ASH’S THEOREM FOR ABSTRACT STRUCTURES

I. N. SOSKOV AND V. BALEVA

ABSTRACT. We introduce and study the class of relatively a-intrinsic sets
on partial abstract structures. The main results are the Abstract jump in-
version theorem and the Normal form theorem for the relatively a-intrinsic
sets.

1. INTRODUCTION

In this paper we are going to prove an analog of Ash’s Theorem [1] for abstract
structures. We shall consider partial structures A = (N; Ry, ..., Ry), where each R;
is a subset of N"* and the equality =" and unequality "#” are among the predicates
R17 ey Rk

Evidently every total structure A = (N; Ry, ..., Rx) can be considered as a partial
structure, since we can replace a total predicate R; on N by two partial predicates
Rf and Ry, where Rf = {7 : R;(T) = true} and R; = {7 : R;(T) = false}.

A total mapping from N onto N is called enumeration of 2.

Given an enumeration f of 2 and a subset of A of N* let

FHA) = {{ay, . 20)  (f(=), .., f,)) € A}

By f~' (%) we shall denote the set f~*(R,)&- - & f~'(Ry). In particular, if f = Az.x,
then f='(2) will be denoted by D(2).

Next we define for every recursive ordinal « the relatively a-intrinsic sets. This
notion is a generalization of the respective notion of relatively intrinsically 3° sets,
introduced in [2] and independently in [3] for total structures. Given a set D
of natural numbers and a recursive ordinal «, by D{* we shall denote the a-th
enumeration jump of D. The exact definition will be given in the next section.

1.1. Definition. Let « be a constructive ordinal and let A C N?. The set A is
relatively a-intrinsic on the partial structure 2L if for every enumeration f of %L the
set f71(A) is enumeration reducible to (f~(21)){*).

€
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From the properties of the enumeration jump it follows that for total structures,
i.e. partial structures obtained from total ones, for every recursive « the relatively
a-intrinsic sets coincide with the relatively intrinsic X0, sets.

In [2] and in [3] an internal characterization of the relatively intrinsic X2 sets is
obtained. Namely it is shown that these sets coincide with the sets definable on 2
by means of the so called recursive X2 formulae. Because of this result we may think
that on total structures the relatively intrinsically 3° sets are the right counterpart
of the classical X2 sets.

Here we shall obtain a similar characterization of the relatively a-intrinsic sets
on partial structures generalizing the respective results for total structures. On the
other hand the results in [2] and [3] admit another kind of generalization which is
in the spirit of the Ash’s Theorem [1].

Consider a set B C N*. Suppose that you want to add this set to the structure
2 as a partial predicate which is relatively f-intrinsic on 2. It is not clear how to
give an explicit definition of this kind of expansion of & for recursive ordinals 3 > 0.
Nevertheless we can obtain a new class of relatively a-intrinsic sets by restricting
the class of all enumerations of % to the class of those enumerations f of 2 for which
f71(B) is enumeration reducible to (f~(2)){?). In other words, we consider only
those enumerations of 2 which "know” that B is relatively S-intrinsic on . More
generally, consider a sequence {B,},<;, where each B, is a subset of N*, (is a
constructive ordinal and there exists a recursive function p such that p(y) = a, for
all v < (.

1.2. Definition. Let a@ < w&&. A subset A of N° is relatively a-intrinsic on U
with respect to the sequence {B.,},<. if for every enumeration f of % such that
(Vy < O(fYB,) < (F~5A)Y) uniformly in v, the set f~'(A) is enumeration
reducible to (f~1(A4))).

In what follows we are going to present an explicit internal characterization of
the relatively a-intrinsic with respect to the sequence {B,} sets. For the sake of
simplicity we shall assume that all sets B, are subsets of N, i.e. (Vy < ()(a, =1).
The proofs in the general case are similar.

