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Abstract

We consider the complexity of the integration operator on real functions with respect to the sub-
recursive classM2. We prove that the definite integral of a uniformlyM2-computable analytic
real function with M2-computable limits is itself M2-computable real number. We generalise
this result to integrals with parameters and with varying limits. As an application, we show that
the Euler-Mascheroni constant isM2-computable.
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1. Introduction

This paper is about relative computability of real numbers and real functions. Our aim is to
study the complexity of integration. The motivating question is:

Given real numbers α, β and a real function θ : [α, β]→ R, which are efficiently computable,
is it true that the real number ∫ β

α

θ(x) dx

is also efficiently computable?
To evaluate the complexity of real numbers, we introduce a naming system based on Cauchy

sequences. To represent a real function, we define a computing system of type-2 operators, which
transform arbitrary names of the arguments into a name of the value of the real function. Thus the
complexity of the real function can be defined in terms of the complexity of the corresponding
type-2 operators.

In the framework of discrete complexity theory the question is studied in [1, 5, 6] and more
systematically in Section 5.4 in [4]. In fact, it is shown in [6] that the definite integral of an
analytic polynomial-time computable real function is itself polynomial-time computable. Our
aim is to prove a similar result, but our framework for complexity is subrecursive, that is we are
interested in inductively defined classes of total functions in the natural numbers, contained in
the low levels of Grzegorczyk’s hierarchy of the primitive recursive functions. The tool that we
will use to prove the result is the trapezoidal rule for numerical integration, combined with a
suitable change of variables, as described in [12] and in more detail in [13].
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2. The classesM2,L2,E2

We denote Tm = {a|a : Nm → N} and T =
⋃

m Tm. Unless otherwise specified, a function
means a function from T . We will use vector notation ~x, ~y, ~s for tuples of natural numbers and
~f , ~g,~h for tuples of unary functions. The size will be clear from the context.

For functions f , g ∈ Tn, we say that g majorises f (or f is majorised by g), if f (~x) ≤ g(~x) for
all ~x ∈ Nn.

The projection functions λx1 . . . xn.xm(1 ≤ m ≤ n), the successor function λx.x + 1, the
modified subtraction function λxy.x .− y = λxy.max(x − y, 0) and the product function λxy.xy,
belonging to T , will be called the initial functions.

Definition 2.1. The classM2 is the smallest subclass of T , which contains the initial functions
and is closed under substitution and bounded minimisation(

f 7→ λ~xy.µz≤y[ f (~x, z) = 0]
)
.

For any ~x, y, the natural number µz≤y[ f (~x, z) = 0] is the least z ≤ y, such that f (~x, z) = 0, if
such z exists, and y + 1, otherwise.

If we replace bounded minimisation with bounded summation in the definition, we obtain the
class L2 of the lower elementary functions.

By using limited primitive recursion in place of bounded minimisation in the definition, we
obtain the third level E2 of Grzegorczyk’s hierarchy. Limited primitive recursion is the same as
primitive recursion, but the resulting function must be bounded by a given function.

It is known that M2 ⊆ L2 ⊆ E2, but whether each of these inclusions is proper is an open
question.

A function is ∆0-definable, if its graph is definable in the standard model of Peano arithmetic
with a formula, containing only bounded quantifiers. The class M2 contains precisely those
functions from T , which are ∆0-definable and majorised by a polynomial.

Remark 2.2. It is well-known that the relation z = 2y is ∆0-definable. It follows that the function
L defined by

L(y) =
⌊
log2(y + 1)

⌋
,

belongs to the classM2, since L(y) ≤ y + 1 and

z = L(y)⇔ ∃u ≤ y + 1(u = 2z & 2u > y + 1)

for all z, y ∈ N.

The classes L2 and E2 are closed under bounded summation, but it is not known whether the
same is true forM2. Nevertheless, we have the following:

Theorem 2.3 ([7]). For any k,m ∈ N and any function f ∈ Tm+1 ∩M
2, the function g ∈ Tm+1

defined by
g(~x, y) =

∑
z≤L(y)k

f (~x, z)

also belongs toM2.
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3. Subrecursive classes of operators

As already noted, real functions are computed by type-2 operators. In this section we in-
troduce three important subrecursive classes of such operators. Their definitions resemble the
definitions for classes of functions from the previous section. Namely, a set of initial operators
is closed under a set of operations.

For k,m ∈ N, a (k,m)-operator F is a total mapping F : T k
1 → Tm. An operator is a

(k,m)-operator for some k,m ∈ N.
For a class of operators O, we denote by O1 the class of all (k, 1)-operators in O (for some

k ∈ N).

Definition 3.1. The class RO of rudimentary operators is the smallest class of operators, such
that:

1. For any n,m and m-argument initial function a, the (n,m)-operator F defined by F( ~f )(~x) =

a(~x) belongs to RO.
2. For all n, k with 1 ≤ k ≤ n, the (n, 1)-operator F defined by F( f1, . . . , fn)(x) = fk(x)

belongs to RO.
3. For all n,m, k, if F0 is an (n, k)-operator and F1, . . . , Fk are (n,m)-operators all belonging

to RO, then the (n,m)-operator F defined by

F( ~f )(~x) = F0( ~f )(F1( ~f )(~x), . . . , Fk( ~f )(~x))

also belongs to RO.
4. For all m, n, if F0 is an (n,m + 1)-operator which belongs to RO, then so is the operator F

defined by

F( ~f )(~x, y) = µz≤y[F0( ~f )(~x, z) = 0].

The definition of the class logRO of log-rudimentary operators contains the same clauses as
the definition for RO and also the following clause:

5. For all m, n, k, if F0 is an (n,m + 1)-operator which belongs to logRO, then so is the
operator F defined by

F( ~f )(~x, y) =
∑

z≤L(y)k

[F0( ~f )(~x, z) = 0].

