On representations of irrational numbers in subrecursive context

Ivan Georgiev ${ }^{1}$
Prof. d-r Asen Zlatarov University, Burgas, Bulgaria

Computability and Complexity in Analysis

Zagreb, Croatia, 8-11 July 2019
${ }^{1}$ This work was supported by the Bulgarian National Science Fund through contract DN-02-16/19.12.2016

Acknowledgements

This is a joint research initiated by prof. Lars Kristiansen from Oslo University [2, 3] together with prof. Frank Stephan from the National University of Singapore.

Acknowledgements

This is a joint research initiated by prof. Lars Kristiansen from Oslo University [2,3] together with prof. Frank Stephan from the National University of Singapore.

It is partially funded by the Bulgarian National Science Fund through the project "Models of Computablity", DN-02-16/19.12.2016.

Introduction

There are many different ways to represent a real number ξ :

Introduction

There are many different ways to represent a real number ξ :

- Dedekind cuts: ξ is represented by the set $\{q \in \mathbb{Q} \mid q<\xi\}$.

Introduction

There are many different ways to represent a real number ξ :

- Dedekind cuts: ξ is represented by the set $\{q \in \mathbb{Q} \mid q<\xi\}$.
- Cauchy sequences: ξ is represented by a sequence $q: \mathbb{N} \rightarrow \mathbb{Q}$, such that $\xi=\lim _{n \rightarrow \infty} q_{n}$.

Introduction

There are many different ways to represent a real number ξ :

- Dedekind cuts: ξ is represented by the set $\{q \in \mathbb{Q} \mid q<\xi\}$.
- Cauchy sequences: ξ is represented by a sequence $q: \mathbb{N} \rightarrow \mathbb{Q}$, such that $\xi=\lim _{n \rightarrow \infty} q_{n}$.
- Base b-expansions: ξ is represented by the sequence of its digits in base b.

Introduction

There are many different ways to represent a real number ξ :

- Dedekind cuts: ξ is represented by the set $\{q \in \mathbb{Q} \mid q<\xi\}$.
- Cauchy sequences: ξ is represented by a sequence $q: \mathbb{N} \rightarrow \mathbb{Q}$, such that $\xi=\lim _{n \rightarrow \infty} q_{n}$.
- Base b-expansions: ξ is represented by the sequence of its digits in base b.

Introduction

There are many different ways to represent a real number ξ :

- Dedekind cuts: ξ is represented by the set $\{q \in \mathbb{Q} \mid q<\xi\}$.
- Cauchy sequences: ξ is represented by a sequence $q: \mathbb{N} \rightarrow \mathbb{Q}$, such that $\xi=\lim _{n \rightarrow \infty} q_{n}$.
- Base b-expansions: ξ is represented by the sequence of its digits in base b.

Our aim is to compare the complexity of these representations.

Introduction

There are many different ways to represent a real number ξ :

- Dedekind cuts: ξ is represented by the set $\{q \in \mathbb{Q} \mid q<\xi\}$.
- Cauchy sequences: ξ is represented by a sequence $q: \mathbb{N} \rightarrow \mathbb{Q}$, such that $\xi=\lim _{n \rightarrow \infty} q_{n}$.
- Base b-expansions: ξ is represented by the sequence of its digits in base b.

Our aim is to compare the complexity of these representations. Our framework for complexity is subrecursive: roughly speaking, a computation is subrecursive if the number of iterations in any cycle can be computed in advance, before executing the cycle.

Introduction

There are many different ways to represent a real number ξ :

- Dedekind cuts: ξ is represented by the set $\{q \in \mathbb{Q} \mid q<\xi\}$.
- Cauchy sequences: ξ is represented by a sequence $q: \mathbb{N} \rightarrow \mathbb{Q}$, such that $\xi=\lim _{n \rightarrow \infty} q_{n}$.
- Base b-expansions: ξ is represented by the sequence of its digits in base b.

Our aim is to compare the complexity of these representations. Our framework for complexity is subrecursive: roughly speaking, a computation is subrecursive if the number of iterations in any cycle can be computed in advance, before executing the cycle. Thus unbounded search is not allowed in a subrecursive computation.

Subrecursive functions

Let ϕ, ψ be total functions in \mathbb{N}.

Subrecursive functions

Let ϕ, ψ be total functions in \mathbb{N}.
We say that ϕ is elementary in $\psi\left(\phi \leq_{E} \psi\right)$ iff ϕ can be generated from ψ and the initial functions (projections, constants, successor, $\lambda n .2^{n}$) using composition and bounded primitive recursion.

