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E2-computability of e, π

and other famous constants

Dimiter Skordev1
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Abstract

We show that e, π and other remarkable real numbers are limits of E2-computable sequences of rational
numbers having a polynomial rate of convergence (as usual, E2 denotes the second Grzegorczyk class).
However, only the rational numbers are limits of E2-computable sequences of rational numbers with an
exponential rate of convergence
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1 Introduction

The notion of computable real number is often introduced in the following way:

a real number α is called computable if there exists a computable sequence

r0, r1, r2, . . . of rational numbers such that |rn − α| ≤ 2−n for any natural num-

ber n (cf. for example [2,6]). Of course, some acceptable definition of computability

for sequences of rational numbers is presupposed, say, the sequence r0, r1, r2, . . . is

called computable if there are one-argument recursive functions f , g and h such

that

rn =
f(n) − g(n)

h(n) + 1
(1)

for all natural numbers n. 2

One could introduce subrecursive versions of computability of real numbers by

replacing the class of recursive functions with some appropriate subclass of it, for

instance with some of the classes Em introduced in [1]. The replacements with

1 Email: skordev@fmi.uni-sofia.bg
2 Of course such computability of a sequence of rational numbers is stronger than its computability as a
sequence of computable real numbers. For instance, let ϕ be a two-argument recursive function such that
the set {n ∈ N|∃m(ϕ(n, m) = 0)} is non-recursive, and let rn be 2−k with k = µm(ϕ(n, m) = 0) for any
n in the set in question, and rn be 0 for all other n in N. Then the sequence or the rational numbers
r0, r1, r2, . . . is computable as a sequence of computable real numbers, but it is not computable in the above
sense.
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classes Em, where m ≥ 3, turn out to be reasonable, since one gets sufficiently

large subsets of the set of the computable real numbers. However, the result of a

replacement with E2 is quite different, as the following proposition shows.

Proposition 1.1 Let α be a real number, and let there exist one-argument functions

f , g and h such that h belongs to the class E2 and for any n in N the rational number

rn defined by means of (1) satisfies |rn − α| ≤ 2−n. Then α is a rational number.

Proof. Since

|rn − rn+1| ≥
1

(h(n) + 1)(h(n + 1) + 1)
,

whenever rn 6= rn+1, and any function from E2 is dominated by some polynomial,

there exists a polynomial p(n) such that

p(n)|rn − rn+1| ≥ 1,

whenever rn 6= rn+1. Since

|rn − rn+1| ≤ |rn − α| + |rn+1 − α| ≤ 3 · 2−n−1,

this polynomial will satisfy the inequality

3p(n) ≥ 2n+1

for all n such that rn 6= rn+1, and therefore only finitely many such n can exist. 2

Remark 1.2 A weaker result in this direction can be obtained by using Liouville’s

approximation theorem. Its application proves the above proposition under the

additional assumption that α is an algebraic number (the possibility of such an

application of Liouville’s theorem is implicitly indicated in footnote 2 of [3]).

To get a reasonable definition of the notion of E2-computable real number, we

note that 2−n can be replaced with (n+1)−1 in the definition of computability of a

real number, since the definition obtained in this way will be equivalent to the other

one. The same holds also for Em-computability of real numbers in the case of m ≥ 3.

We suggest to adopt such a definition also for E2-computability, namely: a sequence

of rational numbers r0, r1, r2, . . . is called E2-computable if there exist one-argument

functions f , g and h belonging to E2 such that for any n in N the equality (1)

holds, and a real number α is called E2-computable if there exists an E2-computable

sequence of a rational numbers r0, r1, r2, . . . such that |rn −α| ≤ (n + 1)−1 for all n

in N.

Remark 1.3 It is easy to prove the E2-computability of any real number α such

that p(n)(rn − α) is bounded for some non-constant polynomial p(n) and some

sequence r0, r1, r2, . . . defined by means of (1) with functions f , g and h belonging

to E2.

As shown in [5], the set of all E2-computable real numbers is a field containing

the real roots of any non-constant polynomial with coefficients from this field. Since

this implies the E2-computability of all real algebraic numbers, it is natural to ask
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whether there exist E2-computable transcendental numbers. A positive answer to

this question is given in the present paper, in particular the numbers e and π will

be shown to be E2-computable.

