
Reference Manual

GANDALF

version c-1.0c

by

Tanel Tammet

October 1997

Department of Computing Science

University of G�oteborg / Chalmers Univ. of Technology

S-412 96 G�oteborg, Sweden

This work was supported by TFR Dnr 96-536

Contents

Abstract 3

1 Introduction 3

1.1 Implemented strategies : 4

1.2 Other versions of Gandalf : 5

1.3 Why \Gandalf" : 5

1.4 Performance : 5

1.5 History : 6

1.6 Future improvements : 6

2 Outline of Gandalf 's Inference Process 6

3 Obtaining Gandalf 7

4 Running Gandalf 8

5 Syntax 8

5.1 Preparing TPTP problem �les : 9

5.2 Incorrect syntax : 9

5.3 Comments : 9

5.4 Names for Symbols : 9

5.5 Term and Clause Syntax : 10

6 Commands and the Input File 10

6.1 Input of Options : 11

6.2 Input of Lists of Clauses : 11

7 Options 12

7.1 Generally Usable Options : 12

7.1.1 Time options : 12

7.1.2 Memory control options : 12

7.1.3 I/O options : 13

7.2 Options for User Controlled Strategies : : : : : : : : : : : : : : : : : 13

7.2.1 Strategy options : 13

7.2.2 Demodulating and orderings : : : : : : : : : : : : : : : : : : 14

7.2.3 Clause size limits : 14

8 Output and the Proof 14

9 Correctness, Completeness, Bugs 15

10 Outline of the Autonomous Mode 16

11 Selected Algorithms 17

11.1 Subsumption : 17

11.2 Demodulation : 18

11.3 Clause Simpli�cation by Unit Deletion : : : : : : : : : : : : : : : : : 18

11.4 Data structures : 18

2

Gandalf Reference Manual
version c-1.0c

by

Tanel Tammet

tammet@cs.chalmers.se

Abstract

Gandalf is a resolution theorem prover for �rst order classical logic with

equality. Gandalf is also used as a name for a family of theorem provers,

currently including versions for classical 1-st order logic, intuitionistic

1-st order logic, propositional linear logic and a subset of Martin L�of's

type theory.

The current manual concers the version of Gandalf for classical �rst order

logic, which won the yearly ATP competition CASC in 1997.

Gandalf has a powerful automatic mode and, di�erently from most of the

other existing provers, it is well optimised for handling problems where

big amounts of long clauses are derived.

The WWW home page of Gandalf is

www.cs.chalmers.se/~tammet/gandalf/

1 Introduction

Gandalf is used as a name for a family of theorem provers, currently including

versions for classical 1-st order logic, intuitionistic 1-st order logic, propositional

linear logic and a subset of Martin L�of's type theory. These provers share large

parts of their code.

The current manual concers the version of Gandalf for classical �rst order logic.

Gandalf implements a large number of various search strategies. The usage

of these strategies can be either controlled by the human user or by the powerful

automatic mode of Gandalf. The automatic mode �rst selects a set of di�erent

strategies which are likely to be useful for a given problem and then tries all these

strategies one after another. Gandalf is also well optimised for handling problems

where big amounts of long clauses are derived.

Gandalf is not interactive - it reads in a �le containing the problem, outputs

information about the progress of proof search and eventually outputs a detailed

proof.

3

Gandalf is written in Scheme and compiled to C by the Scheme-to-C compiler

Hobbit developed by the author of Gandalf. Gandalf has been ported to a number

of UNIX, MS-DOS and Windows platforms.

The executable of a compiled Gandalf contains parts of the Scheme interpeter

scm developed by Aubrey Ja�er, which are covered by the Gnu Public Licence

(GPL). The compiled executables of Gandalf are currently thus also covered by the

GPL. The copyright of the Gandalf source belongs to Tanel Tammet, but the source

is otherwise completely free for use, modi�cation and distribution.

New versions of Gandalf, manual, papers, example input �les, related pointers etc

can be found on the Gandalf home page www.cs.chalmers.se/~tammet/gandalf/.

1.1 Implemented strategies

The following basic strategies are implemented in Gandalf:

� set-of-support resolution

� binary resolution

� unit resolution

� hyperresolution

� paramodulation for equalities

� forward- and back demodulation for equalities

� methods for ordering literals in a clause, yielding several ordered resolution

strategies

� methods for directing equalities

� tautology elimination, forward and backward subsumption

� selectable limits on clause length, term depth, etc.

