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ON TURING COMPUTABLE OPERATORS*

Dimiter Skordev

We shall consider Turing computable operators not only on total func-
tions, but also on partially defined ones. : e

I. Let N be the set of the natural’ numbers and P be the set of all
functions the domains and the ranges of which are subsets of N. By F
will be denoted the set of all functions belonging to P the domains of
which are equal to N. We shall always identify the elements of P with-
their graphs. L - ST -

The elements of P the domains of which are finite can be effectively
listed in a sequence ,

fO! fl! f‘Z""
We may, for example, set
fa={<x, y> 1 (n+1)x=y+1}
Let m be a positive integer and let R and F be given such that
v RcCP™, F:R—P.

The mapping F is called a partial recursive operator if there exists a re-
cursively enumerable subset A of N7+2 such that for all ¢y,..., dm belong-
ing to P and satisfying the condition

. <¢17"', me> GR
the following equality holds

Fdyy s Pm)={<x, y> gny .. Gl (fa o &
&f,,m(: Om & <Hypowy Bmy X, Y> € )}

“If the domain R of F coincides with the whole P7, then F is called
a recursive operator from P” into P.

Let ¢y,.., Ym ¢ belong to P. The function ¢ is partial recur-
sive in <¢;..., Yn> if there exists a partial recursive operator F such
that

: <Yypern Um> € Dom F

% This is an extended version of a lecture given by the author on February 15,
1973 at the Stefan Banach International Mathematical Center for Raising Research Qua-
lifications in Warsaw.
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and
P=F Wy -0y bm);

pis strongly partial recursive in <¢,. .., $n> if the same
equation holds for some recursive operator F. _

It ¢y,..., $m are elements of F, then by Kleene’s Normal form theorem
(Theorem XIX of [2]) every function ¢ belonging to P and partial recur-
stve in W= <{y,..., n>* has a representation of the form

‘P(x);U(}Ly Tlg/(ev Xy JJ))

and hence ¢ is strongly partial recursive in W. Myhill [4] has, however,
shown that there exist ¢ ¢ P and ¢ ¢ F such that ¢ is partial recursive
in ¢ but ¢ is not strongly partial recursive in ¢.

IL I shall give only an intuitive definition of the notion of Turing
computable operator because the notion of Turing machine is well-known
and it is a routine work to formulate the precise formal definition for
Turing computability of operators and to make the proofs agree with it
(Turing computable operators are considered, for example, in [2], § 67, in
the form of uniform computability in some given functions; it is not very
essential that these functions are assumed to be total).

Let F be a mapping of P~ into P. The mapping F is called a Turing
computable operator from P7into P if there exists a deterministic
procedure for computing F(dy,..., ¢m)(x) for any given ¢,,..., ¢n, x and
this procedure is fully algorithmical, except that at some stages of the
computation the value of some ¢, at some point y can be demanded and
the computation cannot go on before this value is given to the compu-
ter (in the cases where some demanded value ¢;(y) happens to be unde-
fined the value F'({,..., m)(¥) must be undefined too). A function ¢
is called Turing computable in some m-tuple of functions <¢y,...,
Ym> if o =F (..., dm) for some Turing computable operator F.

A mapping £ of P into P is called precursive if F(dy.., ¢,) is
obtainable from ¢,,..., g and the initial primitive recursive functions by
means of a fixed succession of substitutions, primitive recursions and
applications of the p-operator.

Teorem 1. An operator is Turing computable iff it is p-recursive,

The proof is essentially contained in § 68 and §69 of [2].

Theorem 2. Every p-recursive operator is recursive.

This is Theorem XVIII of [2].

[ll. By Theorem 1 and Theorem 2, Turing computable operators and
p-recursive operators are the same thing and they all are recursive ope-
rators, It is natural to ask whether all this three classes of operators
coincide.

From Kleene’s Normal form theorem it follows that on functions be-
longing to F every recursive operator coincides with some p-recursive
one. The situation is, however, different in the case where we consider

* The definition of relative partial recursiveness given above is equivalent to the
definition given in [2].
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the operators also on partially defined functions. This was shown by A. V
Kuznecov and me in 1961% as an answer to a question of V. A. Uspen-
skii. I shall give now some examples.