2. PRELIMINARIES

2.1. Ordinal notations. We shall consider only recursive ordinals « which are
below a fixed recursive ordinal 7. We shall suppose that a notation e € O for g
is fixed and the notations for the ordinals a < n are elements a of O such that
a <, e. For the definitions of the set O and the relation ”<,” the reader may
consult [7] or [8]. We shall identify every ordinal with its notation and denote the
ordinals by the letters «, 3, and 4. In particular we shall write o < 3 instead of
a <, 3. If ais a limit ordinal then by {a(p)},en we shall denote the unique strongly
increasing sequence of ordinals with limit «, determined by the notation of «, and
write a = lim a(p).
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2.2. The enumeration jump. Given twosets of natural numbers A and B, we say
that A is enumeration reducible to B (A <, B) if A =1",(B) for some enumeration
operator I',. In other words, using the notation D, for the finite set having canonical
code v and Wy, ..., W,_, ... for the G6del enumeration of the r.e. sets, we have

A< B = TVe(z € A <= Fw((v,2)e W, & D, C B)).

The relation <, is reflexive and transitive and induces an equivalence relation
=, on all subsets of N. The respective equivalence classes are called enumeration
degrees. For an introduction to the enumeration degrees the reader might consult
COOPER [5].

Given a set A denote by AT the set A& (N\ A). The set A is called total iff
A=, AT. Clearly A is recursively enumerable in B iff A <, Bt and A is recursive
in B iff At <, Bt. Notice that the graph of every total function is a total set.

Evidently if 2L is a partial structure, obtained from a total one, then for every
enumeration f of A the set f~1(2) is total. So we may give the following definition:

2.1. Definition. An abstract structure 2 is total if for every enumeration f of 2
the set f~1 () is total.

The enumeration jump operator is defined in CooPER [4] and further studied
by McEvoy [6]. Here we shall use the following definition of the e-jump which is
m-equivalent to the original one, see [6]:

2.2. Definition. Given a set A, let K§ = {(z,z) : 2 € I',(A)}. Define the e-jump
A’ of A to be the set (K9)*.

The following properties of the enumeration jump are proved in [6]:

Let A and B be sets of natural numbers. Set B(") = B and B"*Y) = (B")’.

(J1) If A <. B, then AL <, B..

(J2) Ais X0, relatively to B iff A <, (B+)™).

Let « be a recursive ordinal. To define the a-th enumeration jump of a set A
we are going to use a construction very similar to that used in the definition of the
a-th Turing jump. For every recursive ordinal o we define the set 4 by means of
transfinite recursion on a:

2.3. Definition.
(i) F¢ = A.
(i) Egy, = (E7)L.
(iii) If @ =lim a(p), then B = {(p,x): 2 € E,}.

From now on A will stand for E4.

Of course the definition of the set A(*) depends on the fixed notation of the
ordinal c. On the other hand, it is easy to see by a minor modification of the proof
of the respective Theorem of Spector for the H# sets, see [7] or [8], that if a; and
vy are two notations of the same recursive ordinal, then A{®) =_ Ale2),

The following properties of the transfinite iterations of the enumeration jump
follow easily from the definition:
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(E1) If 8 < « are recursive ordinals, then AY) <_ A{®) uniformly in 8 and a.
(E2) If A <. B, then for every recursive ordinal o, A < B{®.
(E3) If @ > 0, then A(® is a total set.

Finally, we have that for total sets the a-th enumeration jump and the a-th
Turing jump are equivalent. Namely the following is true:

2.4. Proposition. Let A be a total set of natural numbers. Then for every recursive
ordinal o, E4 =, (HY)* uniformly in «.

Since we are going to consider only e-jumps here, from now on we shall omit the
subscript e in the notation of the enumeration jump. So for every recursive ordinal
a by A we shall denote the a-th enumeration jump of A.

2.3. The jump set of a sequence of sets. Let ¢ be a recursive ordinal and let
{B,},<¢ be asequence of sets of natural numbers. For every recursive ordinal o we
define the jump set P, of the sequence {B,} by means of transfinite recursion on a:

2.5. Definition.
(1) iPO — Bo.

(i) Let @« =3+ 1. Then let

otherwise.

p _ [P®Ba ifa<y
P

(iii) Let o =lim a(p). Then set P, = {(p,z) : @ € Py(p)} and let

iP :{?<Q@Ba lfOéSC,

Pea otherwise.