2 E2-computability of the number e

For any natural number k, let

sk = 1 +
1

1!
+

1

2!
+ . . . +

1

k!
. (2)

Since

sk < e < sk +
1

k!k
for all positive integers k, to assure the inequality |sk − e| < (n + 1)−1 for a given

n in N, it is sufficient to choose k in such a way that k!k ≥ n + 1. A simple choice

would be k = n + 1, but unfortunately the sequence r0, r1, r2, . . ., where rn = sn+1,

is not E2-computable 3 . Therefore we shall proceed in a more sophisticated though

natural way, namely we shall use the numbers rn = skn
, where kn is the least k

satisfying k!k ≥ n + 1. These rational numbers also form a sequence r0, r1, r2, . . .

such that |rn − e| < (n + 1)−1 for all n in N. We shall prove its E2-computability.

Let us consider the two-argument function f0 and the one-argument function f1

in N that are defined by the equalities

f0(k, n) = min(k!, n + 1), f1(n) = max{k ∈ N | k!k ≤ n}.

These functions belong to E2 thanks to the equalities

f0(0, n) = 1, f0(k + 1, n) = min(f0(k, n)(k + 1), n + 1),

f1(n) = max{k ∈ N | k ≤ n, f0(k, n)k ≤ n}

(the second one of them follows from the equality (k + 1)! = k!(k + 1) , and for

checking the third one it is appropriate to observe that any of the inequalities

k!k ≤ n and f0(k, n)k ≤ n implies the equality k! = f0(k, n), thus these two

inequalities are equivalent). Clearly kn = f1(n) + 1.

Let f2 be the two-argument function in N defined by the equality

f2(k, n) = min(k!sk, n + 1).

This function also belongs to E2, since we have the equalities

f2(0, n) = 1, f2(k + 1, n) = min(f2(k, n)(k + 1) + 1, n + 1)

(the second one of them follows from the equality (k + 1)!sk+1 = k!sk(k + 1) + 1).

Now, by the equality kn = f1(n) + 1, we have

rn =
kn!skn

kn!
=

f1(n)!sf1(n)(f1(n) + 1) + 1

f1(n)!(f1(n) + 1)
.

3 This statement follows from Proposition 1.1 by the inequality |sn+1 − e| < 2−n and the irrationality of
the number e (cf. also the Appendix, where a direct proof of the statement is given).
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Since f1(n) is one of the numbers k with k!k ≤ n, the inequality f1(n)! ≤ n + 1

holds (even in the case of n = 0). Thus f1(n)! = f0(f1(n), n) and

f1(n)!sf1(n) ≤ (n + 1)sf1(n) < (n + 1)e < 3(n + 1),

hence f1(n)!sf1(n) ≤ 3n + 2 and therefore f1(n)!sf1(n) = f2(f1(n), 3n + 1). Conse-

quently,

rn =
f(n)

h(n) + 1
,

where

f(n) = f2(f1(n), 3n + 1)(f1(n) + 1) + 1, h(n) = f0(f1(n), n)(f1(n) + 1) − 1.

Since the functions f and h belong to the class E2, the E2-computability of the

sequence r0, r1, r2, . . . and of the number e are thus established.

3 E2-computability of Liouville’s number

As well-known, the first examples of transcendental real numbers were constructed

by Liouville. The most famous of them is the sum of the infinite series

∞
∑

m=1

1

10m!
.

This number is called now Liouville’s number or Liouville’s constant. It is sometimes

denoted by L, and we shall adopt this notation here. Let

sk =

k
∑

m=1

1

10m!

for k = 1, 2, 3, . . ., and let s0 = 0. Since

sk < L < sk +
1

10k!k

for all k, to assure the inequality |sk − L| < (n + 1)−1 for a given n in N, it is

sufficient to choose k in such a way that 10k!k ≥ n + 1. We shall denote by kn the

least k satisfying the last inequality, and by setting rn = skn
, n = 0, 1, 2, . . . , we get

a sequence r0, r1, r2, . . . of rational numbers such that |rn −L| < (n + 1)−1 for all n

in N. We shall prove the E2-computability of this sequence.