Example 1. Let F be the mapping of P? into P defined by the
equation

F($y, $9)=(Dom ¢; J Dom ¢5) < {0}.
It is not difficult to prove that F is a recursive operator but this opera”
tor is not Turing computable (Hint: Suppose that F is Turing compu’
table and consider the first demanded value ¢/y) in the computation of
F(,, $)(0). It is obvious that 7 and y will not depend from the choice
of ¢, and P, Making use of that, choose such ¢, and ¢, that F (7, $9)(0)
is defined but ¢;(y) is undefined).

Example 2. Consider the mapping G of P into P defined by the
equation

G(¢) = (Range ) X{0}.
We can prove in a quite similar way as above that (/ is also a recursive
opetator which is not Turing computable.

IV. We shall give now a necessary and sufficient condition for the
Turing computability of a recursive operator (this condition is a modifi-
cation of a condition given in [L1]).

Theorem 3. Let m be a positive integer. Then for every re-
cursive operator F from P~ into P, the following two conditions are
equivalent: o

(i) F is Turing computable. ‘

(i) There exists a partial recursive function y of m+ 1 variables ‘such
that for all nq,..., 7w X

a) qJ Ll)1. c q}m(fnvl c 4?1 & oo &fnm C me &x é D()H]YF(QJ]},. t (bm)
=> (Nyye -+ Hen X) € Domy;
b) X (g fimy %) =0=>x € Dom F (fuyye -y fr,)s

&Y b Y Im(fr, CThy &-.-&fnmCaPm&xéDomF(nph..., bm)=>y €

Dom ¢, )}

Proof. Let F be a recursive operator from P into P. Then the func-
tions p defined by the equation

P(’h’"" ,lm, x)gp(ff’n’"" fnm)(x)

is a partial recursive function. If condition (i) is satisfied, then we define
the function y in the following way:

~ * It seems that the fact has been known earlier to Orlovskii and Lacombe (see
[10] and [3], 8.4).
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o N 0, if x € Dom F(fry - frn,):
L (Ao r s x)g{meri, if f,(y) is the first demanded but not de-
fined value in the Turing computation of
Ffune s Jam) (X)-
The function y is partial recursive and y satisfies the conditions a), b),
¢). In order to prove the implication (ii) => (i), suppose that y is a func-
tion of m+ 1 variables such that conditions a), b), c¢) are satisfied. Then
we can use the following procedure for computing 2= F({( .., Pm)(X)
for any given ¢ ..., Um X
p 1) M= Nyi=a.., M=, where a is a natural number such that
] ==
2) Ri=Y (Ao Am X).
3) If =0, then go to instruction 4), else go to instruction 6).
4) zi=p (M. os Hm, X)
~ 8) Stop.

h—1]
6) y:::[-———ﬁ‘-
|»m ]
) it=h—my.
8) w:=4(y).
9) Find a natural number 7 such that f,=f, U{<y, w>}
10) n;:=n.
11) Go to instruction 2).
Corollary. Let m be a positive integer and let 7 and G be recur-
sive operators from P7 into P. If

Vi ...Vdm (Dom F('-Pp“- .r Ym)=Dom G(%,- v Gm))

and the operator F is Turing computable, then the operator G is Turi_ng
computable too. ‘ '

V. The above mentioned question of Uspenskii had a second, more
difficult, part. It was the following: is it possible to construct a pair of
functions v and ¢ such that ¢ is strongly partial recursive in ¢, but ¢
is not Turiig computable in ¢ ? The ‘question was answered positively
and a proof of the result can be found in [11]. However, I prefer now
another proof which gives us a simpler example of such palr This proof*
is based on two lemmas.

Lemma 1. Let ¢ and ¢ belong to P and let the followmg conditions
be satisfied:

a) ¢ is potentially partlal recurswe,

~.b) ¢ is . Turing computable in ¢ ;

"c) Domgis a productive set.

Then Dom ¢ has an infinite recurswely enumerable subset.

* I am describmg the proof in a form such that classical logic.is used. A variant
of the proof using intuitionistic logic can be obtained by slight modifications.
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Proof. Let F be a Turing computable operator such that.g=/($). By
Theorem 3, there exists a partlal recursive function v of two _variables:
such that for all n, x

a) f, C b &xeDomF(¢)=> <n, x> €Domy;

b) y(n, x)=0 = x ¢ Dom F(f,);

¢) vy(x(m x)=y + 1 & f,C & & x € Dom F($) => y ¢ Dom f, &
y € Dom ¢).

