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1. Introduction

The problem we study is how to detect some loops in computational processes in the course
of those processes. This problem has both some practical significance and certain theoretical
attractiveness. The early methods invented by R. W. Floyd and R. P. Brent (cf. [7],
section 3.1) are abstract in their nature. Given any set and any mapping in it, these methods
allow the detection of the possible ultimate periodicity of the trajectory obtained by iterated
application of the mapping starting from an arbitrarily chosen element of the set. More
precisely, they accomplish partial decision procedures computable in the given mapping and
the equality predicate in the given set.1 The same is true also for the generalization of the
mentioned methods studied in [5].2

Certain important kinds of computational processes lead sometimes to loops with periodic
features different from ultimate periodicity of the trajectory. This can happen in cases when
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A preliminary version of the paper has been presented at the minisemester ”Logic, Algebra and Computer
Science: Helena Rasiowa in Memoriam” (Stefan Banach International Mathematical Center, Warsaw,
Poland, December 2-22, 1996).

1Of course, a trivial partial decision procedure computable in the same sense exists, namely comparing
each trajectory member with all preceding ones. This procedure, however, is not practically usable in most
cases of interest.

2We have not included references to [5] in most of our previous papers due to not knowing about that
publication during a long period of time.



the complexity of the processed objects may vary in the course of the process. Typical kinds
of processes of this sort are the depth-first search at the execution of Prolog programs and
the recursive computations (the processed objects are finite sequences of atomic goals in the
first case and terms built up from atoms by means of application of functional symbols in the
second one). Such processes seldom lead to a complete repetition of the current object under
processing. The instances of non–termination of them are more frequently due to a more
general sort of self–reproduction characterized by a periodic repetition of some essential part
of the object. The setting of the problem and the ways of solving it are more complicated in
this case. Nevertheless, the loop detection problem for Prolog (and not only for the depth-
first search, but also for the general case), due to its actuality, has been intensively studied by
many authors in an impressive stream of publications (as some instances of such ones, cf. e.g.
[1], [2], [3], [4], [6], [8], [9], [14], [15], [16]). However most proposed loop detection methods
for Prolog essentially use specific features of the sort of program execution in question. An
attempt to look at the problem from an abstract point of view has been done in our paper
[10], which is also directed to loop detection in Prolog, but uses an axiomatic framework.

The present paper aims at the building of a more general framework encompassing also
the case of recursive computations (a slightly more restricted separate study of loop detection
in the last case is given in [11]).

2. Goal structures and reducers in them

Our first step will be to give an appropriate axiomatization of the computational universes
for the processes of the considered kind.

Definition 2.1. We shall call a goal structure any triple (U, C, P ), where U is a set (the
universe of goals), C (the complexity estimator) is a mapping of U into the set N of the
non–negative integers, P (the projection mapping) is a partial mapping of U into itself, and
the following conditions are satisfied:

(gs1) whenever u belongs to dom(P ), the inequalities 0 < C(P (u)) ≤ C(u) hold;
(gs2) for any u in U , some natural number k exists such that u 6∈ dom(P k).
(gs3) whenever C(u) > 1, then u belongs to dom(P ).

If (U, C, P ) is a goal structure then, for any u in U , the corresponding integer C(u) will be
called the complexity of u.

Remark 2.1. In the cases when both inequalities in (gs1) are strict for all u in dom(P ),
condition (gs2) becomes obviously superfluous. In such cases dom(P ) consists exactly of the
elements of U having complexity greater than 1.

Definition 2.2. Given a goal structure (U, C, P ) and an element u of U , we shall call leading
parts of u the elements P k(u) for the finitely many k such that u ∈ dom(P k). The leading
part P k(u) of u with the greatest k will be called the head of u and will be denoted by H(u).

Remark 2.2. If (U, C, P ) is a goal structure then, by the second inequality in (gs1), all
leading parts of an element u of U have complexities not greater that C(u).

Remark 2.3. It is easy to see that, in any goal structure (U, C, P ), the equality C(H(u)) = 1
holds for all u in U such that C(u) > 0, and H(u) = u for the elements u of U having
complexity 0.

We shall give now some examples of goal structures. The first of them is a trivial one,
but it corresponds in some sense to the situation when we are interested in the detection
of complete repeating of the objects under processing (i.e. in the detection of the ultimate
periodicity of the trajectories).



Example 2.1. Let U be an arbitrary set, let C(u) = 1 for any u in U , and let dom(P ) be
empty. Then (U, C, P ) is a goal structure, and each element of U is its only leading part,
hence H(u) = u for any u in U .

The next example covers the computational universe of finite sequences used in the depht-
first search at the execution of a logic program, i.e. a Prolog program consisting of Horn
clauses (in that example and further, we adopt the denotational convention that applying
the composition fg of two mappings f and g means applying first g and then f).

Example 2.2. Let (U, π, R) be a goal space in the sense of [10], i.e. U is a set, π and R
are partial operations in U such that dom(R) ⊆ dom(π), dom(R) ∩ dom(π2) ⊆ dom(Rπ),
πR is an extension of Rπ, and the requirement (gs2) holds with π in the role of P . For
any u in U , let C(u) be the length of u in the sense of [10], i.e. the greatest k such that
u ∈ dom(πk), and let P be the restriction of π to dom(π2). Then (U, C, P ) is a goal structure,
such that C(P (u)) = C(u) − 1 for any u in dom(P ), and, for any u in dom(π), its leading
parts coincide with its beginnings in the sense of [10] that belong to dom(π) (the elements
of U not belonging to dom(π) have no leading parts different from themselves). As seen
from [10], to cover the computational universe related to a logic program, we have to assume
that such a program is given and to denote by U , π and R, respectively, the set of all finite
sequences of atomic formulas, the operation of deleting the last member of such a sequence
(defined for the non–empty sequences) and the operation of performing resolution upon the
first member of the sequence using the first program clause with a head unifiable with that
member (this operation is defined if and only if the given sequence from U has a first member
unifiable with the head of some program clause; of course the usual procedure of appropriate
renaming the program variables is assumed to precede the unification attempts, and this
construction of a goal space needs in fact also identification of the sequences from U that
coincide up to renaming of the variables). The leading parts of a non–empty sequence from
U are the non–empty beginnings of that sequence, and its head is the beginning consisting
only of the first member of the sequence. The empty sequence coincides with its head.

Now an example suitable for the case of recursive computations follows.

