THE GROUPS $AUT(\mathcal{D}'_{\omega})$ AND $AUT(\mathcal{D}_{e})$ ARE ISOMORPHIC ### HRISTO GANCHEV AND IVAN SOSKOV In the present paper we continue the study of the partial ordering \mathcal{D}_{ω} of the ω -enumeration degrees initiated in [2]. We show that the enumeration degrees are first order definable in the structure \mathcal{D}_{ω}' of the ω -enumeration degrees augmented by the jump operator and that the groups of the automorphisms of enumeration degrees and of the automorphisms of \mathcal{D}_{ω}' are isomorphic. ### 1. The ω -enumeration degrees Denote by \mathcal{S} the set of all sequences $\mathcal{B} = \{B_k\}_{k < \omega}$ of sets of natural numbers. Consider an element \mathcal{B} of \mathcal{S} and let the *jump class* $J_{\mathcal{B}}$ defined by \mathcal{B} be the set of the Turing degrees of all $X \subseteq \mathbb{N}$ such that $(\forall k)(B_k \text{ is r.e. in } X^{(k)} \text{ uniformly in } k)$. Given two sequences \mathcal{A} and \mathcal{B} let $\mathcal{A} \leq_u \mathcal{B}$ (\mathcal{A} is uniformly reducible to \mathcal{B}) if $J_{\mathcal{B}} \subseteq J_{\mathcal{A}}$ and $\mathcal{A} \equiv_u \mathcal{B}$ if $J_{\mathcal{B}} = J_{\mathcal{A}}$. Clearly " \leq_u " is a reflexive and transitive relation on \mathcal{S} and " \equiv_u " is an equivalence relation on \mathcal{S} . For every sequence \mathcal{B} let $d_{\omega}(\mathcal{B}) = \{\mathcal{A} : \mathcal{A} \equiv_{u} \mathcal{B}\}$ and let $\mathcal{D}_{\omega} = \{d_{\omega}(\mathcal{B}) : \mathcal{B} \in \mathcal{S}\}$. The elements of \mathcal{D}_{ω} are called the ω -enumeration degrees. The ω -enumeration degrees can be ordered in the usual way. Given two elements $\mathbf{a} = d_{\omega}(\mathcal{A})$ and $\mathbf{b} = d_{\omega}(\mathcal{B})$ of \mathcal{D}_{ω} , let $\mathbf{a} \leq_{\omega} \mathbf{b}$ if $\mathcal{A} \leq_{u} \mathcal{B}$. Clearly $\mathcal{D}_{\omega} = (\mathcal{D}_{\omega}, \leq_{\omega})$ is a partial ordering with least element $\mathbf{0}_{\omega} = d_{\omega}(\emptyset_{\omega})$, where all members of \emptyset_{ω} are equal to \emptyset . Given two sequences $\mathcal{A} = \{A_k\}$ and $\mathcal{B} = \{B_k\}$ of sets of natural numbers let $\mathcal{A} \oplus \mathcal{B} = \{A_k \oplus B_k\}$. Is it easy to see that $J_{\mathcal{A} \oplus \mathcal{B}} = J_{\mathcal{A}} \cap J_{\mathcal{B}}$ and hence every two elements $\mathbf{a} = d_{\omega}(\mathcal{A})$ and $\mathbf{b} = d_{\omega}(\mathcal{B})$ of \mathcal{D}_{ω} have a least upper bound $\mathbf{a} \cup \mathbf{b} = d_{\omega}(\mathcal{A} \oplus \mathcal{B})$. There is a natural embedding of the enumeration degrees into the ω -enumeration degrees. Given a set A of natural numbers denote by $A \uparrow \omega$ the sequence $\{A_k\}_{k<\omega}$, where $A_0 = A$ and for all $k \geq 1$, $A_k = \emptyset$. # **1.1. Proposition.