
A JUMP INVERSION THEOREM FOR THE ENUMERATIONJUMPI. N. SOSKOVAbstract. We prove a jump inversion theorem for the enumeration jumpand a minimal pair type theorem for the enumeration reducibilty. As anapplication some results of Selman, Case and Ash are obtained.1. IntroductionGiven two sets of natural numbers A and B, we say that A is enumerationreducible to B (A �e B) if A = �z(B) for some enumeration operator �z. Inother words, using the notation Dv for the �nite set having canonical code v andW0; : : : ;Wz; : : : for the G�odel enumeration of the r.e. sets, we haveA �e B () 9z8x(x 2 A () 9v(hv; xi 2 Wz & Dv � B)The relation �e is re
exive and transitive and induces an equivalence relation�e on all subsets of N. The respective equivalence classes are called enumerationdegrees. For an introduction to the enumeration degrees the reader might consultCooper [4].Given a set A denote by A+ the set A � (N n A). The set A is called total i�A �e A+. Clearly A is recursively enumerable in B i� A �e B+ and A is recursivein B i� A+ �e B+. Notice that the graph of every total function is a total set.The enumeration jump operator is de�ned in Cooper [3] and further studiedby McEvoy [5]. Here we shall use the following de�nition of the e-jump which ism-equivalent to the original one, see [5]:1.1. De�nition. Given a set A, let K0A = fhx; zi : x 2 �z(A)g. De�ne the e-jumpA0e of A to be the set (K0A)+.Several properties of the e-jump are proved in [5]. Among them it is shown thatthe e-jump is monotone, agrees with �e and that for any sets A and B, A is �0n+1relatively to B i� A �e (B+)(n)e , where for every set B, B(0)e = B and B(n+1)e is thee-jump of B(n)e .Though for total sets the e-jump and the Turing jump are enumeration equivalent,in the general case this is not true. So, for example, the e-jump of Kleene's set K is1991 Mathematics Subject Classi�cation. 03D30.Key words and phrases. enumeration reducibility, enumeration jump, enumeration de-grees, forcing.This work was partially supported by the Ministry of education and science, Contract I604/96. 1



2 I. N. SOSKOVenumeration equivalent to ;0 while the Turing jump of K is enumeration equivalentto ;00.Since we are going to consider only e-jumps here, from now on we shall omit thesubscript e in the notation of the e-jump. So for any set A by A(n) we shall denotethe n-th e-jump of A.In [5] several analogs of the known jump-inversion theorems for the Turing re-ducibility are proved, but the relativised versions are not considered. So the follow-ing natural question is left open. Given a set B, does there exist a total set F suchthat B �e F and B0 �e F 0?In the present paper we are going to prove the following result which gives apositive answer to the question above. Given k + 1 sets B0; : : : ; Bk, we de�ne forevery i � k the set P (B0; : : : ; Bi) by means of the following inductive de�nition:(i) P (B0) = B0;(ii) If i < k, then P (B0; : : : ; Bi+1) = (P (B0; : : : ; Bi))0 �Bi+1.1.2. Theorem. Let k � 0 and B0; : : : ; Bk be arbitrary sets of natural numbers.Let Q be a total set and P(B0; : : : ; Bk) �e Q. There exists a total set F having thefollowing properties:(i) For all i � k, Bi 2 �Fi+1;(ii) For all i; 1 � i � k, F (i) �e F � P(B0; : : : ; Bi�1)0;(iii) F (k) �e Q.Notice that if B0 = � � � = Bk = ;, then P(B0; : : : ; Bk) �e ;(k) and hence, sinceboth sets are total, they are Turing equivalent. So Theorem 1.2 is a generalizationof Friedberg's jump-inversion theorem.We shall also prove the following "type omitting" version of the above theorem:1.3. Theorem. Let k > n � 0, B0; : : : ; Bk be arbitrary sets of natural numbers.Let A � N and let Q be a total subset of N such that P(B0; : : : ; Bk) �e Q andA+ �e Q. Suppose also that A 6�e P(B0; : : : ; Bn). Then there exists a total set Fhaving the following properties:(i) For all i � k, Bi 2 �Fi+1;(ii) For all i; 1 � i � k, F (i) �e F � P(B0; : : : ; Bi�1)0;(iii) F (k) �e Q.(iv) A 6�e F (n).In [8] Selman gives the following characterization of the enumeration reducibilityin terms of the relation "recursively enumerable in":A �e B () 8X(B is r.e. in X ) A is r.e. in X):As an application of the so far formulated theorems we can get an upper boundof the universal quanti�er in the equivalence above:1.4. Theorem. A �e B i� for all total X, B is r.e in X and X 0 �e B0 implies Ais r.e. in X.



A JUMP INVERSION THEOREM 3Proof. Clearly for total X , B is r.e. in X i� B �e X . Now suppose that for all totalX , B �e X & X 0 �e B0 ) A �e X . First we shall show that A+ �e B0. Indeed, byTheorem 1.2, there exists a total G such that B �e G and G0 �e B0. Then A �e Gand hence A0 �e G0 �e B0. So since A+ �e A0, A+ �e B0.Assume that A 6�e B. Apply Theorem 1.3 for k = 1; n = 0; B0 = B;B1 = ;and Q = B0 to get a total F such that B �e F; F 0 �e B0 and A 6�e F . Acontradiction.Selman's theorem is further generalized in Case [2], where it is shown that forall n � 0, A �e B � ;(n) () 8X(B 2 �Xn+1 ) A 2 �Xn+1):Finally Ash [1] studies the general case and characterizes by a certain kind offormally described reducibilities for any given k+2 sets A;B0; : : : ; Bk the relationsRnk(A;B0; : : : ; Bk) () 8X(B0 2 �X1 ; : : : ; Bk 2 �Xk+1 ) A 2 �Xn+1):By an almost direct application of Theorem 1.2 and Theorem 1.3 we obtain thefollowing version of Ash's result:1.5. Theorem.(1) For all n < k, Rnk(A;B0; : : : ; Bk) () A �e P(B0; : : : ; Bn):(2) For all n � k, Rnk(A;B0; : : : ; Bk) () A �e P(B0; : : : ; Bk)(n�k):Proof. The right to left implications of (1) and (2) are trivial.Consider the left to right direction of (1). Towards a contradiction suppose thatn < k, Rnk(A;B0; : : : ; Bk) and A 6�e P(B0; : : : ; Bn). By Theorem 1.3, there exists atotal F , such that A 6�e F (n) and for all i � k, Bi 2 �Fi+1. Clearly A 62 �Fn+1. Acontradiction.To prove (2) in the non trivial direction assume that n � k;Rnk(A;B0; : : : ; Bk)and A 6�e P(B0; : : : ; Bk)(n�k). By Selman's theorem, there exists a total Q suchthat P(B0; : : : ; Bk)(n�k) �e Q and A 6�e Q. Set Bk+1 = � � � = Bn = ;. ThenP(B0; : : : ; Bn) �e P(B0; : : : ; Bk)(n�k). By Theorem 1.2 there exists a total F suchthat F (n) �e Q and for all i � k;Bi 2 �Fi+1. Clearly A 6�e F (n) and hence A 62 �Fn+1.A contradiction.A proof very close to that of Theorem 1.4 gives upper bounds of the universalquanti�ers in the de�nitions of the relations Rnk .1.6. Corollary.(1) Let n < k. Suppose that S is a total subset of N and P(B0; : : : ; Bk) �e S.Then Rnk(A;B0; : : : ; Bk) i� for all total X such that X (k) �e S,B0 2 �X1 ; : : : ; Bk 2 �Xk+1 ) A 2 �Xn+1:(2) Let k � n. Then Rnk(A;B0; : : : ; Bk) i� for all total X such that X (n+1) �eP(B0; : : : ; Bk)(n�k+1),B0 2 �X1 ; : : : ; Bk 2 �Xk+1 ) A 2 �Xn+1:



