On representations of irrational numbers in subrecursive context

Ivan Georgiev¹

Prof. d-r Asen Zlatarov University, Burgas, Bulgaria

Computability and Complexity in Analysis

Zagreb, Croatia, 8-11 July 2019

¹This work was supported by the Bulgarian National Science Fund through contract DN-02-16/19.12.2016

This is a joint research initiated by prof. Lars Kristiansen from Oslo University [2, 3] together with prof. Frank Stephan from the National University of Singapore.

This is a joint research initiated by prof. Lars Kristiansen from Oslo University [2, 3] together with prof. Frank Stephan from the National University of Singapore.

It is partially funded by the Bulgarian National Science Fund through the project "Models of Computablity", DN-02-16/19.12.2016.

There are many different ways to represent a real number ξ :

There are many different ways to represent a real number ξ :

• Dedekind cuts: ξ is represented by the set $\{q \in \mathbb{Q} | q < \xi\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

There are many different ways to represent a real number ξ :

- Dedekind cuts: ξ is represented by the set $\{q \in \mathbb{Q} | q < \xi\}$.
- ► Cauchy sequences: ξ is represented by a sequence $q : \mathbb{N} \to \mathbb{Q}$, such that $\xi = \lim_{n \to \infty} q_n$.

There are many different ways to represent a real number ξ :

- Dedekind cuts: ξ is represented by the set $\{q \in \mathbb{Q} | q < \xi\}$.
- ► Cauchy sequences: ξ is represented by a sequence $q : \mathbb{N} \to \mathbb{Q}$, such that $\xi = \lim_{n \to \infty} q_n$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Base b-expansions: ξ is represented by the sequence of its digits in base b.

There are many different ways to represent a real number ξ :

- Dedekind cuts: ξ is represented by the set $\{q \in \mathbb{Q} | q < \xi\}$.
- ► Cauchy sequences: ξ is represented by a sequence $q : \mathbb{N} \to \mathbb{Q}$, such that $\xi = \lim_{n \to \infty} q_n$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Base b-expansions: ξ is represented by the sequence of its digits in base b.

▶

There are many different ways to represent a real number ξ :

- Dedekind cuts: ξ is represented by the set $\{q \in \mathbb{Q} | q < \xi\}$.
- ► Cauchy sequences: ξ is represented by a sequence $q : \mathbb{N} \to \mathbb{Q}$, such that $\xi = \lim_{n \to \infty} q_n$.
- Base b-expansions: ξ is represented by the sequence of its digits in base b.

▶

Our aim is to compare the complexity of these representations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

There are many different ways to represent a real number ξ :

- Dedekind cuts: ξ is represented by the set $\{q \in \mathbb{Q} | q < \xi\}$.
- ► Cauchy sequences: ξ is represented by a sequence $q : \mathbb{N} \to \mathbb{Q}$, such that $\xi = \lim_{n \to \infty} q_n$.
- Base *b*-expansions: ξ is represented by the sequence of its digits in base *b*.

▶

Our aim is to compare the complexity of these representations. Our framework for complexity is subrecursive: roughly speaking, a computation is *subrecursive* if the number of iterations in any cycle can be computed in advance, before executing the cycle.

There are many different ways to represent a real number ξ :

- Dedekind cuts: ξ is represented by the set $\{q \in \mathbb{Q} | q < \xi\}$.
- ► Cauchy sequences: ξ is represented by a sequence $q : \mathbb{N} \to \mathbb{Q}$, such that $\xi = \lim_{n \to \infty} q_n$.
- Base *b*-expansions: ξ is represented by the sequence of its digits in base *b*.

▶

Our aim is to compare the complexity of these representations. Our framework for complexity is subrecursive: roughly speaking, a computation is *subrecursive* if the number of iterations in any cycle can be computed in advance, before executing the cycle. Thus unbounded search is not allowed in a subrecursive computation.

