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Abstract. A rather restricted kind of computability called calculability
is considered on locally finite lattices. Besides arbitrary given functions,
its definition uses as an initial function also a four-argument one whose
value equals the third or the fourth argument depending on whether
the first argument is dominated by the second one. New functions are
constructed by means of substitution and of supremum and infimum
attained when one of the arguments ranges between varying limits. In
one of the examples the calculable functions have a certain relation to
the Bounded Arithmetic of S. R. Buss, and in another one they coin-
cide with the so-called elementary definable functions considered by the
present author in 1967. Under some assumptions that are satisfied in
these two examples, the calculable functions on the natural numbers are
characterized through definability by formulas with bounded quantifiers
and domination by termal functions.

1 Introduction

The study of restricted kinds of computability is often used for achieving a better
applicability of the theory of computability to problems about complexity of
computations. In the present paper one such restricted kind called calculability
will be examined. It is a sort of relative computability that makes sense not only
on the natural numbers, but on any non-degenerate locally finite lattice. An
example to the definition of calculability will be shown to have a certain relation
to the Bounded Arithmetic introduced in [1].

2 The main definition and some examples to it

Let L be a non-degenerate lattice that is locally finite, i.e. {y € L]z <y < z}
is a finite set for any z, z in L. For instance, L could consist of all finite subsets
of some infinite set and be partially ordered by the inclusion relation, or could
be the set of the positive integers partially ordered by the divisibility relation.
In fact we are interested mainly in the case when L is some subset of the set Z
of the integers and L is linearly ordered in the usual way (the most important
case will be the one when L is the set N of the natural numbers, but there are
also other cases that deserve some interest — for example the case of L = Z and
the case of L = {0,1}).



Each function considered in this paper will be, except explicitly said some-
thing else, a total function of some non-zero number of arguments in the set L,
i.e. a mapping of L™ into L for some positive integer n. We shall denote by P the
set of the projection functions, i.e. of the functions Azq ...x,.x; with 1 <47 <n.
The function Azyst. (if z <y then s else t) will be denoted by ;. Whenever f
is an m-ary function, and g1, ..., g, are n-ary functions, the function

At T [T, Tn), o gm (T, )

will be called their composition. For any non-negative integer n and any (n+ 1)-
ary function f one can consider the two (n + 2)-ary functions

ATy ... ZpU. \/ fl@y,. .. zn,y), Azp...z5U00. /\ fl@e,...,zn,y),
y€u..v]L y€u..v]L

where [u.v]p = {y € LluAv <y < uVwo} (the subscript L will be usually
omitted). These two functions will be denoted by f* and f~, respectively.

Let A be a set of functions. The functions termal in A form the smallest class
of functions containing AUP and closed under compositions. The functions that
are termal in 4 U {d;} will be called piecewise termal in A. Our main subject
will be the smallest class of functions containing A U {d;} U P that is closed
under compositions and contains ft and f~ for any f in it. The functions
belonging to this class will be called calculable in A or A-calculable, for short.
Obviously, all functions termal in A are piecewise termal in A, and all functions
piecewise termal in A are A-calculable. (The converse statements are not true
in the general case.)

Remark 1. Each A-calculable function is absolutely search computable (in the
sense of [2]) in Axy. zVy, Azy.x Ay, Axz.card{y € L|z <y < z} and the
functions from some finite subset of A.

Remark 2. For any positive integer n the functions Azy ...z,. 21 V...V, and
AZy ... Zp-21 N ... A X, are A-calculable, and they are even piecewise termal in
A if L is linearly ordered. This statement is trivial for n = 1. For n = 2 one can

use the equalities
uVuv = \/ Yy, uAv = /\ Y,
yE[u..v] yEfu..v]

in the general case and the equalities
uVv = dp(u,v,v,u), uAv = 0(u,v,u,v)

in the case of linearly ordered L. The general statement can be proved by in-
duction.