4 I. N. SOSKOVClearly the result of Case can be obtained from Theorem 1.5 by setting k = nand B0 = � � � = Bn�1 = ;, Bn = B. Another corollary which is worth mentioning isobtained in the case k = 0, n � 0 and B0 = B:A �e B(n) () 8X(B 2 �X1 ) A 2 �Xn+1):We conclude the introduction with a Minimal pair type theorem which generalizesthe so far described Selman-Case-Ash results:1.7. Theorem. Let k � 0 and B0; : : : ; Bk be arbitrary sets of natural numbers.There exist total sets F and G such that F (k+2) �e P(B0 : : : ; Bk)00 and G(k+2) �eP(B0 : : : ; Bk)00 and(i) For all n � k, P(B0; : : : ; Bn) <e F (n) and P(B0; : : : ; Bn) <e G(n).(ii) If n � k, A �e F (n) and A �e G(n), then A �e P(B0; : : : ; Bn).An immediate corollary of the last Theorem is a result of Rozinas [7] that thereexist a minimal pair of total e-degrees f, g over every e-degree b.Clearly the minimal pair f, g could be constructed below b00. So Theorem 1.7 gen-eralizes Selman's theorem but does not generalize Theorem 1.4. A natural improve-ment of the last result would be to show that the degrees f, g could be constructedbelow b0. This would give a generalization of the respective result ofMcEvoy andCooper [6] where a minimal pair of enumeration degrees below 00 is constructed.The proofs of our results use of the machinery of the so called regular enumera-tions, described in the next section. Section 3 contains the �nal proofs. In the lastsection 4 a version of Theorem 1.7 involving in�nite sequences of sets is presented.2. Regular EnumerationsLet us �x k � 0 and subsets B0; : : : ; Bk of N. Since every set B is enumerationequivalent to B � N = f2x : x 2 Bg [ f2x + 1 : x 2 Ng, we may assume thatB0; : : : ; Bk are not empty.In what follows we shall use the term �nite part for �nite mappings of N into Nde�ned on �nite segments [0; q� 1] of N. Finite parts will be denoted by the letters�; �; �. If dom(�) = [0; q � 1], then let lh(�) = q.We shall suppose that an e�ective coding of all �nite sequences and hence of all�nite parts is �xed. Given two �nite parts � and � we shall say that � is less thanor equal to � if the code of � is less than or equal to the code of �. By � � � weshall denote that the partial mapping � extends � and say that � is an extension of� . For any � , by ��n we shall denote the restriction of � on [0; n� 1].Bellow we de�ne for every i � k the i-regular �nite parts.The 0-regular �nite parts are �nite parts � such that dom(�) = [0; 2q+1] and forall odd z 2 dom(�); �(z) 2 B0.If dom(�) = [0; 2q + 1], then the 0-rank j� j0 of � is equal to the number q + 1of the odd elements of dom(�). Notice that if � and � are 0-regular, � � � andj� j0 = j�j0, then � = �.For every 0-regular �nite part � , let B�0 be the set of the odd elements of dom(�).



A JUMP INVERSION THEOREM 5Given a 0-regular �nite part � , let� 
0 Fe(x) () 9v(hv; xi 2 We & (8u 2 Dv)(�((u)0) ' (u)1))� 
0 :Fe(x) () 8(0-regular �)(� � �) � 6
0 Fe(x)):Proceeding by induction, suppose that for some i < k we have de�ned the i-regular �nite parts and for every i-regular � { the i-rank j� ji of � , the set B�i andthe relations � 
i Fe(x) and � 
i :Fe(x). Suppose also that if � and � are i-regular,� � � and j� ji = j�ji, then � = �.Set X ij = f� : � is i-regular & � 
i F(j)0((j)1)g.Given a �nite part � and a set X of i-regular �nite parts, let �i(�;X) be the leastextension of � belonging to X if any, and �i(�;X) be the least i-regular extensionof � otherwise. We shall assume that �i(�;X) is unde�ned if there is no i-regularextension of � .2.1. De�nition. Let � be a �nite part and m � 0. Say that � is an i-regular momitting extension of � if � is an i-regular extension of � , de�ned on [0; q � 1] andthere exist natural numbers q0 < � � � < qm < qm+1 = q such that:a) ��q0 = � .b) For all p � m, ��qp+1 = �i(��(qp + 1); X ihp;qpi).Notice that if � is an i-regular m omitting extension of � , then there exists aunique sequence of natural numbers q0; : : : ; qm+1 having the properties a) and b)above. We shall denote the sequence q0; : : : ; qm by K�� . Moreover if � and � are twoi-regular m omitting extensions of � and � � �, then � = �.Let Ri denote the set of all i-regular �nite parts. Given an index j, by Sij weshall denote the intersection Ri\�j(P(B0; : : : ; Bi)), where �j is the j-th enumerationoperator.Let � be a �nite part de�ned on [0; q � 1] and r � 0. Then � is (i + 1)-regularwith (i+ 1)-rank r + 1 if there exist natural numbers0 < n0 < l0 < b0 < n1 < l1 < b1 � � �< nr < lr < br < nr+1 = qsuch that ��n0 is an i-regular �nite part with i-rank equal to 1 and for all j, 0 �j � r, the following conditions are satis�ed:a) ��lj ' �i(��(nj + 1); Sij);b) ��bj is an i-regular j omitting extension of ��lj;c) �(bj) 2 Bi+1;d) ��nj+1 is an i-regular extension of ��(bj + 1) with i-rank equal to j��bjji+ 1The following Lemma shows that the (i+ 1)-rank is well de�ned.2.2. Lemma. Let � be an (i+ 1)-regular �nite part. Then(1) Let m0; q0; a0; : : : ; mp; qp; ap; mp+1 and n0; l0; b0; : : : ; nr; lr; br; nr+1 be two se-quences of natural numbers satisfying a){d). Then r = p; np+1 = mp+1 andfor all j � r; nj = mj; lj = qj and bj = aj.(2) If � is (i+ 1)-regular, � � � and j� ji+1 = j�ji+1, then � = �.(3) � is i-regular and j� ji > j� ji+1.