Let ϕ, ψ be total functions in \mathbb{N} .

Let ϕ, ψ be total functions in \mathbb{N} .

We say that ϕ is *elementary in* ψ ($\phi \leq_E \psi$) iff ϕ can be generated from ψ and the initial functions (projections, constants, successor, $\lambda n.2^n$) using composition and bounded primitive recursion.

Let ϕ, ψ be total functions in \mathbb{N} .

We say that ϕ is *elementary in* ψ ($\phi \leq_E \psi$) iff ϕ can be generated from ψ and the initial functions (projections, constants, successor, $\lambda n.2^n$) using composition and bounded primitive recursion. The function ϕ is *elementary* iff $\phi \leq_E 0$.

Let ϕ, ψ be total functions in \mathbb{N} .

We say that ϕ is *elementary in* ψ ($\phi \leq_E \psi$) iff ϕ can be generated from ψ and the initial functions (projections, constants, successor, $\lambda n.2^n$) using composition and bounded primitive recursion. The function ϕ is *elementary* iff $\phi \leq_E 0$.

We say that ϕ is *primitive recursive in* ψ ($\phi \leq_{PR} \psi$) iff ϕ can be generated from ψ and the initial functions using composition and (unbounded) primitive recursion.

Let ϕ, ψ be total functions in \mathbb{N} .

We say that ϕ is *elementary in* ψ ($\phi \leq_E \psi$) iff ϕ can be generated from ψ and the initial functions (projections, constants, successor, $\lambda n.2^n$) using composition and bounded primitive recursion. The function ϕ is *elementary* iff $\phi \leq_E 0$.

We say that ϕ is *primitive recursive in* ψ ($\phi \leq_{PR} \psi$) iff ϕ can be generated from ψ and the initial functions using composition and (unbounded) primitive recursion.

The function ϕ is *primitive recursive* iff $\phi \leq_{PR} 0$.

Let ϕ, ψ be total functions in \mathbb{N} .

We say that ϕ is *elementary in* ψ ($\phi \leq_E \psi$) iff ϕ can be generated from ψ and the initial functions (projections, constants, successor, $\lambda n.2^n$) using composition and bounded primitive recursion. The function ϕ is *elementary* iff $\phi \leq_E 0$.

We say that ϕ is *primitive recursive in* ψ ($\phi \leq_{PR} \psi$) iff ϕ can be generated from ψ and the initial functions using composition and (unbounded) primitive recursion.

The function ϕ is *primitive recursive* iff $\phi \leq_{PR} 0$.

A subrecursive class S is any efficiently enumerable class of computable total functions in \mathbb{N} .

Let ϕ, ψ be total functions in \mathbb{N} .

We say that ϕ is *elementary in* ψ ($\phi \leq_E \psi$) iff ϕ can be generated from ψ and the initial functions (projections, constants, successor, $\lambda n.2^n$) using composition and bounded primitive recursion. The function ϕ is *elementary* iff $\phi \leq_E 0$.

We say that ϕ is *primitive recursive in* ψ ($\phi \leq_{PR} \psi$) iff ϕ can be generated from ψ and the initial functions using composition and (unbounded) primitive recursion.

The function ϕ is *primitive recursive* iff $\phi \leq_{PR} 0$.

A subrecursive class S is any efficiently enumerable class of computable total functions in \mathbb{N} .

We assume some elementary coding of $\mathbb Z$ and $\mathbb Q$ into $\mathbb N.$

Let ξ be an irrational number.

Let ξ be an irrational number.

Definition

The function $C : \mathbb{N} \to \mathbb{Q}$ is a *Cauchy sequence* for ξ if and only if for all $n \in \mathbb{N}$

$$|C(n)-\xi|<\frac{1}{2^n}.$$

Let ξ be an irrational number.