Subrecursive functions

Let ϕ, ψ be total functions in \mathbb{N}.
We say that ϕ is elementary in $\psi\left(\phi \leq_{E} \psi\right)$ iff ϕ can be generated from ψ and the initial functions (projections, constants, successor, $\lambda n .2^{n}$) using composition and bounded primitive recursion.
The function ϕ is elementary iff $\phi \leq_{E} 0$.

Subrecursive functions

Let ϕ, ψ be total functions in \mathbb{N}.
We say that ϕ is elementary in $\psi\left(\phi \leq_{E} \psi\right)$ iff ϕ can be generated from ψ and the initial functions (projections, constants, successor, $\lambda n .2^{n}$) using composition and bounded primitive recursion.
The function ϕ is elementary iff $\phi \leq_{E} 0$.
We say that ϕ is primitive recursive in $\psi\left(\phi \leq_{P R} \psi\right)$ iff ϕ can be generated from ψ and the initial functions using composition and (unbounded) primitive recursion.

Subrecursive functions

Let ϕ, ψ be total functions in \mathbb{N}.
We say that ϕ is elementary in $\psi\left(\phi \leq_{E} \psi\right)$ iff ϕ can be generated from ψ and the initial functions (projections, constants, successor, $\lambda n .2^{n}$) using composition and bounded primitive recursion.
The function ϕ is elementary iff $\phi \leq_{E} 0$.
We say that ϕ is primitive recursive in $\psi\left(\phi \leq_{P R} \psi\right)$ iff ϕ can be generated from ψ and the initial functions using composition and (unbounded) primitive recursion.
The function ϕ is primitive recursive iff $\phi \leq_{P R} 0$.

Subrecursive functions

Let ϕ, ψ be total functions in \mathbb{N}.
We say that ϕ is elementary in $\psi\left(\phi \leq_{E} \psi\right)$ iff ϕ can be generated from ψ and the initial functions (projections, constants, successor, $\lambda n .2^{n}$) using composition and bounded primitive recursion.
The function ϕ is elementary iff $\phi \leq_{E} 0$.
We say that ϕ is primitive recursive in $\psi\left(\phi \leq_{P R} \psi\right)$ iff ϕ can be generated from ψ and the initial functions using composition and (unbounded) primitive recursion.
The function ϕ is primitive recursive iff $\phi \leq_{P R} 0$.

A subrecursive class \mathcal{S} is any efficiently enumerable class of computable total functions in \mathbb{N}.

Subrecursive functions

Let ϕ, ψ be total functions in \mathbb{N}.
We say that ϕ is elementary in $\psi\left(\phi \leq_{E} \psi\right)$ iff ϕ can be generated from ψ and the initial functions (projections, constants, successor, $\lambda n .2^{n}$) using composition and bounded primitive recursion.
The function ϕ is elementary iff $\phi \leq_{E} 0$.
We say that ϕ is primitive recursive in $\psi\left(\phi \leq_{P R} \psi\right)$ iff ϕ can be generated from ψ and the initial functions using composition and (unbounded) primitive recursion.
The function ϕ is primitive recursive iff $\phi \leq_{P R} 0$.
A subrecursive class \mathcal{S} is any efficiently enumerable class of computable total functions in \mathbb{N}.

We assume some elementary coding of \mathbb{Z} and \mathbb{Q} into \mathbb{N}.

Representations of real numbers

Let ξ be an irrational number.

Representations of real numbers

Let ξ be an irrational number.
Definition
The function $C: \mathbb{N} \rightarrow \mathbb{Q}$ is a Cauchy sequence for ξ if and only if for all $n \in \mathbb{N}$

$$
|C(n)-\xi|<\frac{1}{2^{n}}
$$

Representations of real numbers

Let ξ be an irrational number.
Definition
The function $C: \mathbb{N} \rightarrow \mathbb{Q}$ is a Cauchy sequence for ξ if and only if for all $n \in \mathbb{N}$

$$
|C(n)-\xi|<\frac{1}{2^{n}}
$$

The function $D: \mathbb{Q} \rightarrow\{0,1\}$ is a Dedekind cut of ξ if and only if for all $q \in \mathbb{Q}$

$$
D(q)=0 \Leftrightarrow q<\xi
$$

Representations of real numbers

Let ξ be an irrational number.
Definition
The function $C: \mathbb{N} \rightarrow \mathbb{Q}$ is a Cauchy sequence for ξ if and only if for all $n \in \mathbb{N}$

