A JUMP INVERSION THEOREM FOR THE ENUMERATION
JUMP

I. N. SOSKOV

ABSTRACT. We prove a jump inversion theorem for the enumeration jump
and a minimal pair type theorem for the enumeration reducibilty. As an
application some results of Selman, Case and Ash are obtained.

1. INTRODUCTION

Given two sets of natural numbers A and B, we say that A is enumeration
reducible to B (A <, B) if A = I',(B) for some enumeration operator I',. In
other words, using the notation D, for the finite set having canonical code v and
Wa, ..., W,, ... for the G6del enumeration of the r.e. sets, we have

A<, B = FVe(z € A <= Jv((v,2)e W, & D, C B)

The relation <, is reflexive and transitive and induces an equivalence relation
=, on all subsets of N. The respective equivalence classes are called enumeration
degrees. For an introduction to the enumeration degrees the reader might consult
COOPER [4].

Given a set A denote by A% the set A& (N\ A). The set A is called total iff
A=, AT. Clearly A is recursively enumerable in B iff A <, BT and A is recursive
in B iff At <, B*. Notice that the graph of every total function is a total set.

The enumeration jump operator is defined in CooPER [3] and further studied
by McEvoy [5]. Here we shall use the following definition of the e-jump which is
m-equivalent to the original one, see [5]:

1.1. Definition. Given a set A, let K§ = {{x,z) : 2 € I',(A)}. Define the e-jump
A’ of A to be the set (K9)*.

Several properties of the e-jump are proved in [5]. Among them it is shown that
the e-jump is monotone, agrees with =, and that for any sets A and B, A is X,
relatively to B iff A <, (BT)(), where for every set B, B{’) = B and B{"*) is the
e-jump of B,

Though for total sets the e-jump and the Turing jump are enumeration equivalent,
in the general case this is not true. So, for example, the e-jump of Kleene’s set K is
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enumeration equivalent to (' while the Turing jump of K is enumeration equivalent
to (.

Since we are going to consider only e-jumps here, from now on we shall omit the
subscript e in the notation of the e-jump. So for any set A by A" we shall denote
the n-th e-jump of A.

In [5] several analogs of the known jump-inversion theorems for the Turing re-
ducibility are proved, but the relativised versions are not considered. So the follow-
ing natural question is left open. Given a set B, does there exist a total set I’ such
that B <, F'and B' =, I'T

In the present paper we are going to prove the following result which gives a
positive answer to the question above. Given k + 1 sets By, ..., By, we define for
every i < k the set P(By, ..., B;) by means of the following inductive definition:

(i) P(Bo) = Bo;
(ii) If i < k, then P(By,...,Biy1) = (P(Bo, ..., By)) & Biy1.

1.2. Theorem. Let k > 0 and By, ..., B, be arbitrary sets of natural numbers.
Let Q) be a total set and P(By, ..., B) <. Q. There exists a total set I’ having the
following properties:
(i) Foralli <k, B; € Xf,,;
(ii) For alli,1 <i<k, F' = F®P(By,...,Bi_1)';
(iii) F® =, Q.

Notice that if By = -+- = B, = 0, then P(By,..., Bx) =. 0*) and hence, since
both sets are total, they are Turing equivalent. So Theorem 1.2 is a generalization
of Friedberg’s jump-inversion theorem.

We shall also prove the following ”type omitting” version of the above theorem:

1.3. Theorem. Let k > n > 0, By,..., B, be arbitrary sets of natural numbers.
Let A C N and let Q be a total subset of N such that P(By,...,By) <. Q and
At <, Q. Suppose also that A €. P(Bo,...,B,). Then there exists a total set F
having the following properties:

(i) Foralli <k, B; € Xf,,;

(1) Foralli,1<i<k, FO = Fa&P(By...,Bi1);
(i) F® =, Q.

(iv) A £, PO,

In [8] Selman gives the following characterization of the enumeration reducibility
in terms of the relation "recursively enumerable in”:

A<, B < VYX(Bisre. in X = Ais re. in X).

As an application of the so far formulated theorems we can get an upper bound
of the universal quantifier in the equivalence above:

1.4. Theorem. A <, B iff for all total X, B is r.e in X and X' =, B’ implies A
s r.e. in X.
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Proof. Clearly for total X, Bisr.e. in X iff B <_ X. Now suppose that for all total
X,B<, X &X' '=, B = A<, X. First we shall show that AT <, B’. Indeed, by
Theorem 1.2, there exists a total G such that B <, G and G' =, B’. Then A <_ G
and hence A’ <, G’ <, B’. So since AT <, A', AT <, B

Assume that A £, B. Apply Theorem 1.3 for k = 1,n = 0,By, = B,B; = {
and ) = B’ to get a total F such that B <, F/F' =, B’ and A £, F. A
contradiction. []

Selman’s theorem is further generalized in CASE [2], where it is shown that for
all n > 0,
A< Ba "™ = VX(BexX = AcyX ).

Finally Asu [1] studies the general case and characterizes by a certain kind of
formally described reducibilities for any given k + 2 sets A, By, ..., By the relations

RU(A, Bo,...,By) <= VX(BoeX{,... . ByeXy,, = A€,

By an almost direct application of Theorem 1.2 and Theorem 1.3 we obtain the
following version of Ash’s result:

1.5. Theorem.

(1) Foralln <k, R}(A, Bo,...,By) < A< )
(2) For alln >k, R2(A, By, ..., B) < A<, P(By,...,By)"".

Proof. The right to left implications of (1) and (2

Consider the left to right direction of (1). Tow
n <k, RP(A, Bo,...,Bg) and A £. P(By,..., B
total F, such that A £. F'™ and for all i < k,
contradiction.

To prove (2) in the non trivial direction assume that n > k, R7(A, By, ..., By)
and A £. P(By,...,By)"~%). By Selman’s theorem, there exists a total @ such
that P(Bqg, ..., By)™ ™" <, Q and A £, Q. Set Byyy = -+ = B, = 0. Then
P(Bo, .. 3 n) =. P(Bo, ..., By)"%). By Theorem 1.2 there exists a total F' such
that F") =, Q and for all i < k, B; € &, |. Clearly A £, F™ and hence A ¢ ©I
A contradiction. O

) are trivial.

ards a contradiction suppose that
) By Theorem 1.3, there exists a
B; € ©f,. Clearly Agxl,. A

A proof very close to that of Theorem 1.4 gives upper bounds of the universal
quantifiers in the definitions of the relations R}.