Definition

The function $C : \mathbb{N} \to \mathbb{Q}$ is a *Cauchy sequence* for ξ if and only if for all $n \in \mathbb{N}$

$$|C(n)-\xi|<\frac{1}{2^n}.$$

The function $D:\mathbb{Q}\to\{0,1\}$ is a *Dedekind cut* of ξ if and only if for all $q\in\mathbb{Q}$

$$D(q) = 0 \Leftrightarrow q < \xi.$$

Let ξ be an irrational number.

Definition

The function $C : \mathbb{N} \to \mathbb{Q}$ is a *Cauchy sequence* for ξ if and only if for all $n \in \mathbb{N}$

$$|C(n)-\xi|<\frac{1}{2^n}.$$

The function $D:\mathbb{Q}\to\{0,1\}$ is a *Dedekind cut* of ξ if and only if for all $q\in\mathbb{Q}$

$$D(q) = 0 \Leftrightarrow q < \xi.$$

The function $T : \mathbb{Q} \to \mathbb{Q}$ is a *trace function* for ξ if and only if for all $q \in \mathbb{Q}$

$$|T(q)-\xi|<|q-\xi|.$$

Recursive real numbers

Proposition

The following are equivalent for an irrational number ξ :

there exists a computable Cauchy sequence for ξ;

- the Dedekind cut of ξ is computable;
- there exists a computable trace function for ξ .

Given a Dedekind cut of the irrational number ξ we can subrecursively compute a Cauchy sequence for ξ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Given a Dedekind cut of the irrational number ξ we can subrecursively compute a Cauchy sequence for ξ . In fact, we can compute subrecursively the decimal representation

 $M.D_1D_2...D_n...$

of ξ .

Given a Dedekind cut of the irrational number ξ we can subrecursively compute a Cauchy sequence for ξ . In fact, we can compute subrecursively the decimal representation

 $M.D_1D_2...D_n...$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

of ξ . The whole part M of ξ may be used as a constant in the algorithm.

Given a Dedekind cut of the irrational number ξ we can subrecursively compute a Cauchy sequence for ξ . In fact, we can compute subrecursively the decimal representation

 $M.D_1D_2...D_n...$

of ξ . The whole part M of ξ may be used as a constant in the algorithm. The decimal digits D_1, D_2, \ldots, D_n can be computed subrecursively from the Dedekind cut of ξ , since $D_n \in \{0, 1, \ldots, 9\}$.

Given a Dedekind cut of the irrational number ξ we can subrecursively compute a Cauchy sequence for ξ . In fact, we can compute subrecursively the decimal representation

 $M.D_1D_2...D_n...$

of ξ . The whole part M of ξ may be used as a constant in the algorithm. The decimal digits D_1, D_2, \ldots, D_n can be computed subrecursively from the Dedekind cut of ξ , since $D_n \in \{0, 1, \ldots, 9\}$. Finally, by taking

$$q_n = M.D_1D_2\ldots D_n$$

we obtain a Cauchy sequence for ξ .

In the reverse direction, it is not possible to compute subrecursively the Dedekind cut of an irrational number ξ given a Cauchy sequence for ξ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In the reverse direction, it is not possible to compute subrecursively the Dedekind cut of an irrational number ξ given a Cauchy sequence for ξ .

To decide whether $q < \xi$ given a Cauchy sequence q_n for ξ an unbounded search is needed to produce an interval, containing ξ , which is either to the left or to the right of q.

In the reverse direction, it is not possible to compute subrecursively the Dedekind cut of an irrational number ξ given a Cauchy sequence for ξ .

To decide whether $q < \xi$ given a Cauchy sequence q_n for ξ an unbounded search is needed to produce an interval, containing ξ , which is either to the left or to the right of q.

 q_n-2^{-n} ξ q_n+2^{-n} q

In the reverse direction, it is not possible to compute subrecursively the Dedekind cut of an irrational number ξ given a Cauchy sequence for ξ .

