INTRINSICALLY HYPERARITHMETICAL SETS

IVAN N. SOSKOV

ABSTRACT. The main result proved in the paper is that on every recursive
structure the intrinsically hyperarithmetical sets coincide with the rela-
tively intrinsically hyperarithmetical sets. As a side effect of the proof
an effective version of the Kueker’s theorem on definability by means of
infinitary formulas is obtained.

1. INTRODUCTION

One of the main achievements of the classical recursion theory is the classification
of certain sets based on the complexity of their definitions. So, we have complexity
classes of sets organized in hierarchies, as the arithmetical hierarchy, the hyper-
arithmetical hierarchy, the analytical hierarchy, etc. All these hierarchies classify
sets of natural numbers or sets of reals (usually considered as subsets of the Baire
space). A natural problem is to obtain generalized versions of the classical hierar-
chies, which will work for subsets of the domains of arbitrary abstract structures.
There are two approaches to this problem. The first one, called internal, is based
on a direct development of recursion theory on abstract structures, as is done by
Moschovakis [11, 12]. The second approach, called external, uses enumerations of
the abstract structures. Let 2 be a denumerable abstract structure. Assume that
a subset A of the domain of 2 is fixed and suppose that for every enumeration f
of 2L the set f~'(A) belongs to the same classical complexity class C' relative to
the atomic diagram of f~'(2). Then we have evidence to think that A belongs to
the complexity class C' on 2 and say that A is relatively intrinsically C' on 2. The
external approach originates in [8] and is further extended in [6, 1, 5, 17, 18, 16].
All results in those papers confirm that both approaches are equivalent, i.e. the
external and the respective internal complexity classes coincide.

Motivated by problems of recursive model theory Ash and Nerode initiated in [3]
the study of an effective version of the external approach. They consider recursive
(recursively presentable) abstract structures and instead of all enumerations of a
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structure 2 they take into account only the effective enumerations of 2, i.e. the
enumerations f for which the structure f='(2) is recursive. The respective notions
of external definability here are called intrinsically C' instead of relatively intrinsi-
cally C'. Obviously each relatively intrinsically €' set on a recursive structure is also
intrinsically C'. The reverse inclusion is not always true. Examples of sets which are
intrinsically r. e. but not relatively intrinsically r. e. can be found in [9] and [4]. It
is quite probable that similar examples exist for all levels of the hyperarithmetical
hierarchy.

In the present paper we prove that if we consider instead of fixed levels of the
hyperarithmetical hierarchy all hyperarithmetical sets as a complexity class, then
both versions of the external approach become equivalent. So, a set is intrinsically
hyperarithmetical on a recursive structure % iff it is relatively intrinsically hyper-
arithmetical on 2. As a side effect of the proof we obtain an effective version of the
Kueker’s theorem [7] on definability by means of infinitary formulas.

The paper is organized as follows. After the preliminaries we introduce in section
3 the so called relatively intrinsically X sets. It is shown that those sets coincide with
the sets which have inductive definitions with closure ordinals less than w{%. From
here, we derive that on recursive structures the relatively intrinsically hyperarith-
metical sets are relatively intrinsically >. In section 4, using a forcing argument, we
obtain a normal form of the relatively intrinsically ¥ sets and show that they are
definable by means of recursive infinitary formulas. In the last section we combine
the so far obtained results and prove the main theorem.

The present paper may be considered as a continuation of [16] and several results
from [16] are used here. So, a preliminary knowledge of this paper would be very
helpful for the understanding of the arguments.

2. PRELIMINARIES

Let & = (B; Ry, Ra, ..., R;) be a countable abstract structure, where each R; is
an a;-ary predicate on B.

An one to one mapping [ of the set of the natural numbers N onto B is called
enumeration of 2.

Every enumeration f of 2 determines a unique structure

By = (N; R R, R,

where for all z,...,z,, € N, Rj%f(xl, cosgy) = Ri(f(x), ..., f2g,)).
By D(B;) we shall denote the set of all Gédel numbers of the elements of the
diagram of B;.