Of course, RO ⊆ logRO. Moreover, if there is a uniform definition of log-bounded sum-
mation for the classM2 (that is, if Theorem 2.3 has a uniform proof), then the same definition,
easily modified for operators, will show that RO = logRO. As we shall see in the next section
whether this equality holds is immaterial for our considerations.

The next definition is a slightly generalised version of Definition 6 from Section 2.2 in [11]
with F =M2.

Definition 3.2. The class MSO of M2-substitutional operators is the smallest class of operators,
such that:

1. For all m, n, i with 1 ≤ i ≤ m, the (n,m)-operator F defined by F( ~f )(~x) = xi belongs to
MSO.

2. For any m, n and k ∈ {1, . . . , n}, if F0 is an (n,m)-operator which belongs to MSO, then
the (n,m)-operator F defined by

F( ~f )(~x) = fk(F0( ~f )(~x))
3



also belongs to MSO.
3. For any m, n, k and a ∈ Tk ∩M

2, if F1, . . . , Fk are (n,m)-operators which belong to MSO,
then so is the operator F defined by

F( ~f )(~x) = a(F1( ~f )(~x), . . . , Fk( ~f )(~x)).

The following propositions list the most important properties of the three classes of operators.
The proofs of them are straight-forward inductions.

Proposition 3.3. For any natural numbers m, n and function a ∈ M2 ∩ Tm, the (n,m)-operator
F defined by F( ~f )(~x) = a(~x) belongs to the class RO.

Corollary 3.4. MSO ⊆ RO.

In fact MSO is a proper subclass of RO. Clause 4 of Definition 3.1 cannot be expressed by
operators from MSO. The full proof can be found in [2].

Proposition 3.5. Let O ∈ {RO, logRO,MSO}. For natural numbers l,m, n, p, let F be an (l,m)-
operator and G1, . . . ,Gl be (n, p + 1)-operators, all belonging to O. Then the (n,m + p)-operator
H defined by the equality

H( ~f )(~x, ~y) = F(λt.G1( ~f )(t, ~y), . . . , λt.Gl( ~f )(t, ~y))(~x)

for ~f ∈ T n
1 , ~x ∈ N

m, ~y ∈ Np, also belongs to the class O.

Proposition 3.6. Let l,m, n be natural numbers and a1, . . . , an ∈ M
2 ∩ Tl+1 be functions. For

any (n,m)-operator F ∈ logRO, the function b ∈ Tl+m defined by

b(~s, ~x) = F(λt.a1(~s, t), . . . , λt.an(~s, t))(~x)

also belongs to the classM2.

Of course, the last proposition also holds for MSO and RO, since MSO ⊆ RO ⊆ logRO.
An (n,m)-operator F will be called monotonically increasing, if F( ~f )(~x) ≤ F(~g)(~y) for all

~f , ~g ∈ T n
1 and ~x, ~y ∈ Nm, such that gl majorises fl for l ∈ {1, . . . , n} and xk ≤ yk for k ∈ {1, . . . ,m}.

The proofs of the last two propositions can be found in [2] for the class RO and they can be
adapted almost immediately for the class logRO.

Proposition 3.7. Let O ∈ {RO, logRO}. For natural numbers m, n and any (n,m)-operator F
belonging to O, there exists a monotonically increasing (1,m)-operator G, also belonging to O,
such that F( ~f )(~x) ≤ G( f )(~x) whenever ~f ∈ T n

1 , f ∈ T1, ~x ∈ Nm and f majorises f1, . . . , fn.

Proposition 3.8 (Uniformity Theorem). Let O ∈ {RO, logRO}. For natural numbers m, n and
any (n,m)-operator F ∈ O there exists a (1,m)-operator H ∈ O, such that the following holds:
for any ~x ∈ Nm and f ∈ T1, if the unary functions g1, . . . , gn, h1, . . . , hn are majorised by f and
g1(t) = h1(t), . . . , gn(t) = hn(t) for all t ≤ H( f )(~x), then F(~g)(~x) = F(~h)(~x).

Proposition 3.9. For any O ∈ {RO, logRO,MSO}, the pair (M2,O1) is acceptable in the sense
of Definition 4 in [9].

Proof. The pair (M2,MSO1) is acceptable by Theorem 1 in [9] and the fact that any function in
M2 is majorised by a polynomial (the class MSO1 is denoted by OM2 in [9]). The acceptability
of the other two pairs follows from the propositions above.
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4. Relative computability of real numbers and real functions

The next definition introduces the naming system for the real numbers, which we use to
define relative computability.

Definition 4.1. The triple of functions ( f , g, h) ∈ T 3
1 is a name of the real number ξ iff for all

n ∈ N, ∣∣∣∣∣ f (n) − g(n)
h(n) + 1

− ξ

∣∣∣∣∣ < 1
n + 1

.

For a class F of functions (F ⊆ T ), a real number ξ is F -computable iff there exists a triple
( f , g, h) ∈ F 3 which is a name of ξ.

It is important to note that we use Cauchy sequences with linear convergence rate. The usual
definition for computable real number here uses 2n in place of n + 1, but this is not suitable for
classes of polynomially bounded functions.

It is proven in [8] that for F ∈ {M2,L2,E2} the set of all F -computable real numbers is a
real-closed field. Therefore all real algebraic numbers areM2-computable. Examples from [11]
show that the numbers π and e are alsoM2-computable.

Definition 4.2. Let k ∈ N and θ be a real function, θ : D → R, where D ⊆ Rk. The triple
(F,G,H), where F,G,H are (3k, 1)-operators, is called a computing system for θ if for all
(ξ1, ξ2, . . . , ξk) ∈ D and triples ( fi, gi, hi) that name ξi for i = 1, 2, . . . , k, the triple

(F( f1, g1, h1, f2, g2, h2, . . . , fk, gk, hk),

G( f1, g1, h1, f2, g2, h2, . . . , fk, gk, hk),

H( f1, g1, h1, f2, g2, h2, . . . , fk, gk, hk))

names the real number θ(ξ1, ξ2, . . . , ξk).