To decide whether $q < \xi$ given a Cauchy sequence q_n for ξ an unbounded search is needed to produce an interval, containing ξ , which is either to the left or to the right of q.

$$q_n - 2^{-n}$$
 ξ $q_n + 2^{-n} q$
 $q_n - 2^{-n} \xi$ $q_n + 2^{-n}$

Dedekind cuts and trace functions

Given a trace function T of an irrational number ξ we can subrecursively compute the Dedekind cut of ξ by

 $T(q) < q \Rightarrow \xi < q,$ $T(q) > q \Rightarrow q < \xi.$

Dedekind cuts and trace functions

Given a trace function T of an irrational number ξ we can subrecursively compute the Dedekind cut of ξ by

$$T(q) < q \Rightarrow \xi < q,$$

 $T(q) > q \Rightarrow q < \xi.$

But conversely, given the Dedekind cut of ξ is not possible to obtain a trace function T subrecursively.

Dedekind cuts and trace functions

Given a trace function T of an irrational number ξ we can subrecursively compute the Dedekind cut of ξ by

$$T(q) < q \Rightarrow \xi < q,$$

 $T(q) > q \Rightarrow q < \xi.$

But conversely, given the Dedekind cut of ξ is not possible to obtain a trace function T subrecursively. Given $q \in \mathbb{Q}$, an unbounded search is needed to find $T(q) \in \mathbb{Q}$, such that $q < T(q) < \xi$ or $\xi < T(q) < q$.

Formal result

For a class S of functions, we denote by S_T, S_D, S_C the set of all real numbers, which have a trace function, Dedekind cut or Cauchy sequence in S, respectively.

Formal result

For a class S of functions, we denote by S_T, S_D, S_C the set of all real numbers, which have a trace function, Dedekind cut or Cauchy sequence in S, respectively.

Theorem (Kristiansen)

For any subrecursive class S, closed under elementary operations we have

 $\mathcal{S}_T \subset \mathcal{S}_D \subset \mathcal{S}_C.$

From now on we consider only irrational numbers $\xi \in (0, 1)$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

From now on we consider only irrational numbers $\xi \in (0, 1)$. For any base $b \ge 2$, there exists a unique sequence $D_1, D_2, \ldots, D_n \ldots$ of *b*-digits, such that for all $n \in \mathbb{N}$

$$0.D_1D_2\ldots D_n < \xi < 0.D_1D_2\ldots D_n + \frac{1}{b^n}.$$

From now on we consider only irrational numbers $\xi \in (0, 1)$. For any base $b \ge 2$, there exists a unique sequence $D_1, D_2, \ldots, D_n \ldots$ of *b*-digits, such that for all $n \in \mathbb{N}$

$$0.D_1D_2\ldots D_n < \xi < 0.D_1D_2\ldots D_n + \frac{1}{b^n}.$$

For a class S of functions, we denote by S_{bE} the set of all real numbers, whose sequence of *b*-digits belongs to S.

From now on we consider only irrational numbers $\xi \in (0, 1)$. For any base $b \ge 2$, there exists a unique sequence $D_1, D_2, \ldots, D_n \ldots$ of *b*-digits, such that for all $n \in \mathbb{N}$

$$0.D_1D_2\ldots D_n < \xi < 0.D_1D_2\ldots D_n + \frac{1}{b^n}.$$

For a class S of functions, we denote by S_{bE} the set of all real numbers, whose sequence of *b*-digits belongs to S.

Theorem (Mostowski, Kristiansen)

For any subrecursive class S, closed under elementary operations and any two bases a, b we have

 $\mathcal{S}_{bE} \subseteq \mathcal{S}_{aE} \iff$ every prime factor of a is a prime factor of b.

From now on we consider only irrational numbers $\xi \in (0, 1)$. For any base $b \ge 2$, there exists a unique sequence $D_1, D_2, \ldots, D_n \ldots$ of *b*-digits, such that for all $n \in \mathbb{N}$

$$0.D_1D_2\ldots D_n < \xi < 0.D_1D_2\ldots D_n + \frac{1}{b^n}.$$

For a class S of functions, we denote by S_{bE} the set of all real numbers, whose sequence of *b*-digits belongs to S.

