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Continuous operators
Let us denote by Pω the topological space on P(ω), where the
basic open sets are Uv = {A ⊆ ω | Dv ⊆ A}. Pω is known as the
Scott topology.
We say that Γ : P(ω)→ P(ω) is a generalized enumeration
operator if there exists a set B such that

Γ(A) = {x | (∃v)[〈x , v〉 ∈ B & Dv ⊆ A]}.

The following proposition is a well-known fact.

Proposition
Γ : Pω → Pω is continuous iff Γ is a generalized enumeration
operator.

Recall that the continuous operators are:
I compact, i.e. x ∈ Γe(A) iff there is some finite D ⊆ A such

that x ∈ Γe(D).
I monotone, i.e. A ⊆ B implies Γe(A) ⊆ Γe(B).
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Enumeration operators

We say that Γ : P(ω)→ P(ω) is an enumeration operator if for
some c.e. set We ,

Γ(A) = {x | (∃v)[〈x , v〉 ∈We & Dv ⊆ A].

In this case, we will usually write Γe for Γ.

Theorem (Selman)
B = Γe(A) iff (∀X ⊆ N)[A is c.e. in X =⇒ B is c.e. in X ].
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Computable embeddings

I We work with countable structures with domains subsets of
ω. This is important!

I We associate with A the set of basic sentences in the
language L ∪ ω, true in A, which we denote by D(A).

I The class K is computably embeddable in K′,

K ≤c K′,

if there is an enumeration operator Γe such that
I for each A ∈ K,

Γe(D(A)) = D(B), where B ∈ K′;

I Let A1A2 ∈ K, Γe(D(A1)) = D(B1) and Γe(D(A2)) = D(B2).
Then A1 ∼= A2 iff B1 ∼= B2.



Turing computable embeddings

The class K is Turing computably embeddable in K′,

K ≤tc K′,

if there is a Turing operator Φ = ϕe such that
I for each A ∈ K,

ϕD(A)
e = χD(B), where B ∈ K′;

I Let A1A2 ∈ K, ϕD(A1)
e = χD(B1) and ϕD(A2)

e = χD(B2). Then
A1 ∼= A2 iff B1 ∼= B2.

Even though, we allow D(A) ⊂ ω, in the Turing case we can find
the first element in the domain, the second, and so on, i.e. we
work with a fixed enumeration of the domain. We cannot do that
in the enumeration case. This is one of the main differences.
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A few examples of previous results
I PF - finite prime fields;
I FLO - finite linear orders;
I FVS - Q-vector spaces of finite dimension;
I VS - Q-vector spaces;
I LO - linear orders.

Theorem (Calvert-Cummins-Miller-Knight)
PF <c FLO <c FVS <c VS <c LO.

Theorem (Knight-Miller-Vanden Boom)
PF <tc FLO <tc FVS <tc VS <tc LO.

Their motivation was to consider effective versions of Borel
embeddings.

Question (Knight-Miller-Vanden Boom)
Which is the better notion, ≤c or ≤tc ?



A few examples of previous results
I PF - finite prime fields;
I FLO - finite linear orders;
I FVS - Q-vector spaces of finite dimension;
I VS - Q-vector spaces;
I LO - linear orders.

Theorem (Calvert-Cummins-Miller-Knight)
PF <c FLO <c FVS <c VS <c LO.

Theorem (Knight-Miller-Vanden Boom)
PF <tc FLO <tc FVS <tc VS <tc LO.
Their motivation was to consider effective versions of Borel
embeddings.

Question (Knight-Miller-Vanden Boom)
Which is the better notion, ≤c or ≤tc ?



≤c implies ≤tc

Proposition (Greenberg, Kalimullin)
If K ≤c K′, then K ≤tc K′.

Suppose that K ≤c K′ via the enumeration operator Γe . Let
A ∈ K and Γe(D(A)) = D(B), where B ∈ K′. It follows that

b ∈ B ↔ (∃s)(∃v)[〈”b = b”, v〉 ∈We,s & Dv ⊂ D(A)].

Define f (b) = 〈b, s〉, where s is the least such stage. Then f is
partial computable in D(A). Let B ∼=f C. Then D(C) ≤T D(A).
This procedure is uniform, so there is such a Turing operator,
which produces D(C) given as input D(A).
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≤c strongly implies ≤tc

In general we do not have the converse.

Example (Kalimullin)
I {1, 2} ≤tc {ω, ω?}. Proceed at stages. Start building initial

segments of ω. If another element is found in the domain of
the input structure, switch to building initial segments of ω?.
This guess never changes.