Notice that if the sequence {B,} contains only one member, i.e ( = 0, then for
every recursive a, P, = Béa).

The properties of the jump sets P, are similar to the properties of the enumeration
jumps. Again we have that if «; and «s; are two notations of the same recursive
ordinal, then P,, =, P,,. We shall omit the proof since it is very close to the proof
of the respective result for the H# sets mentioned above.

We shall use the following properties of the jump sets which follow easily from
the definition:

(P1) If p < a, then Py <. P, uniformly in 5 and a.

(P2) If v <min(a, (), then B, <. P, uniformly in v and «a.

(P3) Let (Vy < min(e, ) (B, <. A" uniformly in 7). Then P, <. A(*).

(P4) If o is a limit ordinal, then the set P, is total.

(P5) If ¢ < a, then the set P, is total.

We conclude the preliminaries by a jump inversion theorem proved in [9]:
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2.6. Theorem. Let A C N and {B, },<; be a sequence of sets of natural numbers.
Suppose that o < C is a recursive ordinal such A Le Po. Let Q be a total subset
of N such that P, <. Q and At <. Q. Then there exists a total set F' having the
following properties:

(1) Forally <¢, B, <, FO uniformly in 'y;
(2) Forally <¢ zf’y 3 —|— 1, then FO) =, F & Py uniformly in ~y;
(3) For all lzmzt v < ¢ PO = Fa P, uniformly in v;

(4) F

(5) A ﬁ F

Here we shall use the following obvious corollary of the above Theorem.

2.7. Theorem. Let {B,} <. be a sequence of sets of natural numbers. Let o be a
recursive ordinal and & = rﬁax(oe + 1,¢). Suppose that A C N and A £. P,, Q is
a total set and Py & At <. Q. Then there exists a total set F with the following
properties:

(1) F?gr) all v < ¢, B, <. FOY uniformly in v;
(2) F®© =, Q.
(3) AL P

Proof. For every v such that { < v < & set B, = (. Apply the previous Theorem
for the sequence {B,},<.. O

Throughout the rest of the paper we shall suppose fixed a partial structure % =
(N; Ry,..., Ry) and a sequence {B,},<. of sets of natural numbers. Without loss
of generality we shall assume that all sets B, are not empty.

3. FORCING FUNDAMENTALS

Let f be an enumeration of 2. For every recursive ordinal a by P/ we shall
denote the a-th jump set of the sequence f~'(A) & f~1(Bo), [T (B1)s.--, [HBe)-

For every «, e and « in N we define the relations f =, F.(z) and f =, =F.(z)
as follows:

(i) f Eo F.(z) iff there exists a v such that (v,z) € W, and for all v € D,

either
) 1= (046 98) € (o) e € B
b) u=(2,2,) & f(z,) € Bo.
(ii) Let a =5+ 1. Then
a) if @ < ¢, then

fTELFE(2) < (Fv)((v,2) e W, & (Yu € D,)(
(u=10,eu,24) & [ 5 Ie, (2u))V
( (1,64,

(u= (2,

>&f)=@ﬁF( w))V
vu) & flxu) € Ba)));

u
u
u



6 I. N. SOSKOV AND V. BALEVA

b) if ¢ < a, then
fEa F.(z) <= (Fv)((v,2) e W, & (Yu € D,)(
(u =10, eu,20) & [ 55 Fo (24))V
(w=(1,eu,20) & [ 5 ~Fe, (24))))-
(iii) Let ov =lim a(p). Then
a) if @ < ¢, then
fE. F.(2) < (Fv)((v,2) e W, & (Vu € D,)(
( <0 Puy €usy T > & f ):ocp eu( U))\/
(u=(2,24) & f(z.) € Ba)));
b) if ¢ < a, then
fE. F.(z) < (Fv)((v,2) e W, & (Yu € D,)(
(u =10, pus €w, #) & [ Fagp.) Fe,(20))))-

(iv) fELF.(2) < [l Fo(2).

