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In Y. Tagamlitzki’s paper [4] an axiomatization for an abstract notion of segment
is proposed (a somewhat more restrictive but similar axiomatization has been given
earlier by W. Prenowitz in [2]). The main result of [4] is a separation theorem
formulated in set-theoretical terms and proved by using Zorn’s Lemma. The results
published in [4] have been presented earlier in a lecture course held in 1962 at the
Faculty of Mathematics of the Sofia University. An intriguing logical problem arose
in one of the lectures when the mentioned separation theorem has been applied
to obtain a certain non-trivial corollary expressible without essential use of set-
theoretical terminology. We direct now our attention to that logical problem.

Let us consider sentences in a first-order predicate language with a ternary
relation symbol r. The reader may intuitively interpret r(x, y, z) as “z is on the
segment with end points x and y”, regarding the variables in the sentences below
as ranging over the points of a plane; however, there are also other appropriate
interpretations. The problem in question can be formulated as follows.

Problem 1 Consider next four sentences:
(symm) ∀x∀y∀z(r(x,y,z)→r(y,x,z))
(assoc1) ∀x∀y∀u∀v∀z(r(x,y,z)∧r(z,v,u)→∃w(r(y,v,w)∧r(x,w,u)))
(assoc2) ∀x∀y∀u∀v∀z(r(x,z,y)∧r(u,z,v)→∃w(r(x,v,w)∧r(u,y,w)))
(monot) ∀x∀y∀u∀z(r(x,z,u)∧r(y,y,z) →r(x,y,u))
Show that their conjunction implies the sentence

∀x∀y∀z(r(z,z,x)∧r(z,z,y)→∃w(((w=x)∨r(x,x,w))∧((w=y)∨r(y,y,w))))

The statement at the end of the above problem (after ”Show that”) is in fact the
mentioned corollary, but presented in a formal way. Taking into account Gödel’s
Completeness Theorem, the people that consider Set Theory reliable ought to be-
lieve that the problem must have also a solution formalizable in the first-order
predicate calculus. On the other hand, no idea how to actually find such a solution
emerged initially. In particular, the attempts of the present author in this direction
remained without a success. Yet a solution of the indicated kind (presented in the
ordinary mathematical language) was given by Ivan Prodanov shortly afterwards
(still in 1962). In fact, Prodanov established a stronger result – he actually gave
such a solution to next problem:

Problem 2 Show that the conjunction of the same four sentences (symm),
(assoc1), (assoc2) and (monot) implies the sentence
(meet) ∀x∀y∀z(r(z,z,x)∧r(z,z,y)→∃w(r(x,x,w)∧r(y,y,w)))

Unfortunately, the published version of Prodanov’s proof (present in [3]) is in a
form that establishes only what is stated in Problem 1. At the end of 1983 and the
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beginning of 1984 Jörg Siekmann and his group in Karlsruhe made attempts to solve
Problem 2 by using their Markgraf Karl Refutation Procedure (MKRP) [1]. Since
the attempts did not succeed, the problem has been decomposed into the following
two other ones (the decomposition has been suggested by the present author on the
basis of an analysis of Prodanov’s proof).

Problem 3 (quite easy) Show that the conjunction of (assoc1) and (monot)
implies the sentence
(transit) ∀u∀x∀y∀z (r(x,u,y)∧r(y,u,z)→r(x,u,z))

Problem 4 (hard enough) Show that the conjunction of (symm), (assoc2) and
(transit) implies (meet).

In May 1984 MKRP succeeded on both Problem 3 and Problem 4. Then we
made an analysis of the solutions produced by MKRP and observed that actually
a solution of the following variant of Problem 4 is contained in the second of them.

Problem 5 Consider next sentence:
(assoc2′) ∀x∀y∀u∀v∀z (r(x,z,y)∧r(u,z,v)→∃w(r(v,x,w)∧ r(y,u,w)))
Show that the conjunction of (assoc2′) and (transit) implies (meet).

Obviously the conjunction of (symm) and (assoc2) implies (assoc2′). There-
fore the statement of Problem 5 can be considered stronger than the statement of
Problem 4. Nevertheless, it seems that Problem 5 is less difficult than Problem 4
for a computer proof search. For example, we succeeded in 1998 to find a computer
solution of Problem 5 by using Prolog in an appropriate way. We are now going to
describe how this can be done.