6 I. N. SOSKOVProof. The proof follows easily from the de�nition of the (i+1)-regular �nite partsand from the respective properties of the i-regular �nite parts.Let � be (i+1)-regular and n0; l0; b0; : : : ; nr; lr; br; nr+1 be the sequence satisfyinga){d). Then let B�i+1 = fb0; : : : ; brg. By K�i+1 we shall denote the sequence K��br��lr .Notice that, since ��br is an r omitting extension of ��lr, the sequence K��br��lr hasexactly r + 1 members.To conclude with the de�nition of the regular �nite parts, let for every (i + 1)-regular �nite part �� 
i+1 Fe(x) () 9v(hv; xi 2 We & (8u 2 Dv)((u = heu; xu; 0i & � 
i Feu(xu))_(u = heu; xu; 1i & � 
i :Feu(xu)))):� 
i+1 :Fe(x) () (8(i+ 1)-regular �)(� � �) � 6
i+1 Fe(x)):2.3. De�nition. Let f be a total mapping of N in N. Then f is a regular enumer-ation if the following two conditions hold:(i) For every �nite part � � f , there exists a k-regular extension � of � suchthat � � f .(ii) If i � k and z 2 Bi, then there exists an i-regular � � f , such that z 2 �(B�i ).Clearly, if f is a regular enumeration and i � k, then for every � � f , there existsan i-regular � � f such that � � � . Moreover there exist i-regular �nite parts of fof arbitrary large rank.Given a regular f , let for i � k;Bfi = fb : (9� � f)(� is i-regular & b 2 B�i )g.Clearly f(Bfi ) = Bi.2.4. De�nition. A sequence A0; : : : ; An; : : : of subsets of N is e-reducible to theset P i� there exists a recursive function h such that for all n, An = �h(n)(P ). Thesequence fAng is T -reducible to P if there exists a recursive in P function � suchthat for all n, �x:�(n; x) = �An , where �An denotes the characteristic function ofAn.2.5. Lemma. Suppose that the sequence fAng is e-reducible to P . Then the fol-lowing assertions hold:(1) The sequence fAng is T -reducible to P 0.(2) If R �e P , then either of the following sequences is e-reducible to P :a) fR \Ang;b) fCng, where Cn = fx : 9y(hx; yi 2 R & y 2 An)g.Proof. Let h be a recursive function such that for all n, An = �h(n)(P ).The proof of (1) follows easily from the de�nition of the e-jump. Indeed,x 2 An () x 2 �h(n)(P ) () hx; h(n)i 2 K0P () 2 hx; h(n)i 2 P 0:x 62 An () x 62 �h(n)(P ) () hx; h(n)i 62 K0P () 2 hx; h(n)i+ 1 2 P 0:



A JUMP INVERSION THEOREM 7To prove the part b) of (2) notice that for every nx 2 Cn () 9y(hx; yi 2 R & 9v(hv; yi 2 Wh(n) & Dv � P )):Let R = �z(P ). Then hx; yi 2 R () 9u(hu; hx; yii 2 Wz & Du � P ).Clearly there exists a recursive function g such thathw; xi 2 Wg(n) () 9y9u9v(hu; hx; yii 2 Wz & hv; yi 2 Wh(n) & Dw = Du [Dv):Then x 2 Cn () 9w(hw; xi 2 Wg(n) & Dw � P ): Thus Cn = �g(n)(P ).The proof of the a) part of (1) is similar.Let i � k. Set Pi = P(B0; : : : ; Bi). Notice that if i < k, then Pi+1 = P 0i � Bi+1.For j 2 N let �Xi (�; j)' �i(�;X ij), �Si (�; j)' �i(�; Sij),Y ij = f� : (9� � �)(� is i-regular & � 
i F(j)0((j)1))gZij = f� : � is i-regular & � 
i :F(j)0((j)1)g andOi�;j = f� : � is i-regular j omitting extension of �g:2.6. Proposition. For every i � k the following assertions hold:(1) The set Ri of all i-regular �nite parts is e-reducible to Pi.(2) The function ��:j� ji (assumed unde�ned if � 62 Ri) is e-reducible to Pi.(3) The sequences fSijg, fX ijg and fY ij g are e-reducible to Pi.(4) The sequence fZijg is T -reducible to P 0i .(5) The functions �Xi and �Si are partial recursive in P 0i .(6) The sequence fOi�;jg is e-reducible to P 0i .Proof. The proof is by induction on i. Suppose that i = 0. The validity of (1){(6)follows easily from the de�nitions of the 0-regular �nite parts and the relation "
0"and Lemma 2.5.Suppose that for some i < k the assertions (1){(6) hold. Now the validity of(1) and (2) for i+ 1 follows directly from the de�nition of the (i+ 1)-regular �niteparts. Since Ri+1 �e Pi+1, by Lemma 2.5 the sequence fSi+1j g is e-reducible toPi+1. Further, by induction and by Lemma 2.5 the sequence fX ijg is T -reducible toP 0i . By induction fZijg is also T -reducible to P 0i . From here it follows that the setsf� : � 
i+1 Fe(x)g are uniformly in e and x r. e. in P 0i and therefore these sets areuniformly e-reducible to P 0i . We have that� 2 X i+1j () � 2 Ri+1 & � 
i+1 F(j)0((j)1):Hence the sequence fX i+1j g is e-reducible to Pi+1. Then by Lemma 2.5 the sequencefY i+1j g is e-reducible to Pi+1 and hence it is uniformly T -reducible to P 0i+1. Fromhere, since Zi+1j = Ri+1 nY i+1j , we get the validity of (4) for i+1. Now the truth of(5) and (6) for i+ 1 follows directly from the respective de�nitions.2.7. Corollary. For every i � k and every j, X ij is a member of the sequence fSijg.2.8. Proposition. Suppose that f is a regular enumeration. Then(1) B0 �e f .