The following denotations will be used sometimes in the sequel:

fih =Xy oz, fH(20,. ., 20, 0,0)
f;:b:)\xl...xn. fr(x1,...,on,a,b)

for any natural number n, any (n + 1)-ary function f and any a,b in L.



Remark 3. Suppose L is linearly ordered, there is a least element a in L, and
the constant a regarded as a one-argument function is piecewise termal in A.
Then the class of the A-calculable functions is the smallest class of functions
containing A U {d,} U P that is closed under compositions and contains f,; for
any f in it. To prove this, it is sufficient to prove the following two statements:

(i) For any A-calculable function f the function f; is also A-calculable.
(ii) Whenever C is a class of functions with the properties formulated above, and
f is a function belonging to C, the functions f+ and f~ also belong to C.

The statement (i) is obvious, since f,/ is obtained from f* by means of
a substitution of a into it. As to the statement (ii), it follows (assuming f is
(n + 1)-ary) from the equalities

fH(z,u,v) = 6r(u,v,9(Z,u,v),9(z,v,u)),
f(@,u,0) = b (Z,u,v, f(Z,u)),

where Z stands for x1,...,x,,

g(i,s,t) = \/ 6L(y,s,f(:?:,s),f(§:,y)),

y€la..t]

and h is defined by consecutively setting

W(Z,u,v,2) = \/ or(z, f(Z,9),a,2),
yEfu..v]
Wz, u,v,2) = 6,((Z,u,v,2),a,z2,a)

(comment: for any given Z,u,v the inequality I(Z,u,v,z) < a is equivalent to
the equality I(Z,u, v, z) = a, and it is satisfied by an element z of L if and only
if z < f(z,y) for all y in [u..v], therefore { h(Z,u,v,2) ]|z € |a..f(Z,u)]} is the
set of all such z).

Remark 4. Suppose L is linearly ordered, there are a least element a and a
greatest element b in L, and the constants a and b regarded as one-argument
functions are piecewise termal in 4. Then the class of the A-calculable functions
is the smallest class of functions containing A U {0} U P that is closed under
compositions and contains f;fb for any f in it. Indeed, f;fb is A-calculable for any
A-calculable function f, and, on the other hand, if f is an (n + 1)-ary function
for some non-negative integer n, then f;7 = g;r’b, where g is defined by means of
the equality
g(:l_f, v, y) = 6L(y7 v, f(il_f, y); f(j: U))

(Z stands again for z1,...,z, ), hence any class of functions with the properties
formulated in the present remark has also the properties formulated in Remark 3.

Remark 5. If L is linearly ordered, there are a least and a greatest element in L,
and all constants regarded as one-argument functions are piecewise termal in A,
then all A-calculable functions are piecewise termal in A. This can be seen by
using Remarks 2 and 4.



Remark 6. All A-calculable functions are piecewise termal in A also in the case
when L has exactly two elements (hence L is linearly ordered). Indeed, then
[u..v] = {u,v}, therefore

[ (@u,v) = f@u)V f(@0), f(@uv) = f(&u)Af(z,0)
for all Z,u,v, and we may use Remark 2.

Now we shall consider some examples to the definition of calculability. In
each of them except for the last one, L will be a subset of Z, and the usual
linear ordering will be tacitly assumed to be the partial order on L (according
to Remark 6 the examples with L = {0,1} concern in fact the ordinary theory
of Boolean functions).

Ezample 1. Let L = N, A = {\z.0, \z.1, Azy.xz +y, Azy.z-y}. Then
the A-calculable functions will be shown to coincide with the class of functions
considered in [4] and called elementary definable there.! By its definition (slightly
paraphrased), the class of the elementary definable functions is the smallest class
of functions in N containing Azy. (if x = y then 1 else 0), A\xy.z+y, A\zy.z-y
and the projection functions, that is closed under compositions and contains f[;'“
for any f in it. Therefore (in view of Remark 3) it is sufficient to prove the
calculability of the function Azy.(if x = y then 1 else 0) in the concrete A
considered now and the elementary definability of the functions Az.0, Az.1
and dr,. This can be done by means of the equalities

(if z =y then 1else 0) = d.(z,y,d.(y,x,1,0),0),
1= (Gf z==2thenlelse0), 0 = (if 1 =1+ 1 then 1 else 0),
or(z,y,s,t) = g (@,9,9) s + g5 (y + Lz, 2) - ¢,

where g = Mt2z.(if t1 + 2 = ¢ then 1 else 0) .