� special methods for 'endgame search' applied when the time limit is nearing

an end { f. ex. backward search in the hyperresolution case

� autonomous mode, selecting and trying a number of strategies one after an-

other

Most of the strategies above can be combined, possibly resulting in an incomplete

strategy.

Gandalf has a powerful autonomous mode. In this mode Gandalf �rst checks

whether a clause set has certain properties, then selects a set of di�erent strategies

which are likely to be useful for a given problem and then tries all these strategies one

after another, allocating less time for highly specialised and incomplete strategies

and more time for general and complete strategies. For the autonomous mode to

be eÆcient it is crucial that the user indicates how much time is given to Gandalf

to search for the proof.

Despite the autonomous mode, a lot of work with Gandalf involves interaction

with the user. After the user has encoded a problem into clauses, the user can

choose inference rules, set options to control the processing of inferred clauses, and

decide which input clauses are to be in the initial set of support.

4

1.2 Other versions of Gandalf

There exist versions of Gandalf for type theory [5], intuitionistic logic [4] and propo-

sitional linear logic [6]. Check the home page of Gandalf for these versions. Not all

of these versions are necessarily available on the net.

In particular, the constructive type theory version of Gandalf contains a module

for automated induction. It is likely that the future versions of Gandalf for classical

logic will also contain modules for automated induction.

Gandalf is not directly targeted toward synthesizing or verifying formal hard-

ware or software systems. However, work on versions of Gandalf directed toward

veri�cation and synthesis is going on (see [3]). Check the Gandalf home page or

contact tammet@cs.chalmers.se

1.3 Why \Gandalf"

There is a number of converging reasons for using the name 'Gandalf':

� The hacker's dictionary mentions the term 'automagical', which clearly covers

what automated theorem provers do. Gandalf is originally used as a name of

the powerful wizard in the famous Tolkien books \Hobbit" and \The Lord of

the Rings".

� Author compiles the Scheme source of Gandalf with his compiler \Hobbit"

(one of the �rst Scheme compilers was called \Rabbit").

� The earliest version of Gandalf was used for Martin-L�of's type theory. The

systems devloped at Chalmers for handling the latter are called ALF (Another

Logical Framework), HALF (Haskell ALF), etc.

1.4 Performance

Due to the large number of various strategies implemented and the autonomous

mode, Gandalf performs reasonably well on most of the �rst order problem cate-

gories.

Compared to other provers, it performs best in cases where a large number of

long clauses are derived, ie. non-horn clause sets. It is not specially optimised for

Horn clauses or pure equational problems. For these two categories the provers like

Otter and Waldmeister are likely to outperform Gandalf, although not by a wide

margin.

Gandalf is not optimised for purely propositional problems.

An earlier version of Gandalf participated in CASC-13 (1996) and lost in the

mixed category both to Otter and Spass.

The current version of Gandalf participated in CASC-14 (1997) and won the

general (mixed) division, proving 56 of the presented 72 problems. The second and

third runner SPASS and Otter proved 51 and 50 problems, respectively. Gandalf also

participated in the pure equality division, where it ranked third (47 of 50 problems)

after Waldmeister (49 of 50 problems) and Otter (48 of 50 problems).

The main di�erence between the versions used in CASC-13 and CASC-14 is the

new autonomous mode.

5

1.5 History

The author has earlier implemented an inverse method prover (in Standard Lisp)

and a resolution prover 'Resolve' (in muLisp), which are not supported any more

and which have no direct relations with Gandalf.

The work on Gandalf has been going on from 1994. It has been heavily in
uenced

by the intutionistic resolution version of Gandalf [4] which shares a large part of code

with the classical version of Gandalf.

The input-output syntax is essentially (though not exactly) the same as that of

the simplest and most widely used form in Otter [7]. This choice is motivated by

the popularity and wide use of Otter. Several design aspects of Gandalf (eg the

given-clause algorithm, indexing for forward subsumption and demodulation) are

also inspired by Otter.

The only erlier oÆcial release of a prover from the Gandalf family is a prover for

propositonal linear logic, incorporating both the tableau and the resolution prover.

However, this prover shares very little code with the other versions of Gandalf.