For a class O of operators, the real function θ is uniformly O-computable, if there exists a
computing system (F,G,H) for θ, such that F,G,H ∈ O. Of course, since F,G,H produce unary
function, we can replace the last O by O1 in this definition.

By Theorem 2 of Skordev in [9] and Proposition 3.9, the following three conditions are
equivalent for a real function θ:

• θ is uniformly MSO-computable;

• θ is uniformly RO-computable;

• θ is uniformly LogRO-computable.

So the three classes of operators, which might be all different, have exactly the same com-
puting power with respect to real functions.

Remark 4.3. For any k ∈ N we have that (λx.k, λx.0, λx.0) is a name of k. Conversely, if ( f , g, h)
is a name of a natural number k, then

k =

⌊
| f (1) − g(1)|

h(1) + 1
+

1
2

⌋
.
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The remark can be used for transferring functional arguments of an operator into additional
natural arguments of the functional value of the operator and vice versa. This is particularly
useful for computing systems of real functions, which have natural-valued arguments. More
concretely, for O ∈ {MSO,RO, logRO}, a real function θ : D → R, where D ⊆ Nk is uniformly
O-computable if and only if there exist f , g, h ∈ Tk+1 ∩M

2, such that for all ~s ∈ D

(λn. f (~s, n), λn.g(~s, n), λn.h(~s, n))

is a name for the real number θ(~s). Of course, we can generalise this to real functions θ : D→ R,
where D ⊆ Nk × Rl. Any computing system (F,G,H) ∈ O3 for θ can be identified with a
triple (F′,G′,H′) ∈ O3 of (3l, k + 1)-operators, such that for any (~s, ξ1, . . . , ξl) ∈ D and any
tuple of names for ξ1, . . . , ξl, the operators F′,G′,H′ transform this tuple into three functions
f , g, h ∈ Tk+1, such that (λn. f (~s, n), λn.g(~s, n), λn.h(~s, n)) is a name for θ(~s, ξ1, . . . , ξl).

It is easy to see that the class of uniformly MSO-computable real functions is closed under
substitution and under restrictions of the domain.

Results from [11] show that all elementary functions of calculus, restricted to compact sub-
sets of their domains, are uniformly MSO-computable. More concretely:

• addition, subtraction and multiplication are uniformly MSO-computable on the whole R2;

• the absolute value real function is uniformly MSO-computable on the whole R, hence the
binary max and min real functions are uniformly MSO-computable on R2;

• the restriction of the reciprocal real function to any set of the form (−∞,−r) ∪ (r,+∞) for
r > 0 is uniformly MSO-computable (Corollary 6 in [11]);

• the restriction of the logarithmic real function to any interval of the form (r,+∞) for r > 0
is uniformly MSO-computable (Corollary 9 in [11]);

• the restriction of the exponential real function to any interval of the form (−∞, r) is uni-
formly MSO-computable (Corollary 10 in [11]).

The reciprocal, the logarithmic and the exponential real functions are not uniformly MSO-
computable on their whole domains, since the absolute value of any uniformly MSO-computable
real function is bounded by some polynomial (Section 2.2 in [11]).

Lemma 4.4. Let θ : N×D→ R, D ⊆ R be a real function, which is uniformly MSO-computable.
For any fixed natural number k, the real function θΣ : N × D→ R defined by the equality

θΣ(y, ξ) =
∑

z≤L(y)k

θ(z, ξ)

for y ∈ N, ξ ∈ D, is also uniformly MSO-computable.

Proof. Let (F,G,H) be a computing system for θ, where F,G and H are (6, 1)-operators, be-
longing to MSO. By applying the operator K from Section 1.3 in [11], we can assume that
H( f1, g1, h1, f , g, h)(t) = t for all t ∈ N.

We define (3, 2)-operators F′ and G′ by

F′( f , g, h)(z, t) = F(λx.z, λx.0, λx.0, f , g, h)(t),

6



G′( f , g, h)(z, t) = G(λx.z, λx.0, λx.0, f , g, h)(t).

Using Proposition 3.5 it is easy to see that F′ and G′ belong to MSO.
For all z, t ∈ N and ξ ∈ D, if ( f , g, h) is a name of ξ, then by Remark 4.3 we have the

inequality ∣∣∣∣∣F′( f , g, h)(z, t) −G′( f , g, h)(z, t)
t + 1

− θ(z, ξ)
∣∣∣∣∣ < 1

t + 1
.

Let us define the (3, 2)-operators FΣ
1 and GΣ

1 by

FΣ
1 ( f , g, h)(y, n) =

∑
z≤L(y)k

F′( f , g, h)(z, L(y)kn + n + L(y)k),

GΣ
1 ( f , g, h)(y, n) =

∑
z≤L(y)k

G′( f , g, h)(z, L(y)kn + n + L(y)k),

HΣ
1 ( f , g, h)(y, n) = L(y)kn + n + L(y)k.

It is clear that FΣ
1 ,G

Σ
1 and HΣ

1 are log-rudimentary (since L ∈ M2 and k is fixed).
For all y, n ∈ N, ξ ∈ D and a name ( f , g, h) of ξ we have∣∣∣∣∣∣FΣ

1 ( f , g, h)(y, n) −GΣ
1 ( f , g, h)(y, n)

HΣ
1 ( f , g, h)(y, n) + 1

− θΣ(y, ξ)

∣∣∣∣∣∣
≤

∑
z≤L(y)k

∣∣∣∣∣∣F′( f , g, h)(z, L(y)kn + n + L(y)k) −G′( f , g, h)(z, L(y)kn + n + L(y)k)
(L(y)k + 1)(n + 1)

− θ(z, ξ)

∣∣∣∣∣∣
<

∑
z≤L(y)k

1
(L(y)k + 1)(n + 1)

=
1

n + 1
.