I {1, 2} 6≤c {ω, ω?}. Trivial - monotonicity of enumeration
operators: 1 is a substructure of 2, but ω is not a substructure
of ω?.

As usual, ≤tc and ≤c induce equivalence relations ≡tc and ≡c .
Given a ≡tc -class, it is natural to ask how it is partitioned in terms
of ≡c .
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The Pullback Theorem

Theorem (Knight, Miller, and Vanden Boom)
Suppose that K1 ≤tc K2 via a Turing operator Φ. Then for any
computable infinitary sentence ψ2 in the language of K2, one can
effectively find a computable infinitary sentence ψ1 in the language
of K1 such that for all A ∈ K1, we have

A |= ψ1 ↔ Φ(A) |= ψ2.

Moreover, for a non-zero α < ωCK
1 , if ψ2 is a Σc

α sentence, then so
is ψ2.
Since ≤c implies ≤tc , the theorem works for computable
embeddings as well.



Motivation

Considering pairs of structures is common in computable structure
theory. For example, S is a ∆0

2 set iff there is a unif. comp.
sequence {Un}∞n=0 such that

Un ∼=
{
ω, n ∈ S
ω?, n 6∈ S

This kind of encoding is used in a number of jump inversion
theorems for structures.
It is natural to ask how the ≡tc -class of {ω, ω?} is partitioned
under ≡c . Surprisingly, this is not so easy to answer.



Characterization of the tc-class of {ω, ω?}

The Pullback Lemma is used here. Notice that ω and ω? differ by
Σc

2 sentences.

Theorem
Let A and B be non-isomorphic L-structures. T.F.A.E.
(1) {ω, ω?} ≡tc {A,B};
(2) A and B have computable copies, A ≡1 B, and they differ by

Σc
2 sentences.

It follows that all pairs of the form {ω · k, ω? · k}, for any k > 0 are
equivalent under Turing computable embeddings.
What about computable embeddings (enumeration operators) ?
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The top pair among linear orderings

We want to study the pairs of linear orderings inside the tc-degree
of {ω, ω?} relative to ≤c . It turns out that we have a top pair.

Theorem
For any pair {A,B} ≡tc {ω, ω?}, we have that

{A,B} ≤c {1 + η, η + 1},

where η is the order type of the rationals.

Corollary
For any natural number k > 0,

{ω · k, ω? · k} <c {1 + η, η + 1}.

(The strictness comes from monotonicity.)



Infinite chain of pairs (1)

Our second step is to show that for any natural number k ≥ 1,

{ω, ω?} <c · · · <c {ω · 2k , ω? · 2k} <c · · · <c {1 + η, η + 1}.

We clearly have the following:

m ≤ k =⇒ {ω · 2m, ω? · 2m} ≤c {ω · 2k , ω? · 2k}.

Since 2m divides 2k , the enumeration operator just copies its input
a fixed number of times.



Infinite chain of pairs (2)
I We denote by α, β, γ finite linear orderings.
I Define α 
Γ x < y iff

x , y ∈ Γ(α) & ¬(∃β ⊇ α)[Γ(β) |= y ≤ x ].
Proposition
Let x , y ∈ Γ(α) be distinct elements. Then

α 
Γ x < y or α 
Γ y < x .

Moreover,
α 
Γ x < y iff α 6
Γ y < x .

(Easy proof: monotonicity and compactness are used.)
Proposition
For distinct elements x0, x1, . . . , xn ∈ Γ(α), there is exactly one
permutation π of {0, 1, . . . , n} such that

α 
Γ xπ(0) < xπ(1) < · · · < xπ(n).



Infinite chain of pairs (3)

Notice that in general, for finite α, Γ(α) might be infinite.
Moreover, in general α ∩ β = ∅ does not imply Γ(α) ∩ Γ(β) = ∅.

Let {A,B} ≤c {C,D}, where A, C has no infinite descending
chains and B,D have no infinite ascending chains.

Proposition
Γ(α) is finite for all finite α.

Proposition
Let α ∩ β = ∅ and x , y ∈ Γ(α) ∩ Γ(β) be distinct elements. Then

α 
Γ x < y ↔ β 
Γ x < y .

It follows that there are at most finitely many elements x with the
property that x ∈ Γ(α) ∩ Γ(β) for some α and β with α ∩ β = ∅.
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Infinite chain of pairs (4)

Proposition
Suppose {ω · 2, ω? · 2} ≤c {C,D} via Γ, where C has no infinite
descending chains and D has no infinite ascending chains. Let
A, Â and B, B̂ be copies of ω such that Γ(A) ⊇ Â and Γ(B) ⊇ B̂.
Then we have (up to finite difference) the following:

Γ(A+ B) ⊇ Â+ B̂

or
Γ(A+ B) ⊇ B̂ + Â.