There have been no earlier oÆcial public releases of classical or intuitionistic

Gandalf. Executables and the scheme source of the classical version have been

made available only during the prover competitions CASC-13 and CASC-14. The

executable and source c-1.0b which was used and made available in CASC-14 is the

same as the current version c-1.0c, with the single di�erence: by default Gandalf

now stops running once the allocated time has come to an end. There is a new

ag set(run_forever) which makes Gandalf run forever, behaving exactly like the

version c-1.0b.

1.6 Future improvements

Work on improving Gandalf is proceeding in four main directions:

� Improved user interface.

� Incorporating reduction strategies, insipired by some of the strategies used in

SPASS and the research of the author in ordering strategies [1].

� Devising special strategies for synthesis (see [3]) and veri�cation.

� Incorporating modules for automatic induction, some of them already present

in the type theory version [5].

2 Outline of Gandalf 's Inference Process

Once a strategy has been decided upon, either by the aunomous mode or by the

user, Gandalf starts making inferences, trying to derive an empty clause.

The basic inference mechanism of Gandalf is the widely used given-clause algo-

rithm, essentially the same as used in Otter [7], for example.

Gandalf maintains four main lists of clauses:

usable. This list contains clauses that are available to make inferences.

sos. Clauses in list sos (set of support) are not available to make inferences; they

are waiting to participate in the search.

6

demodulators. These are oriented equalities that are used as rules to rewrite newly

inferred clauses.

cutters. Unit clauses which are used for simplifying clauses by cutting o� liter-

als from a clause. This list can contain clauses from previous runs in the

autonomous mode of Gandalf.

The main loop for inferring and processing clauses is exactly the same as that of

Otter (cite from [7]):

While (sos is not empty and no refutation has been found)

1. Let given_clause be the `lightest' clause in sos;

2. Move given_clause from sos to usable;

3. Infer and process new clauses using the inference rules in

effect; each new clause must have the given_clause as

one of its parents and members of usable as its other

parents; new clauses that pass the retention tests

are appended to sos;

End of while loop.

Step 1 details: the `lightest' clause is selected �ve times, then the �rst clause in

the sos queue is selected once, then the `lightest' is selected �ve times again, etc.

This implements a combination of best-�rst and breadth-�rst search.

The set of support strategy requires the user to partition the input clauses into

two sets: those with support and those without. For each inference, at least one

of the parents must have support. Retained inferences receive support. In other

words, no inferences are made in which all parents are nonsupported input clauses.

3 Obtaining Gandalf

You can get Gandalf and the related materials from the Gandalf home page on the

web. Gandalf comes in several di�erent forms:

� Ready-built executables for Sun Sparc, DEC Alpha, PC under NetBSD, PC

under MS-DOS/Windows etc

� C source for UNIX

� C source for MS-DOS/Windows

� Scheme source together with a (C source) distribution of the Scheme inter-

preter scm4e2 by Aubrey Ja�er and the (Scheme source) Scheme-to-C compiler

Hobbit by Tanel Tammet.

There is a useful README �le included in each distribution.

In case an executable is provided for your architecture, we suggest fetching the

executable and separate documentation and example archives, avoiding the source.

In case there is no executable for your system (or you want to hack the C source),

fetch the C source. The C source for MS-DOS/Windows is best compiled with the

DJGPP version 2 or later (the port of gcc).

In case you are unable to compile the C source, try modifying the Make�le {

it includes several options (good for DEC cc on Alpha, gcc on NetBSD, new Sun

7

cc compiler) which are commented out by default. If that does not work, try to

build the Scheme interpreter scmlit �rst (see the following paragraph) - Gandalf

uses several .o �les of the interpreter, and the Gandalf C source proper is likely to

compile easily.

If you have major trouble compiling the C source (or you want to hack the ac-

tual Scheme source), fetch the Scheme source together with the interpreter and a

Scheme-to-C compiler. You can also get the new versions of the interpreter sep-

arately from www-swiss.ai.mit.edu/~jaffer/. However, for compiling Gandalf

we suggest using the older version scm4e2 distributed on the Gandalf home page.

The Hobbit compiler produces one large C �le as output, and unless you split it up

yourself, it is unlikely that you can compile it with any other compiler than gcc.

You can also run Gandalf under the interpreter, what makes it ca 50 times slower,

or compile it with a compiler di�erent from Hobbit, which is likely to produce slower

code, since Hobbit and Gandalf are optimised for each other.

4 Running Gandalf

The name of the gandalf executable has to be seven characters long. In addition to

the executable Gandalf also requires an initialisation �le gandalf.ini to reside in

the same directory as gandalf.