Example 2.3. Let U consist of all terms built up from some given atoms by means of
application of some given function symbols, and let a subset ∆ of the set of the function
symbols be specified (the function symbols from this subset may be regarded as the definable
ones, and it may contain all function symbols). For any u in U , let C(u) be the number
of occurrences of function symbols from ∆ in u. Let P be the partial mapping of U into
itself defined in the following way: dom(P ) consists of the elements u of U having the form
f(u1, . . . , un), where n is some positive integer, f is some n–ary function symbol, u1, . . . , un

are terms, and at least one ui has a strictly positive complexity C(ui); the mapping P
transforms any term u of the above form into the leftmost ui whose complexity is strictly
positive. Then (U, C, P ) is a goal structure. Let U1 consist of all terms having the form
f(u1, . . . , un), where n is some positive integer, f is some n–ary function symbol from ∆, and
u1, . . . , un are terms with complexity 0. Then, whenever u is a term from U with a strictly
positive complexity, H(u) is the leftmost occurring in u subterm belonging to U1, and any
element of U with complexity 0 coincides with its head.

Remark 2.4. The situation in the above example becomes simpler in the case when ∆
contains all function symbols. Then the complexity of a term is the number of occurrences
of function symbols in it, the terms with positive complexities are exactly the non–atomic
terms, dom(P ) consists of the terms with complexity greater than 1, and U1 consists of the
terms with complexity 1.

The next step towards the promised abstract treatment of loop detection needs to axiomatize
also the computational steps. These will be done by introducing the notion of a reducer in



a goal structure (in its definition and further, when using equalities concerning results of
partially defined operations, we interpret the equalities in the sense that if one of the sides
is defined then the other one is defined too and has the same value).

Definition 2.3. Let (U, C, P ) be a goal structure. A partial mapping R of U into U will be
called a reducer in the given goal structure if the following conditions are satisfied:

(r1) C(u) > 0 for any u in dom(R);
(r2) RP (u) = PR(u) for any u in dom(RP ) such that C(RP (u)) > 0;
(r3) dom(RP ) = dom(R) ∩ dom(P );
(r4) C(R(u)) − C(RP (u)) = C(u) − C(P (u)) for any u in dom(RP ).

Example 2.4. In the goal structure from Example 2.1, any partial mapping of U into U is
obviously a reducer.

Example 2.5. In the goal structure from Example 2.2, the mapping R is surely a reducer.

Example 2.6. To get a reducer in the goal structure from Example 2.3, suppose D is a
mapping of the set U1 into U (in the case when ∆ contains all function symbols, this is the
requirement D to be a recursion rule in the sense of [11]). Let R be the extension of D in
the following way generalizing the corresponding construction in [11]: dom(R) consists of
all terms with strictly positive complexities, and, for any such term u, R(u) is the result of
replacing of the leftmost occurrence in u of a term from U1 by the corresponding result of
application of D (in [11], the extension in question is denoted in the same way as the initially
given recursion rule). Then R is a reducer in (U, C, P ).

3. Cyclic elements

We shall generalize the results from [11] to the case of an arbitrary goal structure and an
arbitrary reducer in it, thus obtaining also a simpler loop detection method for the case
studied in [10] (a variant of this simpler method has been previously described in [12]). The
formulation of the results uses the notion of a cyclic element of a goal structure.

From now on, an arbitrary goal structure (U, C, P ) and a reducer R in it are supposed
to be given (however, we shall not need conditions (gs2), (gs3), (r3) and (r4) in this section,
and the first inequality in (gs1) will be not used too). For any u in U , the corresponding
complexity C(u) will be denoted by |u|. We adopt the following definitions.

Definition 3.1. For any element u of U , the corresponding maximal sequence (finite or
infinite)

u, R(u), R2(u), R3(u), . . .

will be called the trajectory of u.

Definition 3.2. An element u of U will be called strongly cyclic if u is a leading part of
some other member of its trajectory. The element u will be called strongly cyclic with period
n if n is a positive integer, u belongs to dom(Rn) and u is a leading part of Rn(u).

Definition 3.3. An element u of U will be called cyclic (with period n) if u has some strongly
cyclic leading part (some leading part strongly cyclic with period n).

Definition 3.4. It will be said that a cyclic loop (with period n) is present in the trajectory
of a given element of U if this trajectory has some cyclic member (some member cyclic with
period n).

Remark 3.1. Clearly, any strongly cyclic element of U is cyclic. By (r1), the strongly cyclic
elements of U have non–zero complexities. By Remark 2.2, this remains true for all cyclic
elements.



Now some examples to the last definition follow.

Example 3.1. As we noted, each element of U is the only leading part of itself in the
situation from Example 2.1, therefore (for any R) the presence of a cyclic loop in a trajectory
is equivalent to the ultimate periodicity of the trajectory in this particular case.

Example 3.2. In the situation described in Examples 2.2 and 2.5, a cyclic loop is present
in a trajectory if and only if a periodic loop in the sense of [10] is present in it.

Example 3.3. Let (U, C, P ) be the concrete goal structure of the form considered in Exam-
ple 2.3 with the non–negative integers used as atoms and with ∆ = {f, g}, where f is binary,
g is unary and no other functional symbols are used. Let R be the reducer of the form from
Example 2.6 corresponding to the following mapping of U1 into U :

f(2z, y) 7→ z + 1, f(2z + 1, y) 7→ f(f(z, y), g(f(y, z))), g(t) 7→ t + 1.

Then a cyclic loop with period 11 is present in the trajectory of the element f(1, 7) of U ,
since the member R3(f(1, 7)) of this trajectory is cyclic with period 11. In fact, R3(f(1, 7))
is f(1, f(f(3, 0), g(f(0, 3)))), and the leading part f(3, 0) of this term is strongly cyclic with
period 11, as seen from the fact that R11(f(3, 0)) is f(f(1, g(f(3, 0))), g(f(0, 1))).

We shall give also a modification of the above example in order to make use of the permission
not all function symbols to be included in ∆.

Example 3.4. Let (U, C, P ) be the concrete goal structure of the form considered in Ex-
ample 2.3 with 0 as the only atom, with the two function symbols f and g having the same
arities as in the above example and with ∆ = {f}. Let R be the reducer of the form
from Example 2.6 corresponding to the following mapping of U1 into U , where t means
g(g(. . . g(g(0)) . . .)) with t times g:

f(2z,y) 7→ z + 1, f(2z + 1,y) 7→ f(f(z,y), g(f(y, z))).

Then a cyclic loop with period 9 is present in the trajectory of the element f(1, 7) of U .

Our general study of cyclic loops starts with a generalization of condition (r2).

Proposition 3.1. Let k be any non–negative integer. Then all u in dom(RP k) satisfying
the inequality |RP k(u)| > 0 belong to dom(P kR), and RP k(u) = P kR(u) holds for them.