2.1. Definition. Let A C B". Then A is relatively intrinsically HYP (recursively
enumerable) on A if for each enumeration f of U, there exists a hyperarithmetical
(r. e.) relative to D(B;) subset X of N, such that for all z,,...,z, € N,

(@1,...,2,) €EX = (f(21),..., f(zn)) € A.
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The complexity of an enumeration f of 2 is mesured by the complexity of the
respective set D(B;). So an enumeration is effective (hyperarithmetical) iff D(By)
is a recursive (hyperarithemtical) set. If 2 admits an effective enumeration, then
the structure U is called recursive (recursively presentable).

2.2. Definition. Let 2 be a recursive structure with domain B. A subset A of B"
is intrinsically HYP (r. e.) on U if for every effective enumeration f of A, f~(A)
is hyperarithmetical (r. e.).

The least acceptable extension A* of 2 is defined as follows.

Let 0 be an object which does not belong to B and ((.,.)) be a pairing operation
chosen so that neither 0 nor any element of B is an ordered pair. Let B* be the least
set containing all elements of By = B U {0} and closed under the operation ((.,.)).
We associate an element n* of B* with each integer n by the inductive definition:

0 =0
(n+ 1" = ((n,0))

and put N* = {0*,1%,2*,...}.
Let 2% be the structure (B*; By, Ry, Ry, ..., Re, N*,G((y)), where Gy is the
graph of the pairing function and all predicates R; are assumed false on B*\ B.
The following proposition, proved in [16], shows that if A C B” is relatively
intrinsically hyperarithmetical on %*, then A is relatively hyperarithmetical on 2.

2.3. Proposition. Let f be an enumeration of %. There exists an enumeration

= of A* such that D(By.) <p D(B;) and such that for every subset A of B™,
F7HA) <o f7H(A).

We shall use also the following result from [16], which gives an internal charac-
terization of the relatively intrisically hyperarithmetical sets.

2.4. Proposition. Let A C B™. Then A is relatively intrinsically hyperarithmetical
on A iff A is hyperelementary, i.e. inductive and coinductive in the sense of [13],

on A*.
3. THE RELATIVELY INTRINSICALLY >, SETS

Let 2 be an abstract structure and f be a fixed enumeration of /. Set D =
D(By).

Roughly speaking, the ¥7 sets are the elements of the smallest effective o—ring
of sets containing all r. e. in D sets. The precise definition is a partial relativisation
of the respective definition of the smallest effective o—ring given in [15].

First we need an inductive definition of the set Ind of the indices of the hyper-
arithmetical sets.

Let Wy, Wi, ... be a fixed Godel enumeration of the r. e. sets.

3.1. Definition.

(1) Foralle e N,(0,¢) € Ind;
(2) Ife € Ind, then (1,€) € Ind;
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(3) If W, C Ind, then (2,¢e) € Ind.

Given an index u € Ind, we define the norm |u| of u to be equal to the least
ordinal at which u appears in the definition of I'nd:

3.2. Definition.

(1) [0, €)| = 0;
(2) [(Le)] = e[+ 1;
(3) [(2,e)| =sup(|z| +1:2z€ W,).

Since I'nd is inductively defined on the structure of the Arithmetic, we have that
for all u € I'nd, |u] < W, where wE¥ is the least non constructive ordinal.

For each e € N denote by I', the e-th enumeration operator [14]. Let WP =
['.(D). Since N\ D is enumeration reducible to D, the sets W2 coincide with the
r.e. in D sets.

Let n > 1. For each v € Ind the subset JP™ of N™ is defined by means of

induction on |ul:
3.3. Definition.

(1) J{;:g ={(z1, - 2n) (@1, ,2,) € WP},
(2) J30 = NP\ IP

Dn n
(3) J(Z,e) = LJ,ZEWe J,ZD7 .

Let S be a subset of N". The set S is called X in D (X? for short), if S = .J2"
for some u € I'nd.

Although the X¥ sets are in general a proper subclass of the hyperarithmetical in
D sets, many of the properties of the hyperarithmetical sets remain true for the %"
sets. In particular, the assertions H1-H4 from chapter 7 of [15], which show that the
hyperarithmetical sets are uniformly closed with respect to recursive substitutions,
boolean operations and quantification over the integers, can be proved for the 37
sets with almost the same arguments. We shall refer to those properties as standard
properties of the X7 sets.