Each time gandalf tries to prove a problem, it creates a temporary �le gandalf.tmp

in the directory where the gandalf executable resides. It is possible to change the

name and location of this temporary �le by changing the �le gandalf.ini (look for

gandalf.tmp in gandalf.ini).

Gandalf takes one argument { the name of the �le to be proved For example:

gandalf myprobl.in

Gandalf can be killed by pressing ctrl-c or (except under DOS/Windows) issuing

the signal SIGXCPU (signal 30): kill -30 ...

If (and only if) Gandalf �nds a proof, then its output contains a substring

EMPTY CLAUSE FOUND

Gandalf is not interactive. It takes an input �le name as an argument and writes

to the standard output:

gandalf input-�le > output-�le

No command-line options are accepted; all options are given in the input �le.

5 Syntax

Gandalf requires that the input problems are in the clause form.

Gandalf does not recognise formula syntax and it does not recognize proposi-

tional variables.

Gandalf uses the simplest form of Otter syntax for input and proof output (see

earlier section \History") with minor modi�cations. Therefore we use a few selected

parts of the Otter manual in the current section. See

www.mcs.anl.gov/home/mccune/ar/otter/ for the Otter manual.

8

The problem has to be in the clause form, terms and atoms written in the pre�x

form. There are no in�x operators. The only special and reserved symbols are

equal, ans, =, !=, if, case.

5.1 Preparing TPTP problem �les

If you are using TPTP (for TPTP see www.cs.jcu.edu.au/~tptp/), use the fol-

lowing command for converting the problems to the suitable form for gandalf:

tptp2X -t rm_equality:stfp -f otter:hypothesis:'set(auto),assign(max_seconds,180)'

where instead of 180 use the actual amount of seconds given for one problem. How-

ever, neither the assign(max_seconds,...) nor set(auto) parts are obligatory.

Neither is hypothesis:, although it is strongly recommended.

5.2 Incorrect syntax

There is only minimal control for the correctness of syntax in Gandalf c-1.0c.

In case you use wrong syntax, Gandalf will probably crash with an uninformative

error message. Careful syntax checks will be incorporated in the later versions.

5.3 Comments

Comments can be placed in the input �le by using the symbol %. All characters

from the �rst % on a line to the end of the line are ignored.

5.4 Names for Symbols

Names for Predicates and Functions

The name of a predicate or a function symbol is a string of alphanumeric characters

and _ which starts with either a character or _. Upper- and lower case characters

are distinguished.

Names for Variables and Constants

The name of a variable or a constant is a string of alphanumeric characters and _.

Upper- and lower case characters are distinguished.

If the �rst symbol of a name is a digit, the rest has to contain digits only. For

example, 235 is OK, 1ab is not).

The �rst symbol determines whether a name represents a variable or a constant.

By default a name represents a variable if it starts with u, v, w, x, y, or z.

Otherwise a name represents a constant. For example, x1 is a variable, a1 is a

constant.

If the
ag prolog_style_variables is set, a name represents a variable if and

only if it starts with an upper-case letter. For example, X1 is a variable, x1 is a

constant.

9

Reserved and Built-in Names

The name equal in the pre�x position is recognized as an equality predicate.

The names ans, if, case, = and != are reserved and should not be used!. Some

of them are used in the experimental, yet un�nished search techniques built into

Gandalf.

Overloaded Symbols

The user can use a name for more than one purpose: the same name can be used as

a function symbol, predicate symbol, variable or a constant. It is not allowed to use

the same name for an n-ary function symbol and also for an m-ary function symbol

(or predicate).

5.5 Term and Clause Syntax

Terms and Atoms

Constants and variables are terms. An n-ary function symbol applied to n terms

is also a term. Zero-ary function and predicate syntax (eg f()) is not allowed. An

atom is a term which does not occur inside another term. Propositional atoms like

p are not allowed.

The way to write complex terms and atoms is the following: the function or

predicate symbol, opening parenthesis, arguments separated by commas, then clos-

ing parenthesis, for example, f(a,g(b),c) and equal(f(x,e),x).

Literals and Clauses

A literal is either an atom or the negation of an atom. A clause is a disjunction of

literals. The built-in symbols for negation and disjunction are - and |, respectively.

Clauses are written in in�x form and terminated with a period. Two example

clauses:

-p(a) | r(x,y) | equal(c,d).

p(f(a)).