Then, given any finite subset £ of Dom ¢, we can ecffectively construct
a point y of (Dom¢)— E in the following way: we find an n such that
f,=4¢ | E and consider Dom F (f,) which will be a recursively enumerable
subset of the productive set Dom ¢; then we find a point x ¢ (Dom cp) —
(Dom F(f,)) and set y=y(n, x)—1.

Lemma 2. There exists a 4 ¢ P such that

a) ¢ is potentially primitive recursive;

b) Dom ¢ has no infinite recursively enumerable subset;

¢) Range ¢ is a productive set;

d) Dom ¢ and Range ¢ are complements of some recursively enume-
rable subsets of N. -

Proof. We take an immune set 4 and a productive set B such that
A and B are complements of some recursively enumerable subsets of N
and then we set

p={<C2¢.3%, v> u€ A&v ¢ B&u>v}

The main result is the following:

Theorem 4. There exist” ¢ and ¢ belonging to P such that ¢ is
strongly partial recursive in ¢, ¢ is not Turing computable in ¢ and the
following additional conditions are satisfied :

a) ¢ is potentially primitive recursive;

b) Dom¢ and Range ¢ are complements of some recursively enume-
rable subsets of N.

Proof. Take ¢ as in Lemma 2 and set

o= (Range $)x{0}.

Remark 1. From this proof it follows once more that the operator
G considered m Example 2 is not Turing computable.

VI. We shall now consider a kind of reducnblhty which will be called
partial c-reducibility.

Let all finite subsets of N be effectively listed in the sequence

Spy 8¢, Sg5. - -
We can, for example, set
Si={ X0y Xgyiviy Xih
where x,<xXy<...< Xx; and n=2% 4254 2%,

4
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Let 4, Ay,..., An be some subsets of N. The set A, is partially
c-reducible to < A,,..., Am> if there exist partial recursive functions
8;,..., By such that

140={X ’\:—Int e anm (61 (x)=I’L1 & e ;& 6m(x)=ﬂm
& Sn, C A] &...& Spm & Am)}~

I[f we omit the words “partially” and “partial” in this definition, then
we shall bave a notion studied by Jockusch in his dissertation (see {5],
Exercise 8—27). But the partial c-reducibility is essentially different from
the c-reducibility, because the c-reducibility is a truth-table reducibility
and the partial c-reducibility is not (the last can be concluded from the
fact that a non-recursive recursively enumerable set is always partially
c-reducible to a recursive set).

Theorem 5. Let A,, A;,.., An be subsets of N and let g, 2.,
am be constant functions such that Doma;=A, for =0, 1,.., m. Then
the following two conditions are equivalent:

(i) A4, is partially c-reducible to <A,,..., An>.

(ii) «, is Turing computable in <&y, .., om>.

Proof. The verification of the implication \i) => (ii)) is straightforward.
in order to prove the converse implication, suppose that

CZO’—"—F(a],‘. .y a,n)

for some Turing computable operator F and take recursive functions
i‘gh'-u ﬁm such that

oy C By oo om C P

Then for i=1,..., m define 6, as the set of the pairs <lx, n> satisfying
the following condition: x ¢ DomF(B,,..., Bm) and s, is the set of the
natural numbers y for which the value 8(y) has been demanded in the
Turing computation of F(f,, .., Bm)(X).

The partial c-reducibility implies enumeration reducibility. But we
shall show that the partial c-reducibility is stronger than enumeration re-
ducibility. Namely, the following theorem will be proved.

Theorem 6. There exist subsets A, A;, A of N such that

a) A, U 4, is not partially c-reducible to <4, 4;>;

¢) A;={x|2x € A}, Ay={x2x+1¢A};

d) A, U A4, is not partially c-reducible to A4;

e) each of the sets A, A, A belongs to the intersection of the
classes Z, and T, of the Kleene-Mostowski hierarchy.