It other words, the output copies of ω cannot be merged.

Corollary
Suppose {ω · 2, ω? · 2} ≤c {C,D} via Γ, where C and D are as
before. Then C includes ω · 2 and D includes ω? · 2.



Infinite chain of pairs (5)

We can generalize the previous proposition in the following way:

Theorem
Fix some k ≥ 2 and suppose {ω · k, ω? · k} ≤c {C,D} via Γ, where
C and D are as before. Then C includes ω · k and D includes ω? · k.

It follows that we have the following chain:

{ω, ω?} <c {ω·2, ω?·2} <c · · · <c {ω·2k , ω?·2k} <c · · · <c {1+η, η+1}.

Recall that all of these pairs are equivalent relative to Turing
computable embeddings.
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The main result

In this context, the enumeration operators can only copy their
input structure a fixed number of times and do nothing else. More
formally,

Theorem
For any two non-zero natural nummbers n and k,

n divides k ↔ {ω · n, ω? · n} ≤c {ω · k, ω? · k}.



A sample case (2 7→ 3)

We already know that {ω · 3, ω? · 3} 6≤c {ω · 2, ω? · 2}. Now
assume {ω · 2, ω? · 2} ≤c {ω · 3, ω? · 3} via Γ.
I If A is a copy of ω, then Γ(A) is a copy of ω.
I Let A and B be copies of ω. Then

Γ(A+ B) ⊇ Γ(A) + Γ(B).

I Then we have one of the following cases:
I Γ(A+ B) = Γ(A) + Γ(B) + C;
I Γ(A+ B) = C + Γ(A) + Γ(B);
I Γ(A+ B) = Γ(A) + C + Γ(B).

We prove that none of these cases are possible and thus,
{ω · 2, ω? · 2} 6≤c {ω · 3, ω? · 3}.



Going higher to powers of ω

Notice that the pair {ω2, (ω2)?} is tc-equivalent to {ω, ω?}. Now
this should be clear:

{ω, ω?} <c {ω2, (ω2)?}.

The following result was surprising:

Theorem

{ω · 2, ω? · 2} <c {ω2, (ω2)?},

but
{ω · 3, ω? · 3} 6<c {ω2, (ω2)?}.

Intuition: enumeration operators can “guess” whether an element
is finitely or infinitely far from the beginning ( respectively, the
end).



{ω · 2, ω? · 2} <c {ω2, (ω2)?}

For a linear ordering L and an element a, we define

leftL(a) = |{b ∈ dom(L) | b ≤L a}|
rightL(a) = |{b ∈ dom(L) | b ≥L a}|

radL(a) = min{leftL(a), rightL(a)}.

Suppose we have as input the finite linear ordering
L = a0 < a1 < a2 < · · · < an. For each i such that 0 ≤ i ≤ n, Γ
outputs the pairs of the form (ai , aj), where

aj ≤N radL(ai ).

All pairs in the output diagram are ordered in lexicographic order.



{ω · 2, ω? · 2} <c {ω2, (ω2)?}

I Suppose that A = A1 +A2, where A1,2 are copies of ω. Then

Γ(A) ∼=
∑
i∈ω

i +
∑
i∈ω

ω · 2 ∼= ω + ω2 = ω2.

I Suppose that A = A1 +A2, where A1,2 are copies of ω?.
Then

Γ(A) ∼=
∑
i∈ω?

ω? · 2 +
∑
i∈ω?

i ∼= (ω2)? + ω? = (ω2)?.

Corollary
For any natural number n ≥ 1, we have the following:

{ω · (n + 1), ω? · (n + 1)} ≤c {ω2 · n, (ω2)? · n}.



{ω · 3, ω? · 3} 6<c {ω2, (ω2)?}

I Assume that {ω · 3, ω? · 3} <c {ω2, (ω2)?} via Γ.
I For any copy A of ω, Γ(A) is a copy of ω.

I If M is a copy of ω · 3 and Γ(M) ∼= ω2, then there is N , a
copy of ω · 2 with dom(N ) = dom(M) such that Γ(N ) ∼= ω2.

I If N0 and N1 are copies of ω · 2 such that Γ(N0) ∼= ω2 and
Γ(N1) ∼= ω2, then there is a copy M of ω · 3 such that
Γ(M) ∼= ω2 · 2.
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Final remark

In all negative results, we actually prove that there is no
generalized enumeration operator, in other words, no continuous
operator in the Scott topology.



The end

Thank you for your attention!