Proof:
We shall proceed by induction on k. The case of k = 0 is trivial. Suppose now the statement
of the proposition is true for some given non–negative integer k, and let u ∈ dom(RP k+1),
|RP k+1(u)| > 0. By applying the induction hypothesis to P (u), we get the conclusion that
P (u) ∈ dom(P kR), hence RP (u) ∈ dom(P k), and the equality RP k+1(u) = P kRP (u) holds.
The last equality together with Remark 2.2 shows that |RP k+1(u)| ≤ |RP (u)|, and hence
|RP (u)| > 0. By (r2), we conclude that u ∈ dom(PR) and the equality RP (u) = PR(u)
holds. Therefore PR(u) ∈ dom(P k), hence u ∈ dom(P k+1R), and RP k+1(u) = P kPR(u) =
P k+1R(u).

From the above proposition, a useful property of strongly cyclic elements will be derived
now.

Proposition 3.2. Let u be an element of U strongly cyclic with period n. Then u ∈ dom(R),
and R(u) is also strongly cyclic with period n.



Proof:
By definition, n is a positive integer, u ∈ dom(Rn) and u is a leading part of Rn(u), i.e.
u = P kRn(u) for some non–negative integer k. Clearly, u ∈ dom(R), and R(u) = RP kRn(u).
We assert that |R(u)| > 0, and therefore |RP kRn(u)| > 0. If n > 1 this is a consequence
of (r1), since then R(u) ∈ dom(R). On the other hand, by Remark 2.2, we have the inequality
|u| ≤ |Rn(u)|. If n = 1 the last inequality is |u| ≤ |R(u)|, and we get |R(u)| > 0 again,
since |u| > 0 by (r1). By Proposition 3.1, we conclude that Rn(u) ∈ dom(P kR), and the
equality RP kRn(u) = P kRRn(u) holds. Hence R(u) = P kRn+1(u) = P kRn(R(u)), i.e R(u)
is a leading part of Rn(R(u)).

Now we shall see that the above proposition remains valid after replacing “strongly cyclic”
by “cyclic”.

Proposition 3.3. Let u be an element of U cyclic with period n. Then u ∈ dom(R), and
R(u) is also cyclic with period n.

Proof:
By definition, there is a non–negative integer k such that u ∈ dom(P k) and the element
P k(u) is strongly cyclic with period n. By Proposition 3.2, P k(u) ∈ dom(R), and RP k(u) is
also strongly cyclic with period n. Again by Proposition 3.2, RP k(u) ∈ dom(R), and hence,
by (r1), |RP k(u)| > 0. Therefore, by Proposition 3.1, u ∈ dom(P kR), and the equality
RP k(u) = P kR(u) holds. Thus u ∈ dom(R), and R(u) has a leading part strongly cyclic
with period n, namely RP k(u).

Corollary 3.1. If there is a cyclic loop in the trajectory of a given element of U then this
trajectory is infinite.

Of course the converse statement of the above corollary is not generally true - a trajectory
may be infinite without having the periodic feature corresponding to the presence of a cyclic
member in it.

4. Some technicalities

In this section, certain propositions will be proved that have a more or less technical char-
acter. In order to get some intuitive feeling about their content, the reader could check for
instance what they do mean in the propositional case of the logic programming situation
sketched in Examples 2.2 and 2.5 above.

Proposition 3.1 (generalizing (r2)) will be further generalized as follows.

Proposition 4.1. Let n, k be any non–negative integers. Then all u in dom(RnP k) satis-
fying the inequality |RnP k(u)| > 0 belong to dom(P kRn), and RnP k(u) = P kRn(u) holds
for them.

Proof:
We fix k and proceed by induction on n. The case of n = 0 is trivial. Let n be any non–
negative integer such that the statement of the proposition is true for it, and let u be any
element of dom(Rn+1P k) satisfying the inequality |Rn+1P k(u)| > 0. Then u ∈ dom(RnP k),
and, by (r1), |RnP k(u)| > 0. Hence, by the induction hypothesis, u ∈ dom(P kRn), and
RnP k(u) = P kRn(u) holds. From here, the equality Rn+1P k(u) = RP kRn(u) follows. Thus
Rn(u) ∈ dom(RP k), and the inequality |RP k(Rn(u))| > 0 holds. By Proposition 3.1, this
implies Rn(u) ∈ dom(P kR), RP k(Rn(u)) = P kR(Rn(u)). Therefore u ∈ dom(P kRn+1), and
the equality Rn+1P k(u) = P kRn+1(u) holds.



Taking into account the definition of head, one can derive the following conclusion from the
above proposition:

Corollary 4.1. Let n be any non–negative integer, and u be an element of U such that
H(u) ∈ dom(Rn) and |Rn(H(u))| > 0. Then H(Rn(H(u))) = H(Rn(u)).

We continue with generalizations of conditions (r3) and (r4) of the same kind as the gener-
alization of (r2) in Proposition 3.1

Proposition 4.2. For any non–negative integer k, the equality

dom(RP k) = dom(R) ∩ dom(P k)

holds.

Proof:
We proceed by induction on k. The case of k = 0 is trivial. Suppose now the equality holds
for some given non–negative integer k. We have to prove then the equality

dom(RP k+1) = dom(R) ∩ dom(P k+1).

Consider first any u belonging to the left-hand side of this equality. Then clearly u belongs
to dom(P k+1). Since P (u) ∈ dom(RP k), the induction hypothesis yields the conclusion that
P (u) ∈ dom(R), hence u ∈ dom(RP ). Therefore, by (r3), u ∈ dom(R), and, consequently, u
belongs to the right-hand side of the equality in question. Now consider any u belonging to
the right-hand side of this equality. In order to apply the induction hypothesis, we shall show
that P (u) ∈ dom(R) ∩ dom(P k). Since P (u) obviously belongs to dom(P k), we have only
to show that P (u) ∈ dom(R), and this can be done by noticing that u ∈ dom(R) ∩ dom(P )
and using (r3) to conclude that u ∈ dom(RP ). The application of the induction hypothesis
gives the conclusion that P (u) ∈ dom(RP k), i.e. u ∈ dom(RP k+1).

Corollary 4.2. For any u in U , if some of the elements u and H(u) belongs to dom(R) then
the other also does.

Proposition 4.3. Let k be any non–negative integer. Then

|R(u)| − |RP k(u)| = |u| − |P k(u)|

holds for all u in dom(RP k).

Proof:
We again proceed by induction on k. The case of k = 0 is trivial again. Let k be any non–
negative integer such that the above equality holds for all u in dom(RP k). Consider now
any u in dom(RP k+1). Since P (u) ∈ dom(RP k), the application of the induction hypothesis
to P (u) yields the equality

|RP (u)| − |RP k+1(u)| = |P (u)| − |P k+1(u)|.