Proof* Take immune sets B, and B, belonging to Z, ) I, such
that

B1.ﬂ32'=:¢: BxUBe’:N

# Using classical logic.
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(such pair of immune sets can actually be constructed). Then take a pro-
ductive set C which is the complement of some recursively enumerable
set and set

fq1 ::Bl n C‘, Ag”"BgﬂC,

A=A;join A,

The conditions b), ¢) and e) are obviously satisfied. In order to prove the
statement d), consider the functions

¢=(A;UAg X{0},
b =Ax{0}

and suppose that ¢ is Turing computable in ¢. Since Dom ¢ is a produc-
tive set, by Lemma 1 we can conclude that the set A has an infinite
recursively enumerable subset and this is impossible, because none of the
sets A, and A, has any infinite recursively enumerable subset. Hence ¢
is not Turing computable in 4. Thus, by Theorem 5, A;|JA, is not parti-
ally c-reducible to A. For the proof of the statement a), consider the
functions ¢,, ¥, where

U= A; % {0} (i=1, 2),
From the equations

bi(x)==d(2x),
Do(X) = (2x+ 1)

it follows immediately that ¢, and ¢, are Turing computable in ¢ and
therefore (by the transitivity of relative Turing computability) ¢ cannot be
Turing computable in <¢;, $,>. Hence, by Theorem 5, 4,{JA, cannot
be partial c-reducible to <A;, Ay>.

Remark 2. The functions ¢ and ¢ considered in the proof above
have the main property formulated in Theorem 4: ¢ is strongly partial
recursive in ¢ but ¢ is not Turing computable in ¢.

Remark 3. By considering the functions ¢, ¢, ¢, from the proof
above, we can once more see that the operator F considered in Example 1
is not Turing computable.

Remark 4. It is possible to prove Theorem 6 without making use
of Theorem 5, but in such a direct proof we have to repeat in essence
the proof of Lemma 1.

VIL. At the end, 1 wish to give an account on a relatively simple
effective enumeration of the Turing computable operators. This enumera-
tion, in essence, is contained in [12].

Let ¢y,..., Um be elements of P and let W= <¢y,.., dm>. For e and
x belonging to N, we define the symbol {e}¥(x) by the following induc-
tive definition: ‘ .
D), {(@+12—1}¥(x) = (a+x)*+2a

for all natural a and x.
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2) {(@a+1)}¥(x)=a

for all natural @ and x.

3) AR () =0, (x)

for i=1, 2,..., m and x ¢ Dom¢,.

4) @+ b-+2+20+2}7 (x) = {{a} ¥ (x)}¥ ({6} (x))

for "all natural a, b, x such that the right side of the equation is de-
fined. ' '

It is not difficult to see that this definition is consistent, i. e. for any
e and x there exists at most one z such that {e}¥(x)=z2 (obviously,
there exist infinitely many pairs <e, x> for which {e}¥(x) will be
undefined).

Theorem 7. Let F be a mapping of P» into P. Then F is a Tu-
ring computable operator iff

CHeVY - YO VX [F (Y, ) (X) = {e} <V bm> (X)),

The proof that every operator F having this representation is Turing
computable is based on the following: from the definition of the symbol
{e}¥(x) it is easy to obtain a deterministic procedure for computing
{e}¥(x) using finitely many values ¢,(y) demanded in the course of the
computation. The statement that every Turing computable operator from
P~ into P has the representation above can be proved by using some
techniques from the combinatory logic approximately so as it is done in
(6] and also in Wagner's papers [8], [9]* and in Strong’s paver [7] (The -
rem 1 must be used in the proof too). The possibility of applyiny these
techniques can be observed from the following lemma.

Lemma 3. There exist natural numbers p, ¢, &, s with the proper-
ties a) — e) below (where W' must be considered as an abbreviation for

<bpery Im>).
) V.. Vmyx (P} (x)=x-+1);
D) vy vImyx({g}¥ (x)=x+1);
©) yagbyd,. .. viu[{E}¥ (@)= b& yx ({6}¥ (x)=a);
d) vagbvd,.. . vou[{6}¥ (0)=k & yx ({6}¥ (x+1)=a)];
&) vavbacadyyd, ... ydul{s}¥ (@ =c&{c}?(b)=d&
- vx[{@}F ) ={{a}” ()} 7 ({6} ()]

For the proof of this lemma, see [13] (the natural numbers p, q,
k, s can be explicitly found; we can set ¢=6, but the values of p, &, s

# There exist Wégner’s publicationsbou the same subject in IBM Res. Rep., earlier
than [8] and [9]. The first of them is in 1963, as well as my paper [6]. Unfortunately,
these publications are inaccessible for me, .

