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Computable embeddings

I We write Γe(A) = {x | (∃v)[〈x , v〉 ∈We & Dv ⊆ A]. We call
Γe an enumeration operator.

I These operators are monotone and compact.
I We say that the set B is enumeration reducible to the set A if

B = Γe(A), for some e.
I We work with countable structures with domains subsets of
ω. This is important!

I We associate with A the set of basic sentences in the
language L ∪ ω, true in A, which we denote by D(A).

I The class K is computably embeddable in K′, K ≤c K′, if
there is Γe such that
I for each A ∈ K, Γe(D(A)) = D(B) and B ∈ K′;
I Let A1A2 ∈ K, D(B1) = Γe(D(A1)) and D(B2) = Γe(D(A2)).

Then A1 ∼= A2 iff B1 ∼= B2.



Turing computable embeddings
The class K is Turing computably embeddable in K′,

K ≤tc K′,

if there is a Turing operator Φ = ϕe such that
I for each A ∈ K, ϕD(A)

e = χD(B) and B ∈ K′;
I Let A1A2 ∈ K, χD(B1) = ϕ

D(A1)
e and χD(B2) = ϕ

D(A2)
e . Then

A1 ∼= A2 iff B1 ∼= B2.

If D(B) = Γe(D(A)), then any enumeration of D(A) produces an
enumeration of D(B). This is the main difference with Turing
operators, where we may think that we work with a fixed
enumeration of D(A) given by its characteristic function (we can
check if an element is in the domain or not). If we are not careful,
we may construct an enumeration operator such that for different
enumerations of D(A) produces enumerations of different copies of
D(B), or something entirely different.
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A few examples of previous results

I PF - finite prime fields;
I FLO - finite linear orders;
I FVS - Q-vector spaces of finite dimension;
I VS - Q-vector spaces;
I LO - linear orders.

Theorem (Calvert-Cummins-Miller-Knight)
PF <c FLO <c FVS <c VS <c LO.

Theorem (Knight-Miller-Vanden Boom)
PF <tc FLO <tc FVS <tc VS <tc LO.

The difference between ≤tc and ≤c is not well studied.
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≤c implies ≤tc

Proposition (Greenberg, Kalimullin)
If K ≤c K′, then K ≤tc K′.

Suppose that K ≤c K′ via the enumeration operator Γe . Let
A ∈ K and Γe(D(A)) = D(B), where B ∈ K′. It follows that

b ∈ B ↔ (∃s)(∃α)[〈”b = b”, α〉 ∈We,s & α ⊂ D(A)].

Define f (b) = 〈b, s〉, where s is the least such stage. Then f is
partial computable in D(A). Let B ∼=f C. Then D(C) ≤T D(A).
This procedure is uniform, so there is such Turing operator, which
produces D(C) given as input D(A).
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≤tc does not imply ≤c

Here 1 and 2 are linear orders.

Example (Kalimullin)
I {1, 2} ≤tc {ω, ω?}. Proceed at stages. Start building initial

segments of ω. If another element is found in the domain of
the input structure, switch to building initial segments of ω?.
This guess never changes.

I {1, 2} 6≤c {ω, ω?}. Trivial - monotonicity of enumeration
operators: 1 is a substructure of 2, but ω is not a substructure
of ω?.

As usual, ≤tc and ≤c induce equicalence relations ≡tc and ≡c .
Given an ≡tc -class, we ask how it is partitioned in terms of ≡c . In
particular, how is the ≡tc -class of {ω, ω?} partitioned? It turns out
that this is not so easy to answer.
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The Pullback Theorem

Theorem (Knight, Miller, and Vanden Boom)
Suppose that K1 ≤tc K2 via a Turing operator Φ. Then for any
computable infinitary sentence ψ2 in the language of K2, one can
effectively find a computable infinitary sentence ψ1 in the language
of K1 such that for all A ∈ K1, we have

A |= ψ1 ↔ Φ(A) |= ψ2.

Moreover, for a non-zero α < ωCK
1 , if ψ2 is a Σc

α sentence, then so
is ψ2.
Since ≤c implies ≤tc , the theorem works for computable
embeddings as well.



Characterization of the tc-class of {ω, ω?}
The Pullback Lemma is important here.

Proposition
If {ω, ω?} ≡tc {A,B}, then A and B have computable copies,
A ≡1 B and they differ by Σ2 sentences.

Proposition
If A and B differ by Σc

2 sentences, then {A,B} ≤tc {ω, ω?}.

Proposition
Suppose that A and B are non-isomorphic L-structures with
computable copies. If A ≡1 B, then {ω, ω?} ≤tc {A,B}.

Theorem
Let A and B be non-isomorphic L-structures. T.F.A.E.
(1) {ω, ω?} ≡tc {A,B};
(2) A and B have computable copies, A ≡1 B, and they differ by

Σc
2 sentences.
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We conclude the Turing case

It follows that all pairs of the form {ω · k, ω? · k}, for any k > 0 are
equivalent under Turing computable embeddings.
What about computable embeddings (enumeration operators) ?



The top pair among linear orderings

We want to study the pairs of linear orderings inside the tc-degree
of {ω, ω?} relative to ≤c . It turns out that we have a top pair.