Theorem (Mostowski, Kristiansen)

For any subrecursive class S, closed under elementary operations and any two bases a, b we have

 $\mathcal{S}_{bE} \subseteq \mathcal{S}_{aE} \iff$ every prime factor of a is a prime factor of b.

It follows that

$$\mathcal{S}_T \subset \mathcal{S}_D \subset \mathcal{S}_{bE} \subset \mathcal{S}_C$$

for any subrecursive class S, closed under elementary operations and any base $b \ge 2$.

\mathcal{E}^2 -irrationality

Definition

A real number ξ will be called \mathcal{E}^2 -*irrational* iff there exists a function $v \in \mathcal{E}^2$, such that

$$\left|\xi-\frac{m}{n}\right|>\frac{1}{v(n)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

for all integers m and n > 0.

\mathcal{E}^2 -irrationality

Definition

A real number ξ will be called \mathcal{E}^2 -*irrational* iff there exists a function $v \in \mathcal{E}^2$, such that

$$\left|\xi-\frac{m}{n}\right|>\frac{1}{v(n)}$$

for all integers m and n > 0.

In fact, ξ is \mathcal{E}^2 -irrational iff ξ has a finite irrationality measure and v can be chosen a polynomial of n.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

\mathcal{E}^2 -irrationality

Definition

A real number ξ will be called \mathcal{E}^2 -*irrational* iff there exists a function $v \in \mathcal{E}^2$, such that

$$\left|\xi-\frac{m}{n}\right|>\frac{1}{v(n)}$$

for all integers m and n > 0.

In fact, ξ is \mathcal{E}^2 -irrational iff ξ has a finite irrationality measure and v can be chosen a polynomial of n.

Theorem

For a subrecursive class S, closed under elementary operations and a real number ξ , which is \mathcal{E}^2 -irrational we have:

$$\xi \in \mathcal{S}_T \Longleftrightarrow \xi \in \mathcal{S}_D \Longleftrightarrow \xi \in \mathcal{S}_{bE} \Longleftrightarrow \xi \in \mathcal{S}_C.$$

We denote
$$\mathcal{S}_E = \bigcup_{b=2}^{\infty} \mathcal{S}_{bE}$$
.

We denote
$$\mathcal{S}_E = \bigcup_{b=2}^{\infty} \mathcal{S}_{bE}$$
.

Theorem

There exists a real number ξ , such that $\xi \in S_C$ and $\xi \notin S_E$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We denote
$$\mathcal{S}_E = \bigcup_{b=2}^{\infty} \mathcal{S}_{bE}$$
.

Theorem

There exists a real number ξ , such that $\xi \in S_C$ and $\xi \notin S_E$.

The theorem can be generalised in the following way:

Theorem

For any \mathcal{E}^2 -irrational number $\alpha \in \mathcal{S}_C$ there exists an \mathcal{E}^2 -irrational number $\beta \in \mathcal{S}_C$, such that $\alpha + \beta \notin \mathcal{S}_E$.

We denote
$$\mathcal{S}_E = \bigcup_{b=2}^{\infty} \mathcal{S}_{bE}$$
.

Theorem

There exists a real number ξ , such that $\xi \in S_C$ and $\xi \notin S_E$.

The theorem can be generalised in the following way:

Theorem

For any \mathcal{E}^2 -irrational number $\alpha \in \mathcal{S}_C$ there exists an \mathcal{E}^2 -irrational number $\beta \in \mathcal{S}_C$, such that $\alpha + \beta \notin \mathcal{S}_E$.

And similarly:

Theorem

For any \mathcal{E}^2 -irrational number $\alpha \in \mathcal{S}_C$ there exists an \mathcal{E}^2 -irrational number $\beta \in \mathcal{S}_C$, such that $\alpha \beta \notin \mathcal{S}_E$.

