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Introduction

There are many different ways to represent a real number ξ:

I Dedekind cuts: ξ is represented by the set {q ∈ Q|q < ξ}.
I Cauchy sequences: ξ is represented by a sequence q : N→ Q,

such that ξ = limn→∞ qn.

I Base b-expansions: ξ is represented by the sequence of its
digits in base b.

I . . . . . .

Our aim is to compare the complexity of these representations.
Our framework for complexity is subrecursive: roughly speaking, a
computation is subrecursive if the number of iterations in any cycle
can be computed in advance, before executing the cycle. Thus
unbounded search is not allowed in a subrecursive computation.
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Subrecursive functions

Let φ, ψ be total functions in N.

We say that φ is elementary in ψ (φ ≤E ψ) iff φ can be generated
from ψ and the initial functions (projections, constants, successor,
λn.2n) using composition and bounded primitive recursion.
The function φ is elementary iff φ ≤E 0.

We say that φ is primitive recursive in ψ (φ ≤PR ψ) iff φ can be
generated from ψ and the initial functions using composition and
(unbounded) primitive recursion.
The function φ is primitive recursive iff φ ≤PR 0.

A subrecursive class S is any efficiently enumerable class of
computable total functions in N.

We assume some elementary coding of Z and Q into N.
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Representations of real numbers

Let ξ be an irrational number.

Definition
The function C : N→ Q is a Cauchy sequence for ξ if and only if
for all n ∈ N

|C (n)− ξ| < 1

2n
.

The function D : Q→ {0, 1} is a Dedekind cut of ξ if and only if
for all q ∈ Q

D(q) = 0 ⇔ q < ξ.

The function T : Q→ Q is a trace function for ξ if and only if for
all q ∈ Q

|T (q)− ξ| < |q − ξ| .
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Recursive real numbers

Proposition

The following are equivalent for an irrational number ξ:

I there exists a computable Cauchy sequence for ξ;

I the Dedekind cut of ξ is computable;

I there exists a computable trace function for ξ.



From Dedekind cut to Cauchy sequence

Given a Dedekind cut of the irrational number ξ we can
subrecursively compute a Cauchy sequence for ξ.

In fact, we can compute subrecursively the decimal representation

M.D1D2 . . .Dn . . .

of ξ. The whole part M of ξ may be used as a constant in the
algorithm. The decimal digits D1,D2, . . . ,Dn can be computed
subrecursively from the Dedekind cut of ξ, since Dn ∈ {0, 1, . . . , 9}.
Finally, by taking

qn = M.D1D2 . . .Dn

we obtain a Cauchy sequence for ξ.
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From Cauchy sequence to Dedekind cut

In the reverse direction, it is not possible to compute subrecursively
the Dedekind cut of an irrational number ξ given a Cauchy
sequence for ξ.

To decide whether q < ξ given a Cauchy sequence qn for ξ an
unbounded search is needed to produce an interval, containing ξ,
which is either to the left or to the right of q.

qn − 2−n ξ qn + 2−n q

qn − 2−n ξ qn + 2−nq
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Dedekind cuts and trace functions

Given a trace function T of an irrational number ξ we can
subrecursively compute the Dedekind cut of ξ by

T (q) < q ⇒ ξ < q,

T (q) > q ⇒ q < ξ.

But conversely, given the Dedekind cut of ξ is not possible to
obtain a trace function T subrecursively.
Given q ∈ Q, an unbounded search is needed to find T (q) ∈ Q,
such that q < T (q) < ξ or ξ < T (q) < q.
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Formal result

For a class S of functions, we denote by ST ,SD ,SC the set of all
real numbers, which have a trace function, Dedekind cut or
Cauchy sequence in S, respectively.

Theorem (Kristiansen)

For any subrecursive class S, closed under elementary operations
we have

ST ⊂ SD ⊂ SC .
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Base-b expansions
From now on we consider only irrational numbers ξ ∈ (0, 1).

For any base b ≥ 2, there exists a unique sequence
D1,D2, . . . ,Dn . . . of b-digits, such that for all n ∈ N

0.D1D2 . . .Dn < ξ < 0.D1D2 . . .Dn +
1

bn
.

For a class S of functions, we denote by SbE the set of all real
numbers, whose sequence of b-digits belongs to S.

Theorem (Mostowski, Kristiansen)

For any subrecursive class S, closed under elementary operations
and any two bases a, b we have

SbE ⊆ SaE ⇐⇒ every prime factor of a is a prime factor of b.

It follows that
ST ⊂ SD ⊂ SbE ⊂ SC

for any subrecursive class S, closed under elementary operations
and any base b ≥ 2.
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E2-irrationality

Definition
A real number ξ will be called E2-irrational iff there exists a
function v ∈ E2, such that∣∣∣ξ − m

n

∣∣∣ > 1

v(n)

for all integers m and n > 0.

In fact, ξ is E2-irrational iff ξ has a finite irrationality measure and
v can be chosen a polynomial of n.

Theorem
For a subrecursive class S, closed under elementary operations and
a real number ξ, which is E2-irrational we have:

ξ ∈ ST ⇐⇒ ξ ∈ SD ⇐⇒ ξ ∈ SbE ⇐⇒ ξ ∈ SC .
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Arbitrary base representation I

We denote SE =
∞⋃
b=2

SbE .