Added July 13, 1974: At the present time, copies of those papers are at my dis-
posal by the kindness of Dr. Wagner.
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which I can calculate are so great that it is not convenient to write
them here). A
It is worth notice that for recursive operators from P™ into P there
is an enumeration theorem too (see [1}, Chapter 10, Theorem 3.1), but- it
is not known whather an enumeration of them is possible which is not
far more complicated than the enumeration of Turing computable operators
considered here. £
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Mocrbrnuaa na 7. VIL 1973 r.

OB OIEPATOPAX, BRIUMC/JAMMbBIX B CMBICJIE ThIOPHHI'A
O.Ckopaes
(PE3IOME)

B cTaTbe M3TaraeTci B HECKOJbKO paclIMPEHHOM BHIAE COLepXKaHHe
JeKIMH, TIpounTanHolt asTopom 15 ¢espars 1973 r. B MexyHapOHOM
MaTreMaTHueckoM IenTpe uM. Basaxa B BapruaBe. OmepaTopsl, BBHIYHCIHMBIE
B cMmbicite ThropuHra (p-peKypcHBHBIE ONEpaToOphl), B 9TOH CTaThe, KaK H B
Gonee panHofi paGore asTopa [11] (BO3HuKIIeH B CBA3H C HEKOTOPBIMH
ponpocamd B. A. YcOeHcKOro), paccMaTpupaioTcs He TOMBKO Ha BCIOAY
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onpese/ieHHbIX (DYHKUMAX, HO H HA YACTHYHO ONpe/e/ieHHbIX. ¥ KA3LIBAIOTCA
HEKOTOpbIE NIPAMEPHl PEKYPCHBHBLIX ONEPATOPOB, KOTOPhIE HE BBHIYHCIHMBI B
cMbicie THIOPHMHTA, H HAETCH OJHO YCJOBHE, KOTOPOE HEOGXOAHMO M JO-
cratouyHo 7151 ThIODHHTOBOM BBHIUHCAMMOCTH PEKYPCHBHOIO oOIllepaTopa (3T0
ycioBue sBAfeTcs MOAMQUKaUWed OJHOrO YCJOBHA U3 [11]). Crpourcs
Gonee npocToii, uem B [11], mpumep Taxoit napsl QYHKUMH ¢ H ¢, UTO ¢
SBJSETCA Pe3y/bTaTOM NPHMEHEHMS HEKOTOPOro peKypCHBHOINO oOmepaTopa
K ¢, HO ¢ He BHYHCAAMA B cMbic/e THIODHHTa OTHOCHTENBbHO . BeozxuTcs
HOHSTHE YACTHUYHOMH C-CBOJMMOCTH MHOXECTB HATYPaJbHbIX UHCeN, & HMEHHO:
MHOMXeCTBO A, Ha3blBaeTCs YaCTHYHO €-CBOJSIIMMCH K CHCTEME MHOXKECTB
<Ay, An>>, €CIM CYMIECTBYIOT TaK¥e UYacTHYHO PEKYPCHBHEIC ($yHKIHU
B4+ v 6m, 4TO MHOMECTBY A, NpUHamIeXKaT B TOYHOCTH T€ HATypaib-
Hele uMcaa X, A5 KOTOPHIX omnpenesensl Bce OGyBKuua 8y, ..., On
M KOHEYHble MHOXECTBa HATYpaJbHEIX GHCEN CO CTaHAApPTHBIMH HOME-
pamp 0, (x),..., O, (x) comepxKarcsi  COOTBETCTBEHHO B MHOXECTBAX
Ay,..., Am Vicchenyercs cBssb 5TOr0 MOHATHS C OTHOCHTEIbHOH THIODHH-
rOBOH BBLIYHCJAHMOCTBIO M CTPOSITCH HerepeceKarolluecss MHOXECTBA HaTy-
panbHbix uucenr A; Ay, IAs KOTOPHIX He BEPHO, YTO A;JA, vacTHuHO
c-cBozutcs k <A;, A,>. B KoHUe cTaTbu TNPUBOAUTCA OJHMH OTHOCH-
TeIbHO NPOCTOH ¢rnoco6 3¢d¢eKTHBHOro Mepeyuc/IeHnsi COBOKYNHOCTH ome-
paTopOB, BBIUMCAMMBIX B cMbice Toiopunra (3T0T cnoco6 OCHOBaH Ha
NPUMCHEHUH METONOB KOMOWHATOPHOH JMOTMKH B Jyxe paboThl aBTOpa [6)).