Ezample 2. Let L=N, A = {\z.0, \zy.z+y, Azy.z-y, Az. |ac , Azy. oy},
where |ar| is the length of the binary representation of x if > 0 and 0 otherwise,

Ty is olzlls], m [1] some theories of arithmetic are studied that have the
functions from A and the functions Az.xz + 1, Az.|z/2] as their primitive
functions and < as their primitive relation (the study of these theories, and
especially of formulas in them with bounded quantifiers, is related to problems
of feasible computability). The functions Az.z + 1, Az.|x/2| are A-calculable
thanks to the equalities

1=0#0, [2/2) = \/ 6ouly+y,2,9,0),
y€[0..a]

hence adding them to A would not enlarge the class of the A-calculable functions.

A comparison with Example 1 shows that all elementary definable functions be-
long to this class. The converse is not true, because the elementary definable

! The class in question is a subclass (most likely a proper one) of the class of the lower
elementary functions introduced in [3].



functions are dominated by polynomials, whereas the function Azy.x#y is not.
By a certain fairly general statement concerning calculability (to be proved in
the last section), the class considered now can be characterized in a simple way
through definability by formulas with bounded quantifiers in the language of the
above-mentioned theories (the elementary definable functions can be character-
ized in a similar way by formulas with bounded quantifiers in a more restricted
language).

Ezample 3. Let L = N and the ternary functions f; and f> be defined as follows:

fi(z,y,z) = (if +y = z then 0 else 1),
folz,y,z) =(if -y =2z then Oelse 1).

Since f; and f» are piecewise termal in the set A4 from Example 1, all func-
tions calculable in {fi, f2} are calculable in that A, hence they are elementary
definable. However, the converse is not true. For example, the constant 1 (re-
garded say as a one-argument function) is not calculable in the set {fi, f2},
since, whenever an m-ary function f is calculable in this set, the inequality
flze,...,zy) < @1 V...V zy, holds for all z1,...,z, in N. We note that the
constant 0 is still calculable (and even termal) in {f1, fo} thanks to the equality
0 = folfolz,x,2), fo(x,z,x), f2(x,z,2)) . By Remark 2, the functions of the
form Azy...x,.x1 V...V z, are also calculable in {f, fo}. As an example of
{f1, fo}-calculable function, that is not piecewise termal in {fi, fo}, we shall
mention the predecessor function (defined as 0 at 0) — its value at = can be
represented as
\/ 6L(f1(y7fl(wawaw)aw)aovyao) .
y€[0..z]

Ezample 4. Let L = Z, A = {Az.1, \xy.z —y, Azy.z-y}. Then the
functions Az.0, Ax. —x, Azy.x + y are termal in A thanks to the equalities
0O=z—-—2, —xz=0-—2, z+y =x— (—y). The class of the A-calculable
functions is the smallest class of functions containing AU {61} UP that is closed
under compositions and contains f[;" for any f in it — this can be shown by using
the equalities

fH(@uw) = \/ f@,v—-2), f(z,u,v) = — \/ —f(@,v—2).
z€[0..v—u] z€[0..v—u)]

The A-calculable functions can be characterized also in the following more ex-
plicit way: an n-argument function f is A-calculable if and only if there exist
two elementary definable 2n-argument functions ¢ and € in N such that

f(zl _jla---ain _]n) :¢(i17j17"'7in7jn) _0(i15j17"'77:n7jn)
for all iy, j1,...,0n,Jn in N

Ezample 5. Let L = {0,1}, and let A consist of the constants 0 and 1 regarded
as one-argument functions. Since Azy.dr(z,y,1,0) is the Boolean implication,
the Post Theorem shows that all Boolean functions are A-calculable. Another
proof of this will be given in the next section.