An immediate corollary of the definitions above is the following:

3.1. Lemma. Let A C N and let o < (. Then A <, P! iff there exists an e such
that A={z: f E, F.(2)}.

The forcing conditions, which we shall call finite parts, are arbitrary finite map-
pings of N into N. We shall denote the finite parts by the greek letters 7, p and
d.

For every o < (, e and 2z in N and every finite part 7 we define the forcing
relations 7 I+, F.(z) and 7 |k, =F,(z) following the definition of ”E":

(i) 7lkq F.(z) iff there exists a v such that (v, z) € W, and for all u € D, either

a) u= (0, a},...,2r)), xf,...,z¢ € dom(r) and (7(a}),...,7(2})) €
R; or

b) w=(2,2,), z, € dom(r) and 7(z,) € By.

(i) Let @« =3+ 1. Then
a) if @ < ¢, then

Ty Fo(z) <= (v)((v,2) € W, & (Yu € D,)(
(u=1(0,ey,2,) & Tlkg F. (2,))V
(u={(1,ey, 2 >&T|I—@—|Feu(xu))\/
(u=(2,2u) & !7(24) € Ba)));

b) if ¢ < a, then
Tl Fo(2) < (Fv)({(v,2) e W, & (Yu € D,)(
(u=1(0,ey,z,) & Tlkg F, (2,))V
(u=(1,ey,2,) & TlF5 =F. (2,)))).

(iii) Let ov =lim a(p). Then
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a) if @ < ¢, then
Tk, F.(2) < (Fv)((v,2) € W. & (Yu € D,)(
(u =0, pus €ur ) & T lappy Foy(24))V
(u=1(2,2,) & !7(2,) € Ba)));
b) if ( < «, then
Tk, F.(2) < (Fv)((v,2) e W, & (Vu € D,)(
(u=(0,pu, eus ) & T o) Fou(24))))-
(iv) 7lF, =F.(2) < (Vp 2 T)(pWF. F.(2)).
For every recursive ordinal a, e,2 € Nset Xt , ={p:plts Fe(2)}.

3.2. Definition. An enumeration f of & is a-generic if for every § < o, e,2 € N
the following condition holds:

(3.1) (VrC NBpe XL, (T Cp)= BrC T e X,

The following standard properties of the forcing relation follow immediately from
the definitions:

3.3. Lemma.(TLA)
(1) Let o be a recursive ordinal, e,z € N and let 7 C p be finite parts. Then

Tk (m)Fe(z) = plby () Fe().
(2) Let f be an a-generic enumeration. Then
fE. F.(2) < (3r C f)(r Ik, F.(2)).
(3) Let f be an o + 1-generic enumeration. Then
fFanF(2) < (37 C )7k ~F(2)).

Finally we would like to estimate an upper bound of the complexity of the forcing
relation.

Given a sequence {X,,} of sets of natural numbers, say that {X,} is e-reducible
to the set P if there exists a recursive function ¢ such that for all n we have that
X, =Ty (P). The sequence {X,,} is T-reducible to P, if the function An,z.xx, ()
is recursive in P.

From the definition of the enumeration jump it follows immediately that if {X,,}
is e-reducible to P, then {X,} is T-reducible to P'.

For every recursive ordinal « let P, be the a-th jump set of the sequence By &

D), By, ..., B..

3.4. Lemma. For every a the sequence { X} is uniformly in a e-reducible to P,
and hence it is uniformly in o T-reducible to P!, .
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Proof. Using effective transfinite recursion and following the definition of the forc-
ing, one can define a recursive function g¢(o,n) such that for every a, X2 =

Fg(oc,n)(ipoc)' O

4. AN ABSTRACT JUMP INVERSION THEOREM

4.1. Definition. Let A C N and let « be a recursive ordinal. The set A is forcing
a-definable on 2 if there exist a finite part § and e,z € N such that

A={s: (T 2 0)(r(z) s & Tk, F.(2))}.