This equality together with the one from (r4) implies the desired conclusion

|R(u)| − |RP k+1(u)| = |u| − |P k+1(u)|.

The above proposition together with Remark 2.3 and Corollary 4.2 leads to the following
conclusion:

Corollary 4.3. Let u ∈ dom(R). Then

|R(u)| − |R(H(u))| = |u| − 1, |R(u)| − |u| = |R(H(u))| − 1, |R(u)| − |u| ≥ −1.



Now the question arises if Propositions 4.2 and 4.3 could be generalized in the way Propo-
sition 4.1 generalizes Proposition 3.1. The first of the mentioned results will be generalized
only partially as follows.

Proposition 4.4. For any non–negative integers n, k, the inclusion

dom(RnP k) ⊆ dom(Rn) ∩ dom(P k)

holds.

Proof:
Of course, it is sufficient to prove the inclusion dom(RnP k) ⊆ dom(Rn). To prove it, we fix k
and proceed by induction on n. The case of n = 0 is trivial, and the validity of the inclusion
for n = 1 follows from Proposition 4.2. Suppose now n is a positive integer such that the
above inclusion holds, and consider any element u of dom(Rn+1P k). Then u ∈ dom(RP k)
and RP k(u) ∈ dom(R), hence, by (r1), the inequality |RP k(u)| > 0 holds. Therefore, by
Proposition 3.1, u belongs to dom(P kR) and the equality RP k(u) = P kR(u) holds. Hence
R(u) ∈ dom(RnP k), and, by the induction hypothesis, this implies R(u) ∈ dom(Rn), i.e.
u ∈ dom(Rn+1).

Corollary 4.4. For any u in U and any non–negative integer n, if H(u) belongs to dom(Rn)
then u also does.

Remark 4.1. The inclusion in the above proposition cannot generally be replaced by equal-
ity. To see this, consider the goal structure (U, C, P ) and the reducer R from Exam-
ple 3.3, and denote by u the element f(f(0, 0), 0) of U . Then u ∈ dom(R2) ∩ dom(P ),
but u 6∈ dom(R2P ). Since H(u) = P (u) for this u, we see also that H(u) 6∈ dom(R2), hence
the converse implication to the one in the corollary after the proposition also does not hold.

Proposition 4.3 will be, however, completely generalized.

Proposition 4.5. Let n, k be any non–negative integers. Then

|Rn(u)| − |RnP k(u)| = |u| − |P k(u)|

holds for all u in dom(RnP k).

Proof:
We fix k and proceed by induction on n. The case of n = 0 is trivial. Suppose now n is
a non–negative integer such that the statement is true for it, and let u be any element of
dom(Rn+1P k). Then u ∈ dom(RnP k), and the induction hypothesis is applicable to u. On
the other hand, RnP k(u) ∈ dom(R), hence, by (r1), the inequality |RnP k(u)| > 0 holds.
Then, by Proposition 4.1, u belongs to dom(P kRn), and the equality RnP k(u) = P kRn(u)
holds. Therefore Rn(u) ∈ dom(RP k) and, by Proposition 4.3, the equality

|Rn+1(u)| − |RP kRn(u)| = |Rn(u)| − |P kRn(u)|

holds. From this equality, the previous one and the equality obtained by applying the
induction hypothesis to u, we get

|Rn+1(u)| − |Rn+1P k(u)| = |Rn(u)| − |RnP k(u)| = |u| − |P k(u)|.

Corollary 4.5. Let n be any non–negative integer, and u be an element of U such that
H(u) ∈ dom(Rn). Then

|Rn(u)| − |Rn(H(u))| = |u| − 1, |Rn(u)| − |u| = |Rn(H(u))| − 1, |Rn(u)| − |u| ≥ −1.



As we showed in Remark 4.1, the inclusion dom(Rn) ∩ dom(P k) ⊆ dom(RnP k) does not
generally hold. However, we shall prove now a statement allowing sometimes to conclude
that certain elements of the left-hand side set belong also to the right-hand one.

Proposition 4.6. Let n be a positive integer, and k be a non–negative one. Then, whenever
an element u of dom(Rn) ∩ dom(P k) satisfies the inequality |Ri(u)| ≥ |u| for all positive
integers i less than n, this element belongs to dom(RnP k).

Proof:
We fix k and proceed by induction on n. If n = 1 then the statement follows from Propo-
sition 4.2. Consider now any positive integer n such that the statement is true for it. Let
u be an element of dom(Rn+1) ∩ dom(P k) satisfying the inequality |Ri(u)| ≥ |u| for all
positive integers i less than n + 1. Clearly u ∈ dom(Rn) ∩ dom(P k), and |Ri(u)| ≥ |u|
for all positive integers i less than n, hence by the induction hypothesis, u ∈ dom(RnP k).
Therefore the equality from Proposition 4.5 holds, hence |RnP k(u)| = |Rn(u)|−|u|+ |P k(u)|.
But |Rn(u)| − |u| ≥ 0 according to the assumptions about u, and |P k(u)| > 0 by (r1). Con-
sequently, |RnP k(u)| > 0 and, by Proposition 4.1, u ∈ dom(P kRn), RnP k(u) = P kRn(u).
Thus Rn(u) ∈ dom(R) ∩ dom(P k) and, therefore, by Proposition 4.2, Rn(u) ∈ dom(RP k).
Hence P kRn(u) ∈ dom(R), and, taking into account the last equality above, we see that u
belongs to dom(Rn+1P k).

Corollary 4.6. Let n be any positive integer. Then, whenever an element u of dom(Rn)
satisfies the inequality |Ri(u)| ≥ |u| for all positive integers i less than n, then H(u) also
belongs to dom(Rn).

Now we shall prove a result more explicitly connected with cyclic loops.

Proposition 4.7. Let u be an element of U cyclic with period n. Then |Rn(u)| ≥ |u| and
H(Rn(u)) = H(u).

Proof:
Let k be a non–negative integer such that P k(u) is strongly cyclic with period n. Then
P k(u) belongs to dom(Rn) and is a leading part of RnP k(u). By Remark 2.2, this implies
the inequality |P k(u)| ≤ |RnP k(u)|. On the other hand, Proposition 4.5 yields the equality

|Rn(u)| − |RnP k(u)| = |u| − |P k(u)|.

Hence
|Rn(u)| − |u| = |RnP k(u)| − |P k(u)| ≥ 0.