8 I. N. SOSKOV(2) If i < k, then Bi+1 �e f � P 0i .(3) If i � k, then Pi �e f (i).Proof. Since f is regular, B0 = f(Bf0 ). Clearly Bf0 is equal to the set of all oddnatural numbers. So, B0 �e f .Let us turn to the proof of (2). Fix an i < k. Since f is regular, for every �nitepart � of f there exists an (i+ 1)-regular � � f such that � � � . Hence there existnatural numbers0 < n0 < l0 < b0 < n1 < l1 < b1 < � � �< nr < lr < br < : : : ;such that for every r � 0, the �nite part �r = f�nr+1 is (i + 1)-regular andn0; l0; b0; : : : , nr ; lr; br; nr+1 are the numbers satisfying the conditions a){d) fromthe de�nition of the (i+ 1)-regular �nite part �r. Clearly Bfi+1 = fb0; b1 : : :g. Weshall show that there exists a recursive in f � P 0i procedure which lists n0; l0,b0; : : :in an increasing order.Clearly f�n0 is i-regular and jf�n0ji = 1. By Lemma 2.6 Ri is recursive in P 0i .Using f we can generate consecutively the �nite parts f�q for q = 1; 2 : : : . ByLemma 2.2 f�n0 is the �rst element of this sequence which belongs to Ri. Clearlyn0 = lh(f�n0).Suppose that r � �1 and n0; l0; b0; : : : ; nr; lr; br; nr+1 have already been listed.Since f�lr+1 ' �i(f�(nr+1 + 1); Sir+1), we can �nd recursively in f � P 0i the �nitepart f�lr+1. Then lr+1 = lh(f�lr+1). Next we have that f�br+1 is an i-regular (r+1)omitting extension of f�lr+1. So there exist natural numbers lr+1 = q0 < � � � <qr+1 < qr+2 = br+1 such that for p � r + 1,f�qp+1 ' �i(f�(qp + 1); X ihp;qpi):Using the oracle f � P 0i we can �nd consecutively the numbers qp and the �niteparts f�(qp + 1), p = 0; : : : ; r + 2. By the end of this procedure we reach br+1.It remains to show that we can �nd the number nr+2. By de�nition f�nr+2 is ani-regular extension of f�(br+1 + 1) having i-rank equal to jf�br+1ji + 1. Using fwe can generate consecutively the �nite parts f�(br+1 + 1 + q), q = 0; 1; : : : . ByLemma 2.2 f�nr+2 is the �rst element of this sequence which belongs to Ri.So Bfi+1 is recursive in f � P 0i . Hence, since Bi+1 = f(Bfi+1), Bi+1 �e f � P 0i .We shall prove (3) by induction on i. Clearly P0 = B0 �e f . Suppose that i < kand Pi �e f (i). Then Bi+1 �e f � P 0i �e f (i+1). Therefore Pi+1 = P 0i � Bi+1 �ef (i+1).Let f be a total mapping on N. We de�ne for every i � k; e; x the relationf j=i Fe(x) by induction on i:2.9. De�nition.(i) f j=0 Fe(x) () 9v(hv; xi 2 We & (8u 2 Dv)(f((u)0) = (u)1));(ii) f j=i+1 Fe(x) () 9v(hv; xi 2 We & (8u 2 Dv)((u = heu; xu; 0i &f j=i Feu(xu)) _ (u = heu; xu; 1i & f 6j=i Feu(xu)))):



A JUMP INVERSION THEOREM 9Set f j=i :Fe(x) () f 6j=i Fe(x):The following Lemma can be proved by induction on i.2.10. Lemma. Let f be a total mapping on N and i � k. Then A 2 �fi+1 i� thereexists e such that for all x, x 2 A () f j=i Fe(x):Our next goal is the proof of the Truth Lemma. Notice that for all i � kthe relation 
i is monotone, i.e. if � � � are i-regular and � 
i (:)Fe(x), then� 
i (:)Fe(x).2.11. Lemma. Let f be a regular enumeration. Then(1) For all i � k, f j=i Fe(x) () (9� � f)(� is i-regular & � 
i Fe(x)).(2) For all i < k, f j=i :Fe(x) () (9� � f)(� is i-regular & � 
i :Fe(x)).Proof. We shall use induction on i. The condition (1) is obviously true for i = 0.Suppose that i < k and (1) is true for i.First we shall show the validity of (2) for i. Assume that f j=i :Fe(x) and for alli-regular � � f , � 6
i :Fe(x). Then for all i-regular �nite parts � of f there existsan i-regular � � � such that � 
i Fe(x). Fix a j 2 N such thatSij = f� : � 2 Ri & � 
i Fe(x)g:Let � be an (i+ 1)-regular �nite part of f such that j�ji+1 > j. By the de�nition ofthe (i+1)-regular �nite parts, there exists an i-regular �0 � � such that �0 2 Sij . By(1), Since �0 � f , f j=i Fe(x). A contradiction. Assume now that � � f is i-regular,� 
i :Fe(x) and f j=i Fe(x). By induction there exists an i-regular � � f suchthat � 
i Fe(x). Using the monotonicity of 
i, we can assume that � � � and geta contradiction.Now having (1) and (2) for i one can easily obtain the validity of (1) for i+1.2.12. Proposition. Let f be a regular enumeration and 1 � i � k. Then f (i) �ef � P 0i�1.Proof. Let 1 � i � k. By Proposition 2.8 it is su�cient to show that f (i) �e f�P 0i�1.Recall that f (i) = K0f(i�1) � (N nK0f(i�1)), where K0f(i�1) = fhy; zi : y 2 �z(f (i�1))g.Clearly K0f(i�1) is �0i in f and hence there exists an e such that f j=i�1 Fe(x) ()x 2 K0f(i�1) . From here, using Lemma 2.11, we obtain thatx 2 K0f(i�1) () (9� � f)(� is (i� 1)-regular & � 
i�1 Fe(x)) andx 2 (N nK0f(i�1) ) () (9� � f)(� is (i� 1)-regular & � 
i�1 :Fe(x)):So, by Proposition 2.6 K0f(i�1) and (NnK0f(i�1)) are e-reducible to f�P 0i�1. Hencef (i) �e f � P 0i�1.