Clearly if A is forcing a-definable on 2, then A <. P,. The vice versa is not
always true. As we shall see later the forcing a-definable sets coincide with the sets
which are relatively a-intrinsic with respect to sequence {B,}, <.

4.2. Proposition.(Poli) Let a be a recursive ordinal and let A C N be not forcing
a-definable on . Set & = max(a+ 1,(). There exists an enumeration f of A
satisfying the following conditions:

(1) f<. At &P,

(2) If7 <& then P! <. faP,.

(3) f7H(A) £ P

Proof. We shall construct the enumeration f by steps. At each step ¢ we shall define
a finite part d, so that §, C d,41 and take f=J, d,. We shall consider three kinds
of steps. On steps ¢ = 3r we shall ensure that the mapping f is total and surjective.
On steps ¢ = 3r + 1 we shall ensure that [ is {-generic and on steps ¢ = 3r + 2 we
shall ensure that f satisfies (3).

Let +o,71,... be a recursive enumeration of all ordinals less than £. For every
natural number n set Y, = X(WTE’)‘I)” Notice that the sequence {Y,,} is T-reducible to
iPé' .
Let ; be the empty finite part and suppose that §, is defined.

a) Case ¢ = 3r. Let zy be the least natural number which does not belong to
dom(4,) and let sy be the least natural number which does not belong to the range
of 6,. Set 8,41 (o) >~ 5o and 6,41 (2) = §,(2) for @ # x,.

b) Case ¢ = 3r+ 1. Consider the set Y,.. Check whether there exists an element p
of Y, such that 6, C p. If the answer is positive, then let é,,; be the least extension
of &, belonging to Y,. If the answer is negative then let §,., = J,.

c) Case ¢ = 3r+2. Let x4 be the least natural number which does not belong to
dom(4,). Consider the set

Cr=A{s: (A1 D 0,)(1(2y) s & Ty Fo(2y))}
Clearly €, is forcing a-definable on 20 and hence C, # A. Notice that C, <. P,

uniformly in r and d,. Therefore, since a < &, the set C, is recursive in P, uniformly
in r and §,. Let sy be the least natural number such that

SOGCT&SogA\/S()gCT&SOGA.
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Suppose that sg € C,.. Then there exists a 7 such that
(4.1) 0, C7 & 7(2y) > 50 & Tk, Fo(2y).

Let 8,41 be the least 7 satisfying (4.1).

If s ¢ C., then set 0,41 (2,) >~ so and 8,41 () =~ 6,(2) for  # z,. Notice that in
this case we have that 6,4, Ik, = F, (2,).

From the construction above it follows immediately that f = J,d, is e-reducible
to AT @& P, and hence it satisfies (1).

Let v < & Then there exists an e such that P/ = {z : f |=, F.(z)}. Since f
is &-generic, we can rewrite the last equality as P/ = {x : (37 C f)(7 Ik, Fe(2))}
Therefore P/ <. f @& P,.

It remains to show that f=!'(A4) £. P/. Towards a contradiction assume that
J=H(A) <. PL. Then there exists an r such that

A={f(z): [ F(2)}.
Consider the step ¢ = 3r 4+ 2. By the construction we have that
Og+1(g) & A& Sgp1 b Frg) V dgpa(zy) € A & Sgp1 Iba = F (2g).

Hence by the genericity of f
flzg) § A& [ F () V flzy) € A& [ . (2g).

A contradiction. O

The following theorem is an abstract version of Theorem 2.7.

4.3. Theorem.(AJIT) Let o be a recursive ordinal and let A C N be not forcing a-
definable on . Set & = max(a+1,¢) and let Q) be a total set such that AtHP: <. Q.
Then there exists an enumeration [ of /U satisfying the following conditions:

1) f<.Q.

) The enumeration degree of f~'(2) is total, i.e. it contains a total set.

) Forally < ¢, f~4B,) <. (f71R)Y uniformly in ~.
) FTHA) Lo (FHR)).
) (7))@ = Q.