Let R any of the known representations, not equivalent to Cauchy sequences and S_R be the set of irrational numbers, which possess an R-representation, computable through functions from S.

Let R any of the known representations, not equivalent to Cauchy sequences and S_R be the set of irrational numbers, which possess an R-representation, computable through functions from S. Then we have

$$\{ \alpha \in \mathcal{S}_{\mathcal{C}} \mid \alpha \text{ is } \mathcal{E}^2 \text{-irrational } \} \subseteq \mathcal{S}_{\mathcal{R}} \subseteq \mathcal{S}_{\mathcal{E}}$$

Let R any of the known representations, not equivalent to Cauchy sequences and S_R be the set of irrational numbers, which possess an R-representation, computable through functions from S. Then we have

$$\{ \alpha \in \mathcal{S}_{\mathcal{C}} \mid \alpha \text{ is } \mathcal{E}^2 \text{-irrational } \} \subseteq \mathcal{S}_{\mathcal{R}} \subseteq \mathcal{S}_{\mathcal{E}}$$

and it follows from the last two theorems that S_R is not closed under addition or multiplication.

Base-b sum approximations from below

Let us fix some base *b*. Any irrational number $\xi \in (0,1)$ can be written in the form

$$\xi = \frac{d_1}{b^{k_1}} + \frac{d_2}{b^{k_2}} + \frac{d_3}{b^{k_3}} + \dots,$$

where k_n is a strictly increasing sequence of positive integers and d_n are non-zero base-*b* digits, $d_n \in \{1, \ldots, b-1\}$.

Base-b sum approximations from below

Let us fix some base b. Any irrational number $\xi \in (0,1)$ can be written in the form

$$\xi = \frac{d_1}{b^{k_1}} + \frac{d_2}{b^{k_2}} + \frac{d_3}{b^{k_3}} + \dots,$$

where k_n is a strictly increasing sequence of positive integers and d_n are non-zero base-*b* digits, $d_n \in \{1, \ldots, b-1\}$.

Definition

The function \hat{A}_{b}^{ξ} , defined by $\hat{A}_{b}^{\xi}(n) = d_{n}b^{-k_{n}}$ for n > 0 and $\hat{A}_{b}^{\xi}(0) = 0$ is called *base-b sum approximation from below* of the number ξ .

Base-*b* sum approximations from below

Let us fix some base b. Any irrational number $\xi \in (0,1)$ can be written in the form

$$\xi = \frac{d_1}{b^{k_1}} + \frac{d_2}{b^{k_2}} + \frac{d_3}{b^{k_3}} + \dots,$$

where k_n is a strictly increasing sequence of positive integers and d_n are non-zero base-*b* digits, $d_n \in \{1, \ldots, b-1\}$.

Definition

The function \hat{A}_{b}^{ξ} , defined by $\hat{A}_{b}^{\xi}(n) = d_{n}b^{-k_{n}}$ for n > 0 and $\hat{A}_{b}^{\xi}(0) = 0$ is called *base-b sum approximation from below* of the number ξ .

For a class of functions S we denote by $S_{b\uparrow}$ the set of all real numbers, which have a base-*b* sum approximation from below in S, that is

$$\xi \in \mathcal{S}_{b\uparrow} \iff \hat{A}_b^{\xi} \in \mathcal{S}.$$

Base-b sum approximations from above

Moreover, we can write

$$\xi = 1 - \frac{d_1'}{b^{m_1}} - \frac{d_2'}{b^{m_2}} - \frac{d_3'}{b^{m_3}} - \dots,$$

where m_n is a strictly increasing sequence of positive integers and d'_n are non-zero base-*b* digits.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Base-b sum approximations from above

Moreover, we can write

$$\xi = 1 - rac{d_1'}{b^{m_1}} - rac{d_2'}{b^{m_2}} - rac{d_3'}{b^{m_3}} - \dots,$$

where m_n is a strictly increasing sequence of positive integers and d'_n are non-zero base-*b* digits.