Theorem
There exists a real number ξ, such that ξ ∈ SC and ξ /∈ SE .

The theorem can be generalised in the following way:

Theorem
For any E2-irrational number α ∈ SC there exists an E2-irrational
number β ∈ SC , such that α + β /∈ SE .

And similarly:

Theorem
For any E2-irrational number α ∈ SC there exists an E2-irrational
number β ∈ SC , such that αβ /∈ SE .



Arbitrary base representation I

We denote SE =
∞⋃
b=2

SbE .

Theorem
There exists a real number ξ, such that ξ ∈ SC and ξ /∈ SE .

The theorem can be generalised in the following way:

Theorem
For any E2-irrational number α ∈ SC there exists an E2-irrational
number β ∈ SC , such that α + β /∈ SE .

And similarly:

Theorem
For any E2-irrational number α ∈ SC there exists an E2-irrational
number β ∈ SC , such that αβ /∈ SE .



Arbitrary base representation I

We denote SE =
∞⋃
b=2

SbE .

Theorem
There exists a real number ξ, such that ξ ∈ SC and ξ /∈ SE .

The theorem can be generalised in the following way:

Theorem
For any E2-irrational number α ∈ SC there exists an E2-irrational
number β ∈ SC , such that α + β /∈ SE .

And similarly:

Theorem
For any E2-irrational number α ∈ SC there exists an E2-irrational
number β ∈ SC , such that αβ /∈ SE .



Arbitrary base representation I

We denote SE =
∞⋃
b=2

SbE .

Theorem
There exists a real number ξ, such that ξ ∈ SC and ξ /∈ SE .

The theorem can be generalised in the following way:

Theorem
For any E2-irrational number α ∈ SC there exists an E2-irrational
number β ∈ SC , such that α + β /∈ SE .

And similarly:

Theorem
For any E2-irrational number α ∈ SC there exists an E2-irrational
number β ∈ SC , such that αβ /∈ SE .



Arbitrary base representation II

Let R any of the known representations, not equivalent to Cauchy
sequences and SR be the set of irrational numbers, which possess
an R-representation, computable through functions from S.

Then we have

{ α ∈ SC | α is E2-irrational } ⊆ SR ⊆ SE

and it follows from the last two theorems that SR is not closed
under addition or multiplication.
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Base-b sum approximations from below

Let us fix some base b. Any irrational number ξ ∈ (0, 1) can be
written in the form

ξ =
d1
bk1

+
d2
bk2

+
d3
bk3

+ . . . ,

where kn is a strictly increasing sequence of positive integers and
dn are non-zero base-b digits, dn ∈ {1, . . . , b − 1}.

Definition
The function Âξ

b, defined by Âξ
b(n) = dnb

−kn for n > 0 and

Âξ
b(0) = 0 is called base-b sum approximation from below of the

number ξ.

For a class of functions S we denote by Sb↑ the set of all real
numbers, which have a base-b sum approximation from below in
S, that is

ξ ∈ Sb↑ ⇐⇒ Âξ
b ∈ S.
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Base-b sum approximations from above

Moreover, we can write

ξ = 1− d ′1
bm1
− d ′2

bm2
− d ′3

bm3
− . . . ,

where mn is a strictly increasing sequence of positive integers and
d ′n are non-zero base-b digits.

Definition
The function Ǎξ

b, defined by Ǎξ
b(n) = d ′nb

−mn for n > 0 and

Ǎξ
b(0) = 0 is called base-b sum approximation from above of the

number ξ.

For a class of functions S we denote by Sb↓ the set of all real
numbers, which have a base-b sum approximation from above in
S, that is

ξ ∈ Sb↓ ⇐⇒ Ǎξ
b ∈ S.
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Example in base 10

For example, let us have ξ = 0.05439990003 . . . in base b = 10.

Then

ξ =
5

102
+

4

103
+

3

104
+

9

105
+

9

106
+

9

107
+

3

1011
+ . . . ,

thus

Âξ
10(1) =

5

102
, Âξ

10(2) =
4

103
, . . .

Moreover,

ξ = 1− 9

101
− 4

102
− 5

103
− 6

104
− 9

108
− 9

109
− 9

1010
− 6

1011
+ . . . ,

thus

Ǎξ
10(1) =

9

101
, Ǎξ

10(2) =
4

102
, . . .
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Results on sum approximations

Theorem (Kristiansen)

Let S be a subrecursive class, closed under elementary operations.
For any base b we have

Sb↑ * Sb↓ and Sb↓ * Sb↑.

It easily follows that

Sb↑ ⊂ SbE and Sb↓ ⊂ SbE .
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Arbitary base sum approximation

Let us denote S↑ =
∞⋃
b=2

Sb↑, S↓ =
∞⋃
b=2

Sb↓.

Kristiansen conjectured that S↑ = S↓ = SE .

Theorem
For any finite set of primes {p1, . . . , pk} and prime p not belonging
to the set there exists a real number ξ, such that
ξ ∈ Sp1↑ ∩ . . . ∩ Spk↑ and ξ /∈ Sp↑.
But actually the conjecture is false:

Theorem
There exist a real number ξ ∈ SD , such that ξ /∈ S↑.
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