Proof. According Proposition 4.2 there exists an enumeration g of 2 such that g <,
Q, P! <. Q and g~'(A) £. P7. Since AT <, Q, we have also that (¢7'(4))* <. Q.

From Theorem 2.7 it follows that there exists a total set F' such that the following
assertions are true:

(i) g=H(RA) <. F.

i) For all v < C, ~YB,) <. F") uniformly in 7.
)
)

~n Py

(i
(iii

(iv

g()ﬁF
FE
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We shall construct the enumeration f so that f~*(2) =. F'. Let s and ¢ be two
distinct elements of N. Fix also two numbers z, and z, such that g(z,) ~ s and

g(z:) ~t.
For 2 € N set
g(z/2) if z is even,
flz)~ (s ife=2z+1and z € F,
i ife=2z4+1and z¢ F.
Since ”=" and ”#” are among the underlined predicates of 2, we have that
F <. f7Y(). To prove that f~'(2) <. F consider the partial predicate R; of 2.
Let 24, ..., 2., be arbitrary natural numbers. Define the natural numbers yy, ..., ¥y,

by means of the following recursive in F’ procedure. Let 1 < j < r;. If ; is even
then let y; = 2;/2. If 2; =22+ 1 and z € F, then let y; = z,. If 2; =224 1 and
z & F, then let y; = z,. Clearly

<$17 .. .7$h> € f_l(RZ) <~ <y1, .. '7yh> € g_l(RZ)
Since g7 () < F, from the last equivalence it follows that f~'(R;) <. F. So we
obtain that f~'(A) <, F.
To prove (2) it is sufficient to show that if v < ¢, then f~*(B,) <. F) uniformly
in 7. Denote by E; the set f~'(=). Clearly for all ¥ < ¢ we have that F; and

g~ (B,) are e-reducible to FO uniformly in 5. Let us fix a v < ¢. From the
definition of f it follows that

FHBy) ={e: (Fy e g™ (B,) (2, 2y) € Ey)}.

Therefore f~1(B,) <. F) uniformly in 7.
It remains to see that f~1(A) £. F(®). Assume that f~1(A) <. F(®). Clearly

HA) = o 2n e fA)),
Then g7(A) <, f~1(A) <, F. A contradiction. [
4.4. Definition. Let @) be a total subset of N and ¢ < w%. An enumeration

[ of & is & Q-acceptable (with respect to the sequence {B,} <) if f satisfies the
following conditions:

(i) The enumeration degree of f~(2) is total.
(i) (Vv < O(fUB,) <. (f712)Y) uniformly in 7.
(iii) (71N = Q.
4.5. Theorem.(AJIT1) Given a total set Q) such that P; <. Q, one can construct
a &, Q-acceptable enumeration f <, Q.

Proof. Repeat the proof of the previous Theorem without bothering about the set
A O

4.6. Theorem.(AJIT2) Let & < w&E and let A C N. Let £ = max(a + 1,().
Suppose that ) >. Pe, Q) is a total set and for all £, Q-acceptable enumerations f
of A we have that f~H(A) <. (f~1 (). Then A is forcing a-definable on 2.
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Proof. First we shall show that At <_ ). By the previous Theorem there exists
an enumeratlon g of 2 such that ¢ <. @ and g is &, Q-acceptable. Then g='(A) <,
(g~ (1)), By the monotonicity of the enumeration jump we can conclude that

(971 (A)) <e (g7 (@A) <o (g7 ()@

Since (g7'(A))* <. (¢7(A))’, we get that (¢7'(A))T <. Q. Therefore both A and
N\ A are enumeration reducible to @) and hence At <, Q

Assume that A is not forcing a-definable on 2. Applying Theorem 4.3 we obtain
an &, Q-acceptable enumeration f such that f~1(A) €. (f~1(A))*). A contradic-
tion. O

5. NORMAL FORM OF THE FORCING DEFINABLE SETS

In this section we shall show that the forcing definable sets on the partial structure
2 coincide with the sets which are definable on %l by means of a certain kind of
positive recursive X2 formulae. This formulae can be considered as a modification
of the formulae introduced in [1], which is appropriate for their use on abstract
structures.