** For every $A, B \subseteq \mathbb{N}$, $A \uparrow \omega \leq_u B \uparrow \omega \iff A \leq_e B$. Let $$\mathcal{D}_1 = \{d_{\omega}(A \uparrow \omega) : A \subseteq \mathbb{N}\}$$ and $\mathcal{D}_1 = (\mathcal{D}_1, \emptyset_{\omega}, \cup, \leq_{\omega}).$ Define the mapping $\kappa : \mathcal{D}_e \to \mathcal{D}_1$ by $\kappa(d_e(A)) = d_{\omega}(A \uparrow \omega)$. Clearly κ is an isomorphism from \mathcal{D}_e to \mathcal{D}_1 and hence κ is an embedding of \mathcal{D}_e into \mathcal{D}_{ω} . The elements of \mathcal{D}_1 form a base of the automorphisms of \mathcal{D}_{ω} . Indeed given a sequence \mathcal{A} let $J_{\mathcal{A}}^e = \{\mathbf{a} : \mathbf{a} \in \mathcal{D}_e \& d_{\omega}(\mathcal{A}) \leq_{\omega} \kappa(\mathbf{a})\}$. Let ι be the Roger's embedding of the Turing degrees \mathcal{D}_T into the enumeration degrees. It is easy to see that $\iota(J_{\mathcal{A}}) = J_{\mathcal{A}}^e \cap \iota(\mathcal{D}_T)$ and hence $$\mathcal{A} \leq_u \mathcal{B} \iff J_{\mathcal{B}}^e \subseteq J_{\mathcal{A}}^e$$. Suppose that φ is an automorphism of \mathcal{D}_{ω} and $\varphi(\mathbf{x}) = \mathbf{x}$ for $\mathbf{x} \in \mathcal{D}_1$. Let $\mathbf{a} \in \mathcal{D}_{\omega}$ and $\mathcal{A} \in \mathbf{a}$, $\mathcal{B} \in \varphi(\mathbf{a})$. Clearly $$J_{\mathcal{B}}^{e} = \{\kappa^{-1}(\varphi(\mathbf{x})) : \mathbf{a} \leq_{\omega} \mathbf{x} \& \mathbf{x} \in \mathcal{D}_{1}\} = \{\kappa^{-1}(\mathbf{x}) : \mathbf{a} \leq_{\omega} \mathbf{x} \& \mathbf{x} \in \mathcal{D}_{1}\} = J_{\mathcal{A}}^{e}.$$ Hence $\mathcal{A} \equiv_u \mathcal{B}$ and $\mathbf{a} = \varphi(\mathbf{a})$. 2. The jump operator on the ω -enumeration degrees Given a sequence $\mathcal{B} = \{B_k\}_{k < \omega}$ of sets of natural numbers we define the respective jump sequence $\mathcal{P}(\mathcal{B}) = \{\mathcal{P}_k(\mathcal{B})\}_{k < \omega}$ by induction on k: - (i) $\mathcal{P}_0(\mathcal{B}) = B_0$; - (ii) $\mathcal{P}_{k+1}(\mathcal{B}) = \mathcal{P}_k(\mathcal{B})' \oplus B_{k+1}$. We shall assume fixed an effective coding of all finite sets of natural numbers. By D_v we shall denote the finite set with code v. Given two sets of W and A of natural numbers, let $$W(A) = \{x : (\exists v)(\langle x, v \rangle \in W \& D_v \subseteq A)\}.$$ Let W_0, W_1, \ldots be a Gödel numbering of the recursively enumerable sets. The following result from [3] gives an explicit definition of the uniform reducibility: - **2.1. Theorem.** Let $A = \{A_k\}$ and $B = \{B_k\}$ belong to S. Then $A \leq_u B$ if and only if there exists a recursive function h such that $(\forall k)(A_k = W_{h(k)}(\mathcal{P}_k(\mathcal{B})))$. - **2.2.