By Remark 3.1, |P k(u)| > 0 holds, therefore |RnP k(u)| > 0 too. Thus, by Proposition 4.1,
u ∈ dom(P kRn), and RnP k(u) = P kRn(u). Consequently, P k(u) = P k+lRn(u) for some
non–negative integer l, and therefore H(u) = H(Rn(u)).

Corollary 4.7. If a cyclic loop with period n is present in a trajectory then the sequence
of the heads of its members is ultimately periodic with period n.

We shall show in the next section that the converse statement of the above corollary is also
true. However, the proposition preceding the corollary does not allow inversion: even a finite
trajectory may contain distinct members with the same complexities and the same heads
(consider for example the trajectory corresponding to execution of the propositional Prolog
program with clauses

p : −q, r. q. r.

on the query ? − q, p).
To make the presentation more complete, we add next proposition showing that, whenever

a cyclic loop with period n is present in a trajectory, then the difference |Rn(u)| − |u| is
constant for the members u of the trajectory from some place on (the proposition will be
not used in the sequel).



Proposition 4.8. Let u be an element of U cyclic with period n. Then

|Rn+1(u)| − |R(u)| = |Rn(u)| − |u|.

Proof:
By Corollary 4.3, we have the equalities

|R(u)| − |u| = |R(H(u))| − 1, |Rn+1(u)| − |Rn(u)| = |R(H(Rn(u)))| − 1.

Hence, by Proposition 4.7, |Rn+1(u)| − |Rn(u)| = |R(u)| − |u|.

5. Primitive cyclic elements

We shall specify now a certain kind of cyclic elements that are easier to be observed in a
trajectory where they occur.

Definition 5.1. An element u of U will be called primitive cyclic (with period n) if the head
of u is cyclic (with period n).

Remark 5.1. Since H(u) is the only leading part of itself, one could replace “cyclic” by
“strongly cyclic” in the above definition. Clearly, any primitive cyclic element of U is cyclic
(with the same period). In general, a primitive cyclic element is not necessarily strongly
cyclic.

Example 5.1. In the situation from Example 3.3, the term R3(f(1, 7)) is in fact primitive
cyclic with period 11, since the mentioned there its leading part f(3, 0), strongly cyclic with
period 11, is actually its head. By Proposition 3.2, the term R2(f(3, 0)) is also strongly cyclic
with period 11, but this term is not primitive cyclic because its head is f(0, 0), and f(0, 0)
does not belong to dom(R2), hence is not cyclic.

Remark 5.2. The above example shows that R(u) is not always a primitive cyclic element
when u is such one. However, if u is primitive cyclic with period n then Rn(u) is also
primitive cyclic with period n, since, according to Proposition 4.7, both mentioned elements
have one and the same head.

Next proposition states a notable property of primitive cyclic elements.

Proposition 5.1. Let u be a primitive cyclic element of U . Then |Ri(u)| ≥ |u| for all
positive integers i.

Proof:
Since H(u) is cyclic, H(u) belongs to dom(Ri) for any positive integer i. Then, by Corol-
lary 4.5 and condition (r1), we have

|Ri(u)| − |u| = |Ri(H(u))| − 1 ≥ 0.

Now a useful complete characterization of the primitive cyclic elements will be given.

Proposition 5.2. Let u be an element of U , and n be a positive integer. The element
u is primitive cyclic with period n if and only if u belongs to dom(Rn) and satisfies the
inequalities |Ri(u)| ≥ |u|, i = 1, 2, . . . , n, as well as the equality H(Rn(u)) = H(u).



Proof:
If u is primitive cyclic with period n then the formulated conditions are fulfiled by the above
proposition and Proposition 4.7. For the reasoning in the opposite direction, suppose these
conditions are fulfiled. Then, by the inequalities with i < n and Corollary 4.6, H(u) ∈
dom(Rn), hence, by Corollary 4.5, the equality

|Rn(u)| − |Rn(H(u))| = |u| − 1

holds. Making use of the inequality with i = n, we get

|Rn(H(u))| = |Rn(u)| − |u| + 1 > 0.

Thus, by Corollary 4.1 and the assumed equality, we have

H(Rn(H(u))) = H(Rn(u)) = H(u),

hence H(u) is strongly cyclic with period n.

Making use of the above proposition and of Proposition 4.7, we get

Corollary 5.1. Let u be an element of U cyclic with period n, and let the inequalities
|Ri(u)| ≥ |u|, i = 1, 2, . . . , n − 1 hold. Then u is primitive cyclic with period n.

Of course, this corollary implies the converse statement of Proposition 5.1 under the addi-
tional assumption that u is cyclic.

The next corollary is a strengthened form of the converse statement of Corollary 4.7.

Corollary 5.2. If a trajectory is infinite, and the sequence of the heads of its members is
ultimately periodic with period n then some member of the trajectory is primitive cyclic
with period n.

To prove this corollary, one could apply Proposition 5.2 to a member with the least complex-
ity in a tail of the trajectory where the heads of the members already repeat with period n.
We shall prove also the following more interesting result.

Proposition 5.3. Let a trajectory be infinite, and let the sequence of the heads of its
members contain only finitely many distinct members. Then some member of the trajectory
is primitive cyclic.

Proof:
Since all complexities are non–negative integers, there are infinitely many among the mem-
bers of the trajectory with the property that no subsequent member has a smaller complexity.
Then there are two members with this property having distinct subscripts, but one and the
same head. To complete the proof, it is sufficient to apply Proposition 5.2 taking u to be
the one of the mentioned two members with the smaller subscript and n to be the difference
of their subscripts.

Corollary 5.3. Suppose the given goal structure is such that only finitely many elements
of U with complexity 1 exist. Then no infinite trajectory may exist without a cyclic loop
present in it.

According to the above corollary, if its assumption is satisfied then detecting the infinitity of
a given trajectory is equivalent to detecting the presence of a cyclic loop in this trajectory.
We note the following two instances when the mentioned assumption is satisfied:

• The goal structure (U, C, P ) corresponds (in the way described in Example 2.2) to a
logic program without terms other than constants and variables.



• The goal structure (U, C, P ) is constructed in the way from Example 2.3 assumed the
set of all atoms and all function symbols is finite, and all function symbols are in ∆.

Of course in the most general case the presence of a cyclic loop in a trajectory is only a
sufficient condition for the infiniteness of the trajectory. In any case, it would be convenient
to have a method that detects the presence of a cyclic loop in a trajectory in a easier way
than a direct application of the corresponding definition.