1.6. Corollary.

(1) Let n < k. Suppose that S is a total subset of N and P(By,...,B;) <. S.
Then R} (A, By, ..., By) iff for all total X such that X*) =, S,

BoeXf, ... ByeXy,, =>AeX), .

(2) Let k < n. Then R}(A, By, ..., By) iff for all total X such that X"tV =,
P(By, - .., By)nhth)

BoeXf, ... ByeXy,, => A, .
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Clearly the result of Case can be obtained from Theorem 1.5 by setting k£ = n
and By =---= B,_; = 0, B, = B. Another corollary which is worth mentioning is
obtained in the case k =0, n > 0 and By = B:

A<, B™ «—= VX(BeXf = Aex) ).

We conclude the introduction with a Minimal pair type theorem which generalizes
the so far described Selman-Case-Ash results:

1.7. Theorem. Let k > 0 and By, ..., By be arbitrary sets of natural numbers.
There exist total sets F and G such that F*+2) =, P(By..., By)" and GF+Y =,
P(Bg...,B)" and

(i) For alln <k, P(By,...,B,) <. F™ and P(By, ..., B,) <. G™.

(i) Ifn<k, A< F™ and A <. G, then A<, P(By,...,B,).

An immediate corollary of the last Theorem is a result of RoziNas [7] that there
exist a minimal pair of total e-degrees f, g over every e-degree b.

Clearly the minimal pair f, g could be constructed below b”. So Theorem 1.7 gen-
eralizes Selman’s theorem but does not generalize Theorem 1.4. A natural improve-
ment of the last result would be to show that the degrees f, g could be constructed
below b’. This would give a generalization of the respective result of McEvoy AND
CoOOPER [6] where a minimal pair of enumeration degrees below 0’ is constructed.

The proofs of our results use of the machinery of the so called regular enumera-
tions, described in the next section. Section 3 contains the final proofs. In the last
section 4 a version of Theorem 1.7 involving infinite sequences of sets is presented.

2. REGULAR ENUMERATIONS

Let us fix & > 0 and subsets Bg, ..., By of N. Since every set B is enumeration
equivalent to B& N = {2z : 2 € B} U {22+ 1 : 2 € N}, we may assume that
Bo, ..., By are not empty.

In what follows we shall use the term finite part for finite mappings of N into N
defined on finite segments [0, ¢ — 1] of N. Finite parts will be denoted by the letters
7,6, p. If dom(7) =[0,¢ — 1], then let lh(7) = ¢.

We shall suppose that an effective coding of all finite sequences and hence of all
finite parts is fixed. Given two finite parts 7 and p we shall say that 7 is less than
or equal to p if the code of 7 is less than or equal to the code of p. By 7 C p we
shall denote that the partial mapping p extends 7 and say that p is an extension of
7. For any 7, by 7|n we shall denote the restriction of 7 on [0,n — 1].

Bellow we define for every ¢ < k the i-regular finite parts.

The 0-regular finite parts are finite parts 7 such that dom(7) = [0, 2¢+ 1] and for
all odd z € dom(7), 7(z) € By.

If dom(7) = [0,2¢ + 1], then the O-rank |7|y of 7 is equal to the number ¢ + 1
of the odd elements of dom(7). Notice that if 7 and p are O-regular, 7 C p and
17l = |plo, then 7= p.

For every O-regular finite part 7, let B] be the set of the odd elements of dom(7).
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Given a O-regular finite part 7, let
Tl Fo(z) < Jo((v,z) e W, & (Vu € D,)(7((u)o) =~ (u)1))

Tlkg =F.(2) <= V(0-regular p)(7 C p = plfo Fe(2)).

Proceeding by induction, suppose that for some ¢ < k we have defined the i-
regular finite parts and for every i-regular 7 — the i-rank |7|; of 7, the set B and
the relations 7 Ik F,(2) and 7 IF; =F,(z). Suppose also that if 7 and p are i-regular,
7 C p and |7|; = |pl;, then 7 = p.

Set Xi = {p:pisi-regular & p Ik F;),((j)1)}

Given a finite part 7 and a set X of i-regular finite parts, let u; (7, X') be the least
extension of 7 belonging to X if any, and p; (7, X') be the least i-regular extension
of 7 otherwise. We shall assume that p;(7, X) is undefined if there is no i-regular
extension of 7.

2.1. Definition. Let 7 be a finite part and m > 0. Say that § is an i-regular m
omitting extension of 7 if § is an i-regular extension of 7, defined on [0, ¢ — 1] and
there exist natural numbers ¢y < - -+ < ¢, < Gmy1 = ¢ such that:

a) 8lqo=T. '

b) For allpﬁm,&[qu:,ui((S[(qp—l—l),XZ ).

Pqp)

Notice that if § is an ¢-regular m omitting extension of 7, then there exists a
unique sequence of natural numbers qq, ..., ¢nt1 having the properties a) and b)
above. We shall denote the sequence qq, ..., ¢, by K°. Moreover if § and p are two
t-regular m omitting extensions of 7 and § C p, then § = p.

Let R; denote the set of all ¢-regular finite parts. Given an index j, by S} we
shall denote the intersection R;NLI'; (P(By, ..., B;)), where I'; is the j-th enumeration
operator.

Let 7 be a finite part defined on [0,¢ — 1] and r > 0. Then 7 is (i 4+ 1)-regular
with (¢4 1)-rank r 4+ 1 if there exist natural numbers

0<no<lp<bo<mn <ly<b---<n <l <b, <my1=g¢q

such that 7|ng is an ¢-regular finite part with i-rank equal to 1 and for all j, 0 <
j < r, the following conditions are satisfied:
a) Tl >~ p;(T1(n; + 1),5});
b) 71b; is an i-regular j omitting extension of 7]/;;
¢) 7(b;) € Bij1;
d) 7Inj4; is an i-regular extension of 7](b; + 1) with i-rank equal to |7]b;]; 4+ 1
The following Lemma shows that the (i 4+ 1)-rank is well defined.

