THE GROUPS AUT(D/,) AND AUT(D.) ARE ISOMORPHIC

HRISTO GANCHEV AND IVAN SOSKOV

In the present paper we continue the study of the partial ordering D,, of the
w-enumeration degrees initiated in [2]. We show that the enumeration degrees are
first order definable in the structure D’ of the w-enumeration degrees augmented
by the jump operator and that the groups of the automorphisms of enumeration
degrees and of the automorphisms of D, are isomorphic.

1. THE w-ENUMERATION DEGREES

Denote by S the set of all sequences B = {By }r<. of sets of natural numbers.
Consider an element B of S and let the jump class Jg defined by B be the set of
the Turing degrees of all X C N such that (Vk)(By, is r.e. in X*) uniformly in k).

Given two sequences A and B let A <, B (A is uniformly reducible to B) if
Jg € Jq and A =, B if Jg = Jyu. Clearly ”"<,” is a reflexive and transitive
relation on S and "=,” is an equivalence relation on S.

For every sequence B let d,,(B) = {A: A=, B} and let D, = {d,(B) : B € S}.
The elements of D, are called the w-enumeration degrees.

The w-enumeration degrees can be ordered in the usual way. Given two elements
a=d,(A) and b = d,(B) of D, let a <, b if A <, B. Clearly D, = (D,, <.)
is a partial ordering with least element 0, = d,, (0, ), where all members of ), are
equal to 0.

Given two sequences A = {A;} and B = {By} of sets of natural numbers let
A® B = {A; @ Br}. Is it easy to see that Jagn = Ja4 N Jg and hence every
two elements a = d,(A) and b = d,(B) of D, have a least upper bound aUb =
d,(A e B).

There is a natural embedding of the enumeration degrees into the w-enumeration
degrees. Given a set A of natural numbers denote by A T w the sequence {Ag }r<w,
where Ag = A and for all k > 1, A;, = 0.

1.1. Proposition. For every A BCN, ATw<, Blw < A<, B.

Let D1 = {d,(A T w): AC N} and Dy = (Dy,0,,U, <,).

Define the mapping k : D, — D; by k(de(A4)) = d,(A T w). Clearly & is an
isomorphism from D, to D; and hence k is an embedding of D, into D,,.

The elements of D; form a base of the automorphisms of D,. Indeed given
a sequence A let J4 = {a:a € D, & d,(A) <, r(a)}. Let ¢ be the Roger’s

embedding of the Turing degrees D7 into the enumeration degrees. It is easy to
see that ¢(J4) = J§ N¢(Dr) and hence

A<y B <= Jz CJ5.
Suppose that ¢ is an automorphism of D,, and p(x) = x for x € D;. Let a € D,,
and A € a, B € ¢(a). Clearly
Ji={Hpx):a<,x&xeD}={rt(x):a<,x&x€D}=Jg.
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Hence A =, B and a = ¢(a).

2. THE JUMP OPERATOR ON THE w-ENUMERATION DEGREES

Given a sequence B = { By, }r<. of sets of natural numbers we define the respec-
tive jump sequence P(B) = {Pr(B)}r<. by induction on k:
(i) Po(B) = Bo;
(i) Pes1(B) = Pe(B) & Bisa.
We shall assume fixed an effective coding of all finite sets of natural numbers.
By D, we shall denote the finite set with code v.
Given two sets of W and A of natural numbers, let

W(A) ={z: (Fv)({z,v) e W & D, C A)}.
Let Wy, W1,... be a Gédel numbering of the recursively enumerable sets.
The following result from [3] gives an explicit definition of the uniform reducibil-
ity:
2.1. Theorem. Let A = {Ay} and B = {By} belong to S. Then A <, B if and
only if there exists a recursive function h such that (Vk)(Ax = W) (Pr(B)))-

2.2. Corollary. For every A€ S, A=, P(A).

Given a sequence A € S set A’ = {P14,(A)}. We have that J4 = {a’ :a € Ju}
and hance A <, B implies A’ <, B’. So we may define a jump operator ”’” on the
w-enumeration degrees by letting d,, (A)" = d,,(A’). On can easily see that the jump
operator is monotone and for every w-enumeration degree a, a <., a’. Moreover the
jump operator agrees with the enumeration jump under the embedding x defined
in the previous section. Namely for every enumeration degree a, k(a') = k(a)’.

Some of the properties of the jump operator on the w-enumeration degrees are

surprising. For example we have the following jump inversion theorem:

2.3. Theorem. Letn > 0. Leta,b € D, be such that a(™ <_ b.Then the equation
x(") = b has a least solution above a.

Proof. Let a = d,(A) and b = d,,(B). Since a™ <, b we have that { Py, (A)} <,
B, and therefore P, (A) <. By. Consider the sequence X = {Xj}x<,, where for
0<k<n, X =A, and for £k > n, Xy, = Br_,. We have that for 0 < k < n,
Pr(A) = Py(X) and for k > 0, Pyyn(X) =. Pr(B) uniformly in k. Thus we obtain
that A <, X and X =, B.

Now suppose that ) € S is such that A <, ) and Y™ =, B. Then we have
that for 0 < k < n, Py(A) <. Pr(Y) and for all k, P+ () =. Pi(B) uniformly in
k. Therefore X <, ). O

The last theorem shows that the structures D.” and D, are not elementary
equivalent.