It other words, the triple

(λn.FΣ
1 ( f , g, h)(y, n), λn.GΣ

1 ( f , g, h)(y, n), λn.HΣ
1 ( f , g, h)(y, n))

is a name of θΣ(y, ξ). Therefore, by defining the (6, 1)-operators FΣ,GΣ,HΣ with the equalities

FΣ( f1, g1, h1, f , g, h)(n) = FΣ
1 ( f , g, h)

(⌊
| f1(1) − g1(1)|

h1(1) + 1
+

1
2

⌋
, n

)
,

GΣ( f1, g1, h1, f , g, h)(n) = GΣ
1 ( f , g, h)

(⌊
| f1(1) − g1(1)|

h1(1) + 1
+

1
2

⌋
, n

)
,

HΣ( f1, g1, h1, f , g, h)(n) = HΣ
1 ( f , g, h)

(⌊
| f1(1) − g1(1)|

h1(1) + 1
+

1
2

⌋
, n

)
,

and using Remark 4.3, we obtain that (FΣ,GΣ,HΣ) is a computing system for θΣ, which con-
sists of log-rudimentary operators. It follows that θΣ is uniformly LogRO-computable, hence
uniformly MSO-computable (as noted above, by Skordev’s theorem).

Lemma 4.4 can immediately be generalised for real functions θ : N × D→ R, where D ⊆ Rl

with l > 1.
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5. First theorem on integration

Lemma 5.1. The real function tanh and its derivative

tanh′(t) =
1

cosh2(t)

are uniformly MSO-computable on (−∞,∞).

Proof. For all t ∈ R we have the equality

1
cosh2(t)

= 1 − tanh2(t).

Thus it is enough to consider the real function tanh only. We have

tanh(t) =
sinh(t)
cosh(t)

=
et − e−t

et + e−t =
e2t − 1
e2t + 1

= 1 −
2

e2t + 1
.

Results from [11] show that the restriction of et to (−∞, 0] and the restriction of the reciprocal
function to (1,+∞) are uniformly MSO-computable. Therefore, the restriction of tanh to (−∞, 0]
is uniformly MSO-computable. Using the equality

tanh(t) = tanh (min(t, 0)) − tanh (−max(t, 0))

we obtain that tanh is uniformly MSO-computable on its whole domain (−∞,∞).

Lemma 5.2. For any real number A > 0 there exists a real number a ∈
(
0,
π

2

)
, such that for all

z with | Im(z)| < a we have

|Re(tanh(z))| ≤ 1, | Im(tanh(z))| ≤ A, | cosh(z)|2 ≥ cosh2(Re(z)) −
1
2
.

Proof. Let z = x + ib for x, b ∈ R and |b| <
π

2
. We have

tanh(z) = tanh(x + ib) =
tanh(x) + tanh(ib)

1 + tanh(x). tanh(ib)
=

tanh(x) + i. tan(b)
1 + i. tanh(x). tan(b)

=
(tanh(x) + i. tan(b)) (1 − i. tanh(x). tan(b))

1 + tanh2(x). tan2(b)
.

Therefore,

Re(tanh(z)) =
tanh(x) + tanh(x). tan2(b)

1 + tanh2(x). tan2(b)
=

tanh(x)
cos2(b) + tanh2(x). sin2(b)

and

Im(tanh(z)) =
tan(b) − tanh2(x). tan(b)

1 + tanh2(x). tan2(b)
=

1
cosh2(x)

. tan(b)

1 + tanh2(x). tan2(b)
.

Clearly, since cosh(x) ≥ 1, | Im(tanh(z))| ≤ | tan(b)|.
Let | tanh(x)| = T, cos2(b) = α, sin2(b) = β.
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We have 0 ≤ T < 1, α > 0, β ≥ 0, α + β = 1. The inequality

|Re(tanh(z))| ≤ 1

is equivalent to
T

α + T 2β
≤ 1⇐⇒ T ≤ α + T 2β

⇐⇒ T ≤ 1 − β + T 2β⇐⇒ T − 1 ≤ β(T 2 − 1)⇐⇒ β(T + 1) ≤ 1.

If β = 0 (that is b = 0), then the last inequality is obviously true. For β > 0 it is equivalent to

T ≤
1
β
− 1⇐⇒ T ≤

α

β
= cot2(b).

Hence |Re(tanh(z))| ≤ 1 will certainly be true, if cot2(b) > 1.
We also have

| cosh(z)|2 = | cosh(x + ib)|2 = | cosh(x). cosh(ib) + sinh(x). sinh(ib)|2

= | cosh(x). cos(b) + i. sinh(x). sin(b)|2

= cosh2(x). cos2(b) + sinh2(x). sin2(b) = cosh2(x) − sin2(b).

Therefore, if sin2(b) <
1
2

then

| cosh(z)|2 ≥ cosh2(x) −
1
2

= cosh2(Re(z)) −
1
2
.

Let us fix A > 0. By using the limits

lim
b→0

tan(b) = 0, lim
b→0

cot2(b) = +∞, lim
b→0

sin2(b) = 0

we can choose a real number a ∈
(
0,
π

2

)
, such that

| tan(b)| ≤ A, cot2(b) > 1, sin2(b) <
1
2

for all b ∈ (−a, a) \ {0}. For this choice of a and for all z in the strip | Im(z)| < a we have

| Im(tanh(z))| ≤ A, |Re(tanh(z))| ≤ 1, | cosh(z)|2 ≥ cosh2(Re(z)) −
1
2
.

Theorem 5.3. Let α, β beM2-computable real numbers and θ : [α, β]→ R be uniformly MSO-
computable and analytic real function. Then the definite integral∫ β

α

θ(x) dx

is anM2-computable real number.
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Proof. We begin by applying the linear change of variables

x =
β − α

2
.u +

β + α

2

to the given integral and we obtain∫ β

α

θ(x) dx =
β − α

2

∫ 1

−1
θ1(u) du =

β − α

2
.I,

where
θ1(u) = θ

(
β − α

2
.u +

β + α

2

)
.

Of course, since α and β areM2-computable, θ1 is uniformly MSO-computable and also analytic
in [−1, 1]. It suffices to prove that the new integral I isM2-computable.