Next we shall show that if a subset A of B has an inductive definition on the
least acceptable extension 21* of % with closure ordinal less than w{* then f='(A)
is . We start by recalling some definitions from [13].

Let ¢©(p1,...prypry1,S) be a first order formula in the language of 2* with the
new relational symbol § which is r+1-ary. We shall suppose that S occurs positively
in ¢ and call ¢ S-positive.

Using transfinite recursion on & we define for each ordinal £ the set If) C (B*)t!
by

L= A(pr, o) A E ooy peen, J 1D
n<g

Set 158 = U, ¢ 12 and let & be the least ordinal such that IS = I5%. We call &
the closure ordinal of the definition ¢. Clearly Ié” is equal to the least fixed point
I, of ¢.
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We shall denote the closure ordinal of a S-positive formula ¢ by k¥. The closure
ordinal %" of the structure A is defined by

Y = sup(k¥ : ¢ is a S-positive first order formula in the language of 20*).
3.4. Definition. Let A C B*. Then A is inductive on 2A* if there exvist a S-positive
first order formula ¢ and finite list t,, ... t, of elements of B* such that for all
s € B*,

s€ A= (t,...,t,s) € l,.
3.5. Definition. A set A C B* is low inductive on A* if there exist a S-positive
first order formula ¢, finite list ty, ... t, of elements of B* and ordinal & < w&*
such that for all s € B*,

s€A<= (t1,...,t,,s) € Ié”.
3.6. Lemma. Let A C B™ be low inductive on A*. Then f~1(A) is XP.

Proof. For the sake of simplicity assume that n = 1.

Let A ={s: (t1,...,t.,9) € Iff}7 where @(py, ..., PryPry1,5) is a S-positive
formula on A* and & < wF%. According to Proposition 2.3, there exists an enumer-
ation f* of A* such that if D* = D(B;+), then D* <7 D and f'(A) <,, f*71(A).
Since every XP7 set is XP and the P sets are closed with respect to recursive
substitutions, it is sufficient to show tat f*~1(A) is .

Replace every constant ¢ in the formula ¢ by f*7(c). Call the resulting formula
©*. Clearly for every sequence py,...,p,41 in B* and every subset P of (B*)"*!

Q[* ): @(plv 7pr+17p) <~ %f* ): @*(f*_l(pl)w" 7f*_1(pT+1)7f*_1(P))

and for every ordinal &
(3.1) g = I

Let O be the set of the Curch-Kleene ordinal notations and <, be the respective
wellfounded relation, see [14]. Using effective transfinite recursion on <,, we shall
construct a recursive function g such that if ¢« € O and « is a notation of the ordinal
&, then g(a) € Ind and Jﬁ;;”l = Ié*.

By the standard properties of the ¥P" sets, there exists a recursive function m
such that if u € Ind, then m(u) € Ind and

Jﬂlz(*llg-l—l = {21,y 201) 1B E P (21 2, SO )

Let h(v, a) be a recursive function such that if « € O, then h(v, a) equals to the r. e.
index of the set {{v}(b):b <, a} and let 5 be defined by the equality

(v, @) = m((2, h(v,a))).

Finally, let g be a partial recursive function having index e such that for all z,
n(e, z) = {e}(z). Obviously g is total. A simple transfinite induction on <, shows
that ¢ has the needed properties.
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Now let a € O be a notation of . Using (3.1) we get that
f*_l(A) = {Z : (f*_l(t1)7 ce 7f*_1(t7')7 Z) c Jsﬁ;jT-l-l}‘

From the last equality, using once more the standard properties, we obtain that

YA s P O

3.7. Definition. A subset A of B™ is relatively intrinsically ¥ on A if f~1(A) is
Y in D(B;) for every enumeration f of .

From Lemma 3.6 we obtain directly the following:

3.8. Proposition. Let A C B” be low inductive on A*. Then A is relatively
intrinsically 3 on Q.

3.9. Corollary. Suppose that the closure ordinal k*" of the structure A* is equal

to wEE . Then every hyperelementary on A* subset of B™ is relatively intrinsically

> on 2.