2.2. Lemma. Let 7 be an (i + 1)-regular finite part. Then

(1) Let mqg, qo, o, - - s My, Gy Gy Mpyy and ng, Lo, by .oy 0yy Ly by gy be two se-
quences of natural numbers satisfying a)-d). Then r = p,ny,p1 = my1 and
forall j <r,n; =m;,l; =¢q and b; = a;.

(2) If pis (i 4 1)-regular, 7 C p and |T|iz1 = |pliz1, then T = p.

(3) 7 is i-regular and |7|; > |T|it1.
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Proof. The proof follows easily from the definition of the (i + 1)-regular finite parts
and from the respective properties of the ¢-regular finite parts. O

Let 7 be (¢+1)-regular and ng, lo, bo, ..., 7y, I, by, 011 be the sequence satisfying
a)-d). Then let B}, = {by,...,b,}. By K7 , we shall denote the sequence K:rrlb:.
[

Notice that, since 7[b, is an r omitting extension of 7/, the sequence KTT“: has
exactly r + 1 members.

To conclude with the definition of the regular finite parts, let for every (i 4 1)-
regular finite part 7

Tl Fo(z) <= Jo((v,z) e W, & (Vu € D,)((u= (ey,4,0) & 7 IF; F, (2,))V
(u= ey, 2y, 1) & 7l =F, (2,)))).

Tl ~Fo(2) < (V(i+ 1)-regular p)(7 C p = p Wiy Fo(2)).

2.3. Definition. Let f be a total mapping of Nin N. Then f is a regular enumer-
ation if the following two conditions hold:

(i) For every finite part § C f, there exists a k-regular extension 7 of ¢ such
that 7 C f.
(ii) Ifi < kand z € B;, then there exists an ¢-regular 7 C f, such that z € 7(B]).

Clearly, if f is a regular enumeration and ¢ < k, then for every § C f, there exists
an ¢-regular 7 C f such that § C 7. Moreover there exist i-regular finite parts of f
of arbitrary large rank.

Given a regular f, let for i < k, B = {b: (3r C f)(r is i-regular & b € B])}.
Clearly f(B{)= B;.

2.4. Definition. A sequence Ag,..., A,,... of subsets of N is e-reducible to the
set P iff there exists a recursive function h such that for all n, A4, = Fh(n)(P). The
sequence {A,} is T-reducible to P if there exists a recursive in P function x such
that for all n, Az.x(n,2) = xa,, where x4, denotes the characteristic function of

A,.

2.5. Lemma. Suppose that the sequence {A,} is e-reducible to P. Then the fol-
lowing assertions hold:

(1) The sequence {A,} is T-reducible to P’.

(2) If R <. P, then either of the following sequences is e-reducible to P:
a) {RNA,};
b) {C,}, where C,, ={z : Jy({z,y) € R& y € A,)}.

Proof. Let h be a recursive function such that for all n, A, = Fh(n)(P).
The proof of (1) follows easily from the definition of the e-jump. Indeed,

z€A, & 2l (P) < (z,h(n)) € K} < 2(x,h(n)) € P.

v g A, = 2¢Tn(P) < (2,h(n)) ¢ K} < 2(z,h(n))+1€ P.
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To prove the part b) of (2) notice that for every n
reC, <= y((z,y) € R& Fv((v,y) € Wiy & D, C P)).
Let R=1,(P). Then (z,y) € R <— Ju((u,{(z,y)) e W, & D, C P).

Clearly there exists a recursive function ¢ such that
(w,z) € Wypny <= JyFudv((u, (z,y)) € W. & (v,y) € Wiy & Dy = D, UD,).

Then z € C,, <= Jw((w,z) € Wy,) & D, C P). Thus C), = I'yny(P).
The proof of the a) part of (1) is similar. O

Let ¢ < k. Set P, = P(By, ..., B;). Notice that if ¢ < k, then Py, = P/ & B;,;.
For j € Nlet ' (7, 5) = pi (7, X}), i (7, 5) = pi (7, .5}),
Y}i ={7:(3p D 7)(pis i-regular & pIt; F(j)o((j)l))}
Zt ={r:7is i-regular & 7 Ik; = F(;),((7)1)} and
O, ; = {p: pis i-regular j omitting extension of 7}.
2.6. Proposition. For every i < k the following assertions hold:
(1) The set R; of all i-regular finite parts is e-reducible to P;.
(2) The function At.|7|; (assumed undefined if T ¢ R;) is e-reducible to P;.
(3) The sequences {S;}, {X}} and {Y}} are e-reducible to P;.
(4) The sequence {Z}} is T-reducible to P;.
(5) The functions u* and u? are partial recursive in P!.
) The sequence {0}, ;} is e-reducible to P;.

(6

Proof. The proof is by induction on ¢. Suppose that ¢ = 0. The validity of (1)-(6)
follows easily from the definitions of the 0-regular finite parts and the relation ”Iy”
and Lemma 2.5.

Suppose that for some ¢ < k the assertions (1)—(6) hold. Now the validity of
(1) and (2) for i 4+ 1 follows directly from the definition of the (¢ 4 1)-regular finite
parts. Since R;1; <. P41, by Lemma 2.5 the sequence {S;"'l} is e-reducible to
F;,. Further, by induction and by Lemma 2.5 the sequence {X;} is T-reducible to
P/. By induction {Z}} is also T-reducible to P/. From here it follows that the sets
{7 : 7k F.(2)} are uniformly in e and 2 r. e. in P! and therefore these sets are
uniformly e-reducible to P/. We have that

T E X;“ — T E fRz’+1 &r ks F(j)o((j)l)'

Hence the sequence {X}"’l} is e-reducible to F;;;. Then by Lemma 2.5 the sequence
{Y}i"'l} is e-reducible to P4, and hence it is uniformly T-reducible to F/ ;. From
here, since Z;‘H =R \Yy‘"l7 we get the validity of (4) for i + 1. Now the truth of
(5) and (6) for 7 + 1 follows directly from the respective definitions. [

2.7. Corollary. For everyt < k and every j, X;f 1s & member of the sequence {S;}

2.8. Proposition. Suppose that f is a regular enumeration. Then

(1) BO Se f
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(2) If i < k, then Bisy <. f @ P!,
(3) Ifi <k, then P, <, f@,

Proof. Since f is regular, By = f(ng) Clearly B! is equal to the set of all odd
natural numbers. So, By <, f.