Proposition 5.3 and the corollary preceding it give certain sufficient conditions for the
presence of a cyclic loop in a given trajectory, and, by Corollary 4.7, these conditions are
also necessary. Unfortunately, they are not directly verifiable (especially unpleasant in this
respect is the required infiniteness of the trajectory, since presence of a cyclic loop is inter-
esting mainly as a sufficient condition for such an infiniteness). The existence of a primitive
cyclic member of the trajectory is another necessary and sufficient condition that is more
useful for the detection of cyclic loops. The necessity of this condition follows from Corol-
laries 4.7 and 5.2 (instead of the second of them, also Proposition 5.3 could be used). The
sufficiency is obvious, and the usefulness will be shown in the next section, where a loop
detection method will be presented.

We shall complete the present section by giving a more constructive version of the above
formulated statement that existence of a primitive cyclic member of a trajectory is necessary
for the presence of a cyclic loop in it. The additional information in this version of the
statement will be essential for the details of the loop detection method.

Proposition 5.4. Let u be an element of U cyclic with period n, and let v be one of the
elements u, R(u), R2(u), . . . , Rn−1(u) having the least complexity among them. Then v is
primitive cyclic with period n.

Proof:
By Proposition 3.3, v is also cyclic with period n, and, clearly, v ∈ dom(Rn). By Propo-
sition 4.7, |Rn(v)| ≥ |v| and H(Rn(v)) = H(v). In view of this and Proposition 5.2, it is
sufficient to prove the inequalities |Ri(v)| ≥ |v|, i = 1, 2, . . . , n − 1. Let v = Rm(u), where
m < n, and let i be any of the numbers 1, 2, . . . , n− 1. Then Ri(v) = Rm+i(u). If m + i < n
then |Ri(v)| ≥ |v|, since Ri(v) is some of the n elements mentioned in the proposition.
Otherwise Ri(v) = Rn(Rm+i−n(u)), and Rm+i−n(u) is again some of those elements, hence
|Rm+i−n(u)| ≥ |v|. Since Rm+i−n(u) is also cyclic with period n, applying Proposition 4.7
once more, we get the inequality |Ri(v)| ≥ |Rm+i−n(u)|, and we conclude that the inequality
|Ri(v)| ≥ |v| holds again.

6. A method for the detection of cyclic loops

The method is based on the fact that in any trajectory with a cyclic loop present in it,
primitive cyclic members appear periodically infinitely many times from some place on. The
method consists of activities that aim at finding someone of these members. To fix a concrete
variant of the method, one must choose an infinite subset T of N with arbitrarily long gaps
between consecutive numbers in it (for example, the set of all exponents of 2).3 The following
Pascal-style program schematically describes the application of the method to the trajectory
of a given element u of U .

3Concrete subsets of N with this property are used in Brent’s loop detection method mentioned in the
introduction, and arbitrary ones in its generalization in [5].



var t:N; h:U \ dom(P ); c:N; z:U;

begin

t:=0; z:=u;

while not (t in T ) do begin t:=t+1; z:=R(z) end;

repeat

if (t in T ) or (c=0) then begin h:=H(z); c:=1 end;

t:=t+1; c:=c+|R(H(z))|-1; z:=R(z)

until (c>0) and (H(z)=h)

end.

The application of the method presented by the above program can be characterized as
constructing consecutive trajectory members (as values of the variable z) together with car-
rying out certain loop detection activities. More concretely, the head of the last constructed
trajectory member has to be saved in the variable h at appropriate moments and to be used
further for the loop detection during a certain period of time, and this must be repeated
until possibly a trajectory member not belonging to dom(R) is reached or a cyclic loop is
detected. The moments for saving are the ones when the value of the variable t (i.e. the
number of the constructed trajectory members after the initial one) gets into T and those
ones at which, so to say, the saved head becomes obsolete. The last happens in the case of
a value 0 of the variable c maintaining the complexity of the result that would be obtained
from the saved head after the moment of its saving by a parallel application of R the same
number of times. Except for the cases when it is obsolete, the saved head is used for the
loop detection in the following way: the head of the last constructed trajectory member is
compared with the saved head, and if they turn out to be equal, then a cyclic loop is detected
in the trajectory of u.

The execution of this program has a normal termination if and only if a cyclic loop is
present in the trajectory of u. The value of the variable z after such a termination is equal
to some of the primitive cyclic trajectory members. The other case of termination of the
program execution is the case when the trajectory of u is finite (then some assignment of
the form z:=R(z) will turn out to be impossible at a certain stage of the execution). The
value of z after a termination of this kind is equal to the last of all trajectory members. Of
course no cyclic loop is present in the trajectory in this case.

To give a mathematical description of the method, we introduce the notion of a detection
state. By definition, this is an arbitrary quadruple (t, h, c, z), where t and c are non–negative
integers, h is an element of U \ dom(P ), and z belongs to U . It will be said that (t, h, c, z)
detects a cyclic loop if c > 0 and H(z) = h. A detection state will be said to be a closing
one if its last component does not belong to dom(R) or a loop is detected by this state.

The application of the detection method starts with consecutively constructing the tra-
jectory members Ri(u) with i ≤ t0 + 1, where t0 is the least number in T . If it turns out
that u 6∈ dom(Rt0+1) then the trajectory of u is finite and no cyclic loop is present in it.
Otherwise we form the detection state (t0 + 1, H(z0), |R(H(z0))|, R(z0)), where z0 = Rt0(u),
and, if this detection state is not a closing one, we consecutively construct further detection
states in a certain appropriate way, until possibly a closing detection state is reached (after
a closing detection state is reached the construction of detection states terminates). Namely,
whenever a detection state (t, h, c, z) is constructed, and this state is not a closing one, we
form a next detection state (t′, h′, c′, z′) specified as follows:

(a) t′ = t + 1 and z′ = R(z).

(b) If t ∈ T or c = 0 then h′ = H(z) and c′ = 1 + d, otherwise h′ = h and c′ = c + d, where
d = |R(H(z))| − 1 (it will be said that (t, h, c, z) invokes saving when t ∈ T or c = 0).

Remark 6.1. By Corollary 4.3, the equality for d in (b) can be replaced by d = |z′| − |z|.



The sequence of detection states defined in the above way will be called the detection path
of u. Clearly, the members of this sequence have first components greater than t0, and if two
members have equal first components then these members coincide. Note also that, whenever
the detection path of u contains a member with first component t, then each integer strictly
between t0 and t is also the first component of some member of the detection path.