Proof. Let A C B" be hyperelementary on 21*. Then A and the complement of A

are inductive on 2A*. Let ¢ be an S-positive formula and ¢;,... ¢, be a finite list of
elements of B* such that 5€ A < (ty,...,¢,,3) € 1,.
Let o be an inductive norm on I,, defined by o(p,35) = least {((p,3) € Ié).
Since A is coinductive, by the Covering theorem [13], there exists a & < w&&

such that € A = o(ty,...,t,,5) < &. Hence,5€ A <= (t;,...,t,,5) € Ié”.
So, A is low inductive on A* and therefore A is relatively intrinsically > on 2. O

Given a subset D of N, denote by w? the least ordinal which is not constructive
relative to D. The following external characterization of x*" is proved in [16]:

D(%By)

" = min(w;

3.10. Proposition. & : f is an enumeration of ).

So, for structures % which admit recursive and even hyperarithmetical enumer-
ations k% = WK, Therefore on such structures all hyperelementary sets are rel-
atively intrinsically 3. Combining this observation and Proposition 2.4 we obtain
the following;:

3.11. Proposition. Let % be a structure which admits a hyperarithmetical enumer-
ation. Then every relatively intrinsically HYP on %L set is relatively intrinsically 3

on 2.
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4. NORMAL FORM OF THE RELATIVELY INTRINSICALLY X SETS

Let us fix a countable abstract structure & = (B; Ry, Rs, ..., R;). The normal
form theorem for the ralatively intrinsically ¥ sets on 2 will be deduced as a conse-
quence of the general normal form theorem for the relatively intrinsically definable
sets proved in [16]. To apply this general theorem we need to define appropriate
satisfaction and forcing relations.

To simplify the notation from now on we shall consider only subsets of the domain
B of 2. However all results can be easily generalized for subsets of B™,n > 1.

Suppose that for each element u of I'nd a unary predicate letter .J, is fixed. Given
an enumeration f of U and natural number z, let

fE J(z) <= 2 JPB),

The conditions of the forcing are the finite injective mappings of N into B which
we call finite parts. We shall use §, 7, p to denote finite parts. The forcing relation
dIF Jy(z) is defined as follows.

Assume fixed an effective coding of all finite sets of natural numbers. By F,
we shall denote the finite set having code v. Recall that, by definition, for every
enumeration f of U the set D(B;) consists of codes of literals which are true on
B;. Let 4 be a finite part. Given a ¢ € N, let § I ¢ if ¢ is a code of a literal
L(zy,...,z,), all 2,...,2, € dom(8) and A = L(6(x1),...,6(z,)). Further, if
E ={ec,...,c.} is a finite set, then let

SIFFE <= §lIFa&... & IFe,.

Finally, note that by the definition of the enumeration operators in [14], we have
for every enumeration f of %U:

x € WP «— 2 €T (D(B)) <= Jo((v,2) € W.&E, C D(B/)).

Now we are ready to define the forcing § I+ J,(z) for all w € Ind by induction on
KiE

4.1. Definition.

(1) If Jv((v,z) e W, & 0IF E,), then §IF Jyg oy (x):
(2) If Vp(p2 6= p W Jo(2)), then & IF Jiy oy (2):
(3) If Jz(ze W, & SIFJ.(x)), then 61k Jis oy (2).

From the definition above it follows immediately the monotonicity of the forcing,
ie. if 6 IF J,(2) and § C 7, then 7 IF J, ().

Denote by J the family of sets of finite parts containing for all v € Ind and z € N
the set

Xuz=Ap:plkJu(2)}.
An enumeration f of X is F-generic if whenever X € F and X is densein f, i.e.

(V6 C f)(Ir € X)(6 C 7), then f meets X,ie. (30 C f)(d € X).
Next follows the Truth Lemma:
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4.2. Lemma. Let [ be an F-generic enumeration, u € Ind and x € N. Then

(1.1) JE () < (35 C N6 I()).

Proof. Induction on |u|. Let u € Ind. We have three cases.

1) u = (0,€). In this case (4.1) follows directly from the definitions of |= and IF.