Let us turn to the proof of (2). Fix an ¢ < k. Since f is regular, for every finite
part § of f there exists an (i + 1)-regular 7 C f such that § C 7. Hence there exist
natural numbers

O0<ng<lp<by<m<li<b<---<n <l <b<...,

such that for every r > 0, the finite part 7. = fin,1; is (i + 1)-regular and
no, Lo, boy -« oy Npylpy by, neqy are the numbers satisfying the conditions a)-d) from
the definition of the (i + 1)-regular finite part 7. Clearly B{,, = {bo,b,...}. We
shall show that there exists a recursive in f ¢ P/ procedure which lists ng, lo,bo, . . .
in an increasing order.

Clearly flng is i-regular and |f[no|; = 1. By Lemma 2.6 R; is recursive in P/.
Using f we can generate consecutively the finite parts flq for ¢ = 1,2.... By
Lemma 2.2 fln, is the first element of this sequence which belongs to R;. Clearly
no = th(fIno).

Suppose that » > —1 and ng,ly, bo, ..., 7, L, by, ney 1 have already been listed.
Since fll41 ~ i (f1(neg1 + 1),50,,), we can find recursively in f & P the finite
part f1l,41. Then I,y =1h(f|l,;11). Next we have that f|b, , is an i-regular (r+41)
omitting extension of f[l.,;. So there exist natural numbers [, | = ¢ < -+ <
Gr1 < Gryz = br+1 such that for p<r+ 17

Jlapgr =~ i (f1(gp + 1), X(ip,qp>)'

Using the oracle f @ P/ we can find consecutively the numbers ¢, and the finite
parts fl(g, + 1), p = 0,...,r + 2. By the end of this procedure we reach b, ;.
It remains to show that we can find the number n,,5. By definition f[n,,. is an
i-regular extension of f|(b,y, + 1) having i-rank equal to |f]b.11|; + 1. Using f
we can generate consecutively the finite parts f(b,4y1 +1+¢), ¢ = 0,1,.... By
Lemma 2.2 f[n,, is the first element of this sequence which belongs to R;.

So B{,, is recursive in f @ P/. Hence, since Biy, = f(Bi,,), Bip1 <. f & P.

We shall prove (3) by induction on i. Clearly Py = By <. f. Suppose that i < k
and P, <. f%. Then Biy, <. f® P! <. f0+9. Therefore P, = P/ ® B;;1 <.
FOtD O

Let f be a total mapping on N. We define for every ¢ < k, e,z the relation
f Ei F.(x) by induction on i:
2.9. Definition.

(1) f o Fele) = Fo{v,2) € W, & (Yu € D) (f((w)o) = (u)1));
fEin F(z) < Fo{(v,2) e W, & (Vu € D,)((u= (ey,2,,0) &
)

(if) FEF(2)V (u= (e, 2, 1) & f i B (2.)))).
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Set f =i _'Fe($) = [ Fe(x)

The following Lemma can be proved by induction on q.

2.10. Lemma. Let [ be a total mapping on N and + < k. Then A € E{_H ioff there
exists € such that for all z, x € A <= f | F.(2).

Our next goal is the proof of the Truth Lemma. Notice that for all 7 < k
the relation IF; is monotone, i.e. if 7 C p are i-regular and 7 IF; (=) F.(2), then

p i (). (2).

2.11. Lemma. Let f be a reqular enumeration. Then

(1) Foralli <k, fl F.(z) < (31 C f)(7 is i-reqular & 7 IF; F.(2)).
(2) Foralli <k, fl;, ~F.(2) < (31 C f)(7 isi-regular & 7 I+, ~F.(z)).

Proof. We shall use induction on i. The condition (1) is obviously true for 7 = 0.
Suppose that ¢ < k and (1) is true for ¢.

First we shall show the validity of (2) for ¢. Assume that f |, =F.(z) and for all
i-regular 7 C f, 7 If; = F.(z). Then for all ¢-regular finite parts 7 of f there exists
an i-regular p O 7 such that p I F.(2). Fix a j € N such that

Si={p:peR &pl; F.(z)}.

Let § be an (¢4 1)-regular finite part of f such that |§];1; > j. By the definition of
the (¢+1)-regular finite parts, there exists an i-regular p’ C § such that p’ € S; By
(1), Since p' C f, f =i F.(2). A contradiction. Assume now that 7 C f is i-regular,
7 Ik =F.(2) and f &= F.(z). By induction there exists an i-regular p C f such
that p Ik F.(z). Using the monotonicity of IF;, we can assume that 7 C p and get
a contradiction.

Now having (1) and (2) for ¢ one can easily obtain the validity of (1) fori4+1. O

2.12. Proposition. Let f be a reqular enumeration and 1 < i < k. Then f =,
fo P,

Proof. Let 1 < i < k. By Proposition 2.8 it is sufficient to show that f%) <. f@O P!

k3

. . _1‘
Recall that fU) = K9._,, @ (N\ KJ._,)), where K7._, = {(y,2) : y € T.(f0~1)}.
Clearly K9._, is X} in f and hence there exists an e such that f =, Fi(2) <
v € K}(_,). From here, using Lemma 2.11, we obtain that

€Ki, < (3rCf)(ris (i—1)-regular & 7 lF;_; F.(2)) and

z € (N\K{i.) < 3 C f)(ris (i — 1)-regular & 7 Iy 2 F.(2)).