Let L = {Ty,..., T} be the first order language corresponding to the structure
2. So every T; is an r;-ary predicate symbol. Let {P,},<¢ be a recursive sequence
of unary predicate symbols intended to represent the sets_Bv. We shall suppose also
fixed a sequence X,...,X,,... of variables. The variables will be denoted by the
letters X, Y, W possibly indexed.

Next we define for o < wf& the ¥t formulae. The definition is by transfinite
recursion on « and goes along with the definition of indices (codes) for every formula.
We shall leave to the reader the explicit definition of the indices of our formulae
which can be done in a natural way.

5.1. Definition.

(i) Let & = 0. The elementary ¥F formulae are formulae in prenex normal
form with a finite number of existential quantifiers and a matrix which is a
finite conjunction of atomic predicates built up from the variables and the
predicate symbols 17, ...,T; and F,.

(i) Let « = 8+ 1 and o < (. An elementary 7 formula is in the form

Y, AVM (X, L XL YY),

where M is a finite conjunction of atoms of the form P, (X;) or P,(Y;), X}
formulae and negations of Eg’ formulae with free variables among X, ..., X,
Yy, Yo

(iii) Let o« =G+ 1 and a > (. An elementary X} formula is in the form

Y, AVM (X, L XL YY),

where M is a finite conjunction of atoms of Eg’ formulae and negations of
Eg’ formulae with free variables among Xy, ..., X;, Y1,...,Y,,.
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(iv) Let a =lim a(p) be a limit ordinal and «a < . The elementary X% formula
are in the form

Y, AVM (X, L XL YY),

where M is a finite conjunction of atoms of the form P, (X;) or Pa(Y}) and
El'(p) formulae with free variables among Xy, ..., X;, Yi,..., ¥,,.

(v) Let a =lim a(p) be a limit ordinal and & > {. The elementary X} formula
are in the form

Y, AVM (X, L XL YY),

where M is a finite conjunction of El'(p) formulae with free variables among
D CTIIAD. €7 I

(vi) A ¥t formula with free variables among X,,..., X, is an r.e. infinitary
disjunction of elementary ¥} formulae with free variables among X,..., X;.

Notice that the X1 formulae are effectively closed under existential quantification
and infinitary r.e. disjunctions.

Let @ be a X} formula with free variables among Wi, ..., W, and let ¢,... ¢,
be elements of N. Then by 2 = & (W, /t,,..., W, /t,) we shall denote that ® is true
on 2 under the variable assignment v such that v(W;) =t1,...,0(W,) =t,.

5.2. Definition. Let A C N and let @ < (. The set A is formally a-definable
on 2 with respect to the sequence {B,},<, if there exists a ¥} formula ¢ with
free variables among Wy, ..., W, X and elements ¢, ...,{. of N such that for every
element s of N the following equivalence holds:

s € A — U ):Q(Wl/t17...7wr/tr7X/S).

We shall show that every forcing a-definable set is formally a-definable.

Let var be an effective mapping of the natural numbers onto the variables. Given
a natural number z, by X we shall denote the variable var(z).

Let y; < y2 < ... < yg be the elements of a finite set D, let (2 be one of the
quantifiers 3 or ¥V an let ® be an arbitrary formula. Then by Q(y : y € D)® we
shall denote the formula QY; ...QY,®.

5.3. Lemma. Let D = {wy,...,w,} be a finite and not empty set of natural num-
bers and x,e be elements of N. Let o < w&E. There exists an uniform recursive
way to construct a ©F formula O . . with free variables among Wi, ..., W, such

that for every finite part 6 such that dom(8) = D the following equivalence is true:

A= B, (W1 /8(wr), ..., W, /6(w,)) < &Ik, F.(2).

Proof. We shall construct the formula ®% , . by means of effective transfinite recur-
sion on « following the definition of the forcing.