2) u=(l,e). Let f = J,(z). Assume that for all § C f,§ I J,(z). Then, by
Definition 4.1, the set X, ., = {p: p Ik J.(2)} is dense in f. By genericity, f meets
X. ;. Hence, by induction, f = J.(z). A contradiction.

Suppose now that for some § C f, 6 I+ J,(2). Assume that f (= J,(2). Then
f E Je(z). By induction, there exists a p C f such that p IF J.(z). By the
monotonicity of IF, we may assume that § C p. A contradiction.

3) u = (2,€). By induction,

JEJuz) &= @zeW)(fEJ(x) = (€ W.)(35C )6 IF J.(2))
e (36C HEIF Ju(x). O

Now we are ready to apply the Normal form theorem from [16]. Given a finite
part § and € N, denote by R(d,2), theset {s:s€ B & I7 D (r(z) = s)}.

4.3. Theorem. Let A C B be relatively intrinsically 32 on AU. There exist finite
part & and u € Ind such that if x € N, then for every s € R(9, )

s€A < (T D0)(r(z) =5 & TIF J,(2)).

4.4. Corollary. Fvery relatively intrinsically 3 set A has an inductive definition
CK

on A* with closure ordinal less than wy
Proof. Suppose that A is relatively intrinsically . Then there exist finite part §
and u € Ind such that for all s € B,

s€A = (FzeN)Fr20)(r(z)=s& 7IFJ,(2))

Using this equivalence we can get easily an inductive definition of A. For we rep-
resent each finite part 6 mapping wy,...,w, onto t{,...,t,, respectively, by the
element ((((w1,t1)), ..., (w,,t,)),0%)) of B* and translate the inductive definition
of the forcing in terms of U*. Clearly the obtained this way inductive definition of
A has a closure ordinal which is less than w{%. O

As a second application of Theorem 4.3 we shall get a formal representation of
the relatively intrinsically ¥ sets in the spirit of [1] and [5].

Let L =A{Ty,...,T;} be the language of the structure 2. The recursive ¥,(Il,),
a < w8 formulas in the language L,ex, are defined as in [2]. Roughly speaking,
the 3 and the Il formulas are the quantifier free formulas in L. The X, formulas
are oithe form V/, EI?icph(i), where {c,oh(i)} is a recursive sequence of II, formulas
and Y; are finite sequences of variables; the 1l,,; formulas are negations of ¥,
formulas. If A is a limit ordinal, then the 3, formulas are \/; ¢y, where {c,oh(i)} is
a recursive sequence of X, o < A, formulas; the I, formulas are again negations
of X, formulas. The precise definition is by effective transfinite recursion on <,,
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where for each @ € O the ¥, and II}, formulas are defined simultaneously with
their Gédel numbers.

Note that the recursive X, formulas are closed with respect to existential quan-
tification, finite conjunctions and r. e. infinite disjunctions, while the recursive 11,
formulas are closed with respect to universal quantification, finite disjunctions and
r. e. infinite conjunctions.

A formula F is called recursive ¥ if it is a recursive 3, formula for some o < w¥

Next we are going to show that the relatively intrinsically ¥ sets on 2l are definable
on ¥ by means of recursive X formulas.

Let us fix a recursive bijective mapping var of the natural numbers onto the set of
all variables of the language L. Let F' be a formula and D be a finite set of natural
numbers. Let y; < 15 < ... < yi be the elements of D and @ be one of the quantifiers
JorV. Then by Q(y : y € D)F we shall denote the formula Quar(y,) ...Quar(y,)F.
By Neq(D) we shall denote the conjunction A, ;cp ¢ i; var(yi) # var(y;).

K

4.5. Lemma. There exists a uniform effective way given natural numbers x,v and

finite set {zy, ..., 2z} to define an existential first order formula C' with free variables
among var(zy), ... ,var(z.),var(z) such that if Z; = var(Z;), X = var(z) and § is
a finite part with domain {z, ...z}, then for all s € R(6, z)

A2 A EC(Z1/6(21),. .. 2, /0(%), X/s) <= (T D 0)(r(z) =5 & TIF E,).