Example 6.1. In the situation from Example 3.3, we shall construct the detection path
of the term f(1, 7) taking T to be the set of the Fibonacci numbers with even subscripts:
0, 1, 3, 8, 21, 55, . . . 4 The detection path looks as follows:

( 1, f(1, 7), 4, f(f(0, 7), g(f(7, 0)))),
( 2, f(0, 7), 0, f(1, g(f(7, 0)))),
( 3, f(7, 0), 4, f(1, g(f(f(3, 0), g(f(0, 3)))))),
( 4, f(3, 0), 4, f(1, g(f(f(f(1, 0), g(f(0, 1))), g(f(0, 3)))))),
( 5, f(3, 0), 7, f(1, g(f(f(f(f(0, 0), g(f(0, 0))), g(f(0, 1))), g(f(0, 3)))))),
( 6, f(3, 0), 6, f(1, g(f(f(f(1, g(f(0, 0))), g(f(0, 1))), g(f(0, 3)))))),
( 7, f(3, 0), 5, f(1, g(f(f(f(1, g(1)), g(f(0, 1))), g(f(0, 3)))))),
( 8, f(3, 0), 4, f(1, g(f(f(f(1, 2), g(f(0, 1))), g(f(0, 3)))))),
( 9, f(1, 2), 4, f(1, g(f(f(f(f(0, 2), g(f(2, 0))), g(f(0, 1))), g(f(0, 3)))))),
(10, f(1, 2), 3, f(1, g(f(f(f(1, g(f(2, 0))), g(f(0, 1))), g(f(0, 3)))))),
(11, f(1, 2), 2, f(1, g(f(f(f(1, g(2)), g(f(0, 1))), g(f(0, 3)))))),
(12, f(1, 2), 1, f(1, g(f(f(f(1, 3), g(f(0, 1))), g(f(0, 3)))))),
(13, f(1, 2), 4, f(1, g(f(f(f(f(0, 3), g(f(3, 0))), g(f(0, 1))), g(f(0, 3)))))),
(14, f(1, 2), 3, f(1, g(f(f(f(1, g(f(3, 0))), g(f(0, 1))), g(f(0, 3)))))),
(15, f(1, 2), 6, f(1, g(f(f(f(1, g(f(f(1, 0), g(f(0, 1))))), g(f(0, 1))), g(f(0, 3)))))),
(16, f(1, 2), 9, f(1, g(f(f(f(1, g(f(f(f(0, 0), g(f(0, 0))), g(f(0, 1))))), g(f(0, 1))), g(f(0, 3)))))),
(17, f(1, 2), 8, f(1, g(f(f(f(1, g(f(f(1, g(f(0, 0))), g(f(0, 1))))), g(f(0, 1))), g(f(0, 3)))))),
(18, f(1, 2), 7, f(1, g(f(f(f(1, g(f(f(1, g(1)), g(f(0, 1))))), g(f(0, 1))), g(f(0, 3)))))),
(19, f(1, 2), 6, f(1, g(f(f(f(1, g(f(f(1, 2), g(f(0, 1))))), g(f(0, 1))), g(f(0, 3))))).

The path members with first components 1, 3 and 8 invoke saving, since these numbers
belong to T and the mentioned members are not closing. The member with first component 2
also invokes saving due to the value 0 of its third component. The member with first
component 19 detects a cyclic loop.5

We are going now to prove a correctness theorem and a completeness theorem for the de-
scribed loop detection algorithm. We shall assume that an infinite subset T of N is given
such that there are arbitrarily long gaps between consecutive members in it, and we shall
denote by t0 the least number in T .

Two lemmas will be proved first.

Lemma 6.1. Let u be an element of dom(Rt0+1), and let (t, h, c, z) be a member of the
detection path of u. Then z = Rt(u) and there is some integer s satisfying the inequalities
t0 ≤ s < t, such that h = H(Rs(u)), c = |Rt(u)| − |Rs(u)| + 1, and |Rr(u)| ≥ |Rs(u)|,
whenever s < r < t.

Proof:
We proceed by induction on t. The least possible value of t is t0 +1, and if t = t0 +1 then we
can take s = t0 (the first equality involving s is true by the definition of the initial detection
state, the validity of the second one is clear from Corollary 4.3, and the last condition
concerning s is satisfied in a trivial way). Suppose now for some t not less than t0 + 1

4A certain kind of optimality of this set is shown in [5] for the generalized Brent’s loop detection method.
5The detection path of the same term could be shorter at some other choice of the set T . For instance, a

cyclic loop would be detected by a path member with first component 14 if we would use a set T such that
3 ∈ T , but T contains no number between 3 and 14.



the statement is true, and (t + 1, h′, c′, z′) is a detection path member. This member is
surely obtained from another one of the form (t, h, c, z) in the way specified by (a) and (b).
By the induction hypothesis, z = Rt(u) holds, and an s with the formulated properties
can be found for the mentioned other member of the detection path. Then the equality
z = Rt+1(u) is clear. As to the existence statement, we have to reason by cases. In the
case when (t, h, c, z) invokes saving the statement holds with a new value of s, namely t
(the reasoning is similar to the one for the case of t = t0 + 1). In the opposite case, we use
the available value of s also for t + 1. The first equality is unproblematic since h′ = h, the
equality c′ = |Rt+1(u)| − |Rs(u)|+ 1 immediately follows from the induction hypothesis and
Remark 6.1, and the verification of the last condition uses the induction hypothesis and the
fact that c > 0 in this case.

Remark 6.2. The equality concerning c may be used to justify the claim that the variable
c in the presented Pascal-style program maintains the complexity of the result obtainable
from the saved head by the appropriate number of applications of R. Namely, this equality
together with Corollary 4.5 yields c = |Rt−s(Rs(u))| − |Rs(u)| + 1 = |Rt−s(H(Rs(u)))|.

Lemma 6.2. Let s and t be natural numbers such that t0 ≤ s < t, and there is no number
from T strictly between s and t. Let u be an element of dom(Rt) such that the detection
path of u contains a member with first component t, and |Rr(u)| ≥ |Rs(u)| holds for any
integer r satisfying the inequalities s < r < t. In case of s > t0, let also saving be invoked by
the detection path member with first component s. Then the detection path member with
first component t has the form (t, H(Rs(u)), |Rt(u)| − |Rs(u)| + 1, Rt(u)).

Proof:
We shall proceed by induction on t. The least possible value of t is s + 1. If t = s + 1 then
(t, H(Rs(u)), |R(H(Rs(u)))|, Rt(u)) is a member of the detection path of u by the definition
of next detection state and the definition of the initial member of the detection path, and
we have |R(H(Rs(u)))| = |Rt(u)|− |Rs(u)|+1 by Corollary 4.3. Suppose now the statement
is true for some integer t greater than s, the assumptions concerning t being fulfiled with
t + 1 in the role of t (i.e. no number from T is strictly between s and t + 1, u belongs to
dom(Rt+1), the detection path of u contains a member with first component t + 1, and the
inequality |Rr(u)| ≥ |Rs(u)| holds for any integer r satisfying the inequalities s < r < t+1).
Then the induction hypothesis can be applied to conclude that

(t, H(Rs(u)), |Rt(u)| − |Rs(u)| + 1, Rt(u))

is a member of the detection path of u. This member does not invoke saving because t 6∈ T
and |Rt(u)| − |Rs(u)| + 1 > 0. Therefore the next detection state for it is

(t + 1, H(Rs(u)), |Rt+1(u)| − |Rs(u)| + 1, Rt+1(u))

(Remark 6.1 is used for representing the third component in the needed form).