6 Commands and the Input File

Input to Gandalf consists of a small set of commands, some of which indicate that

a list of clauses follows the command.

All lists of objects are terminated with end_of_list.

The commands are given in the following table:

Table 1: Commands
set(
ag name). % set a flag

clear(
ag name). % clear a flag

assign(parameter name,integer). % assign an integer to a parameter

list(list name). % read a list of clauses

10

6.1 Input of Options

Gandalf recognizes
ags and parameters. Flags are Boolean-valued options; they

are changed with the set and the clear commands, which take the name of the

ag as the argument.

Parameters are integer-valued options; they are changed with the assign com-

mand, which takes the name of the parameter as the �rst argument and an integer

as the second. Examples are

set(binary_res). % enable binary resolution

clear(demodulate). % do not use demodulation

assign(max_seconds, 300). % stop after about 300 CPU seconds

The options are described later.

6.2 Input of Lists of Clauses

A list of clauses is speci�ed with one of the following and is terminated with

end_of_list. Each clause is terminated with a period.

list(usable).

list(sos).

Example:

list(usable).

p(a).

equal(g(x),x) | s(x,y) | r(f(y)).

-p(g(a)) | r(f(y)).

-s(a,b).

end_of_list.

list(sos).

-r(f(b)).

end_of_list.

The sos (set of support) and usable lists should be used for splitting the input

clauses between sos and the rest. It is assumed that the usable list of clauses is

satis�able.

Typically either the proved theorem or the theorem and hypothesis are put into

sos, while the axioms of the theory are put into usable.

In case the input clauses are not split in such a way, the automatic mode will

split the clauses itself while using sos-based strategies: fully negative clauses will be

in sos and the rest will be in usable.

Despite the splitting into sos and usable, the non-sos-based strategies of the

automatic mode will not use this splitting.

11

In a non-automatic mode Gandalf relies on the splitting provided in the input

�le and will not attempt to split the clause set itself. However, in case only the

usable list is present in the input �le and the sos list is lacking, Gandalf will treat

the usable list as the sos list.

7 Options

Options are used for selecting strategies, input/output formats, limits, etc. Despite

using the Otter syntax for options, most of the options Gandalf uses are di�erent

from Otter.

Flags are Boolean-valued options, and parameters are integer-valued options.

When the user changes an option, Gandalf sometimes automatically changes other

options.

In case Gandalf c-1.0c does not recognise an option, it will simply ignore it. The

future versions should issue warning messages in such a case.

A subset of options is usable both in the autonomous mode and the user-

controlled mode, while the rest are usable only in the user-controlled mode.

7.1 Generally Usable Options

set(auto). { automatic mode. Default: on. Redundant. Cleared by selecting a

user-controlled strategy, see following sections.

7.1.1 Time options

assign(max_seconds, <nrofseconds>). { enables Gandalf to optimize for this

time limit { both in the autonomous mode and for the user selected strategies.

In the latter case Gandalf uses special 'endgame search' when time starts running

out. Gandalf will also stop after that limit, unless run_forever is set. By default

processor time, not wall-clock time is used. Default: 180 seconds

set(run_forever). { causes Gandalf not to stop after the assigned time is over.

However, using assign(max_seconds,N) is still useful, since it causes optimisation

for the assigned time. Default: o�.

set(wall_time). { causes Gandalf to use wall-clock time, not processor time. De-

fault: o�.

assign(checkpoints, <listofcheckpoints>). { use the checkpoint list output

by the prover. Overrides all timing choices and simulates the previous search with

the given timer checkpoints. See the section \Outline of the Autonomous Mode".

Default: none.

7.1.2 Memory control options

assign(max_kept, <nr>). { maximal nr of kept clauses. Default: 20000.

12

7.1.3 I/O options

assign(print_level, <nr>). { a level of output (between 0 and 100). Default:

40. Meaning:

� 20 { derivation found/not

� 30 { derivation shown

� 35 { statistics shown

� 38 { strategy changes shown

� 40 { input clauses in �nal form

� 50 { given clauses

� 60 { kept clauses

� 63 { back subsumption

� 65 { cuto� literals and clauses

� 70 { raw clauses

� 80 { removal reasons

� 90 { usable clauses

set(print_tracechar). { prints a special indication char upon various operations.

Default: o�.

set(prolog_style_variables). { use prolog style variables (names starting with

an upper-case letter), in contrast to otter-style vars (names starting with x,y,z,u,v,w)

Default: o�.

set(print_debug). { display debugging information useful for the developer only.