10 I. N. SOSKOV3. Constructions of regular enumerationsGiven a �nite mapping � de�ned on [0; q�1], by � �z we shall denote the extension� of � de�ned on [0; q] and such that �(q) ' z. If ~k = q0; : : : ; qp is a sequence ofelements of dom(�), then by �(~k) we shall denote the sequence �(q0); : : : ; �(qp).3.1. Lemma. Let i � k and � be an i-regular �nite part de�ned on [0; q � 1].(1) For every y 2 N; z0 2 B0; : : : ; zi 2 Bi, there exists an i-regular extension �of � s.t. j�ji = j� ji + 1 and �(q) ' y; z0 2 �(B�0); : : : ; zi 2 �(B�i ).(2) For every sequence ~a = a0; : : : ; am of natural numbers there exists an i-regular m omitting extension � of � such that �(K�� ) = ~a.Proof. We shall prove simultaneously (1) and (2) by induction on i. Clearly (1) istrue for i = 0. Now suppose that (1) holds for some i < k. First we shall prove (2).Notice that from (1) it follows that �i(��a;X ij) is de�ned for all a; j 2 N and � 2 Ri.Next we de�ne recursively the i-regular �nite parts �p for p � m + 1. Let �0 = � .For p � m let qp = lh(�p) and �p+1 = �i(�p � ap; Xhp;qpi). Let qm+1 = lh(�m+1).Clearly �m+1 satis�es the requirements of De�nition 2.1 with respect to q0; : : : ; qm+1and �m+1(q0; : : : ; qm) = a0; : : : ; am.Now we turn to the proof of (1) for i+ 1. Let � be an (i+ 1)-regular �nite parts.t. dom(�) = [0; q� 1]. Let y 2 N; z0 2 B0; : : : ; zi+1 2 Bi+1 be given. Suppose thatj� ji+1 = r+1 and n0; l0; b0; : : : ; nr; lr; br; nr+1 are the natural numbers satisfying theconditions a){d) from the de�nition of the (i+ 1)-regular �nite parts. Notice thatnr+1 = q. Since � is i-regular, by the induction hypothesis there exists an i-regularextension of � � y. Therefore �0 ' �i(� � y; Sir+1) is de�ned. Let lr+1 = lh(�0). By(2) there exists an i-regular r + 1 omitting extension � of �0. Let br+1 = lh(�).By induction there exists an i-regular �nite part � � � such that j�ji = j�ji + 1,�(br+1) ' zi+1 and z0 2 �(B�0); : : : ; zi 2 �(B�i ). Set nr+2 = lh(�). Clearly � satis�esthe conditions a){d) from de�nition of the (i+ 1)-regular �nite parts with respectto n0; l0; b0; : : : ; nr+1; lr+1; br+1; nr+2.Remark. From the proof above it follows that the i-regular extension � satisfying(1) can be constructed recursively for i = 0 and recursively in P 0i�1 if i > 0. Theconstruction of � from (2) is recursive in P 0i .3.2. Corollary. For every i � k there exists an i-regular �nite part having i-rankequal to 1.As an application of Lemma 3.1 we obtain the following property of the regularenumerations which will be used in the proof of Theorem 1.7:3.3. Lemma. Let f be a regular enumeration and i < k. Then f 6�e Pi.Proof. A standard forcing argument. Assume that f �e Pi. Then the setS = f� : � 2 Ri & (9x 2 dom(�))(�(x) 6' f(x))gis e-reducible to Pi. Let S = Sij and � be an (i+1)-regular �nite part of f such thatj�ji+1 � j + 1. From the de�nition of the (i+ 1)-regular �nite parts it follows that



A JUMP INVERSION THEOREM 11either there exists a � � � such that � 2 S or for all i-regular � � �, � 62 S. Clearlythe �rst is impossible. Let lh(�) = q and f(q) ' y. By Lemma 3.1 there exists ani-regular � � � such that �(q) 6' y and hence � 2 S. A contradiction.3.4. Corollary. If f is a regular enumeration, then for all i < k, Pi <e f (i).Let � be a k-regular �nite part and 1 � i � k. By de�nition the sequence K�ihas exactly j�ji members. So, by Lemma 2.2 if 1 � i � k, then the length of K�i isgreater than or equal to j�jk + (k � i).3.5. Lemma. Let i < k, A 6�e Pi and let � be an (i + 1)-regular �nite part,de�ned on [0; q � 1]. Suppose that j� ji+1 = r + 1, y 2 N, z0 2 B0; : : : ; zi+1 2 Bi+1and s � r + 1. Then one can construct recursively in P 0i � A+ an (i + 1)-regularextension � of � such that(i) j�ji+1 = r + 2;(ii) �(q) ' y, z0 2 �(B�0); : : : ; zi+1 2 �(B�i+1);(iii) if K�i+1 = q0; : : : ; qs; : : : ; qr+1, thena) �(qs) 2 A) � 
i :Fs(qs);b) �(qs) 62 A) � 
i Fs(qs).Proof. Let 0 < n0 < l0 < b0; � � �< nr < lr < br < nr+1 = q be the natural numberssatisfying the conditions a){d) from the de�nition of the (i+ 1)-regular �nite part� . Set �0 ' �i(� � y; Sir+1) and lr+1 = lh(�0). Let �0 = �0. Suppose that p < s and�p is de�ned. Then let qp = lh(�p) and �p+1 ' �i(�p �0; X ihp;qpi). Now let qs = lh(�s).Clearly the setC = fx : (9� � �s)(� 2 Ri & �(qs) ' x & � 
i Fs(qs))g:is e-reducible to Pi. Since A 6�e Pi, there exists an a such that a 2 C & a 62 Aor a 62 C & a 2 A. Denote by a0 the least such a. Notice that a0 can be foundrecursively in P 0i�A+ . Set �s+1 ' �i(�s�a0; X ihs;qsi). By the de�nition of the function�i we have that either a0 2 A and �s+1 
i :Fs(qs) or a0 62 A and �s+1 
i Fs(qs).Next we extend �s+1 to an i-regular r + 1 omitting extension �1 of �0 in the usualway. Let br+1 = lh(�1). Using Lemma 3.1, we can extend �1 to an i-regular �nitepart � such that j�ji = j�1ji + 1, �(br+1) ' zi+1 and zj 2 �(B�j ) for j � i. Letnr+2 = lh(�). Clearly n0; l0; b0; : : : ; nr+1; lr+1; br+1; nr+2 satisfy the conditions a)-d)from the de�nition of the (i + 1)-regular �nite parts. So, � is (i + 1)-regular andj�ji+1 = r + 2. Clearly qs is the s + 1-th member of K�i+1 and since � � �s+1, (iii)holds.3.6. Lemma. Let k > i � 0, A 6�e Pi and let � be a k-regular �nite part, de�nedon [0; q � 1] and j� jk = r + 1. Suppose that y 2 N, z0 2 B0; : : : ; zk 2 Bk ands � r + (k � i). Then one can construct recursively in P 0k�1 � A+ a k-regularextension � of � such that(i) j�jk = r + 2;(ii) �(q) ' y, z0 2 �(B�0); : : : ; zk 2 �(B�k);(iii) if K�i+1 = q0; : : : ; qs; : : : ; qmi, then