We apply another change of variables u = tanh(t) (the so-called tanh-rule):

I =

∫ 1

−1
θ1(u) du =

∫ ∞

−∞

θ1(tanh(t))
1

cosh2(t)
dt.

As in Section 5 of [13] we approximate the last integral with the infinite sum

Ih = h
+∞∑

k=−∞

θ1(tanh(kh))
1

cosh2(kh)
.

We will choose the step h below. The error |Ih − I| of the approximation is called discretisation
error. We will apply Theorem 5.1 in [13] to estimate this error. Since θ1 is analytic in [−1, 1], it
has an analytic continuation defined in [−1, 1] × [−A, A] ⊆ C for some positive real number A.
Let M be an upper bound of |θ1(u)| for (complex) u ∈ [−1, 1] × [−A, A].

Let us choose a from Lemma 5.2 (corresponding to the choice of A). Then the integrand

θ1(tanh(z))
1

cosh2(z)

is analytic in the strip | Im(z)| < a, because tanh(z) ∈ [−1, 1] × [−A, A] and cosh(z) , 0 for z in
this strip. Moreover, ∣∣∣∣∣∣θ1(tanh(z))

1
cosh2(z)

∣∣∣∣∣∣ ≤ M
| cosh(z)|2

≤
M

cosh2(Re(z)) − 1
2

for any z, such that | Im(z)| < a. Therefore, the integrand converges to 0 uniformly as |z| → ∞ in
the strip | Im(z)| < a. For all b ∈ (−a, a) we have∫ ∞

−∞

∣∣∣∣∣∣θ1(tanh(x + ib))
1

cosh2(x + ib)

∣∣∣∣∣∣ dx ≤
∫ ∞

−∞

M
| cosh(x + ib)|2

dx

≤ M
∫ ∞

−∞

dx

cosh2(x) − 1
2

= 2M
∫ ∞

−∞

dx
cosh(2x)

= M
∫ ∞

−∞

dx
cosh(x)

= M
∫ ∞

−∞

2ex

e2x + 1
dx = 2M. arctan(ex)|∞−∞ = Mπ.

10



Using Theorem 5.1 in [13] we obtain

|Ih − I| ≤
2Mπ

e2πa/h − 1

(for any h > 0).
The second step of the approximation of I is to truncate the infinite sum Ih to

I[n]
h = h

n∑
k=−n

θ1(tanh(kh))
1

cosh2(kh)

for a large enough n. The error |I[n]
h − Ih| is called truncation error. We can estimate it as follows:

|I[n]
h − Ih| =

∣∣∣∣∣∣∣∣h
∑
|k|>n

θ1(tanh(kh))
1

cosh2(kh)

∣∣∣∣∣∣∣∣
≤ h

∑
|k|>n

M

cosh2(kh)
= 4hM.

∑
|k|>n

1
(ekh + e−kh)2

= 8hM.
∑
k>n

1
(ekh + e−kh)2 ≤ 8hM.

∑
k>n

1
e2kh

= 8hM.
1

e2(n+1)h .
1

1 − 1
e2h

=
8hM

(e2h − 1).e2nh ≤
4M
e2nh ,

because e2h ≥ 2h + 1 for h > 0.
Since

|I[n]
h − I| ≤ |Ih − I| + |I[n]

h − Ih|

we must balance the discretisation and the truncation error by choosing a suitable h, depending
on n.

For any n > 0, let us take h =
1
√

n
. Then

|Ih − I| ≤
2Mπ

e2πa
√

n − 1

and
|I[n]

h − Ih| ≤
4M
e2
√

n
.

Therefore
|I − I[n]

h | ≤
2Mπ

e2πa
√

n − 1
+

4M
e2
√

n
.

We choose C, E ∈ N,C > 0, such that
1
C
< 2πa and E > 2M(π + 2). Then it is easy to see that

|I − I[n]
h | ≤

E

e
1
C

√
n − 1

11



for all n > 0. This convergence is fast enough to be suitable for introducing a log-bounded sum.

We replace n with L(n)2 and h with
1

L(n)
, accordingly. Since eL(n) ≥ n+1

2 , we obtain that

|I − I[L(n)2]
h | ≤

E
n+1

2

1
C − 1

for all n > 0, hence the inequality

|I − I[L(n)2]
h | ≤

1
t + 1

holds for all t ∈ N and n = p(t) = (2Et + 2E + 1)C , where p ∈ M2.
It remains to extract a name of I from I[L(n)2]

h . This can be done in the following way: for any
real number h > 0

I[L(n)2]
h = h

L(n)2∑
k=−L(n)2

θ1(tanh(kh))
1

cosh2(kh)
= h

L(n)2∑
k=0

θ1(tanh(kh))
1

cosh2(kh)
+

+h
0∑

k=−L(n)2

θ1(tanh(kh))
1

cosh2(kh)
− hθ1(tanh(kh))

1
cosh2(kh)

∣∣∣∣∣∣
k=0

= h
L(n)2∑
k=0

θ1(tanh(kh))
1

cosh2(kh)
+ h

L(n)2∑
k=0

θ1(− tanh(kh))
1

cosh2(kh)
− hθ1(0).

In both sums, the summands are uniformly MSO-computable real functions of k ∈ N and h ∈
(0,+∞). This easily follows from Lemma 5.1 and from the fact that θ1 is uniformly MSO-
computable in [−1, 1]. Using Lemma 4.4 (with k = 2), we obtain that these sums are uniformly

MSO-computable in n ∈ N and h > 0. Therefore by substituting h =
1

L(n)
(L ∈ M2) we obtain

that I[L(n)2]
h is uniformly MSO-computable in n ∈ N, n > 0.

Using a computing system for I[L(n)2]
h , consisting of (3, 1)-operators from MSO, and by ap-

plying Remark 4.3 we can choose binary functions a, b, c ∈ M2, such that for all natural numbers
n > 0 and t, ∣∣∣∣∣a(n, t) − b(n, t)

c(n, t) + 1
− I[L(n)2]

h

∣∣∣∣∣ < 1
t + 1

.