So, by Proposition 2.6 K7, and (N\ K}_,)) are e-reducible to f@ P/_,. Hence
fO< fePL. O
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3. CONSTRUCTIONS OF REGULAR ENUMERATIONS

Given a finite mapping 7 defined on [0, g— 1], by 7*z we shall denote the extension
p of 7 defined on [0, ¢] and such that p(¢) ~ 2. If £ = ¢o,...,q, is a sequence of

—

elements of dom(7), then by 7(k) we shall denote the sequence 7(¢qp),...,7(q,).
3.1. Lemma. Let i < k and 7 be an i-regular finite part defined on [0,q — 1].

(1) For every y € N, zy € By, ...,z € By, there exists an i-reqular extension p
of T s.t. |pli=|7li+ 1 and p(q) >~ y, z0 € p(BY), ...,z € p(B]).
(2) For every sequence @ = ag,...,a, of natural numbers there exists an i-

regular m omitling extension § of T such that §(K°) = .

Proof. We shall prove simultaneously (1) and (2) by induction on 7. Clearly (1) is
true for ¢ = 0. Now suppose that (1) holds for some ¢ < k. First we shall prove (2).
Notice that from (1) it follows that u;(+a, X?) is defined for all ¢, j € Nand ¢ € R;.
Next we define recursively the ¢-regular finite parts 4, for p < m + 1. Let §; = 7.
For p < mlet ¢, = 1h(d,) and é,11 = p; (9, * a,, Xy 0y). Let gy = 1h(d41).
Clearly 9,,, satisfies the requirements of Definition 2.1 with respect to qo, ..., ¢mni1
and 6,11 (qoy -y @m) = Goy ey .

Now we turn to the proof of (1) for ¢ + 1. Let 7 be an (i + 1)-regular finite part
s.t. dom(7) =[0,¢—1]. Let y € N,z € Bq, ..., 211 € Biy1 be given. Suppose that
|7]iz1 = r+1and ng, lo, b, ..., 7y, Ly, by, y are the natural numbers satisfying the
conditions a)-d) from the definition of the (¢ 4+ 1)-regular finite parts. Notice that
n,41 = ¢. Since T is ¢-regular, by the induction hypothesis there exists an ¢-regular
extension of 7« y. Therefore py >~ p; (T * y, S;,,) is defined. Let I,y =1h(po). By
(2) there exists an i-regular r + 1 omitting extension ¢ of py;. Let b4y = lh(9).
By induction there exists an i-regular finite part p O § such that |p|; = [§]; + 1,
p(byy1) >~ ziy1 and z € p(Bf), ...,z € p(Bf). Set n,.» = lh(p). Clearly p satisfies
the conditions a)-d) from definition of the (¢ 4+ 1)-regular finite parts with respect
to n07107b07"'7nr+17l7‘+17br+17n7‘+2- U

Remark. From the proof above it follows that the ¢-regular extension p satisfying
(1) can be constructed recursively for ¢ = 0 and recursively in P/_, if ¢ > 0. The
construction of ¢ from (2) is recursive in P/.
3.2. Corollary. For every 1 < k there exists an i-reqular finite part having i-rank
equal to 1.

As an application of Lemma 3.1 we obtain the following property of the regular
enumerations which will be used in the proof of Theorem 1.7:

3.3. Lemma. Let f be a regular enumeration and @ < k. Then f €. P;.
Proof. A standard forcing argument. Assume that f <. F;. Then the set
S={r:7€R & (Fz € dom(7))(r(z) 2 f(z))}

is e-reducible to P;. Let S = S} and ¢ be an (i+ 1)-regular finite part of f such that
|0]ix1 > 7+ 1. From the definition of the (¢ + 1)-regular finite parts it follows that
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either there exists a p C d such that p € S or for all i-regular p D 6, p € 5. Clearly
the first is impossible. Let lh(d) = ¢ and f(¢) ~ y. By Lemma 3.1 there exists an
i-regular p O § such that p(q) 2 y and hence p € S. A contradiction. O

3.4. Corollary. If f is a reqular enumeration, then for all i < k, P, <, f1.

Let & be a k-regular finite part and 1 < ¢ < k. By definition the sequence K
has exactly |§|; members. So, by Lemma 2.2 if 1 < ¢ < k, then the length of K? is
greater than or equal to |&|, + (k — 7).

3.5. Lemma. Leti < k, A £, P, and let 7 be an (i 4+ 1)-regular finite part,
defined on [0,q — 1]. Suppose that |t|;x1 =r+ 1,y € N, z5 € By, ..., 241 € Bipa
and s < r+ 1. Then one can construct recursively in P! & AT an (i + 1)-regular
extension p of T such that

(i) lplisi=r+2;
(H) p(q) >y, Z € P(Bg)7 <oy Fidl € p(Bip+1);
(iii) of Koy =qos- 1oy ooy Gy, then
a) plgs) € A= plk; ~Fi(q,);
b) IO(QS) € A= P H_i FS(QS)'

Proof. Let 0 < ng < lg < by, - < n, <l <b. <n, 1 =q bethe natural numbers
satisfying the conditions a)-d) from the definition of the (: + 1)-regular finite part
7. Set po ~ (T * y, Sﬁ_l_l) and .11 = lh(pg). Let &y = py. Suppose that p < s and
dy is defined. Then let g, = 1h(,) and 0,41 > 4, (8, %0, X, 1). Now let ¢, = 1h(d,).
Clearly the set

C={x:(3626)00€R &dlg) =~z &5l Fq))).

is e-reducible to F,. Since A £. FP;, there exists an a such that « € C & a € A
ora g C & a € A. Denote by ag the least such a. Notice that ay can be found
recursively in P/@A*T. Set 8,41 ~ p1;(dsxao, XZSM). By the definition of the function
p; we have that either ag € A and 0,1, IF; =F,(qs) or ag € A and 6,41 Ik Fi(qs).
Next we extend d,,; to an ¢-regular r + 1 omitting extension p; of py in the usual
way. Let b.;; = lh(py). Using Lemma 3.1, we can extend p; to an i-regular finite
part p such that |pl; = [p1]; + 1, p(bry1) = 241 and z; € p(Bf) for j < i. Let
nry2 = lh(p). Clearly no,lo, bo, ..., %ry1, lry1, brp1, nega satisfy the conditions a)-d)
from the definition of the (¢ + 1)-regular finite parts. So, p is (i + 1)-regular and
|pliy1 = r+ 2. Clearly ¢, is the s+ 1-th member of K/, and since p D §,1, (iii)
holds. [

3.6. Lemma. Letk >1 >0, A L. P, and let 7 be a k-reqular finite part, defined
on [0,q — 1] and |7|, = r + 1. Suppose that y € N, zy € By, ...,z € By and
s < r+ (k—1). Then one can construct recursively in P,_; & At a k-regular
extension p of T such that

(i) pg) >y, 20 € p(Bg), ..., 2 € p(Bg);

(iil) if Ky = qoye-vsGsy-enyGm,, then
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a) p(q.) € A= plki =F(q.);
b) plg;) & A= plk; Fi(q,).