12 I. N. SOSKOVa) �(qs) 2 A) � 
i :Fs(qs);b) �(qs) 62 A) � 
i Fs(qs).Proof. We shall use induction on k � (i+ 1). The previous Lemma settles the casek = i + 1. Now suppose that k > i + 1. Let �0 ' �k�1(� � y; Sk�1r+1 ) and let �1 bea (k � 1)-regular r + 1 omitting extension of �0, such that �1(K�1�0 ) = 0; 0; : : : ; 0.Let br+1 = lh(�1). Suppose that j�1jk�1 = r1 + 1. Since j�1jk�1 > j� jk�1 > j� jk,s � r1 + (k � 1� i). By induction there exists a (k � 1)-regular extension � of �1such that j�jk�1 = j�1jk�1 + 1, �(br+1) ' zk, z0 2 �(B�0); : : : ; zk�1 2 �(B�k�1) andsuch that (iii) holds. Clearly � is a k-regular extension of � with k-rank equal tor + 2.The following lemma can be proved in a similar way:3.7. Lemma. Let k � 1 and A0; : : : ; Ak�1 be subsets of N such that Ai 6�e Pi.Let � be a k-regular �nite part, de�ned on [0; q � 1]. Suppose that j� jk = r + 1,y 2 N, z0 2 B0; : : : ; zk 2 Bk and s � r + 1. Then one can construct recursively inP 0k�1 � A+0 � � � � A+k�1 a k-regular extension � of � such that(i) j�jk = r + 2;(ii) �(q) ' y, z0 2 �(B�0); : : : ; zk 2 �(B�k);(iii) if i < k and K�i+1 = qi0; : : : ; qis; : : :qimi , thena) �(qis) 2 Ai ) � 
i :Fs(qis);b) �(qis) 62 Ai ) � 
i Fs(qis).Now we turn to the proofs of the formulated in the introduction theorems. Leta total set Q �e Pk be given. Clearly the sets B0; : : : ; Bk are r. e. in Q. Let us �xsome recursive in Q functions �0; : : : ; �k which enumerate B0; : : : ; Bk, respectively.Let y0; : : : ; yr; : : : be a recursive in Q enumeration of the elements of Q.Proof of Theorem 1.2. By Proposition 2.8 and Proposition 2.12 it is su�cientto show that there exists a regular enumeration f such that f (k) �e Q.We shall construct f as a recursive in Q union of k-regular �nite parts �s suchthat for all s, �s � �s+1 and j�sjk = s+ 1.Let �0 be an arbitrary �nite part such that j�0jk = 1. Suppose that �s is de�ned.Set z0 = �0(s); : : : ; zk = �k(s). Using Lemma 3.1 construct recursively (in P 0k�1,if k � 1) a k-regular � � �s such that j�jk = j�sjk + 1, �(lh(�s)) = ys and z0 2�(B�0); : : : ; zk 2 �(B�k). Set �s+1 = �.Clearly the obtained this way enumeration f is regular and f �e Q. Thereforeby Proposition 2.12 f (k) �e Q. On the other hand, using the oracle f (and P 0k�1, ifk � 1) we can generate as in the proof of Proposition 2.8 consecutively the sequencen1; : : : ; ns; : : : such that f�ns+1 = �s. By the construction y 2 Q () 9s(f(ns+1) =y). Hence Q �e f � P 0k�1 �e f (k).Suppose that k > i � 0 and A is a subset of N such that A+ �e Q and A 6�e Pi.Proof of Theorem 1.3. We shall construct a regular enumeration f such thatf (k) �e Q and A 6�e f (i). The construction of f will be carried out again by steps.At each step s we shall de�ne a k-regular �nite part �s having k-rank equal to s+1.



A JUMP INVERSION THEOREM 13Compared to the previous proof, we shall ensure in addition that at each step s+1,if K�s+1i+1 = q0; : : : ; qs; : : : ; qmi , then(�s+1(qs) 2 A) �s+1 
i :Fs(qs)) & (�s+1(qs) 62 A) �s+1 
i Fs(qs))(3.1)We start by an arbitrary k-regular �nite part �0 having k-rank equal to 1. Supposethat �s is de�ned. Set z0 = �0(s); : : : ; zk = �k(s). Using Lemma 3.6, constructrecursively in Q a k-regular �s+1 � �s such that j�s+1jk = j�sjk+1, �s+1(lh(�s)) = ys,and z0 2 �(B�0); : : : ; zk 2 �(B�k) and if K�s+1i+1 = q0; : : : ; qs; : : : ; qmi , then (3:1) holds.Clearly the whole construction is recursive in Q and hence f �e Q. Then f (k) �ef � P 0k�1 �e Q. The inequality Q �e f (k) can be proved exactly as in the previousproof. It remains to show that A 6�e f (i). Indeed, assume that A �e f (i). Thenthe set C = fx : f(x) 2 Ag is also e-reducible to f (i). Let s be an index such that8x(x 2 C () f j=i Fs(x)). Then for all xf(x) 2 A () f j=i Fs(x)(3.2)Consider �s+1 and qs. Clearly �s+1(qs) ' f(qs). Now assume that f(qs) 2 A. Then�s+1 
i :Fs(qs). Hence f j=i :Fs(qs) which is impossible. It remains that f(qs) 62 A.In this case �s+1 
i Fs(qs) and hence f j=i Fs(qs). The last again contradicts (3:2).So A 6�e f (i).Now we turn to the proof of Theorem 1.7. Set Bk+1 = N and Q = Pk+1 =P 0k �Bk+1. Clearly Q �e P 0k. From now on an enumeration f will be called regularif it is regular with respect to B0; : : : ; Bk; Bk+1.Proof of Theorem 1.7. Since Q is a total set, by Theorem 1.2 there existsa regular enumeration g such that g(k+1) �e Q. By Corollary 3.4 for all i � k,Pi <e g(i). Finally notice that g(k+2) �e Q0 �e P 00k .For i � k, set Giz = �z(g(i)), where �z is the z-th enumeration operator. We shallconstruct recursively in Q0 a regular enumeration f so that(1) f (k+2) �e Q0;(2) if i � k and Giz 6�e Pi, then Giz 6�e f (i).The construction of f will be carried out by steps. At each step s we shallconstruct a (k + 1)-regular �nite part �s so that j�sjk+1 � s+ 1 and �s � �s+1. Onthe even steps we shall ensure (1), on the odd steps { (2).Let Rk+1 be the set of all (k+1)-regular �nite parts and Sk+1j = Rk+1\�j(Q). ByLemma 2.6 the sequence fSk+1j g is T -reducible to Q0. Let �0; : : : ; �k+1 be recursivein Q enumerations of the sets B0; : : : ; Bk+1, respectively.Let �0 be an arbitrary (k + 1)-regular �nite part with (k + 1)-rank equal to 1.Suppose that �s is de�ned.Case s = 2m. Check whether there exists a � 2 Sk+1m such that �s � �. If so let�s+1 be the least such �. Otherwise let �s+1 be the least (k + 1)-regular extensionof �s with (k + 1)-rank equal to j�sjk+1 + 1.Case s = 2m+ 1. Let j�sjk+1 = r + 1 � s + 1. Let m = hz; ei. We may assumethat the recursive coding h:; :i is chosen so that e � m. Then e < r + 1. Let�0(m) ' z0; : : : ; �k+1(m) ' zk+1. Set �0 ' �k(�s � zk+1; Skr+1). Set lr+1 = lh(�0) and



