathscr{F} to be the set of all partial multiple-valued mappings of M into M with the natural rule of composition and the natural partial ordering and taking $\mathscr{C} = \{\lambda s.c: c \in M\}, (\varphi, \psi) = \lambda s.J(\varphi(s), \psi(s)), (\chi \supset \varphi, \psi) = \lambda s.\{t: (\chi(s) \cap M_0 \neq \emptyset \land t \in \varphi(s)) \lor (\chi(s) \cap M_1 \neq \emptyset \land t \in \psi(s))\};$ $T = \lambda s.c_0, F = \lambda s.c_1;$ in the special case which corresponds to [1] our notion of recursiveness will be equivalent to absolute prime computability. Other models can be obtained by taking \mathscr{F} to be the set of the partial mappings of M into M, or by considering fuzzy or probabilistic mappings of M into M. We can also take \mathscr{F} to be the set of all pairs $\langle D, f \rangle$, where f is a partial multiple-valued mapping of M into M and $D \subseteq \text{Dom } f$, and define multiplication by $\langle D_0, f_0 \rangle \cdot \langle D_1, f_1 \rangle = \langle D, f_0 f_1 \rangle$, where $D = \{t: t \in D_1 \land f_1(t) \subseteq D_0\}$. Then for a suitable interpretation of the rest of the primitive notions we again obtain a model for the considered system.

REFERENCE

[1] Y. N. Moschovakis, Abstract first order computability. I, Transactions of the American Mathematical Society, vol. 138 (1969), pp. 427-464.