Ezample 6. Let L = {0,1}, A = . Then any A-calculable function f belongs
to both Post classes Ty and Ty, i.e. f(0,...,0)=0and f(1,...,1)=1. A proof
of the converse statement will be given in the next section.

Ezample 7. Let L = {0,1}, A = {Az.0}. Then all A-calculable functions
belong to Ty, and the converse statement will be proved in the next section.

Ezample 8. Let L be an infinite subset of N, f be a unary function that trans-
forms any element of L into some greater one, and g be the unary function that
transforms any « from L into the least element of L greater than x. Then g is
{f}-calculable thanks to the equality

glx) = N L.z f(z).).

yElz..f(2)]r

(However, a choice of L and f is possible such that g cannot be obtained by
means of a recursive operator from f and the functions \zy. x Vy, Azy.x Ay,
Azz.card{y € L|z <y < z} mentioned in Remark 1.)

Example 9. Let L consist of all finite subsets of some infinite set, and A4 be any
set of functions in L. The equalities

z1\ T2 = /\ (if 1y <zyVythenyelsezr)), § =z\x
y€[0..21]L

show that Az1xs.z1 \ 22 is A-calculable if and only if Az. ) is A-calculable.

3 A-calculable predicates

We continue adhering to the assumptions and conventions from the beginning
of the previous section. Thus a non-degenerate locally finite lattice L and a set
A of functions in it will be again supposed to be given. For any positive integer
n and any n-argument predicate p on L the (n + 2)-argument function

Axq ... xpst. (if p(xq,...,2,) then s else t)

will be denoted by p*, and it will be called the representing function of p (ob-
viously there is a one-to-one correspondence between the predicates and their
representing functions). A predicate will be called calculable in A or A-calculable,
for short, if the representing function of this predicate is .A-calculable.

Remark 7. If there are two distinct elements a and b of L such that the corres-
ponding one-argument constant functions are .4-calculable then one can charac-
terize the A-calculability of predicates in a more usual way. In such a situation,
an n-argument predicate p on L is A-calculable if and only if the n-argument
function

Doy = AT1 .. 2. (if p(z1,...,7,) then a else b)



is A-calculable. This is clear from the equalities

p:,b(j) = p*(ﬂ_f, a, b) )
p* (ja S, t) = 6L(p;,b(a_7)a a, 6L(aap;,b(a_:)a S, t)v t) :
Next example can be used together with Example 7 to show that the assumption
about A-calculability of a and b in the previous remark cannot be omitted (be-

cause the function Az. (if 2 = 1 then 0 else 1) is not .4-calculable in the situation
from Example 7).

Ezample 10. Let L = {a,b}, where a < b. Then the predicates p = Az. (z = a)
and ¢ = \z. (x = b) are A-calculable thanks to the equalities

p*(xa Sat) = 5L(87tv6L(x7 S, Sat): 6L(m7t; Sat)) ’
q*(xv Sat) = 6L(87tv6L(tvxv S,t),(SL(S,.TI, Sat)) .

Immediate examples of .4-calculable predicates (for any A) are the identically
true and the identically false ones, as well as the predicate Azizs.(z; < z3).
The class of the A-calculable n-argument predicates is closed under negation,
conjunction and disjunction, as seen from the equalities

(not p)*(Z,s,t) = p*(,t,5),
(p and ¢)*(Z,s,t) = p*(Z,q"(Z,s,1),t),

The class of the A-calculable predicates is closed also under substitution of A-
calculable funcrions, i.e. whenever p is an A-calculable m-argument predicate,
and fi,..., f, are A-calculable n-argument functions, the predicate

q=Ar1...2n-p(f1i(x1, - xn), s fm(T1, -, Tn))

is also A-calculable. This is clear from the equality

g (z,s,t) = p*(f1(Z),..., [m(Z),s,t).