14 I. N. SOSKOVqk0 = lr+1. For j < e, let �j+1 = �k(�j � 0; Xkhj;qkj i) and qkj+1 = lh(�j+1). Now we havede�ned �e and qke . LetC = fx : (9� � �e)(� 2 Rk & �(qke ) ' x & � 
k Fe(qke ))g:Clearly C is recursive in Q. Since Gkz = �z(g(k)) and g(k+1) �e Q, we can checkrecursively in Q0 whether there exists an a such thata 2 C & a 62 Gkz _ a 62 C & a 2 Gkz :(3.3)If the answer is positive, then let a0 be the least a satisfying (3:3). If the answeris negative, then let a0 = 0. Notice that we can �nd a0 recursively in Q0. Nextwe extend recursively in Q0 the �nite part �e � a0 to a �nite part � so that � is ak-regular r+ 1 omitting extension of �0. Set br+1 = lh(�).Now consider the sets Giz, i < k. Notice that g(i+3) is recursive in Q0. SincePi �e g(i) and Giz �e Pi () 9u8x(x 2 �z(g(i)) () x 2 �u(Pi));we can check recursively in g(i+3) for each i whether Giz �e Pi. Set Ai = Giz, ifGiz 6�e Pi and Ai = P 0i , otherwise. Clearly Ai 6�e Pi and A+0 � � � � � A+k�1 �e Q0.By Lemma 3.7 we can construct recursively in Q0 a k-regular extension � of � suchthat(i) j�jk = j� jk + 1;(ii) �(br+1) ' zk+1 and z0 2 �(B�0); : : : ; zk 2 �(B�k);(iii) if i < k and K�i+1 = qi0; : : : ; qie; : : : qihi , thena) �(qie) 2 Ai ) � 
i :Fe(qie);b) �(qie) 62 Ai ) � 
i Fe(qie).Set �s+1 = �.Let f = S �s. Clearly f is a regular enumeration and f �e Q0. First we shallshow that f (k+2) �e Q0. Since f is regular, Pk+1 �e f (k+1). Therefore Q0 = P 0k+1 �ef (k+2). Clearly for every z; x, f� : � 2 Rk+1 & � 
k+1 Fz(x)g is e-reducible to Q.From here, by the even stages of the construction, it follows that for all z; x,f j=k+1 (:)Fz(x) () (9� � f)(� 2 Rk+1 & � 
k+1 (:)Fz(x)):Using the last equivalence we may conclude as in the proof of Proposition 2.12 thatf (k+2) �e f � Q0. Hence f (k+2) �e Q0.Let us turn to the proof of the condition (ii) of the Theorem. Since f is regularwe have that if i � k, then for all e and x,f j=i (:)Fe(x) () (9� � f)(� 2 Ri &� 
i (:)Fe(x)):Now suppose that i � k, A �e g(i) and A �e f (i). Assume that A 6�e Pi. Fix z ande such that A = �z(g(i)) and for all x,f(x) 2 A () f j=i Fe(x):



A JUMP INVERSION THEOREM 15Consider the step s = 2hz; ei + 1. By the construction, there exists a qie 2dom(�s+1) such that(f(qie) 2 A) f j= :Fe(qie)) & (f(qie) 62 A) f j= Fe(qie)):A contradiction. 4. !-regular enumerationsLet B0; : : : ; Bk; : : : be a sequence of subsets of N. We shall call a �nite part oran enumeration k-regular if it is regular with respect to B0; : : : ; Bk.4.1. De�nition. A �nite part � de�ned on [0; q � 1] is called !-regular if thereexist natural numbers 0 < n0 < � � � < nk = q such that for every j � k, ��nj is aj-regular �nite part and j��nj jj = 1.4.2. De�nition. A total mapping f of N in N is called an !-regular enumerationif the following two conditions are satis�ed:(i) For every � � f there exists an !-regular � � f such that � � � .(ii) For every k and z 2 Bk there exists a k-regular � � f such that z 2 �(B�k).Let Pk = P(B0; : : : ; Bk) and P! = fhk; xi : x 2 Pkg. The set P! is total. Indeed,�x z0 so that for all sets A, �z0(A) = A. Thenhk; xi 62 P! () x 62 Pk () x 62 �z0(Pk) ()2 hx; z0i+ 1 2 P 0k () 2 (2 hx; z0i+ 1) 2 Pk+1 = P 0k � Bk+1 ()hk + 1; 2 (2 hx; z0i+ 1)i 2 P!:So, ! n P! �e P! .Using Lemma 2.2 we obtain immediately the following:4.3. Lemma. If f is !-regular, then f is k-regular for every k.4.4. Corollary. If f is !-regular, then (8k � 1)(f (k) �e f � P 0k�1).An examination of the proofs of Proposition 2.6 and Proposition 2.8 shows thetruth of the following uniform versions:4.5. Proposition.(1) The sets Rk of all k-regular �nite parts are uniformly in k e-reducible to Pkand hence the sequence fRkg is T -reducible to P!.(2) The sequences fSkj g and fXkj g are uniformly in k e-reducible to Pk and hencethese sequences are uniformly in k T -reducible to P!.(3) The functions �Sk and �Xk are uniformly in k partial recursive in P 0k andhence they are uniformly partial recursive in P!.4.6. Proposition. If f is an !-regular enumeration, then the sets Bk and Pk areuniformly in k e-reducible to f (k).4.7. Corollary. If f is an !-regular enumeration, then f (!) �e f � P!.