Proof. We shall use induction on k£ — (i + 1). The previous Lemma settles the case
k =i+ 1. Now suppose that k > i+ 1. Let po =~ pp_1(7 * y,S)) and let p; be
a (k — 1)-regular r + 1 omitting extension of py, such that p,(K/*) = 0,0,...,0.
Let b,41 = lh(py). Suppose that |pi|x_; = ri + 1. Since |pi|s—1 > |1 > |T|x,
s <ry+ (k—1-1). By induction there exists a (k — 1)-regular extension p of p,
such that |pls—1 = |p1le—1 + 1, p(bry1) = 2k, 20 € p(B),..., 251 € p(Bf_;) and
such that (iii) holds. Clearly p is a k-regular extension of 7 with k-rank equal to

r+2. O
The following lemma can be proved in a similar way:

3.7. Lemma. Let k > 1 and Ay,..., Ax_1 be subsets of N such that A; L. P;.
Let 7 be a k-regular finite part, defined on [0,q — 1]. Suppose that |T|, = r + 1,

y €N,z € By,...,2z € B, and s < r + 1. Then one can construct recursively in
P._ &AL - @ Al a k-reqular extension p of T such that

(i) p(g) >y, 20 € p(B), ..., 2 € p(By);

(iii) ifi < k and Kii=q,.. sy -+ -G, s then
a) p(q,) € A; = plb; ~F(q;);
b) pla,) ¢ Ai = p ki Fi(qy).

Now we turn to the proofs of the formulated in the introduction theorems. Let
a total set Q >, P, be given. Clearly the sets By, ..., By are r. e. in (). Let us fix
some recursive in ) functions oq,..., 0, which enumerate By, ..., B;, respectively.
Let yo,...,¥,,... be a recursive in J enumeration of the elements of ().

Proof of Theorem 1.2. By Proposition 2.8 and Proposition 2.12 it is sufficient
to show that there exists a regular enumeration f such that f*) =_ Q.

We shall construct f as a recursive in ¢ union of k-regular finite parts d, such
that for all s, 6, C §,4, and |&], = s+ 1.

Let 0y be an arbitrary finite part such that |d|z = 1. Suppose that &, is defined.
Set zg = 0¢(s),...,2, = 04(s). Using Lemma 3.1 construct recursively (in F_,,
if £ > 1) a k-regular p D J, such that |plx = |&]x + 1, p(Ih(ds)) = y, and z, €
p(Bg), ...,z € p(Bg). Set b4y = p.

Clearly the obtained this way enumeration f is regular and f <, ). Therefore
by Proposition 2.12 f*) <, . On the other hand, using the oracle f (and P}_,, if
k > 1) we can generate as in the proof of Proposition 2.8 consecutively the sequence
N1y ...y Mg, ...such that flngy = 0. By the constructiony € Q <= 3s(f(nyy1) =
y) Hence Q Se f@ Pl;—l Se f(k) O

Suppose that & > ¢ > 0 and A is a subset of N such that AT <, Q and A £, P,.

Proof of Theorem 1.3. We shall construct a regular enumeration f such that
F® =, Q and A £, f. The construction of f will be carried out again by steps.
At each step s we shall define a k-regular finite part §, having k-rank equal to s+ 1.
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Compared to the previous proof, we shall ensure in addition that at each step s+ 1,
if Kfjjl = o,y sy .-y qm,, then

(3'1) (5s+1((]s) € A = 58+1 H_i _‘FS(QS)) & (58+1(QS) € A = 58+1 H_i FS(QS))

We start by an arbitrary k-regular finite part d, having k-rank equal to 1. Suppose
that J; is defined. Set zy = o0¢(s),..., 2, = ox(s). Using Lemma 3.6, construct
recursively in Q a k-regular 6,44 O & such that |61k = |0s|x + 1, ds11(Ih(d;)) = vs,
and zy € p(Bf), ...,z € p(B]) and if Kfjjl = Qoy- -y sy -, qm,;, then (3.1) holds.

Clearly the whole construction is recursive in () and hence f <. Q. Then f*) =,
f@® P._, <. Q. The inequality Q <. f*) can be proved exactly as in the previous
proof. It remains to show that A £, f). Indeed, assume that A <. f. Then
the set C'= {z : f(z) € A} is also e-reducible to (V). Let s be an index such that
Va(z € C <= fk F;(z)). Then for all z

(3.2) J@)eA = [k F(2)

Consider 0,4, and g,. Clearly 6,11(qs) ~ f(qs). Now assume that f(gq;) € A. Then
ds41 Ik 7 F(qs). Hence f }=; —F(q;) which is impossible. It remains that f(q,) ¢ A.
In this case ;41 IF; Fi(¢s) and hence f = F;(q;). The last again contradicts (3.2).
SoAZ. f9. O

Now we turn to the proof of Theorem 1.7. Set B,y = Nand @ = F,; =
P & Byy. Clearly @ =. F. From now on an enumeration f will be called regular
if it is regular with respect to By, ..., By, Bry1.

Proof of Theorem 1.7. Since () is a total set, by Theorem 1.2 there exists
a regular enumeration ¢ such that ¢**Y =_ Q. By Corollary 3.4 for all i < k,
P, <. g, Finally notice that ¢"**? =, Q' =, P/

For i < k,set G =1T,(¢g""), where I, is the z-th enumeration operator. We shall
construct recursively in ) a regular enumeration f so that

(1) f0+2) =, @
(2) if ¢ <k and G¢ £, P, then G £, f0).