** Corollary. For every $A \in S$, $A \equiv_u \mathcal{P}(A)$. Given a sequence $A \in \mathcal{S}$ set $A' = \{\mathcal{P}_{1+n}(A)\}$. We have that $J_{A'} = \{\mathbf{a}' : \mathbf{a} \in J_A\}$ and hance $A \leq_u \mathcal{B}$ implies $A' \leq_u \mathcal{B}'$. So we may define a jump operator "'" on the ω -enumeration degrees by letting $d_{\omega}(A)' = d_{\omega}(A')$. On can easily see that the jump operator is monotone and for every ω -enumeration degree \mathbf{a} , $\mathbf{a} <_{\omega} \mathbf{a}'$. Moreover the jump operator agrees with the enumeration jump under the embedding κ defined in the previous section. Namely for every enumeration degree \mathbf{a} , $\kappa(\mathbf{a}') = \kappa(\mathbf{a})'$. Some of the properties of the jump operator on the ω -enumeration degrees are surprising. For example we have the following jump inversion theorem: **2.3. Theorem.** Let n > 0. Let $\mathbf{a}, \mathbf{b} \in \mathcal{D}_{\omega}$ be such that $\mathbf{a}^{(n)} \leq_{\omega} \mathbf{b}$. Then the equation $\mathbf{x}^{(n)} = \mathbf{b}$ has a least solution above \mathbf{a} . Proof. Let $\mathbf{a} = d_{\omega}(\mathcal{A})$ and $\mathbf{b} = d_{\omega}(\mathcal{B})$. Since $\mathbf{a}^{(n)} \leq_{\omega} \mathbf{b}$ we have that $\{P_{k+n}(\mathcal{A})\} \leq_{u} \mathcal{B}$, and therefore $P_{n}(A) \leq_{e} B_{0}$. Consider the sequence $\mathcal{X} = \{X_{k}\}_{k < \omega}$, where for $0 \leq k < n$, $X_{k} = A_{k}$, and for $k \geq n$, $X_{k} = B_{k-n}$. We have that for $0 \leq k < n$, $P_{k}(\mathcal{A}) = P_{k}(\mathcal{X})$ and for $k \geq 0$, $P_{k+n}(\mathcal{X}) \equiv_{e} P_{k}(\mathcal{B})$ uniformly in k. Thus we obtain that $\mathcal{A} \leq_{u} \mathcal{X}$ and $\mathcal{X}^{(n)} \equiv_{u} \mathcal{B}$. Now suppose that $\mathcal{Y} \in \mathcal{S}$ is such that $\mathcal{A} \leq_u \mathcal{Y}$ and $\mathcal{Y}^{(n)} \equiv_u \mathcal{B}$. Then we have that for $0 \leq k < n$, $P_k(\mathcal{A}) \leq_e P_k(\mathcal{Y})$ and for all k, $P_{n+k}(\mathcal{Y}) \equiv_e P_k(\mathcal{B})$ uniformly in k. Therefore $\mathcal{X} \leq_u \mathcal{Y}$. The last theorem shows that the structures \mathcal{D}_{e}' and \mathcal{D}_{ω}' are not elementary equivalent. Now using this property of the ω -enumeration degrees we will show that the set of all elements of \mathcal{D}_1 is first order definable in \mathcal{D}_{ω}' . For $\mathbf{a} \in \mathcal{D}_{\omega}$, by $I(\mathbf{a})$ we shall denote the set of all least jump inverts over \mathbf{a} , i.e., $$I(\mathbf{a}) = \{ \mathbf{x} \mid \mathbf{a} \leq_{\omega} \mathbf{x} \& \forall \mathbf{y} (\mathbf{a} \leq_{\omega} \mathbf{y} <_{\omega} \mathbf{x} \Longrightarrow \mathbf{y}' <_{\omega} \mathbf{x}') \}.