By using the above properties one can easily see the 4-calculability of a lot of
other predicates. For example \zixzs. (r1 = 2) is A-calculable as a conjunction
of Mxixs.(x1 < x2) and Azyxe. (z2 < 1) . In the conditions of Example 10
each m-argument predicate on L turns out to be A-calculable, since it can be
obtained from predicates of the form Az ...z,.(xz; = a) by means of negation,
conjunction and disjunction.

The definition of calculability ensures one more kind of closedness of the class
of the A-calculable predicates. Namely, if p is an A-calculable (n + 1)-argument
predicate on L for some non-negative integer n then the following two predicates
are also A-calculable:

= Azy...zpuv. (p(1,...,2,,y) for all y € [u..v]),
= Axy...zpuv. (p(21,...,2,,y) for some y € [u..v]).



This follows from the equalities

q*(:i:,u,'u,s,t):&L( \/ p*(:i:,y,s/\t,s\/t),s/\t,s,t),

y€fu..v]
r*(T,u,v,s,t) = 5L( /\ p*(:i:,y,s/\t,s\/t),s/\t,s,t) .
y€fu..v]
For any n-argument function f the predicate Az ...zny.(y = f(x1,.-. zp))

will be said to represent f. If f is A-calculable then this predicate is also A-
calculable, as it follows from some of the above-mentioned properties. Next
lemma gives a way for reasoning in the opposite direction, namely from the
A-calculability of the predicate representing a function to the 4-calculability of
the function itself.

Lemma 1. Let f,g,h be n-argument functions such that g(z) < f(Z) < h(z)
for any T in L™, and the functions g and h, as well as the predicate representing
f, are A-calculable. Then the function f is also A-calculable.

Proof. If p is the predicate that represents f then

f@= '\ p@yy@)
yelg(a)..h()

for any z in L". O

An n-argument function f will be called A-calculable on a subset X of L"
if f coincides on X with some A-calculable n-argument function. Clearly an
n-argument function is 4-calculable if and only if it is .4-calculable on the
whole L™. A combined application of this fact and the following lemma can
be useful for proving the A-calculability of some functions.

Lemma 2. Let Xq,..., Xy, where k > 2, be subsets of L™, and the predicates
Attt (21, .- mn) € X)), 1 =2,...,k, be A-calculable. If an n-argument
function is A-calculable on each of the sets Xq,..., Xy, then it is A-calculable
also on their union.

Proof. It is sufficient to prove the statement of the lemma for the case of k = 2,
since the statement for the general case can be obtained from there by induc-
tion. The reasoning for the case of k = 2 looks as follows: if an n-argument
function f coincides on X; with the 4-calculable function g; for i« = 1,2, then
f coincides on X; U X» with the function Az; ...z,.p*(Z, g2(%), ¢1(Z)), where
p=2Ax1... 2. ((21,...,2,) € X3). O

By application of Lemma 2, we shall fulfil now the promises made in the
three examples with L = {0, 1} of the previous section. In the case of Example 5,
given an arbitrary n-ary function f, we take k = 2, X; = {Z| f(Z) = 0} and
X, = {Z|f(z) = 1}. In the case of Example 6, given an n-ary function f
belonging to To N Ty, we take k = n and X; = {Z| f(Z) = x;} for i = 1,...,n.



Finally, in the case of Example 7, given an n-ary function f belonging to Ty, we
take k = n+ 1 and X,,11 = {Z]| f(Z) = 0}, the sets Xy,..., X, being defined
in the same way as in the case of Example 6. In each of these cases, the given
function f is A-calculable on any of the corresponging sets Xi,..., X, hence
it is A-calculable on their union (because all predicates are .4-calculable in the
case of a two-element L). On the other hand, it is easy to show that the union
in question is equal to {0,1}" in each of the three cases.