Default: o�.

7.2 Options for User Controlled Strategies

7.2.1 Strategy options

When these options are used, Gandalf will not be in the autonomous mode. The

strategy options are mutually exclusive: do not use more than one of these.

set(hyper_res). { hyperresolution. Default: o�.

set(hyper_order_res). { hyperresolution with ordered positive clauses. Default:

o�.

set(binary_res). unrestricted binary resolution. Default: o�.

set(binary_unit_res). { unit binary resolution. Default: o�.

set(binary_order_res). { ordered binary resolution: order based on variable

occurrence depths. Default: o�.

13

set(binary_nameorder_res). { ordered binary resolution: order based on predi-

cate names, whereas positive literals are preferred (ie backward reasoning). Default:

o�.

set(binary_weightorder_res). { ordered binary resolution: order based on literal

sizes. Default: o�.

7.2.2 Demodulating and orderings

Use these options with the user controlled srategies only.

clear(demodulate). { disables demodulation. Default: demodulation on.

set(back_demodulate). { enables both forward and backward demodulation. De-

fault: o�.

set(eq_order_depth). { order equalities using variable and term depth. Default:

on.

set(eq_order_lex). { order equalities using a strange and probably bad version

of lexicographic tree ordering. Default: o�.

7.2.3 Clause size limits

Use these options with the user controlled strategies only.

assign(max_literals, <nr>). { maximal nr of literals in a kept clause. Default:

no limit.

assign(max_depth, <nr>). { maximal term depth of a kept clause. Default: no

limit.

assign(max_weight, <nr>). { maximal size (amount of subterms, incl. constants

and variables) of a kept clause. Default: no limit.

8 Output and the Proof

The desired amount of output can be selected with the assign(print_level, <nr>)

option, described in the previous section. In general, output levels higher than 50

produce huge amounts of hard-to-understand data, and are thus not recommended

for normal use. Output levels under 20 do not indicate whether a proof was found

and are thus also not recommended (in practice they are reserved for specially mod-

i�ed versions and running under the interpreter).

The proof format loosely follows the Otter proof format. Each line in a proof

contains three parts: the clause number, the list indicating how the clause was

derived (derivation list), the actual clause.

In case the derivation list is empty, the clause is an axiom. Otherwise the �rst

element of the derivation list is the type of the derivation rule used. There are four

possibilities: binary, hyper, para, factor. The following numbers indicate the

parent clauses.

After the list of parent clause numbers in the derivation list there can occur

symbols indicating which simpli�cations were applied to the initially derived clause.

14

There are four possibilities: binary_s, hyper_s, factor_s, demod. binary_s

indicates that a literal was cut o� using the clause with the number following

binary_s. The cutting clause can be either a unit clause or a binary clause. hyper_s

and factor_s indicate byperresolution and factoring simpli�cations, respectively.

demod indicates that demodulation was used with the clauses with numbers follow-

ing demod.

A number of the clause in the derivation list often contains additional informa-

tion, separated from the number proper with the period symbol. The �rst number

after period indicates which literal in the clause was used. If that number is lacking,

the �rst literal was used.

For paramodulation it is also indicated which subterm was paramodulated into.

First the path to the uni�ed term in equality is presented by period-separated num-

bers, indicating which element of the currently selected subterm has to be taken

next. Symbol #t indicates that the left argument of the equality was used for

paramodulation, while #f indicates that the right argument of the equality was

used for paramodulation. After that comes the path to the subterm which was

paramodulated into, presented as a space-separated list in parentheses.

9 Correctness, Completeness, Bugs

Gandalf has been carefully tested for correctness, hence it is likely that it won't give

a 'derivation' where none really exists.

However, we give no guarantees whatsoever considering the correctness.

Gandalf might contain bugs making it incorrect for certain input �les. In case you

observe incorrectness (Gandalf 'refuting' an unsatis�able clause set), please report

to the author: tammet@cs.chalmers.se.

Completeness (in the sense: would Gandalf �nd a proof, given an unlimited

amount of time and memory) has not been checked as carefully.

Certain special strategies of Gandalf are incomplete on purpose. For example,

in the general case all combinations of the set of support strategy and some strategy

di�erent from unrestricted binary resolution are incomplete.

Considering pure unrestricted strategies it is likely (although we give no guaran-

tees) that the implementations of binary resolution and hyper-resolution are com-

plete, as well as the set of support strategy and unrestricted binary resolution.