Proof. Set ' = X # X if some of the elements of I, is not a code of a literal.
Otherwise, let E, = {c1,..., ¢y}, where ¢; is the code of the literal L' (z%,... 2!, ).

Denote by 7 the conjunction A7Z; L;(var(z}), ... ,var(zl,)), let D be the finite set
{21, ey UUZ {2d, ... 2l Y and D' = D\ {z,..., 2,2} Set

C=3(y:yeD)(Neq(D) ).

Now following the definition of the forcing 7 I E, one can easily check the validity
of (4.2). O

4.6. Lemma. There exists an uniform effective way given x € N,u € Ind and

finite set D = {z,..., 2.} to define a recursive 2 formula Fxl?u with free variables
among var(z),...,var(z.), var(z) such that if Z; = var(z;), X = var(z) and § is
a finite part with domain {z, ...z}, then for all s € R(6, z)

A= Fxl?u(Zl/(S(zl), ce s Zp)8(2), X/5) <= (T D 0)(r(z) =5 & TIF J ().

Proof. We shall define the formula Ffu by means of effective transfinite recursion
on |u|. Let us fix D ={z,...,%},2 € N and u € Ind. Then we have three cases:
1) u = (0, €). According Definition 4.1 for any finite part § and s € R(4, z),

(Fr 2 0)(r(x)=s & T J,(2)) < (H(v,2) e W )(FT D) (r(2)=s & T+ L,).

For each v € N denote by C, the existential formula satisfying (4.2) with respect to
z,v and D. Let h be a recursive function with range equal to the set {v : (v,2) €

We}. Set F£u = \/n Ch(n)-
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2) u=(l,e). Let § be a finite part and s € R(4, z). By Definition 4.1
Fr 20 (r(x)=s&TIFJ(2)) < GrD)(r(z)=s& (Vp D 71)(plf Je(2)))
= @ 28)(r(e) =5 =3 2 ) (ple) = 5 & p I (&),
Notice also that if 7(2) = s, then s € R(p, z) for all p D 7.

So a possible definition of the formula F'?_ in this case is the following, where D

T,u

varies over all finite sets of natural numbers:
Fl.= 3y e D\ (DU{a})(Neg(D) A I,
D2ODU{r}
3) u = (2,¢). Using again Definition 4.1, we get for any § and s € R(J, )
(FAr 2 0)(r(x)=s & TIFJ,(2)) < FzeW, )3T D 0)(r(z) =5 & 7IF J,.(2)).
So we may define Ffu =V.ew. Fxl?z. O

The following theorem shows that every relatively intrinsically 3 set is definable
by means of some recursive 3 formula on 2.

4.7. Theorem. Let A C B be relatively intrinsically 3 on . Then there exist a
recursive 3 formula F(Wy, ..., W,, X) and elements t,,...,t. of B such that for
alls € B

s€EA = AEFW /t,,... , W, /t., X/s).

Proof. Suppose that A is relatively intrinsically > on 2{. From Theorem 4.3 it follows
that there exist finite part 6 and u € Ind such that for all z € N and s € R(6, )
s€A < (T 20)(r(z) =5 & 7IF J,(2)).

Let dom(6) = {wy,...,w.} and §(w;) =¢t;, e =1,...,r. Fixaa & {w,...,w,}.
Clearly R(d,2) = B\{t1,...,t }. From here we obtain the following representation
of A:

s€A <= (Fr D) (r(zx)=s& 1k J,(2)) or
\T/s =t; & (37 D) (7 IF Ju(wy)).

i=1

Let var(w;) = Wi, var(z) = X and D = {wy,...,w.}. Let

F:[(/T\WZ»#X)AFfu]v[(/X:WiAthu].

i=1
Using the previous lemma, one can easily see that for all s € B
SEA <:>Q[):F(Wl/t17...7WT/tT7X/S). |

It is obvious that every definable by means of a recursive ¥ formula set is relatively
intrinsically 3 on 2. So we have the following corollary:

4.8. Corollary. Let A C B. Then A is relatively intrinsically > on %L iff it is
definable by means of some recursive X formula on 2.
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In [1] and [5] the relatively intrinsically 3,, o < w5 sets are studied and is
proved that those sets coincide with the sets definable by means of recursive X,
formulas. Using this result we obtain also the following;:

4.9. Corollary. A subset A of B is relatively intrinsically X iff it is relatively

. . . CK
intrinsically 3, for some a < wi™.