Now using this property of the w-enumeration degrees we will show that the set
of all elements of D; is first order definable in D’

For a € D, by I(a) we shall denote the set of all least jump inverts over a, i.e.,

Ia)={x|a<,x&Vy(a<,y <, x=1Y <, x)}.
I(a) has the following properties:
() a<y,z<,x&x€l(a)=2z¢€ I(a)
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Proof. (iv) Suppose that d,,(B) € I(d,(A)). From the definition of I(d.(A)) we
obtain that A <, B and hence Ay <. By. Now assume that A9 <. By and
consider the sequence Y = (Ag, P1(B), Py(B),...). Then it is clear, that Y <, B
and ' =, B’. Besides, from A <, B we obtain A <, Y. Therefore d,(A) <,
dy(Y) <y dw(B) and d,,(Y)" = d,(B)’. But this contradicts d,,(B) € I(d, (%)) and
thus the statement Ag =, By is proven.
The other five properties are corollaries of property (iv) and the definition of
I(a).
O

Using (iii), (v) and (vi) we obtain a characterization the degrees in D; in the form:
An w-enumeration degree a is in D; iff I(a) is a maximal element of {I(x) | x € D, }
with respect to the set theoretical inclusion.

From here we obtain that the set of all degrees in D; is first order definable in
D.,'. Indeed, consider the binary predicate I defined by:

I(a,x) <= a<,x&Vyla<, y <, x=Yy <, X).
Clearly x € I(a) <= I(a,x) and therefore:
a€D; <= I(a)is maximal <

Vb(vx(I(a,x) = I(b,x)) = Vx(I(b,x) = I(a,x))),
which is a first order formula.

The definability of D; shows that every automorphism of D, induces an au-
tomorphism of the structure D;. On the other hand, since D; is a base of the
automorphisms of D, we have that if two automorphisms of D,, induce the same
automorphism of D; then they coincide. In particular every nontrivial automor-
phism of D,, induces a nontrivial automorphism of D;.

Now we are going to prove that every automorphism of D.’ can be extended to
an automorphism of D,,’. We will use the following Theorem:

2.4. Theorem. Let ¢ be an automorphism of D,'. Then for alla > 04, p(a) = a.

The proof of the last theorem follows along the lines the proof of the theorem
that every automorphism of D7’ is identity on the cone above 0" presented in [1].

Suppose that ¢ is an automorphism of D,’. We shall show, that given a sequence
A € S one can construct a sequence B such that Jg = {¢(a) : a € J§}. Indeed let
pr = de(Pr(A)). Notice that if k > 4 then pi > 0™ and hence ¢(py) = pk.

Fix some elements By, By, B2, B3 of ¢(po), ¢(p1), ¢(p2) and ¢(ps) respectively
and let for k > 4, By, = Pi(A).

Now let x € J§ and X € x. Then d,(A) <, k(x) and hence P(A) <, X T w.
Since for all k, Py (X T w) is enumeration equivalent to X *) uniformly in k we have
that for all k, Py (A) <. X uniformly in k. Now let Y € o(x). We have to show
that B <, Y 1 w. For it is sufficient to show that for all k, B, <. Y*) uniformly
in k. Notice that for all k, X®*) € x*) and Y*) € p(x(*)). Hence X4 =, Yy,
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From here it follows immediately that for all & > 4, By <, y (®) uniformly in k& and
hence B <, Y T w.

So we have proved the inclusion ¢(J%) C Jg. The proof of the reverse inclusion
is similar.

Let ® : D, — D, be defined as follows. Given a € D,,, let A € a and B be such
that Jg = {p(x) : x € J4}. Let ®(a) = d.,(B).

Since for every two sequences A and B, A <, B <= Jg C J§ the mapping ¢
is well defined and is an automorphism of D,,. It is easy to see also that for every
element a of D1, ®(a) = r(p(k~!(a))). Hence for every element x of D; we have
that ®(x’) = ®(x)’. From here it follows that ® is an automorphism of D,’ by
means of the following:

2.5. Theorem. Let ® be an automorphism of D,, such that for allx € Dy, ®(x') =
®(x)'. Then ® is an automorphism of D,

Thus we have shown that there is a mapping 7 : Aut(D,') — Aut(D,’), acting
by the rule m(p) = ®, where ® is defined from ¢ as above. It is clear that 7 is a
homomorphism of groups and since D; is an automorphism base for D,,’, we have
that 7 is one to one. In order to show that 7 is an isomorphism of groups it remains
to show that 7 is onto. Indeed. Suppose that ¢ € Aut(D,,). Then ¢ = k™ 1ogp, ok
is an automorphism of D.’. Now, we have that

7(p)|p, = kopor t=kokr1 opip, okoK ' = ép,

and hence ¢ = 7(yp).
So we have proven the following theorem.

2.6. Theorem. The groups Aut(D,') and Aut(D,") are isomorphic.

Finally, according to [4] the jump operation in D, is first order definable and
hence every automorphism of D, is an automorphism of D.” and vis versa, i.e.,
Aut(D.) = Aut(D.'). So we can reformulate Theorem 2.6 in the form:

2.7. Theorem. The groups Aut(D,.) and Aut(D,’) are isomorphic.
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