Next two theorems are the correctness theorem and the completeness theorem for the detec-
tion method.

Theorem 6.1. Let u be an element of dom(Rt0+1), and let some member of the detection
path of u detect a cyclic loop. Then a cyclic loop is present in the trajectory of u.

Proof:
Suppose a member (t, h, c, z) of the detection path of u detects a cyclic loop, i.e. c > 0 and
H(z) = h. By Lemma 6.1, z = Rt(u), and there is some integer s satisfying the inequalities
t0 ≤ s < t, such that h = H(Rs(u)), c = |Rt(u)| − |Rs(u)| + 1, and |Rr(u)| ≥ |Rs(u)|
holds, whenever s < r < t. The inequality and the equality concerning c show that



|Rr(u)| ≥ |Rs(u)| also for r = t. Let us set w = Rs(u), n = t − s. Then w ∈ dom(Rn),
|Ri(w)| ≥ |w| for i = 1, 2, . . . , n, and H(Rn(w)) = H(z) = H(w). By Proposition 5.2, the
element w is primitive cyclic with period n.6 Thus a cyclic loop with period n is present in
the trajectory of u.

Theorem 6.2. Let u be an element of dom(Rt0+1), and let a cyclic loop be present in the
trajectory of u. Then some member of the detection path of u detects a cyclic loop.

Proof:
Suppose a cyclic loop with period n is present in the trajectory of u (then clearly u ∈ dom(Ri)
for any natural number i). Let j be a non–negative integer such that Rj(u) is cyclic with
period n, and let a and b be two consecutive elements of T satisfying the inequalities a ≥ j,
b − a ≥ 2n − 1. We shall prove that the detection path of u contains some member having
first component not greater than a + 2n − 1 and detecting a cyclic loop. To prove this, we
suppose there is a detection path member with first component a+2n and we aim at getting
a contradiction (the non-existence of such a member would imply the existence of a closing
detection path member with first component not greater than a + 2n − 1, and due to the
infiniteness of the trajectory of u such a member would necessarily detect a cyclic loop).
Of course, the existence of a detection path member with first component a + 2n implies
the existence also of members with first components equal to arbitrary integers intermediate
between a and a + 2n.

Let us set w = Ra(u). Since a ≥ j, the element w is cyclic with period n. We denote
by m the first number i among 0, 1, 2, . . . , n − 1 such that |Ri(w)| is the least one among
the numbers |w|, |R(w)|, |R2(w)|, . . . , |Rn−1(w)|. By Proposition 5.4, the element Rm(w) is
primitive cyclic with period n, hence, by Proposition 5.1, all subsequent trajectory members
have complexities not less than |Rm(w)|. Clearly a < a + m + n < a + 2n holds, hence there
is a member with first component a + m + n in the detection path of u. We shall aim now
at showing that the member in question has the form

(a + m + n, H(Rm(w)), |Rm+n(w)| − |Rm(w)| + 1, Rm+n(w)).

Since a + m + n < a + 2n, and such a member would detect a cyclic loop, this will be a
contradiction.

The formulated statement about the form of the detection path member with first com-
ponent a+m+n will be proved by applying Lemma 6.2 with s = a+m, t = a+m+n (the
considered form is just the one from the conclusion of the lemma if we replace w by what it
denotes). Thus things are reduced to a verification of the assumptions of Lemma 6.2 in this
case. A look at these assumptions shows that all of them are immediately verifiable, except
for the condition that saving is invoked by the detection path member with first component
a + m in the case of a + m > t0.

If m = 0 then a + m = a ∈ T , hence if a + m > t0 then the detection state with first
component s (being not closing) surely invokes saving. So it remains to consider the case
when m > 0.

By the definition of m, the inequality |Rr(w)| > |Rm(w)| holds for r = 0, 1, 2, . . . , m− 1.
Therefore a finite sequence r0, r1, . . . , rp of integers can be found with the properties that
0 = r0 < r1 < . . . < rp = m, and, for l = 0, 1, . . . , p − 1, rl+1 is the least integer r, greater
than rl and such that |Rr(w)| < |Rrl(w)|. If for some of the mentioned subscripts l it is
known that rl = t0 or the detection path member with first component rl invokes saving,
then an application of Lemma 6.2 with s = a+ rl, t = a+ rl+1 shows that the detection path
member with first component a + rl+1 has the form

(a + rl+1, H(Rrl(u)), |Rrl+1(u)| − |Rrl(u)| + 1, Rrl+1(u)),

6By Remark 5.2, the element z is also primitive cyclic with period n.



hence this member (being non–closing and having third component less than 1, i.e. equal
to 0) surely invokes saving. Since a+r0 = a ∈ T , the above implication allows inductively to
establish that saving is surely invoked by the detection path member with first component
a + rl for l = 1, 2, . . . , p. Applying this for l = p, we conclude that the detection path
member with first component a + m invokes saving.

7. Concluding remarks

The described loop detection method can be easily refined in order to give not only an
indication about the presence of a cyclic loop, but also an information about the period of
the loop. This can be done by additionally maintaining the number of applications of R
after the last saving (the realization is by including a corresponding additional component
in the detection states).

Some programming implementations of a variant of the method and of the method itself
have been suggested in [12] and [11] – for Prolog programs and for recursive Pascal programs,
respectively. The first of these implementation has been given by Igor Durdanović, and both
use his idea to add the appropriate loop detection mechanism to the concrete programs by
making accessible the heads and the complexities and leaving the total processing of the
corresponding complex objects to the usual mechanisms of some existing compiler for the
concerned programming language (in [12], a universal program transformer is given for doing
this in the considered case, whereas in [11] the technique of the implementation is illustrated
by example).

As we mentioned, the applicability of our loop detection method to Prolog is restricted
to detection of some loops during depth-first search. In [13], a similar, but more complicated
method has been described that can detect certain periodic loops during Prolog execution
with backtracking. The abstract approach presented here can be modified to cover also that
more complicated case. To achieve this, one has to assume a goal structure to be given,
and to model the consecutive clauses of a Prolog program by means of a finite sequence
of reducers in the given goal structure. We hope to be able to present the details in some
subsequent paper.
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