Let us define the functions f , g, h ∈ T1 by the equalities

f (t) = a(p(2t + 1), 2t + 1), g(t) = b(p(2t + 1), 2t + 1), h(t) = c(p(2t + 1), 2t + 1).

Of course, f , g and h belong toM2. For all t ∈ N and n = p(2t + 1) > 0 we have∣∣∣∣∣I − f (t) − g(t)
h(t) + 1

∣∣∣∣∣ ≤ ∣∣∣∣I − I[L(n)2]
h

∣∣∣∣ +

∣∣∣∣∣I[L(n)2]
h −

a(n, 2t + 1) − b(n, 2t + 1)
c(n, 2t + 1) + 1

∣∣∣∣∣
<

1
2t + 2

+
1

2t + 2
=

1
t + 1

.

Therefore, ( f , g, h) is a name of I and I isM2-computable.
12



6. Second theorem on integrals with parameters

Theorem 6.1. Let α, β beM2-computable real numbers, D ⊆ R be a set and θ : [α, β]×D→ R
be a real function, which is uniformly MSO-computable. Let there exist A ∈ R, A > 0, such
that for every fixed ξ ∈ D, θ has an analytic continuation defined in [α, β] × [−A, A] ⊆ C. Let
there also exist a polynomial P with natural coefficients, such that |θ(x + Bi, ξ)| ≤ P(|ξ|) for all
ξ ∈ D, x ∈ [α, β], B ∈ [−A, A]. Then the real function I : D→ R defined by

I(ξ) =

∫ β

α

θ(x, ξ) dx

is uniformly MSO-computable.

Proof. The proof follows the same argument as in Theorem 5.3. Roughly speaking, we just add
a real parameter ξ to all formulas. There is a subtle difference: the A that we choose in the proof
of Theorem 5.3 might be different for different values of ξ ∈ D and this is why we assume there
exists one A, which works for all ξ ∈ D.

After the linear change of variables

x =
β − α

2
.u +

β + α

2

we obtain a real function θ1 : [−1, 1] × D→ R,

θ1(u, ξ) = θ
(
β − α

2
.u +

β + α

2
, ξ

)
,

which is uniformly MSO-computable and for any fixed ξ ∈ D, θ1 is analytic in [−1, 1] ×

[−A′, A′] ⊆ C for A′ =
2A
β − α

. For all (complex) u ∈ [−1, 1] × [−A′, A′] we have θ1(u, ξ) =

θ(x + iB, ξ) for some x ∈ [α, β], B ∈ [−A, A], therefore

|θ1(u, ξ)| ≤ P(|ξ|),

where P is the polynomial from the statement of the theorem.
Since

I(ξ) =
β − α

2

∫ 1

−1
θ1(u, ξ) du

and α, β areM2-computable, it suffices to consider the integral

J(ξ) =

∫ 1

−1
θ1(u, ξ) du

and prove that J : D→ R is uniformly MSO-computable.
Let us fix ξ ∈ D and an arbitrary name ( f ′, g′, h′) ∈ T 3

1 of ξ. As in the proof of Theorem 5.3
we apply the tanh-rule

J(ξ) =

∫ 1

−1
θ1(u, ξ) du =

∫ +∞

−∞

θ1(tanh(t), ξ)
1

cosh2(t)
dt

13



and then discretise this integral to

Jh(ξ) = h
+∞∑

k=−∞

θ1(tanh(kh), ξ)
1

cosh2(kh)
.

To estimate the discretisation error we use Lemma 5.2 and choose a, corresponding to A′

(and therefore not depending on ξ). Since P(|ξ|) is an upper bound of |θ1(u, ξ)| for any (complex)
u ∈ [−1, 1] × [−A′, A′], we obtain in exactly the same way

|Jh(ξ) − J(ξ)| ≤
2P(|ξ|)π

e2πa/h − 1

(for any h > 0).
Next we truncate the infinite sum to

J[n]
h (ξ) = h

n∑
k=−n

θ1(tanh(kh), ξ)
1

cosh2(kh)

for a large enough n. The estimate of the truncation error is∣∣∣J[n]
h (ξ) − Jh(ξ)

∣∣∣ ≤ 4P(|ξ|)
e2nh .

To balance the two errors we put h =
1
√

n
for n > 0 and obtain

|J(ξ) − J[n]
h (ξ)| ≤

2P(|ξ|)π
e2πa

√
n − 1

+
4P(|ξ|)
e2
√

n
.

We can again choose a non-zero natural number C, such that
1
C
< 2πa (not depending on ξ). But

the choice of E will depend on ξ. Since ( f ′, g′, h′) is a name of ξ we have

|ξ| < | f ′(0) − g′(0)| + 1

and we can choose
E = 11P(| f ′(0) − g′(0)| + 1).

For this choice of E we obviously have E > 2P(|ξ|)(π+2). Moreover, E is obtained from f ′, g′, h′

using an operator from MSO.
We obtain the inequality

|J(ξ) − J[L(n)2]
h (ξ)| ≤

1
t + 1

for all t ∈ N and n = U( f ′, g′, h′)(t) = (2Et + 2E + 1)C , where U is a (3, 1)-operator from MSO

(and h =
1

L(n)
).

Using the fact that θ1 : [−1, 1] × D → R is uniformly MSO-computable and by applying
Lemma 4.4 (for k = 2 and two parameters h, ξ), we obtain that J[L(n)2]

h is uniformly MSO-

computable in n ∈ N, n > 0 and ξ ∈ D (after substituting h =
1

L(n)
).

14



It remains to extract a computing system for J from J[L(n)2]
h . Using Remark 4.3 we can choose

(3, 2)-operators F1,G1,H1 ∈ MSO, such that for all natural numbers n > 0 and t, any ξ ∈ D and
any name ( f ′, g′, h′) of ξ we have∣∣∣∣∣F1( f ′, g′, h′)(n, t) −G1( f ′, g′, h′)(n, t)

H1( f ′, g′, h′)(n, t) + 1
− J[L(n)2]

h (ξ)
∣∣∣∣∣ < 1

t + 1
.