$$ $I(\mathbf{a})$ has the following properties: (i) $$\mathbf{a} \leq_{\omega} \mathbf{z} \leq_{\omega} \mathbf{x} \& \mathbf{x} \in I(\mathbf{a}) \Longrightarrow \mathbf{z} \in I(\mathbf{a})$$ - (ii) $\mathbf{x}_1, \mathbf{x}_2 \in I(\mathbf{a}) \Longrightarrow \mathbf{x}_1 \cup \mathbf{x}_2 \in I(\mathbf{a})$ - (iii) $I(\mathbf{a}_1) \subseteq I(\mathbf{a}_2) \Longrightarrow \mathbf{a}_2 \leq_{\omega} \mathbf{a}_1$ - (iv) $\mathbf{d}_{\omega}(\mathcal{B}) \in I(\mathbf{d}_{\omega}(\mathcal{A})) \Longrightarrow B_0 \equiv_e A_0$ - (v) $I(\mathbf{d}_{\omega}(\mathcal{A})) \subseteq I(\mathbf{d}_{\omega}(\mathcal{B})) \iff \mathcal{B} \leq_u \mathcal{A} \& A_0 \equiv_e B_0$ - (vi) $\mathbf{d}_{\omega}(\mathcal{B}) \in I(\kappa(A)) \iff B_0 \equiv_e A$ Proof. (iv) Suppose that $\mathbf{d}_{\omega}(\mathcal{B}) \in I(\mathbf{d}_{\omega}(\mathcal{A}))$. From the definition of $I(\mathbf{d}_{\omega}(\mathcal{A}))$ we obtain that $\mathcal{A} \leq_u \mathcal{B}$ and hence $A_0 \leq_e B_0$. Now assume that $A_0 <_e B_0$ and consider the sequence $\mathcal{Y} = (A_0, P_1(\mathcal{B}), P_2(\mathcal{B}), \ldots)$. Then it is clear, that $\mathcal{Y} <_u \mathcal{B}$ and $\mathcal{Y}' \equiv_u \mathcal{B}'$. Besides, from $\mathcal{A} \leq_u \mathcal{B}$ we obtain $\mathcal{A} \leq_u \mathcal{Y}$. Therefore $d_{\omega}(\mathcal{A}) \leq_\omega d_{\omega}(\mathcal{Y}) <_\omega d_{\omega}(\mathcal{B})$ and $d_{\omega}(\mathcal{Y})' = d_{\omega}(\mathcal{B})'$. But this contradicts $\mathbf{d}_{\omega}(\mathcal{B}) \in I(\mathbf{d}_{\omega}(\mathfrak{A}))$ and thus the statement $A_0 \equiv_e B_0$ is proven. The other five properties are corollaries of property (iv) and the definition of $I(\mathbf{a})$. Using (iii), (v) and (vi) we obtain a characterization the degrees in \mathcal{D}_1 in the form: An ω -enumeration degree \mathbf{a} is in \mathcal{D}_1 iff $I(\mathbf{a})$ is a maximal element of $\{I(\mathbf{x}) \mid \mathbf{x} \in \mathcal{D}_{\omega}\}$ with respect to the set theoretical inclusion. From here we obtain that the set of all degrees in \mathcal{D}_1 is first order definable in \mathcal{D}_{ω}' . Indeed, consider the binary predicate I defined by: $$I(\mathbf{a},\mathbf{x}) \iff \mathbf{a} \leq_{\omega} \mathbf{x} \ \& \ \forall \mathbf{y} (\mathbf{a} \leq_{\omega} \mathbf{y} <_{\omega} \mathbf{x} \Longrightarrow \mathbf{y}' <_{\omega} \mathbf{x}').$$ Clearly $\mathbf{x} \in I(\mathbf{a}) \iff I(\mathbf{a}, \mathbf{x})$ and therefore: $$\mathbf{a} \in \mathcal{D}_1 \iff I(\mathbf{a}) \text{ is maximal } \iff$$ $$\forall \mathbf{b}(\forall \mathbf{x}(I(\mathbf{a}, \mathbf{x}) \Rightarrow I(\mathbf{b}, \mathbf{x})) \Longrightarrow \forall \mathbf{x}(I(\mathbf{b}, \mathbf{x}) \Rightarrow I(\mathbf{a}, \mathbf{x}))),$$ which is a first order formula. The definability of \mathcal{D}_1 shows that every automorphism of \mathcal{D}_{ω}' induces an automorphism of the structure \mathcal{D}_1 . On