First of all, the formula (assoc2′) must be transformed into a Skolem normal
form. The following formula is a convenient prenex normal form of (assoc2′):

∀x∀y∀u∀v∃w∀z(r(x,z,y)∧r(u,z,v)→r(v,x,w)∧r(y,u,w))

A corresponding Skolem normal form is

∀x∀y∀u∀v∀z(r(x,z,y)∧r(u,z,v)→r(v,x,f(x,y,u,v)∧r(y,u,f(x,y,u,v)))

Taking this into account, we may do an almost straightforward translation of the
statement of Problem 5 in Prolog and thus get the next goal and the following
program intended to be executed on it:

?- r(x,x,W),r(y,y,W). % goal g

r(z,z,x). % clause i
r(z,z,y). % clause j
r(V,X,f(X,Y,U,V)) :- r(X,Z,Y),r(U,Z,V). % clause k
r(Y,U,f(X,Y,U,V)) :- r(X,Z,Y),r(U,Z,V). % clause l
r(X,U,Z) :- r(X,U,Y),r(Y,U,Z). % clause m

An execution of this program on the specified goal, however, will be useless –
such an execution usually terminates with a memory overflow message. Therefore
we shall execute a more sophisticated program on a more sophisticated goal and
they will concern derivability in a formal system S that generates the minimal
Herbrand model for the above program. The formal system in question has the
ground atoms r(z,z,x) and r(z,z,y) in clauses i and j as its axioms. The inference
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rules of the system correspond to clauses k, l and m and can be formulated in the
terms of their ground instances. Namely, the rule corresponding to clause k allows
to infer the ground atom C from the ground atoms A and B, whenever C :– A,B is a
ground instance of clause k, and similarly for clauses l and m. To find a solution of
Problem 5 formalizable in the first-order predicate calculus, it is sufficient to derive
in S two ground atoms A and B such that ?– A,B is an instance of the goal g. In
order to organize the search for such two ground atoms, we shall use the notion
of a derivation tree in S, defining such trees as appropriate terms built up from
two new constants i and j by means of three new binary function symbols k, l, m.
Namely, we accept the convention that the constants i and j are derivation trees for
the axioms of S in clauses i and j, respectively, we accept further that, whenever
C :– A,B is a ground instance of clause k and D, E are derivation trees for the
ground atoms A and B, respectively, then the term k(D, E) is a derivation tree for
the ground atom C, and similarly for the other two inference rules of S. The height
of a derivation tree can be defined in a natural inductive way – the constants i and j
have height 0, and the height of any of the derivation trees k(D, E), l(D, E), m(D, E)
is the least integer greater than the heights of both D and E . For the sake of greater
efficiency, we shall represent the natural numbers 0, 1, 2, . . . by the lists [], [[]],[[[]]],
. . . , respectively. Instead of the ternary predicate symbol r we shall now use a 5-ary
predicate symbol d. Its interpretation can be explained as follows: d(K,X ,Y,Z,D)
means that K is a list representing some natural number, X , Y and Z are ground
terms, D is a derivation tree for the ground atom r(X ,Y,Z) and the height of this
tree does not exceed the number represented by K. A unary predicate symbol n will
be additionally introduced with n(K) meaning that K is a list representing some
natural number.

Taking into account what has been just said, one can easily see the semantical
correctness of the program below, as well as the fact that a success of this program
on the next goal can be immediately used to derive in S two ground atoms A and
B such that ?– A,B is an instance of g (when comparing both programs, one surely
will notice the transpositions in the bodies of the new clauses corresponding to l
and m; these transpositions aim at increasing of the efficiency).

?- n(K),d(K,x,x,W,D),d(K,y,y,W,E).

d(K,z,z,x,i).
d(K,z,z,y,j).
d([K],V,X,f(X,Y,U,V),k(D,E)) :- d(K,X,Z,Y,D),d(K,U,Z,V,E).
d([K],Y,U,f(X,Y,U,V),l(D,E)) :- d(K,U,Z,V,E),d(K,X,Z,Y,D).
d([K],X,U,Z,m(D,E)) :- d(K,Y,U,Z,E),d(K,X,U,Y,D).
n([]).
n([K]) :- n(K).