It is also likely that the autonomous mode is complete.

Considering combinations with paramodulation and demodulation (Gandalf uses

paramodulation automatically when it detects that equality is present), it is likely

that the combination with an unrestricted binary resolution is complete.

There is a known bug: the combination of hyperresolution with paramodulation

is incomplete, due to the fact that in the hyperresolution context paramodulation

is only applied to positive clauses. However, this incompleteness is not likely to

surface very often.

Gandalf might contain all kinds of bugs. In case you observe a serious bug,

except crashes etc caused by the incorrect syntax of the input �le, please report to

the author: tammet@cs.chalmers.se.

15

10 Outline of the Autonomous Mode

The autonomous mode contains the following steps:

1. The input clause set is analysed.

2. A set of strategies along with the percentage of time allocated is selected,

based on the previous step.

3. The selected strategies are run one after another until either the proof is found,

memory is �lled up or time runs out.

Before Gandalf starts proof search it outputs the list of selected strategies. Each

element of the list has the following format: (base-strategy seconds sos-used-
ag

term-depth-limit clause-length-limit). The latter two may be lacking, meaning that

no limits are imposed.

There is some cooperation between the separate runs: unit clauses produced

during the old runs are used for simplifying clauses by cutting o� literals. However,

this feature has so far been rarely useful in practice.

The clause numbering is global in the sense that a new run does not start from

the number one again.

The user-imposed limit on the number of kept clauses (default 20000) is local in

the sense that a single run may not keep more than the limited amount of clauses.

When a new run is started, the old clauses (except the unit clauses) are discarded.

The old unit clauses are discarded only in case memory starts running out.

In case Gandalf runs out of memory, it stops. In the autonomous mode it means

that the following passes won't be run, and a possibly simple proof might never be

found. Hence it is important that the user selects such a limit on the number of kept

clauses (using assign(max_kept, <nr>)) that Gandalf does not run out memory.

Too low a limit will, of course, also prohibit Gandalf from �nding a proof.

When Gandalf observes that it will soon reach the limit of the number of kept

clauses, it starts to keep clauses selectively, preferring small clauses and discarding

large clauses.

Since Gandalf splits the time given by assign(max_seconds, <nr>) (default

180 seconds) up between the selected strategies, it is important that the user gives

the right time limit, ie the actual amount of time Gandalf will have for searching the

proof. In case you want Gandalf to keep looking for an unlimited amount of time,

use set(run_forever): this causes the last selected strategy, which is typically a

sensible complete strategy, run forever.

When Gandalf �nds a proof, it outputs a line indicating timer checkpoints, for

example:

timer checkpoints: c(4,0,9,7,30,10)

The timer checkpoints are used for the faithful reproduction of the proof search

(for example, on a slower or faster architecture). In case you give a line assigning

timer checkpoints, for example

assign(checkpoints,c(4,0,9,7,30,10)).

in the input �le, Gandalf does not use time limits for the various strategy selections

in the given run, but uses the given checpoints to faithfully reproduce the old search

instead.

16

11 Selected Algorithms

We give a brief presentation of some of the algorithms and data structures used in

Gandalf.

11.1 Subsumption

Forward Subsumption

The subsumption component is currently the most sophisticated single part of the

classical version of Gandalf.

All the unit clauses are kept in the discrimination tree with variables. Forward

unit subsumption is performed using this tree.

Our non-unit forward subsumption procedure uses the following steps:

1. A special double-literal discrimination tree with variables is used for full sub-

sumption with two-literal clauses and for collecting potential longer subsumers:

two largest literals of each clause are indexed, with \largeness" preferring

ground over non-ground, bigger term size over smaller, more variables over

less variables.

2. Potential subsumers retrieved by the previous step have length three or more.

We use the following multi-layered subsumption algorithm for long clauses:

First we check clause length, size, number of variables, maximal term depth

- all this data is explicitly attached to each clause. Then we check predicate

symbols, encoded into a bit �eld. After that subsumability of each literal is

checked separately. If that passes, we do the full check, where the crucial

feature is a suitable ordering, with big ground literals and literals containing

most variables leading. Each variable, literal and subterm is decorated with

ags and characterising data in order to minimize backtracking.

Back Subsumption

Back subsumption is performed by comparing the kept clause to a list of existing

clauses one after another: no special indexing methods are used.