the other hand, since \mathcal{D}_1 is a base of the automorphisms of \mathcal{D}_{ω} we have that if two automorphisms of \mathcal{D}_{ω} induce the same automorphism of \mathcal{D}_1 then they coincide. In particular every nontrivial automorphism of \mathcal{D}_{ω} induces a nontrivial automorphism of \mathcal{D}_1 . Now we are going to prove that every automorphism of \mathcal{D}_{e}' can be extended to an automorphism of \mathcal{D}_{ω}' . We will use the following Theorem: # **2.4.** Theorem. Let φ be an automorphism of \mathcal{D}_e' . Then for all $\mathbf{a} \geq \mathbf{0}^{(4)}$, $\varphi(\mathbf{a}) = \mathbf{a}$. The proof of the last theorem follows along the lines the proof of the theorem that every automorphism of \mathcal{D}_{T}' is identity on the cone above $\mathbf{0}'''$ presented in [1]. Suppose that φ is an automorphism of \mathcal{D}_e' . We shall show, that given a sequence $\mathcal{A} \in \mathcal{S}$ one can construct a sequence \mathcal{B} such that $J_{\mathcal{B}}^e = \{\varphi(\mathbf{a}) : \mathbf{a} \in J_{\mathcal{A}}^e\}$. Indeed let $\mathbf{p}_k = d_e(\mathcal{P}_k(\mathcal{A}))$. Notice that if $k \geq 4$ then $\mathbf{p_k} \geq \mathbf{0}^{(4)}$ and hence $\varphi(\mathbf{p_k}) = \mathbf{p_k}$. Fix some elements B_0, B_1, B_2, B_3 of $\varphi(\mathbf{p_0}), \varphi(\mathbf{p_1}), \varphi(\mathbf{p_2})$ and $\varphi(\mathbf{p_3})$ respectively and let for $k \geq 4$, $B_k = \mathcal{P}_k(\mathcal{A})$. Now let $\mathbf{x} \in J_A^e$ and $X \in \mathbf{x}$. Then $d_\omega(A) \leq_\omega \kappa(\mathbf{x})$ and hence $\mathcal{P}(A) \leq_u X \uparrow \omega$. Since for all k, $\mathcal{P}_k(X \uparrow \omega)$ is enumeration equivalent to $X^{(k)}$ uniformly in k we have that for all k, $\mathcal{P}_k(A) \leq_e X^{(k)}$ uniformly in k. Now let $Y \in \varphi(\mathbf{x})$. We have to show that $\mathcal{B} \leq_u Y \uparrow \omega$. For it is sufficient to show that for all k, $B_k \leq_e Y^{(k)}$ uniformly in k. Notice that for all k, $X^{(k)} \in \mathbf{x}^{(k)}$ and $X^{(k)} \in \varphi(\mathbf{x}^{(k)})$. Hence $X^{(k)} \equiv_e Y^{(k)}$. П From here it follows immediately that for all $k \geq 4$, $B_k \leq_e Y^{(k)}$ uniformly in k and hence $\mathcal{B} \leq_u Y \uparrow \omega$. So we have proved the inclusion $\varphi(J_{\mathcal{A}}^e) \subseteq J_{\mathcal{B}}^e$. The proof of the reverse inclusion is similar. Let $\Phi : \mathcal{D}_{\omega} \to \mathcal{D}_{\omega}$ be defined as follows. Given $\mathbf{a} \in \mathcal{D}_{\omega}$, let $\mathcal{A} \in \mathbf{a}$ and \mathcal{B} be such that $J_{\mathcal{B}}^{e} = \{ \varphi(\mathbf{x}) : \mathbf{x} \in J_{\mathcal{A}}^{e} \}$. Let $\Phi(\mathbf{a}) = d_{\omega}(\mathcal{B})$. Since for every two sequences \mathcal{A} and \mathcal{B} , $\mathcal{A} \leq_u \mathcal{B} \iff J_{\mathcal{B}}^e \subseteq J_{\mathcal{A}}^e$ the mapping Φ is well defined and is an automorphism of \mathcal{D}_{ω} . It is easy to see also that for every element \mathbf{a} of \mathcal{D}_1 , $\Phi(\mathbf{a}) = \kappa(\varphi(\kappa^{-1}(\mathbf{a})))$. Hence for every element \mathbf{x} of \mathcal{D}_1 we have that $\Phi(\mathbf{x}') = \Phi(\mathbf{x})'$. From here it follows that Φ is an automorphism of \mathcal{D}_{ω}' by means of the following: **2.5. Theorem.** Let Φ be an automorphism of \mathcal{D}_{ω} such that for all $\mathbf{x} \in \mathcal{D}_1$, $\Phi(\mathbf{x}') = \Phi(\mathbf{x})'$. Then Φ is an automorphism of \mathcal{D}_{ω}' . Thus we have shown that there is a mapping $\pi: \operatorname{Aut}(\mathcal{D}_e') \to \operatorname{Aut}(\mathcal{D}_\omega')$, acting by the rule $\pi(\varphi) = \Phi$, where Φ is defined from φ as above. It is clear that π is a homomorphism of groups and since \mathcal{D}_1 is an automorphism base for \mathcal{D}_ω' , we have that π is one to one. In order to show that π is an isomorphism of groups it remains to show that π is onto. Indeed. Suppose that $\phi \in \operatorname{Aut}(\mathcal{D}_\omega')$. Then $\varphi = \kappa^{-1} \circ \phi_{|\mathcal{D}_1} \circ \kappa$ is an automorphism of \mathcal{D}_e' . Now, we have that $$\pi(\varphi)_{|\mathcal{D}_1} = \kappa \circ \varphi \circ \kappa^{-1} = \kappa \circ \kappa^{-1} \circ \phi_{|\mathcal{D}_1} \circ \kappa \circ \kappa^{-1} = \phi_{|\mathcal{D}_1}$$ and hence $\phi = \pi(\varphi)$. So we have proven the following theorem. **2.6. Theorem.** The groups $Aut(\mathcal{D}_e')$ and $Aut(\mathcal{D}_\omega')$ are isomorphic. Finally, according to [4] the jump operation in \mathcal{D}_e is first order definable and hence every automorphism of \mathcal{D}_e is an automorphism of \mathcal{D}_e' and vis versa, i.e., $\operatorname{Aut}(\mathcal{D}_e) = \operatorname{Aut}(\mathcal{D}_e')$. So we can reformulate Theorem 2.6 in the form: **2.7. Theorem.** The groups $Aut(\mathcal{D}_e)$ and $Aut(\mathcal{D}_{\omega}')$ are isomorphic. ### References - [1] M. Lerman, Degrees of unsolvability, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1983. - [2] I. N. Soskov, The ω -enumeration degrees, Journal of Logic and Computation, to appear. - [3] Ivan Soskov and Bogomil Kovachev, *Uniform regular enumerations*, Mathematical Structures in Comp. Sci. **16** (2006), no. 5, 901–924. - [4] I. Sh. Kalimullin, Definability of the Jump Operator in the Enumeration Degrees, Journal of Mathematical Logic, Vol. 3, No. 2 (2003), 257-267 FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, SOFIA UNIVERSITY, 5 JAMES BOURCHIER BLVD, 1164 SOFIA, BULGARIA $E\text{-}mail\ address{:}\ \texttt{h.ganchev@gmail.com,}\ \texttt{soskov@fmi.uni-sofia.bg}$