During the executing of this program on the goal above, a systematic search
will be performed. Namely, the program will first try to satisfy the goal with K=[],
then with K=[[]] and so on until possibly succeeds.

We executed the above program on the above goal using a computer with a
133 Mhz CPU and running Dimiter Dobrev’s freeware Strawberry Prolog (can be
downloaded from http://www.dobrev.com). The run time was about 40 minutes
and the goal succeeded with the following substitution (the specified list for K
indicates that the terms for D and E have heights not exceeding 5, and in fact the
heights of both these terms are equal to 5):

K=[[[[[[]]]]]],
W=f(x,f(z,y,y,f(z,x,z,y)),y,f(z,x,x,f(z,y,z,x))),
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D=m(l(i,k(j,i)),k(m(l(i,j),k(j,k(i,j))),m(l(j,i),k(i,k(j,i))))),
E=m(l(j,k(i,j)),l(m(l(i,j),k(j,k(i,j))),m(l(j,i),k(i,k(j,i))))).

Remark 1. In the case of using a better computer and a commercial Prolog
implementation the run time could be shorter, however a fair comparison with such
other Prolog implementations must concern only ones that, like Strawberry Prolog,
have the “occurs check” feature.

Let us introduce short denotations for the complex subterms of the indicated
term for W (including this term itself). We set

#1=f(z,x,z,y), #2=f(z,y,z,x), #3=f(z,y,y,#1), #4=f(z,x,x,#2), #5=f(x,#3,y,#4).

(#5 is the term for W). The success of the program on the goal with the specified
substitution allows one to derive in S the ground atoms r(x,x,#5) and r(y,y,#5) (one
uses the terms for D and E, respectively, for that purpose). Here is a linearization of
the derivation of the first of these atoms (the axioms and the rules of S are denoted
in the same way as the corresponding clauses of the first program and, in order to
make the things more transparent, we have added after any line of the derivation
the corresponding derivation tree):

1 r(z,z,x) by i
i

2 r(z,z,y) by j
j

3 r(y,z,#1) by 1,2,k
k(i,j)

4 r(x,z,#1) by 1,2,l
l(i,j)

5 r(x,z,#2) by 2,1,k
k(j,i)

6 r(y,z,#2) by 2,1,l
l(j,i)

7 r(#2,z,#4) by 1,5,k
k(i,k(j,i))

8 r(x,x,#4) by 1,5,l
l(i,k(j,i))

9 r(#1,z,#3) by 2,3,k
k(j,k(i,j))

10 r(x,z,#3) by 4,9,m
m(l(i,j),k(j,k(i,j)))

11 r(y,z,#4) by 6,7,m
m(l(j,i),k(i,k(j,i)))

12 r(#3,x,#5) by 10,11,k
k(m(l(i,j),k(j,k(i,j))),m(l(j,i),k(i,k(j,i))))

13 r(x,x,#5) by 8,12,m
m(l(i,k(j,i)),k(m(l(i,j),k(j,k(i,j))),m(l(j,i),k(i,k(j,i)))))

The solution of Problem 5 obtained in this way is not essentially different from
its solution extracted from the solution of Problem 4 given by MKRP and both
solutions mirror the essence of Prodanov’s solution of Problem 3. The solution
has an imperfection that is present (up to inessential details) also in the two other
solutions just mentioned (in Prodanov’s solution the imperfection remains actually
deeply hidden behind the used mathematical denotations). The imperfection can
be described as using a greater number of auxiliary objects than it is necessary.
Namely, it is possible to reduce the length and the complexity of the derivations by
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using only one of the ground terms #1 and #2, since their properties used in the
derivations are one and the same, namely the derivability in S of the instances of
r(x,z,W) and r(y,z,W) obtained by replacement of W with the considered ground
term. A solution without the mentioned imperfection can be found by looking for
other substitutions that satisfy the same goal.

Remark 2. Appropriate utilities can be added to the used Prolog program to
make it able to produce automatically linearizations of the found derivations.

We think Problem 5 could be useful for testing the capabilities of proof search
programs.
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