4 Definability by formulas with bounded quantifiers

Let a signature X be given with some function symbols and only one predicate
symbol, and let this predicate symbol be a binary one. Let S be a structure
for X' such that the domain of S is N, and let the predicate symbol of X' be
interpreted in S as the relation < between natural numbers. In addition to the
interpretation in S of any functional symbol of X we shall consider also its
adapted interpretation in S - meaning the interpretation of the symbol in S if
the symbol is not a constant of X' and the one-argument constant function whose
value is the interpretation of the symbol otherwise. Taking L to be the set N
with the relation <, we shall consider any set .4 of functions such that each
function in A is the adapted interpretation in S of some function symbol of X,
and the adapted interpretation of each function symbol of X is A-calculable.?
Under some additional assumptions we shall study the connection between A-
calculability and definability by bounded formulas of the first-order language Ly,
corresponding to Y.

Having in mind the above-mentioned interpretation of the predicate symbol
of X, we shall write the atomic formulas of Ly as inequalities between terms. By
definition, a formula of Ly, is bounded if it is constructed from atomic formulas
by means of negation, conjunction, disjunction and bounded quantifiers of the
forms (V¢ < 7), (3¢ < 7) with term 7 not containing the variable ¢ (assuming
that (V¢ < 7)F and (3¢ < 7)F are abbreviations for V¢((§ < 7) — F) and
(€ < 1) & F), respectively).

The additional assumptions we make are the following ones: (i) the con-
stant 0 regarded as a one-argument function is piecewise termal in A, (ii) a
two-argument function exists that is termal in 4 and dominates its arguments,
and (iii) each function belonging to A is dominated by some function termal in
A and monotonically increasing with respect to any of its arguments.

The assumption (i) allows to apply Remark 3, and the other two assumptions
imply that each A-calculable function is dominated by some function termal in
A. All three of them are satisfied if A is as in Example 1 or Example 2 (even

2 The simplest choice is to take as A the set consisting of the adapted interpretations
in S of all function symbols of ¥, but sometimes certain of these interpretations
can be omitted. For instance we must have in X function symbols for the functions
Az.z +1 and Az.|z/2] in order to get the language of the theories studied in [1],
but it is not necessary to include the functions themselves in the set A — this set can
be as in Example 2.



if one strengthens the assumptions by replacing “is piecewise termal in” and “is
termal in” with “belongs to” and by skipping the phrase “dominated by some
function termal in A and”).

Lemma 3. For any A-calculable function the predicate representing it is defin-
able by means of some bounded formula of Ly .

Proof. By using the characterization of A-calculability indicated in Remark 3.
The domination property discussed above is used in the reasoning about com-
position for turning some quantifiers into bounded ones. O

Lemma 4. All predicates definable by means of bounded formulas of Ly, are
A-calculable.

Proof. By induction using properties indicated in the previous section. O

Theorem 1. A function f is A-calculable if and only if the predicate represent-
ing f is definable by means of some bounded formula of Ly and f is dominated
by some function termal in A.

Proof. By Lemmas 1, 3 and 4. O

Theorem 2. A predicate in L is A-calculable if and only if it is definable by
means of some bounded formula of Ly .

Proof. The “if”-direction is given by Lemma 4. Suppose now that p is an A-
calculable n-argument predicate in L. Let ¢ be the n-argument predicate that is
false at (0,...,0) and coincides with p at all other elements of L™. The predicate
q is definable by means of a bounded formula of Ly, since q(z1, ..., z,) is true
if and only if z; # 0 and x; = p*(z1, ..., Tn,x;,0) for some i in {1,...,n}. Then
it remains to note that either p = ¢ or p is equal to the disjunction of ¢ and the
predicate Az ...z ((z1,...,2,) =(0,...,0)). O

Remark 8. The assumptions made in this section are still not sufficient for the
existence of A-calculable non-zero constant functions (consider for instance the
case of A = {A\z.0, Azy.z + y}). However, if there exists an .A-calculable non-
zero constant function (for instance if A is as in Example 1 or Example 2) then
the above proof can be replaced by an essentially simpler one. Indeed, if b is
the value of such a constant function then the definability of the .4-calculable
n-argument predicate p can be seen from the equality

p=Ar1...%n- (0=p"(x1,...,2,,0,b)).
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