Let us consider the two-argument function f3 and the one-argument function f4

in N that are defined as follows:

f3(m,n) = min(10m, n + 1), f4(n) = max{k ∈ N | 10k!k ≤ n} for n > 0, f4(0) = 0.

These functions belong to E2 thanks to the equalities

f3(0, n) = 1, f3(m + 1, n) = min(10f3(m,n), n + 1),

f4(n) = max{k ∈ N | k ≤ n, f3(f0(k, n)k, n)sg n ≤ n},
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where f0 is the same function as in Section 2 (to check the last of these equalities, it

is appropriate to observe that in the case of n > 0 any of the inequalities 10k!k ≤ n

and f3(f0(k, n)k, n)sg n ≤ n implies the equality 10k!k = f3(f0(k, n)k, n)sg n, thus

these two inequalities are equivalent). Evidently kn = (f4(n) + 1)sg n.

Let f5 be the two-argument function in N defined by the equality

f5(k, n) = min(10k!sk, n + 1).

This function also belongs to E2, since we have the equalities

f5(0, n) = 0, f5(k + 1, n) = min(f5(k, n)f3(f0(k, n)k, n) + 1, n + 1)

(the second one of them follows from the equality 10(k+1)!sk+1 = 10k!sk10
k!k + 1).

Suppose now that n is a positive integer. Then we have kn = f4(n) + 1, hence

rn =
10kn!skn

10kn!
=

10f4(n)!sf4(n)10
f4(n)!f4(n) + 1

10f4(n)!f4(n)10f4(n)!
.

Since f4(n)! ≤ 10f4(n)!f4(n) ≤ n, the equalities

f4(n)! = f0(f4(n), n), 10f4(n)!f4(n) = f3(f0(f4(n), n)f4(n), n)

hold. If n ≥ 10 then f4(n) ≥ 1, hence we have also 10f4(n)! ≤ 10f4(n)!f4(n) ≤ n,

therefore

10f4(n)! = f3(f0(f4(n), n), n)

in this case. In the same case we have also

10f4(n)!sf4(n) ≤ nsf4(n) < nL < n,

therefore

10f4(n)!sf4(n) = f5(f4(n), n).

Thus for any n ≥ 10 we have

rn =
f(n)

h(n) + 1
,

where f and h are defined for all natural numbers n by means of the equalities

f(n) = f5(f4(n), n)f3(f0(f4(n), n)f4(n), n) + 1,

h(n) = f3(f0(f4(n), n)f4(n), n)f3(f0(f4(n), n), n) − 1.

Since the functions f and h belong to the class E2, this is sufficient for a conclusion

about the E2-computability of the sequence r0, r1, r2, . . . and of the number L.

4 E2-computability of the number π

The author does not see a way for proving the E2-computability of the number π by

the method used in the previous two sections. However, another method that has

a larger field of applicability can be used, namely replacing the terms of the series

with appropriate approximations of them.
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The equality
π

4
= 1 −

1

3
+

1

5
−

1

7
+

1

9
−

1

11
+ . . .

shows that

π =
8

1 · 3
+

8

5 · 7
+

8

9 · 11
+ . . .

After setting

sk =

k
∑

m=0

8

(4m + 1)(4m + 3)

we have the inequalities

sk < π < sk +
8

4k + 5
,

hence

s4n+3 < π < s4n+3 +
1

2(n + 1)
.

For any m and n in N, let f6(m,n) be the greatest integer not exceeding the number

64(n + 1)2

(4m + 1)(4m + 3)
.

Then f6 is a function belonging to E2, and for all m and n in N the inequalities

f6(m,n)

8(n + 1)2
≤

8

(4m + 1)(4m + 3)
<

f6(m,n) + 1

8(n + 1)2

hold. Therefore, if we set

rn =
1

8(n + 1)2

4n+3
∑

m=0

f6(m,n),

then

rn ≤ s4n+3 < rn +
1

2(n + 1)
,

hence

rn < π < rn +
1

n + 1
.