Definition

The function \check{A}_{b}^{ξ} , defined by $\check{A}_{b}^{\xi}(n) = d'_{n}b^{-m_{n}}$ for n > 0 and $\check{A}_{b}^{\xi}(0) = 0$ is called *base-b sum approximation from above* of the number ξ .

Base-b sum approximations from above

Moreover, we can write

$$\xi = 1 - rac{d_1'}{b^{m_1}} - rac{d_2'}{b^{m_2}} - rac{d_3'}{b^{m_3}} - \dots,$$

where m_n is a strictly increasing sequence of positive integers and d'_n are non-zero base-*b* digits.

Definition

The function \check{A}_{b}^{ξ} , defined by $\check{A}_{b}^{\xi}(n) = d'_{n}b^{-m_{n}}$ for n > 0 and $\check{A}_{b}^{\xi}(0) = 0$ is called *base-b sum approximation from above* of the number ξ .

For a class of functions S we denote by $S_{b\downarrow}$ the set of all real numbers, which have a base-*b* sum approximation from above in S, that is

$$\xi \in \mathcal{S}_{b\downarrow} \iff \check{A}_b^{\xi} \in \mathcal{S}.$$

For example, let us have $\xi = 0.05439990003...$ in base b = 10.

(ロ)、(型)、(E)、(E)、 E) の(の)

For example, let us have $\xi=0.05439990003\ldots$ in base b=10. Then

$$\xi = \frac{5}{10^2} + \frac{4}{10^3} + \frac{3}{10^4} + \frac{9}{10^5} + \frac{9}{10^6} + \frac{9}{10^7} + \frac{3}{10^{11}} + \dots,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

thus

For example, let us have $\xi=0.05439990003\ldots$ in base b=10. Then

$$\xi = \frac{5}{10^2} + \frac{4}{10^3} + \frac{3}{10^4} + \frac{9}{10^5} + \frac{9}{10^6} + \frac{9}{10^7} + \frac{3}{10^{11}} + \dots,$$

$$\hat{A}_{10}^{\xi}(1) = rac{5}{10^2}, \ \ \hat{A}_{10}^{\xi}(2) = rac{4}{10^3}, \ \ \ldots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For example, let us have $\xi = 0.05439990003\ldots$ in base b = 10. Then

$$\xi = \frac{5}{10^2} + \frac{4}{10^3} + \frac{3}{10^4} + \frac{9}{10^5} + \frac{9}{10^6} + \frac{9}{10^7} + \frac{3}{10^{11}} + \dots,$$

thus

$$\hat{A}_{10}^{\xi}(1) = rac{5}{10^2}, \ \ \hat{A}_{10}^{\xi}(2) = rac{4}{10^3}, \ \ \ldots$$

Moreover,

$$\xi = 1 - \frac{9}{10^1} - \frac{4}{10^2} - \frac{5}{10^3} - \frac{6}{10^4} - \frac{9}{10^8} - \frac{9}{10^9} - \frac{9}{10^{10}} - \frac{6}{10^{11}} + \dots,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For example, let us have $\xi = 0.05439990003\ldots$ in base b = 10. Then

$$\xi = \frac{5}{10^2} + \frac{4}{10^3} + \frac{3}{10^4} + \frac{9}{10^5} + \frac{9}{10^6} + \frac{9}{10^7} + \frac{3}{10^{11}} + \dots,$$

thus

$$\hat{A}_{10}^{\xi}(1) = \frac{5}{10^2}, \ \hat{A}_{10}^{\xi}(2) = \frac{4}{10^3}, \ \dots$$