However, the list of existing clauses is kept for back subsumption in a specially

sorted way: clauses are sorted by length, size and maximal term depth. Only these

clauses are considered for back subsumption for which none of these three parameters

is under the corresponding parameters of the newly kept clause.

In addition, only the clauses in the usable list are back subsumed. Because

of this we separately check each selected clause in sos for forward subsumption before

it is moved to usable.

The motivation for the used scheme of back subsumption is the following. Since

the problem of deriving an empty clause is undecidable, statistically the average size

of the derived clause is growing during the derivation process. However, a newly

kept clause can only subsume these of the existing clauses which are not bigger

than the newly kept clause. Since it is likely that most of the older clauses are

smaller than the newly kept clause, only a small fraction of the old clauses has to

be checked. This motivation is further strengthened by the fact that the sos list is

17

normally much larger than the usable list and we only need to back subsume the

usable list.

11.2 Demodulation

We use a full discrimination tree with variables for forward demodulation. We do

not use any indexing methods for back demodulation.

11.3 Clause Simpli�cation by Unit Deletion

The same discrimination tree as is used for unit subsumption is also used for sim-

plifying clauses by deleting literals, using existing unit clauses.

We also use the same double-literal variables-containing discrimination tree for

unit deletion. Here is the algorithm for deleting literals in the derived clause:

1. In case we have a unit clause :L such that L subsumes a literal L' in the

derived clause, this L' is deleted. Ordinary discrimination tree is used for the

check.

2. In case we have a two-literal clause :L | R such that the derived clause con-

tains such literals L' and R' that L | R subsumes L' | R', the literal L' is

deleted. The special double-literal discrimination tree is used.

3. In case we have a unit clause :L such that L uni�es with a literal L' in the

derived clause and only these variables in L' which do not occur elsewhere

in the clause are instantiated, then L' is deleted. Simple check-with-all-units

and a special uni�cation algorithm are used.

11.4 Data structures

We use a full variable-containing discrimination tree for demodulation, forward unit

subsumption and unit deletion, double-literal clause subsumption and deletion (see

earlier sections).

The search for uni�able literals uses a simple clause list augmented by index-

ing on the predicate name only. Paramodulation uses a simple clause list. Back

subsumption uses lists of clauses ordered by length, size and maximal depth.

Terms, literals and clauses are represented in an ordinary lisp style as lists.

All the variables, constants, function and predicate symbols are represented as

integers and treated as bit �elds - certain bits in the integer give extra information

about the term.

Concretely, each atom and term is explicitly decorated with the following data,

encoded into certain bits in the �rst element of the corresponding list: number

of constant occurrences, term size, term depth, ground/nonground
ag, contains-

repeated-variables-
ag, the 'biggest' variable name occurrence.

Variables are also encoded as integers. During uni�cation/matching the value

of a variable is kept in an array indexed by certain bits in the number representing

the variable. Each variable occurrence is explicitly decorated with the following

data, encoded into certain bits of the integer: single-occurrence-in-a-literal
ag,

no-occurrences-in-following-literals
ag, no-occurrences-in-other-literals
ag.

18

References

[1] C. Ferm�uller, A. Leitsch, T. Tammet, N. Zamov. Resolution methods for deci-

sion problems. Lecture Notes in Arti�cial Intelligence vol. 679, Springer Verlag,

1993.

[2] L. Magnusson, B. Nordstr�om. The ALF proof editor and its proof engine. In

Types for Proofs and Programs, pages 213-237, Lecture Notes in Computer

Science vol. 806, Springer Verlag, 1994.

[3] T. Tammet. Completeness of Resolution for De�nite Answers. Journal of Logic

and Computation, (1995), vol 4 nr 5, 449-471.

[4] T. Tammet. A Resolution Theorem Prover for Intuitionistic Logic. In CADE-

13, pages 2-16, Lecture Notes in Computer Science vol. 1104, Springer Verlag,

1996.

[5] T. Tammet, J. Smith. Optimised Encodings of Fragments of Type Theory in

First Order Logic. In Types for Proofs and Programs, pages 265-287, Lecture

Notes in Computer Science vol. 1158, Springer Verlag, 1996.

[6] T. Tammet. Proof strategies in linear logic. Journal of Automated Reasoning,

12:273{304, 1994.

[7] W.McCune. OTTER 3.0 Reference Manual and Users Guide. Tech. Report

ANL-94/6, Argonne National Laboratory, Argonne, IL, January 1994.

19