To complete the proof, it is sufficient to show the E2-computability of the function

f7(n) =
4n+3
∑

m=0

f6(m,n).

This can be done by showing the E2-computability of the function

f8(k, n) =

k
∑

m=0

f6(m,n),

and its E2-computability can be seen by observing that

f7(n) = 8(n + 1)2rn < 8(n + 1)2π < 26(n + 1)2,
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and f6(m,n) = 0 for any m greater than 4n + 3, hence f8(k, n) < 26(n + 1)2 for all

k and n in N.

Remark 4.1 To make the proof as simple as possible, we used a simple represen-

tation of π that, unfortunately, is not convenient for its numerical computation.

Actually other representations of π could be also used.

5 E2-computability of Euler’s constant

To prove that Euler’s constant γ is E2-computable, we shall use its representation

γ =

∞
∑

m=1

(

1

m
− ln

(

1 +
1

m

))

,

as well as the equality

1

m
− ln

(

1 +
1

m

)

=
1

2m2
−

1

3m3
+

1

4m4
−

1

5m5
+

1

6m6
−

1

7m7
+ . . .

From here, we get the equality

γ =

∞
∑

m=1

∞
∑

j=1

1

m2j

(

1

2j
−

1

(2j + 1)m

)

and we see that

0 <

∞
∑

j=k+1

1

m2j

(

1

2j
−

1

(2j + 1)m

)

<
1

2(k + 1)m2(k+1)

for m = 1, 2, 3, . . . , k = 0, 1, 2, 3, . . . Let

sk =
k

∑

m=1

k
∑

j=1

1

m2j

(

1

2j
−

1

(2j + 1)m

)

for any positive integer k. We have

γ = sk +
k

∑

m=1

∞
∑

j=k+1

1

m2j

(

1

2j
−

1

(2j + 1)m

)

+
∞

∑

m=k+1

∞
∑

j=1

1

m2j

(

1

2j
−

1

(2j + 1)m

)

,

hence

sk < γ < sk +

k
∑

m=1

1

2(k + 1)m2(k+1)
+

∞
∑

m=k+1

1

2m2
< sk +

1

k + 1
+

1

2k
≤ sk +

2

k + 1
.

Therefore

s4n+3 < γ < s4n+3 +
1

2(n + 1)

for any n in N.
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For any j, m and n in N, let f9(j,m, n) be the greatest integer not exceeding

the number
2(n + 1)(4n + 3)2

m2j

(

1

2j
−

1

(2j + 1)m

)

if j > 0 and m > 0, and let f9(j,m, n) be 0 otherwise. Then for all positive integers

j, m and all n in N the inequalities

f9(j,m, n)

2(n + 1)(4n + 3)2
≤

1

m2j

(

1

2j
−

1

(2j + 1)m

)

<
f9(j,m, n) + 1

2(n + 1)(4n + 3)2

hold. Therefore, if we set

rn =
1

2(n + 1)(4n + 3)2

4n+3
∑

m=1

4n+3
∑

j=1

f9(j,m, n),

then

rn ≤ s4n+3 < rn +
1

2(n + 1)
,

hence

rn < γ < rn +
1

n + 1
.

To complete the proof, it is sufficient to show the E2-computability of the function

f10(n) =

4n+3
∑

m=1

4n+3
∑

j=1

f9(j,m, n).

To achieve this, we shall first prove the E2-computability of the function f9. We

note that f9(j,m, n) = 0, whenever m2j ≥ 2(n + 1)(4n + 3)2. With regard to this,

we consider the function

f11(j,m, n) = min(m2j , 2(n + 1)(4n + 3)2).

This function belongs to the class E2 thanks to the equalities

f11(0,m, n) = 1, f11(j + 1,m, n) = min(f11(j,m, n)m2, 2(n + 1)(4n + 3)2).

Now the E2-computability of f9 can be seen by observing that for non-zero values

of j and m the value f9(j,m, n) is the greatest integer not exceeding the number

2(n + 1)(4n + 3)2

f11(j,m, n)

(

1

2j
−

1

(2j + 1)m

)

.