1) Let « =0. Let V. ={v: (v,z) € W.}. Consider an element v of V. For every
u € D, define the atom II, as follows
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a) If uw=(0,(},...,2})), where 1 < i < k and all 2},..., 2} are elements

of D, then let [T, = T;(X¥,..., X").
b) If u = (2,2,) and 2, € D, then let I, = P,(X,).
c) Let I, = W, # W, in the other cases.
Set I, = Ayep, lu and @3 . =V, v 1L,
2) Let a = 341 Let again V ={v: (v,2) e W.} and v € V.
For every u € D, define the formula II, as follows:
a) If u=(0,e,,z,), then let I, = (I)ﬁD,eu,xu
b) If u= (1, e,,2,), then let
Hu = _'[ \/ (Ely € D* \D)Q%*,eu,xu]‘
D*2D
¢) If o < ¢, u=1(2,2,) and z, € D then let I, = P,(X,).
d) Let II, = q)fo},o,o A —|(I>f0}7070 in the other cases.
Now let TT, = A,¢p, [l and set @3, . =V, ¢y I1,.
3) Let @ = lim ao(p) be a limit ordinal. Let V = {v : (v,2) € W.}. Consider a
v € V. For every element u of D, we define the formula II, as follows:
a) If u = (0, py, €4, ©,), then let TI,, = (I)%(,ZZ?M'
b) If < ¢, u=(2,z,) and z, € D, then let I, = P,(X,).
c) Let IT, = (I)?é?,)o,o A —|(I>?é?070 in the other cases.
Set I, = Ayep, I, and (I)%,e,x = Vyev L
An easy transfinite induction on a shows that for every a the ¥}t formula &3 _,
satisfies the requirements of the Lemma. [

5.4. Theorem. Let o < w&® and let A C N be forcing a-definable on 2A. Then A
s formally a-definable on .

Proof. Suppose that for all s € N we have that
s€A < (T 20)(r(z) s & 7l F.(2)),

where ¢ is a finite part, e, z are fixed elements of N. Let D = dom(9) = {wy,...,w,}
and let §(w;) =¢;,7=1,...,r. Consider a finite set D* D DU{z}). By the previous
Lemma

2 ): El(y € Dr \ (D U {x}))q)%*,e,x(wl/th A Wr/trv X/S)
if and only if there exists a finite part 7 such that dom(r) = D*, 7 D é,7(z) ~ s
and 7 Ik, F.(z). Hence we have that for all s € N the following equivalence is true:

seA = AE \/ 3yeD\(DU{z})®p.  ,(Wifts,.... W, /t,).
D*DDU{z}
From here we can conclude that A is formally a-definable on . [J

5.5. Theorem. Let A C N. Suppose that a < w¢K and € = max(a+ 1,¢). Let Q
be a total set such that P, <, (). Then the following are equivalent:

(1) A is relatively a-intrinsic with respect to the sequence {B,} <.
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(2) For every &, Q-acceptable enumeration f of 2, f~(A) <. (f~HR0)).
(3) A is forcing a-definable on 2.
(4) A is formally a-definable on 2.

Proof. The implication (1) =
The implication (2)
The implication (3)
The last implication (4) =

(2) is obvious.
3) follows from Theorem 4.6.
4) follows from the previous Theorem.
(1) can be proved by transfinite induction on a. O

=
=

N e

The characterization of the relatively a-intrinsic sets can be obtained from the
Theorem above by taking ( = 0 and By = N. In particular if the structure 2| is
total, one can easyly derive from here the normal form of the relatively intrinsically
Y0 sets, obtained in [2] and [3]. Moreover we can get a slight improvement of the
upper bound of the level of genericity compared to that obtained in [3]. Namely
the following is true:

5.6. Corollary. Suppose that 2 is a partial structure with recursively enumerable
underlined predicates and o < W%, Let A C N and let for all enumerations f of 2
such that (f=H())+Y =, §FD we have that f~1(A) is enumeration reducible to
(f~H())(®). Then A is relatively a-intrinsic on 2.

The last Corollary generalizes the respective result (Corollary V.18, [3]), where
the same upper bound is obtained for recursive structures under the additional
condition that A is a AY_, set.
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