16 I. N. SOSKOV4.8. Theorem. Let Q be a total set and P! �e Q. There exists an !-regularenumeration f such that f (!) �e Q.Proof. The construction of f will be carried out by steps. At each step we shallde�ne a s-regular �nite part �s with s-rank 1. We shall ensure that �s � �s+1 andde�ne f = S �s.Let �(k; s) be a recursive in Q function such that for all k, �s:�(k; s) enumeratesBk. Let y0; y1; : : : be a recursive in Q enumeration of Q.De�ne �0 on [0; 1] so that �0(0) ' y0 and �0(1) ' �(0; 0).Suppose that �s is de�ned. Let n0 = lh(�s), �0 = �s(�s � ys; Ss0) and l0 = lh(�0).Next set � = �s(�0�0; Xsh0;l0i) and b0 = lh(�). Notice that � is a s-regular 0 omittingextension of �0. Using Lemma 3.1, construct a s-regular extension � of � such thatj�sjs = j� js+ 1, �(b0) ' �(s+ 1; 0) and �(s; 1) 2 �(B�s); : : : ; �(0; s+1) 2 �(B�0). Set�s+1 = �.Clearly the obtained by the construction above enumeration f is !-regular. Sincethe whole construction is recursive in Q, we have that f �e Q and hence f (!) �ef � P! �e Q. It remains to show that Q �e f � P! . Indeed, let n0 = 0 andns+1 = lh(�s). Clearly we have a recursive in f � P! procedure which generatesconsecutively the �nite parts �s, s = 0; 1; : : : . Therefore the set fns : s 2 Ng isrecursive in f � P!. Since y 2 Q () 9s(f(ns) ' y), Q �e f � P! .We shall need the following version of Lemma 3.7 which can be proved in a waysimilar to the proof of Lemma 3.6:4.9. Lemma. Let k � 1, and let � be a k-regular �nite part, de�ned on [0; q � 1].Suppose that j� jk = r + 1. Let sk�1 � r + 1; sk�2 � r + 2; : : : ; s0 � r + k. Let fori < k and j � si, Aij 6�e Pi. Finally let y 2 N, z0 2 B0; : : : ; zk 2 Bk. Denote by Athe set Li<k;j�si(Aij)+. Then one can construct recursively in P 0k�1�A a k-regularextension � of � such that(i) j�jk = r + 2;(ii) �(q) ' y, z0 2 �(B�0); : : : ; zk 2 �(B�k);(iii) if i < k and K�i+1 = qi0; : : : ; qisi ; : : : qimi , then for j � si:a) �(qij) 2 Aij ) � 
i :Fj(qij);b) �(qij) 62 Aij ) � 
i Fj(qij).Now we are ready for the main result of this section:4.10. Theorem. There exist total sets F and G such that F (!) �e G(!) �e P! andsuch that for all k the following conditions hold:(i) Pk is uniformly e-reducible to F (k) and to G(k), F (k) 6�e Pk and G(k) 6�e Pk.(ii) If A �e F (k) and A �e G(k), then A �e Pk.Proof. We shall construct F and G as graphs of !-regular enumerations f and g.This will ensure by Proposition 4.6 and Lemma 3.4 the condition (i).Let g be an arbitrary !-regular enumeration such that g(!) �e P!.The construction of f is similar to that in the proof of Theorem 1.7. Let �(k; s)be a recursive in P! function such that for all k, �s:�(k; s) enumerates Bk. For every



A JUMP INVERSION THEOREM 17k and z, set Gkz = �z(g(k)). We start the construction of f by putting �0(0) ' 0and �0(1) ' �(0; 0). Suppose that �s is de�ned and �s is a s-regular �nite part withs-rank 1. Consider the sets Gs0; Gs�11 ; Gs�10 ; : : : ; G0s; : : : ; G00. For i � s and j � s � iset Aij = Gis�i�j if Gis�i�j 6�e Pi and Aij = P 0i , otherwise. Clearly this assignmentcan be done recursively in P! . Notice that Aij 6�e Pi and (Aij)+ �e P!Let �0 = �s(�s �0; Ss0) and l0 = lh(�0). Next let a0 be the least a such that a 2 As0is not equivalent to (9� � �0)(� 2 Rs & �(l0) ' a0 & � 
s F0(l0)). Set � = �s(�0 �a0; Xsh0;l0i) and b0 = lh(�). Using Lemma 4.9, construct a s-regular extension � of �such that j�js = j� js+ 1, �(b0) ' �(s+ 1; 0) and �(s; 1) 2 �(B�s�1); : : : ; �(0; s+ 1) 2�(B�0) and if i < s and K�i+1 = qi0; : : : ; qis�i; : : : qimi , then for all j � s� ia) �(qij) 2 Aij ) � 
i :Fj(qij);b) �(qij) 62 Aij ) � 
i Fj(qij).Set �s+1 = �.Let f = S �s. Clearly f is !-regular, f �e P! and hence f (!) �e P!. It remainsto show the validity of (ii). Fix a k and assume that A = Gkz and A 6�e Pk. We shallshow that A 6�e f (k). Assume that A �e f (k). Then the set C = fx : f(x) 2 Ag isalso e-reducible to f (k). Let p be such that for all x, f j=k Fp(x) () x 2 C. Thenfor all x f(x) 2 A () f j=k Fp(x):(4.1)Consider the step s = k + z + p. Then Akp = Gkz = A. By the construction thereexists a q 2 dom(�s+1) such that(�s+1(q) 2 A & �s+1 
k :Fp(q))_ (�s+1(q) 62 A & �s+1 
k Fp(q)):Since f is (k+ 1)-regular, by Lemma 2.11 f(q) 2 A) f 6j=k Fp(q) and f(q) 62 A)f j=k Fp(q). The last contradicts (4:1).The following corollary should be compared with the respective result in [1]:4.11. Corollary. Let A � N, then A �e Pk i� A 2 �Xk+1 for all total X such thatX (!) �e P! and 8i(Bi 2 �Xi+1) uniformly in i.4.12. De�nition. The set A is arithmetical in the sequence fBkg if for some k,A �e Pk. The sequence fBkg is arithmetical in X if there exist recursive functionsg; h such that Bk = �g(k)((X+)(h(k))).4.13. Corollary. The following assertions are equivalent:(1) A is arithmetical in fBkg.(2) A is arithmetical in all X such that X (!) �e P! and fBkg is arithmetical inX.(3) A is arithmetical in all X such that X (!) �e P! and for all k, Bk is arith-metical in X.Acknowledgments. Thanks to the referee for improving the exposition in thispaper and for pointing out the reference to Rozinas' paper.
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