5. APPLICATIONS

Let us call a structure % hyperarithmetical if the domain of 2 is equal to N and all
predicates of % are hyperarithmetical. The following theorem is an effective version
of Kueker’s theorem [7].

5.1. Theorem. Let A = (N; Ry,..., Ry) be a hyperarithmetical structure. A subset
A of N is definable by means of a recursive 3 formula on %L iff A is hyperarithmetical
and the family S = {X : X C N & (%, X) = (%, A)} has fewer than 2% members.

Proof. In the one direction the theorem is obvious. Clearly, if A is definable on
by means of some recursive infinitary formula, then A is hyperarithmetical and the
family S is countable.

Suppose now, that A is a hyperarithmetical set and the family S contains less than
2% elements. First we shall show that A is relatively intrinsically hyperarithmetical
on 2, i.e. for every enumeration f of &, f~*(A) is hyperarithmetical in D(B;). For
we are going to use the Perfect set theorem [10]. Let f be an enumeration of 2.
Consider the family S; of subsets of NV defined by the equivalence:

Y € S; <= 3g(g is an isomorphism from B; to A and g~ (A4) = Y).

Since 2 is a hyperarithmetical structure and the set A is hyperarithmetical, the
family Sy is X} in D(B;). It is not hard to see that S; is of the same cardinality
as the family S. So, S; has less than 2%° elements. From here, by the Perfect set
theorem, all members of S; are hyperarithmetical in D(B;). Obviously f~'(A) €
S;. Hence f~'(A) is hyperarithmetical in D(%B;).

So, A is relatively intrinsically HYP on %. By Proposition 3.11, A is relatively
intrinsically 3 on 2. Hence, by Theorem 4.7, A is definable by means of some
recursive X formula on 2. O

Now we are ready to show that the relatively intrinsically hyperarithmetical sets
on a recursive structure % coincide with the intrinsically hyperarithmetical sets on

2A.

5.2. Theorem. Let 2 be a recursive structure and A C |U|. Then the following
are equivalent:

(1) A is relatively intrinsically HYP on U;

2) A is relatively intrinsically 3 on U;

(2)
(3) A is definable by means of some recursive ¥ formula on 2U;
(4) A is intrinsically HYP on 2.
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Proof. Since the assertions (1) — (4) are invariant with respect to isomorphisms, we
may assume that || = N and the underlined predicates of & are recursive. Now
(1) = (2) follows from Proposition 3.11. The implication (2) = (3) follows from
Theorem 4.7. The implications (3) = (1) and (3) = (4) are obvious. So it remains
to show that (4) = (3).

Let A be intrinsically HYP on 2(. Since the identity [ is an effective enumeration
of A, A = I7*(A) is hyperarithmetical. Consider the family S = {X : X C
N & (U, X) = (A, A)}. Assume that S is not countable. Then there exist an
enumeration f of 2, such that f~'(A) = 2 and f~'(A) is not hyperarithmetical.
A contradiction. So, by the previous theorem, A is definable by means of some
recursive X formula on 2(. O

Let o < w&%. A subset A of the domain of a recursive structure 2l is intrinsically
¥, on 2 if for every effective enumeration f of A, f~1(A) is 3,.
For the definition of the X, hierarchy, the reader may consult [14].

5.3. Corollary. Let o < w™ and A be intrinsically X, on the recursive structure
. Then A is relatively intrinsically g for some f < w{¥.

Proof. Since A is intrinsically >, it is clearly intrinsically HYP on . Then A is
relatively intrinsically 3 on 2. Hence, by Corollary 4.9, A is relatively intrinsically
Y5 for some § < wiE. O

We don’t know what is the relationship between the ordinals o and 3 above.
The only known result is that of Chisholm [4], which shows that on existentially
decidable structures every intrinsically r. e. (¥;) set is relatively intrinsically I,
and hence relatively intrinsically Xs.
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