Theorem
For any pair {A,B} ≡tc {ω, ω?}, we have that

{A,B} ≤c {1 + η, η + 1},

where η is the order type of the rationals.

Corollary
For any k > 0,

{ω · k, ω? · k} <c {1 + η, η + 1}.



Infinite chain of pairs

We will show that for any k ∈ N,

{ω, ω?} <c · · · <c {ω · 2k , ω? · 2k} <c · · · <c {1 + η, η + 1}.

We clearly have the following:

m ≤ k =⇒ {ω · 2m, ω? · 2m} ≤c {ω · 2k , ω? · 2k}.

The enumeration operator just copies its input a fixed number of
times, since 2m divides 2k .
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Infinite chain of pairs (1)
I We denote by α, β, γ finite linear orderings.
I Define α 
Γ x < y iff

x , y ∈ Γ(α) & ¬(∃β ⊇ α)[Γ(β) |= y ≤ x ].
Proposition
Let x , y ∈ Γ(α) be distinct elements. Then

α 
Γ x < y or α 
Γ y < x .

Moreover,
α 
Γ x < y iff α 6
Γ y < x .

Easy proof: monotonicity and compactness are used.
Proposition
For distinct elements x0, x1, . . . , xn ∈ Γ(α), there is exactly one
permutation π of {0, 1, . . . , n} such that

α 
Γ xπ(0) < xπ(1) < · · · < xπ(n).



Infinite chain of pairs (2)
Notice that in general, for finite α, Γ(α) might be infinite.

Proposition
Let {A,B} ≤c {C,D}, where C has no infinite descending chains
and D has no infinite ascending chains. Then Γ(α) is finite for all
finite α.

Notice that in general, α ∩ β = ∅ does not imply Γ(α) ∩ Γ(β) = ∅.

Proposition
Let α ∩ β = ∅ and x , y ∈ Γ(α) ∩ Γ(β) be distinct elements. Then

α 
Γ x < y ↔ β 
Γ x < y .

Proposition
Let {A,B} ≤c {C,D}, where A, C and B,D are as above. There
are at most finitely many elements x with the property that there
exist α and β with disjoint domains and x ∈ Γ(α) ∩ Γ(β).
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Infinite chain of pairs (3)

We call (x , α) a Γ-pair if x ∈ Γ(α). Now we can work with infinite
chains of Γ-pairs (xi , αi )i<ω of distinct elements xi and mutually
disjoint αi .

Proposition
Suppose {ω · 2, ω? · 2} ≤c {C,D} via Γ, where C and D are as
before. For any two sequences of Γ-pairs (xi , αi )i∈ω and (yi , βi )i∈ω,
there is a number q such that either

Γ(
∑
i∈ω

αi +
∑
i∈ω

βi ) |=
∧

i ,j>q
xi < yj or Γ(

∑
i∈ω

αi +
∑
i∈ω

βi ) |=
∧

i ,j>q
yj < xi .

In other words, the x̄ and ȳ are not merged, with the exception of
finitely many elements.



Infinite chain of pairs (4)
By the choice of C and D, the last result shows that the output
structures have limit points.

Corollary
Suppose {ω · 2, ω? · 2} ≤c {C,D} via Γ, where C and D are as
before. Then C includes ω · 2 and D includes ω? · 2.

It can be generalized in the following way:

Theorem
Fix some k ≥ 2 and suppose {ω · k, ω? · k} ≤c {C,D} via Γ, where
C and D are as before. Then C includes ω · k and D includes ω? · k.

Corollary
For any k < ω, {ω · 2k , ω? · 2k} <c {ω · 2k+1, ω? · 2k+1}.
It follows that we have the following chain above {ω, ω?}:

{ω, ω?} <c {ω·2, ω?·2} <c · · · <c {ω·2k , ω?·2k} <c · · · <c {1+η, η+1}.
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Current work

In this context, the enumeration operators are so ”stupid” that
they can only copy and do nothing else. More formally,

Theorem
For any two natural nummbers n and k,

n | k ↔ {ω · n, ω? · n} ≤c {ω · k, ω? · k}.



A sample case (2 7→ 3)
We already know that {ω · 3, ω? · 3} 6≤c {ω · 2, ω? · 2}. Assume that

{ω · 2, ω? · 2} ≤c {ω · 3, ω? · 3} via Γ.

I If A is a copy of ω, then Γ(A) is a copy of ω.
I For any two sequences of Γ-pairs (xi , αi )i∈ω and (yi , βi )i∈ω,

there is a number q such that

Γ(
∑
i∈ω

αi +
∑
i∈ω

βi ) |=
∧

i ,j>q
xi < yj .

I Let A, B, and C denote copies of ω. Then we have one of the
following cases:
I Γ(A+ B) ∼= Γ(A) + Γ(B) + C;
I Γ(A+ B) ∼= C + Γ(A) + Γ(B);
I Γ(A+ B) ∼= Γ(A) + C + Γ(B).

We prove that none of these cases is possible. Thus,
{ω · 2, ω? · 2} 6≤c {ω · 3, ω? · 3}.
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The end

Thank you for your attention!