Once the E2-computability of f9 is established, the E2-computability of f10 can be

easily derived from the fact that

f10(n) = 2(n + 1)(4n + 3)2rn < 2(n + 1)(4n + 3)2γ < 2(n + 1)(4n + 3)2.

For instance, one may use the equality f10(n) = f12(4n + 3, 4n + 3, n), where f12 is

defined as follows: we consider the function f ′
9 such that f ′

9(j,m, n) = f9(j,m, n) if

8
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j ≤ 4n + 3, m ≤ 4n + 3, and f ′
9(j,m, n) = 0 otherwise, then we set

f12(k, l, n) =
k

∑

m=1

l
∑

j=1

f ′
9(j,m, n)

and, making use of the inequalities

l
∑

j=1

f ′
9(j,m, n) < 2(n + 1)(4n + 3)2, f12(k, l, n) < 2(n + 1)(4n + 3)2,

we show that f12 belongs to E2.

6 Some comments and acknowledgments

Although our proofs concern only four concrete real numbers, the methods used in

the proofs or similar ones can be applied in many other cases. It seems that E2-

computability of real numbers is present much more often than one could expect.

Several characterizations of the class E2 are known that are in the terms of

computational complexity, for instance the characterization from [4] according to

which a function belongs to E2 iff it can be computed on a linear tape bounded

Turing machine in the case of binary encoding of inputs and outputs. As the referee

indicated, such characterizations could be useful for comparison with already known

results and for further studies, and, in particular, the characterization from [4]

allows relating complexity of real functions as in [2,6] to E2-computability. The

author thanks the referee for his or her remarks.

Appendix

For any natural number k, let sk be the approximation of e defined by (2). The

integer k!sk is never divisible by 3. This can be shown by means of an inductive

proof of the following statement: the remainder of the division of k!sk by 3 is 1 if

k is divisible by 3, and this remainder is 2 otherwise (the equalities 0!s0 = 1 and

(k + 1)!sk+1 = k!sk(k + 1) + 1 are used in the proof).

Now consider any representation of the numbers sk in the form

sk =
pk

qk + 1
, k = 0, 1, 2, . . . ,

where p0, p1, p2, . . . and q0, q1, q2, . . . are natural numbers. Then (k!sk)(qk+1) = k!pk

for all k. For any natural number l, if k ≥ 3l then k! is divisible by 3l, hence qk + 1

is also divisible by 3l, thus qk + 1 ≥ 3l holds. Therefore if the sequence q0, q1, q2, . . .

or some infinite subsequence of it is regarded as a one-argument function in N then

this function cannot be dominated by a polynomial, hence it does not belong to E2.

Remark. Although the sequence s0, s1, s2, . . . is not E2-computable as a sequence of

rational numbers, it is E2-computable as a sequence of E2-computable real numbers,
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namely there exist two-argument functions f and h belonging to E2 such that

∣

∣

∣

∣

f(m,n)

h(m,n) + 1
− sm

∣

∣

∣

∣

≤
1

n + 1

for all natural numbers m and n. To show the existence of such functions, let us set

km,n = min{k ∈ N | k = m or k!k ≥ n + 1}

for any m and n in N. Then

skm,n
≤ sm < skm,n

+
1

n + 1
,

and

skm,n
=

f(m,n)

h(m,n) + 1

holds with appropriately chosen f and h in E2. They can be constructed as follows.

We consider the two-argument function f ′
1 such that

f ′
1(m,n) = max{k ∈ N | k < m, k!k ≤ n}

if m > 0, and f ′
1(m,n) = 0 otherwise. Then km,n = (f ′

1(m,n) + 1)sg m, and the

function f ′
1 belongs to E2 since in the case of m > 0 we have

f ′
1(m,n) = max{k ∈ N | k < m, f0(k, n)k ≤ n},

where f0 is the same function as in Section 2. Having the function f ′
1 at our disposal,

we set

f(m,n) = f2(f
′
1(m,n), n)(f ′

1(m,n) + 1) + 1,

h(m,n) = f0(f
′
1(m,n), n)(f ′

1(m,n) + 1) − 1

in the case of m > 0, where f2 has the same meaning as in Section 2, and we

additionally set f(0, n) = 1, h(0, n) = 0.
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