The construction of f will be carried out by steps. At each step s we shall
construct a (k + 1)-regular finite part d, so that |ds]x41 > s+ 1 and &, C d444. On
the even steps we shall ensure (1), on the odd steps — (2).

Let Ry11 be the set of all (k+1)-regular finite parts and S;+' = R, 1N (Q). By
Lemma 2.6 the sequence {Sf+1} is T-reducible to @)’'. Let oq,..., 0,41 be recursive
in () enumerations of the sets By, ..., By i1, respectively.

Let & be an arbitrary (k 4 1)-regular finite part with (k + 1)-rank equal to 1.
Suppose that &, is defined.

Case s = 2m. Check whether there exists a p € S5*! such that §, C p. If so let
ds41 be the least such p. Otherwise let J,,, be the least (k4 1)-regular extension
of §; with (k + 1)-rank equal to |J|k41 + 1.

Case s =2m+ 1. Let |§]py1 =7+ 1> s+ 1. Let m = (z,e). We may assume
that the recursive coding (.,.) is chosen so that e < m. Then e < r+ 1. Let
oo(m) =~ zo, ..., 0pr1 (M) 2 241, Set 7o = g (65 * 241, Sf_l_l). Set [y, = lh(7y) and
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g8 =141 For j <e, let 7541 = g (75 % 07X(kj,q;?)) and ¢f,, =1h(7j31). Now we have
defined 7, and ¢*. Let

C={z:Fr2r)r R & 7(¢") ~ 2 & 71k, FL(¢5))}.

k+1

Clearly (' is recursive in Q. Since G* = I',(¢™®) and g*+Y) =  Q, we can check

recursively in ()’ whether there exists an a such that
(3.3) acC&adG"VvadC&acah.

If the answer is positive, then let ay be the least a satisfying (3.3). If the answer
is negative, then let @y = 0. Notice that we can find a, recursively in ¢)'. Next
we extend recursively in (' the finite part 7, * ay to a finite part 7 so that 7 is a
k-regular r + 1 omitting extension of 7. Set b, = lh(7).

Now consider the sets Gii, i < k. Notice that ¢(*® is recursive in @’. Since
B <. g% and

G <. P < Juwva(z €1, (¢") < 2 € (P)),

we can check recursively in ¢"*® for each i whether Gi <. P,. Set A; = G, if
G £, P, and A; = P/, otherwise. Clearly A; £. P, and Ay @ --- @& Af_| <. Q"
By Lemma 3.7 we can construct recursively in @)’ a k-regular extension p of 7 such

that
@) lple = |7l + 13
(ii) p(by41) = zk41 and 20 € p(BY), ..., 2 € p(By);
(iii) if ¢ < k and K7\, = ¢j,...,q.,...q},, then
a) P(f]é) €A = plk —F, (‘]é)v
b) pla:) ¢ Ai = p ki Fe(qz).
Set 0,11 = p.

Let f = Jd,. Clearly f is a regular enumeration and f <, @)'. First we shall
show that f*+2) =, Q'. Since f is regular, Piyy <. f**V. Therefore Q' = P, <.
FE+2) 0 Clearly for every z,2, {1 : 7 € Rypyy & 7 Ibpqy Fo(2)} is e-reducible to Q.
From here, by the even stages of the construction, it follows that for all z, z,

f B ())<= (3 C N7 € Ry & 7lkegy () F(2)).

Using the last equivalence we may conclude as in the proof of Proposition 2.12 that
fERD < o Q' Hence f0H2) = Q.

Let us turn to the proof of the condition (ii) of the Theorem. Since f is regular
we have that if + < k, then for all e and =,

fE () <= Or C )T e R &tk () Fe(z)).

Now suppose that i < k, A <. ¢ and A <, f). Assume that A £, P;. Fix z and
e such that A =T, (¢®) and for all z,

fl)e A = [ F(2).
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Consider the step s = 2(z,€e) + 1. By the construction, there exists a ¢! €
dom(J,41) such that

(fle) e A= FE-F(¢) & (f(¢)) ¢ A= [ Fq))-
A contradiction. []

4. W-REGULAR ENUMERATIONS

Let By, ..., Bi,... be a sequence of subsets of N. We shall call a finite part or
an enumeration k-regular if it is regular with respect to By, ..., B.

4.1. Definition. A finite part 7 defined on [0,¢ — 1] is called w-regular if there
exist natural numbers 0 < ny < --- < ny = ¢ such that for every j < k, 7[n; is a
j-regular finite part and |7[n;|; = 1.
4.2. Definition. A total mapping f of Nin N is called an w-regular enumeration
if the following two conditions are satisfied:

(i) For every 6 C f there exists an w-regular 7 C f such that 6 C 7.

(ii) For every k and z € By, there exists a k-regular 7 C f such that z € 7(B]).

Let P, = P(By,...,Bx) and P, = {(k,z) : x € P,}. The set P, is total. Indeed,
fix zg so that for all sets A, I', (4) = A. Then
(ko) ¢ P, <= 2o ¢ P, < a2 ¢, (P) <
2{x,z0)+1€ P, < 2(2{x,2)+ 1) € Poy1 = P& Bry1y —
(k+1,2(2(x,z0) + 1)) € P,.
So,w\ P, <. P,.
Using Lemma 2.2 we obtain immediately the following;:
4.3. Lemma. If f is w-reqular, then f is k-reqular for every k.
4.4. Corollary. If f is w-regular, then (Vk > 1)(f® =, f& P._)).

An examination of the proofs of Proposition 2.6 and Proposition 2.8 shows the
truth of the following uniform versions:

4.5. Proposition.

(1) The sets Ry of all k-regular finite parts are uniformly in k e-reducible to P,
and hence the sequence {Ry} is T-reducible to P,.

(2) The sequences {S}} and {X}} are uniformly in k e-reducible to P, and hence
these sequences are uniformly in k T-reducible to P,,.

(3) The functions p; and pi are uniformly in k partial recursive in P, and
hence they are uniformly partial recursive in P,,.