Moreover,

$$\begin{split} \xi &= 1 - \frac{9}{10^1} - \frac{4}{10^2} - \frac{5}{10^3} - \frac{6}{10^4} - \frac{9}{10^8} - \frac{9}{10^9} - \frac{9}{10^{10}} - \frac{6}{10^{11}} + \dots, \\ \text{thus} \\ \check{A}_{10}^{\xi}(1) &= \frac{9}{10^1}, \ \check{A}_{10}^{\xi}(2) = \frac{4}{10^2}, \ \dots \end{split}$$

Results on sum approximations

Theorem (Kristiansen)

Let S be a subrecursive class, closed under elementary operations. For any base b we have

$$\mathcal{S}_{b\uparrow} \nsubseteq \mathcal{S}_{b\downarrow}$$
 and $\mathcal{S}_{b\downarrow} \nsubseteq \mathcal{S}_{b\uparrow}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Results on sum approximations

Theorem (Kristiansen)

Let S be a subrecursive class, closed under elementary operations. For any base b we have

$$\mathcal{S}_{b\uparrow} \nsubseteq \mathcal{S}_{b\downarrow}$$
 and $\mathcal{S}_{b\downarrow} \nsubseteq \mathcal{S}_{b\uparrow}$.

It easily follows that

$$\mathcal{S}_{b\uparrow} \subset \mathcal{S}_{bE}$$
 and $\mathcal{S}_{b\downarrow} \subset \mathcal{S}_{bE}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let us denote
$$\mathcal{S}_{\uparrow} = \bigcup_{b=2}^{\infty} \mathcal{S}_{b\uparrow}, \ \mathcal{S}_{\downarrow} = \bigcup_{b=2}^{\infty} \mathcal{S}_{b\downarrow}.$$

Let us denote
$$S_{\uparrow} = \bigcup_{b=2}^{\infty} S_{b\uparrow}, \ S_{\downarrow} = \bigcup_{b=2}^{\infty} S_{b\downarrow}.$$

Kristiansen conjectured that $S_{\uparrow} = S_{\downarrow} = S_E.$

Let us denote
$$S_{\uparrow} = \bigcup_{b=2}^{\infty} S_{b\uparrow}, \ S_{\downarrow} = \bigcup_{b=2}^{\infty} S_{b\downarrow}.$$

Kristiansen conjectured that $S_{\uparrow} = S_{\downarrow} = S_{E}.$

Theorem

For any finite set of primes $\{p_1, \ldots, p_k\}$ and prime p not belonging to the set there exists a real number ξ , such that $\xi \in S_{p_1\uparrow} \cap \ldots \cap S_{p_k\uparrow}$ and $\xi \notin S_{p\uparrow}$.

Let us denote
$$S_{\uparrow} = \bigcup_{b=2}^{\infty} S_{b\uparrow}, \ S_{\downarrow} = \bigcup_{b=2}^{\infty} S_{b\downarrow}.$$

Kristiansen conjectured that $S_{\uparrow} = S_{\downarrow} = S_E.$

Theorem

For any finite set of primes $\{p_1, \ldots, p_k\}$ and prime p not belonging to the set there exists a real number ξ , such that $\xi \in S_{p_1\uparrow} \cap \ldots \cap S_{p_k\uparrow}$ and $\xi \notin S_{p\uparrow}$.

But actually the conjecture is false:

Theorem

There exist a real number $\xi \in S_D$, such that $\xi \notin S_{\uparrow}$.

Bibliography

 Ivan Georgiev, Lars Kristiansen, Frank Stephan.
On general sum approximations of irrational numbers. *CiE 2018 Proceedings, Lectures Notes in Computer Science*, vol. 10936 (2018), 194–203.

Lars Kristiansen.

On subrecursive representability of irrational numbers. *Computability*, vol. 6(3) (2017), 249–276.

Lars Kristiansen.

On subrecursive representability of irrational numbers, part II. *Computability*, vol. 8(1) (2019), 43–65.

Thank you for your attention!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>