Let us define the (3, 1)-operators F,G,H by the equalities

F( f ′, g′, h′)(t) = F1( f ′, g′, h′)(U( f ′, g′, h′)(2t + 1), 2t + 1),

G( f ′, g′, h′)(t) = G1( f ′, g′, h′)(U( f ′, g′, h′)(2t + 1), 2t + 1),

H( f ′, g′, h′)(t) = H1( f ′, g′, h′)(U( f ′, g′, h′)(2t + 1), 2t + 1).

Obviously, F,G and H belong to MSO. For any ξ ∈ D, any name ( f ′, g′, h′) of ξ and natural
numbers t and n = U( f ′, g′, h′)(2t + 1) > 0 we have∣∣∣∣∣J(ξ) −

F( f ′, g′, h′)(t) −G( f ′, g′, h′)(t)
H( f ′, g′, h′)(t) + 1

∣∣∣∣∣
≤

∣∣∣∣J(ξ) − J[L(n)2]
h (ξ)

∣∣∣∣ +

∣∣∣∣∣J[L(n)2]
h (ξ) −

F1( f ′, g′, h′)(n, 2t + 1) −G1( f ′, g′, h′)(n, 2t + 1)
H1( f ′, g′, h′)(n, 2t + 1) + 1

∣∣∣∣∣
<

1
2t + 2

+
1

2t + 2
=

1
t + 1

.

Therefore, (F,G,H) is a computing system of J : D→ R and J is uniformly MSO-computable.

The proof of Theorem 6.1 easily extends to the case of a definite integral with more than one
real parameter ξ, that is for real functions θ : [α, β] × D → R, such that D ⊆ Rl for l > 1. Of
course, the polynomial P will have l variables in this case.

7. Third theorem on integrals with varying limits

Theorem 7.1. Let α be anM2-computable real number, D be an interval of the form [α, β), [α, β]
or [α,+∞) and θ : D → R be a real function, which is uniformly MSO-computable. Let there
exist a real number A > 0, such that for any fixed ξ ∈ D, θ has an analytic continuation to the
set Dξ = [α, ξ] × [A(α − ξ), A(ξ − α)] ⊆ C. Let there also exist a polynomial P with natural
coefficients, such that |θ(x + Bi)| ≤ P(|ξ|) for all ξ ∈ D and (x, B) ∈ Dξ. Then the real function
I : D→ R defined by

I(ξ) =

∫ ξ

α

θ(x) dx,

is uniformly MSO-computable.

Proof. For any fixed ξ ∈ D we apply the linear change of variables

x =
ξ − α

2
.u +

ξ + α

2
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to the given integral and we obtain∫ ξ

α

θ(x) dx =
ξ − α

2

∫ 1

−1
θ1(u, ξ) du,

where
θ1(u, ξ) = θ

(
ξ − α

2
.u +

ξ + α

2

)
.

We will prove that the new integral is uniformly MSO-computable as a function of ξ ∈ D. From
this it follows easily that I is uniformly MSO-computable.

Of course, since α isM2-computable and θ is uniformly MSO-computable in D, θ1 is uni-
formly MSO-computable in u ∈ [−1, 1] and ξ ∈ D.

For any u ∈ [−1, 1]× [−2A, 2A] ⊆ C we have that θ1(u, ξ) = θ(x + Bi) for some x ∈ [α, ξ] and

B =
ξ − α

2
. Im(u), |B| ≤ A(ξ − α), that is for some (x, B) ∈ Dξ. Therefore, for any fixed ξ ∈ D,

θ1 is analytic in [−1, 1] × [−2A, 2A] ⊆ C. Moreover,

|θ1(u, ξ)| = |θ(x + Bi)| ≤ P(|ξ|)

for any u ∈ [−1, 1] × [−2A, 2A] ⊆ C (again since (x, B) ∈ Dξ). It remains to apply Theorem 6.1
for the real function θ1.

It is clear that Theorem 7.1 is also true for an interval D of the form (β, α], [β, α] or (−∞, α].
Of course, Dξ = [ξ, α] × [A(ξ − α), A(α − ξ)] in this case.

Using Theorem 7.1 and the fact that

arctan′(x) =
1

1 + x2 ,

a much simpler proof for the uniform MSO-computability of the arctan real function can be
given than the proof in [11].

Corollary 7.2. In the assumptions of Theorem 7.1 with D = [α,+∞), let the improper integral

I =

∫ ∞

α

θ(x) dx

be convergent. Moreover, let there exist a function r ∈ M2, such that∣∣∣∣∣∫ ∞

n+α

θ(x) dx
∣∣∣∣∣ ≤ 1

t + 1

for all t ∈ N and n = r(t). Then I isM2-computable.

Proof. We define the sequence In by

In =

∫ n+α

α

θ(x) dx.

According to Theorem 7.1, this sequence is uniformlyM2-computable in n ∈ N (since α isM2-
computable). Therefore, by Remark 4.3 we can choose functions a, b, c ∈ T2 ∩M

2, such that for
all n, t ∈ N we have ∣∣∣∣∣a(n, t) − b(n, t)

c(n, t) + 1
− In

∣∣∣∣∣ < 1
t + 1

.
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We also have

|I − In| =

∣∣∣∣∣∫ ∞

n+α

θ(x) dx
∣∣∣∣∣ ≤ 1

2t + 2

for all t ∈ N and n = r(2t + 1).
Let us define the functions f , g, h ∈ T1 by the equalities

f (t) = a(r(2t + 1), 2t + 1), g(t) = b(r(2t + 1), 2t + 1), h(t) = c(r(2t + 1), 2t + 1).