4.6. Proposition. If [ is an w-reqular enumeration, then the sets B, and P, are
uniformly in k e-reducible to f*).

4.7. Corollary. If f is an w-reqular enumeration, then f) =, f @ P, .
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4.8. Theorem. Let ) be a total set and P, <, Q. There exists an w-regular
enumeration f such that f) =, Q.

Proof. The construction of f will be carried out by steps. At each step we shall
define a s-regular finite part é, with s-rank 1. We shall ensure that §, C é,,; and
define f =J4,.

Let o(k, s) be a recursive in ) function such that for all k, As.o(k, s) enumerates
By.. Let yo,91,... be a recursive in ) enumeration of Q).

Define &y on [0, 1] so that §,(0) ~ yo and do(1) >~ (0, 0).

Suppose that J; is defined. Let ng = 1h(d,), 70 = ps (05 * ys, .S3) and Iy = lh(7).
Next set 7 = (70 %0, X[ ;,y) and b = 1h(7). Notice that 7 is a s-regular 0 omitting
extension of 75. Using Lemma 3.1, construct a s-regular extension p of 7 such that
puls = 7l 1, plbo) = (s +1,0) and o (s, 1) € p(BY), ..., (0, 5+ 1) € p(BL). Set
5s+1 =p-

Clearly the obtained by the construction above enumeration f is w-regular. Since
the whole construction is recursive in @), we have that f <. @ and hence f“) =,
fa@® P, <. Q. It remains to show that Q@ <, f & F,. Indeed, let n° = 0 and
n*tt = Th(d,). Clearly we have a recursive in f @ P, procedure which generates
consecutively the finite parts §,, s = 0,1,.... Therefore the set {n* : s € N} is
recursive in f @ P,. Since y € Q < Is(f(n’)~y),Q <. f& F,. O

We shall need the following version of Lemma 3.7 which can be proved in a way
similar to the proof of Lemma 3.6:

4.9. Lemma. Let k > 1, and let 7 be a k-regular finite part, defined on [0,q — 1].
Suppose that |T|,, = r+ 1. Let sj_y <r+ 1,8, <r+2,....8 <r+k. Let for
1< k oand j <'s;, A; Lo P;. Finally let y € N, zy € By, ...,z € By. Denote by A
the set @i<k,j§81(‘4§)+' Then one can construct recursively in P,_, & A a k-regular
extension p of T such that
(ii) IO(Q) ~Y, 2 € ,O(Bg), ot ) %k 6 p(BZ),'
(iii) if i <k and K\, = g4y, G, .. .G, , then for j <.s;:
a) p(q;) € A} = p Ik =F(q));
b) pla;) & Ay = p ki F(q5).

Now we are ready for the main result of this section:

4.10. Theorem. There exist total sets F and G such that F%) =, G¥) =, P, and
such that for all k the following conditions hold:
(i) Py is uniformly e-reducible to F**) and to G*), F®) £ P, and G® £, P,.
(i) If A<, F® and A <, G®), then A <, B.

Proof. We shall construct F' and G as graphs of w-regular enumerations f and g.
This will ensure by Proposition 4.6 and Lemma 3.4 the condition (i).

Let ¢ be an arbitrary w-regular enumeration such that ¢ =, P,.

The construction of f is similar to that in the proof of Theorem 1.7. Let o(k, s)

be a recursive in P, function such that for all k, As.o(k, s) enumerates By. For every
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k and z, set G* = T',(¢g"")). We start the construction of f by putting &,(0) ~ 0
and do(1) >~ ¢(0,0). Suppose that &, is defined and 6, is a s-regular finite part with
s-rank 1. Consider the sets G5, G5~ G5~ ..., G%...,GY. Fori < sand j <s—1i
set Ay = Gi_,_;if Gi_;_; £c Py and Aj = P/, otherwise. Clearly this assignment
can be done recursively in P,. Notice that A} £, P and (A5)* <. P,

Let 7o = ps (6, %0, 55) and Iy = lh(7p). Next let ag be the least a such that a € A
is not equivalent to (37 D 1) (7 € Ry & 7(lo) >~ ag & 7 Ik Fy(l)). Set 7 = p, (7o *
oy X{p)) and by = Ih(7). Using Lemma 4.9, construct a s-regular extension p of 7
such that |p|, = |7|, + 1, p(by) ~ 0(s+1,0) and o(s,1) € p(BL_y),...,0(0,s+ 1) €
p(Bf) and if i < s and K/, =¢q},...,¢'_;,...q,, , then forall j <s—1

a) p(q) € AL = plb = F(q));
b) pla;) & Aj = p ki Fy(q5)-
Set 0,11 = p.

Let f =J,. Clearly f is w-regular, f <. P, and hence f&) =_ P,. It remains
to show the validity of (ii). Fix a k and assume that A = G% and A £, P,. We shall
show that A £, f). Assume that A <. f*). Then the set C' = {2 : f(z) € A} is
also e-reducible to f*). Let p be such that for all z, f |5, F,(z) <= x € C. Then
for all z

(4.1) f2) €A = fl F(a)

Consider the step s = k4 z + p. Then A’; = (G* = A. By the construction there
exists a ¢ € dom(d,41) such that

(Os41(q) € A & Ospr Ih =F () V (S541(q) € A & by IFi Fy ().

Since fis (k + 1)-regular, by Lemma 2.11 f(q) € A = f [~ F,(¢) and f(¢) ¢ A=
[ Ex F,(q). The last contradicts (4.1). O

The following corollary should be compared with the respective result in [1]:

4.11. Corollary. Let A C N, then A <. P, iff A € S}, for all total X such that
XW = P, and Vi(B; € S 1) uniformly in i.

4.12. Definition. The set A is arithmetical in the sequence {B;} if for some £,
A <. P;. The sequence {By} is arithmetical in X if there exist recursive functions
g, h such that By = Dy (X )R,

4.13. Corollary. The following assertions are equivalent:
(1) A is arithmetical in {By}.
(2) A is arithmetical in all X such that X“) =, P, and {By} is arithmetical in
X.
(3) A is arithmetical in all X such that X)) =, P, and for all k, By, is arith-
metical in X.
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