Of course, f , g and h belong toM2. For all natural numbers t and n = r(2t + 1) we have∣∣∣∣∣I − f (t) − g(t)
h(t) + 1

∣∣∣∣∣ ≤ |I − In| +

∣∣∣∣∣In −
a(n, 2t + 1) − b(n, 2t + 1)

c(n, 2t + 1) + 1

∣∣∣∣∣ < 1
2t + 2

+
1

2t + 2
=

1
t + 1

.

Thus ( f , g, h) is a name of I, hence the real number I isM2-computable.

8. M2-computability of the Euler-Mascheroni constant γ

We will apply Corollary 7.2 to answer positively an open question from [11], regarding the
Euler-Mascheroni constant γ.

The following representation is well-known

−γ =

∫ ∞

0
e−x ln x dx.

Theorem 8.1. The constant γ isM2-computable.

Proof. We have ∫ ∞

0
e−x ln x dx = I1 + I2,

where

I1 =

∫ 1

0
e−x ln x dx, I2 =

∫ ∞

1
e−x ln x dx.

It suffices to show that I1 and I2 areM2-computable.

By the change of variables x =
1
t

, the integral I1 transforms to

I1 = −

∫ ∞

1
e−

1
t ln t

1
t2 dt.

Results from [11] show that the restrictions of ln t and
1
t2 to the interval [1,+∞), as well as

the restriction of ex to [−1, 0), are uniformly MSO-computable. Therefore, the integrand is
uniformly MSO-computable in [1,+∞). Moreover, it has an analytic continuation θ(z), defined
in the half-plane Re(z) > 0 (assuming the principal value of the logarithm with branch cut the
non-negative real numbers). Let us choose A = 1 (in fact any choice of A > 0 will do). Let ξ ≥ 1
and z = x + Bi, where 1 ≤ x ≤ ξ and |B| ≤ A(ξ − 1) = ξ − 1. We have

|θ(z)| =
∣∣∣∣e− 1

z

∣∣∣∣ .| ln z|.
∣∣∣∣∣ 1
z2

∣∣∣∣∣ .
17



Since
|e−

1
z | = eRe(− 1

z ) = e−
x

x2+B2 < 1,∣∣∣∣∣ 1
z2

∣∣∣∣∣ =
1
|z|2

=
1

x2 + B2 ≤
1

1 + B2 ≤ 1

and (due to the inequality ln r < r for all real numbers r ≥ 1)

| ln z| =
√

ln2 |z| + Arg2 z ≤ | ln |z|| + |Arg z|

≤
1
2

ln(x2 + B2) + π <
1
2

ln(2ξ2) + 4 =
1
2

ln 2 + ln ξ + 4 < ln ξ + 5 < ξ + 5.

So
|θ(z)| ≤ 1.(ξ + 5).1 = ξ + 5

and we can take P(ξ) = ξ + 5. The assumptions of Theorem 7.1 are satisfied and to apply
Corollary 7.2 we need to estimate the remainder of I1. Let us choose a non-zero natural number
C, such that ∣∣∣∣∣e− 1

t ln t
1
t2

∣∣∣∣∣ ≤ C

t
√

t
for all real numbers t ≥ 1. We have∣∣∣∣∣∫ ∞

n+1
e−

1
t ln t

1
t2 dt

∣∣∣∣∣ ≤ C
∫ ∞

n+1

dt

t
√

t
=

2C
√

n + 1
=

1
t + 1

for all t ∈ N and n = (2Ct + 2C)2 − 1 = r1(t), where r1 ∈ M
2. So the integral isM2-computable

and therefore the same is true for I1.
Results from [11] show that the restriction of ln x to [1,+∞) and the restriction of ex to

(−∞,−1] are uniformly MSO-computable. Therefore, the integrand of I2 is uniformly MSO-
computable in [1,+∞). Moreover, this integrand has an analytic continuation θ(z), defined in the
half-plane Re(z) > 0. As for I1, we can take any value for A, for example A = 1. Let ξ ≥ 1 and
z = x + Bi, where 1 ≤ x ≤ ξ and |B| ≤ A(ξ − 1) = ξ − 1. We have

|θ(z)| =
∣∣∣e−z

∣∣∣ .| ln z|.

Since
|e−z| = eRe(−z) = e−x < 1,

and (exactly as above)
| ln z| < ξ + 5,

we obtain
|θ(z)| ≤ 1.(ξ + 5) = ξ + 5

and we can take P(ξ) = ξ + 5. In order to apply Corollary 7.2 we estimate the remainder of I2.
Let us choose a non-zero natural number D, such that∣∣∣e−x ln x

∣∣∣ ≤ D
x2

for all real numbers x ≥ 1. We have∣∣∣∣∣∫ ∞

n+1
e−x ln x dx

∣∣∣∣∣ ≤ D
∫ ∞

n+1

dx
x2 =

D
n + 1

=
1

t + 1

for all t ∈ N and n = Dt + D − 1 = r2(t), where r2 ∈ M
2. So I2 isM2-computable.
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9. Conclusion

By a more careful estimation of the error of approximation, an actual sequence can be ex-
tracted from the proof in the previous section, which converges to γ with subexponential rate. Of
course, there are much faster and more effective methods for the computation of (the digits of)
γ, but none of them appears to be appropriate in the subrecursive setting.

In order to compute the elementary functions of calculus on their whole domains, a more
general non-uniform notion for computability of real functions is studied in [3, 10], called condi-
tional computability of a real function (with respect to a class of operators). In a future research
we plan to extend the results on integration from the paper to this broader class of real functions.

The study of subrecursive computability in analysis is still near its beginning. Much more
progress has been made on computational complexity in analysis with respect to the discrete
complexity classes P,NP, . . .. Any question on complexity in analysis can be asked and studied
with respect to the subrecursive classes. The connection between the two approaches for esti-
mating complexity is not at all clear. So far it appears that the topics in the subrecursive setting
require separate study, usually using methods that are quite independent from the methods in the
discrete complexity setting. This is convincing evidence that the area is fruitful and it should be
studied on a larger scale.
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