$$
|C(n)-\xi|<\frac{1}{2^{n}}
$$

The function $D: \mathbb{Q} \rightarrow\{0,1\}$ is a Dedekind cut of ξ if and only if for all $q \in \mathbb{Q}$

$$
D(q)=0 \Leftrightarrow q<\xi
$$

The function $T: \mathbb{Q} \rightarrow \mathbb{Q}$ is a trace function for ξ if and only if for all $q \in \mathbb{Q}$

$$
|T(q)-\xi|<|q-\xi|
$$

Recursive real numbers

Proposition

The following are equivalent for an irrational number ξ :

- there exists a computable Cauchy sequence for ξ;
- the Dedekind cut of ξ is computable;
- there exists a computable trace function for ξ.

From Dedekind cut to Cauchy sequence

Given a Dedekind cut of the irrational number ξ we can subrecursively compute a Cauchy sequence for ξ.

From Dedekind cut to Cauchy sequence

Given a Dedekind cut of the irrational number ξ we can subrecursively compute a Cauchy sequence for ξ. In fact, we can compute subrecursively the decimal representation

$$
M . D_{1} D_{2} \ldots D_{n} \ldots
$$

of ξ.

From Dedekind cut to Cauchy sequence

Given a Dedekind cut of the irrational number ξ we can subrecursively compute a Cauchy sequence for ξ. In fact, we can compute subrecursively the decimal representation

$$
M . D_{1} D_{2} \ldots D_{n} \ldots
$$

of ξ. The whole part M of ξ may be used as a constant in the algorithm.

From Dedekind cut to Cauchy sequence

Given a Dedekind cut of the irrational number ξ we can subrecursively compute a Cauchy sequence for ξ. In fact, we can compute subrecursively the decimal representation

$$
M . D_{1} D_{2} \ldots D_{n} \ldots
$$

of ξ. The whole part M of ξ may be used as a constant in the algorithm. The decimal digits $D_{1}, D_{2}, \ldots, D_{n}$ can be computed subrecursively from the Dedekind cut of ξ, since $D_{n} \in\{0,1, \ldots, 9\}$.

From Dedekind cut to Cauchy sequence

Given a Dedekind cut of the irrational number ξ we can subrecursively compute a Cauchy sequence for ξ. In fact, we can compute subrecursively the decimal representation

$$
M . D_{1} D_{2} \ldots D_{n} \ldots
$$

of ξ. The whole part M of ξ may be used as a constant in the algorithm. The decimal digits $D_{1}, D_{2}, \ldots, D_{n}$ can be computed subrecursively from the Dedekind cut of ξ, since $D_{n} \in\{0,1, \ldots, 9\}$.
Finally, by taking

$$
q_{n}=M \cdot D_{1} D_{2} \ldots D_{n}
$$

we obtain a Cauchy sequence for ξ.

From Cauchy sequence to Dedekind cut

In the reverse direction, it is not possible to compute subrecursively the Dedekind cut of an irrational number ξ given a Cauchy sequence for ξ.

From Cauchy sequence to Dedekind cut

In the reverse direction, it is not possible to compute subrecursively the Dedekind cut of an irrational number ξ given a Cauchy sequence for ξ.
To decide whether $q<\xi$ given a Cauchy sequence q_{n} for ξ an unbounded search is needed to produce an interval, containing ξ, which is either to the left or to the right of q.

From Cauchy sequence to Dedekind cut

In the reverse direction, it is not possible to compute subrecursively the Dedekind cut of an irrational number ξ given a Cauchy sequence for ξ.
To decide whether $q<\xi$ given a Cauchy sequence q_{n} for ξ an unbounded search is needed to produce an interval, containing ξ, which is either to the left or to the right of q.

From Cauchy sequence to Dedekind cut

In the reverse direction, it is not possible to compute subrecursively the Dedekind cut of an irrational number ξ given a Cauchy sequence for ξ.
To decide whether $q<\xi$ given a Cauchy sequence q_{n} for ξ an unbounded search is needed to produce an interval, containing ξ, which is either to the left or to the right of q.

Dedekind cuts and trace functions

Given a trace function T of an irrational number ξ we can subrecursively compute the Dedekind cut of ξ by

$$
\begin{aligned}
& T(q)<q \Rightarrow \xi<q \\
& T(q)>q \Rightarrow q<\xi
\end{aligned}
$$

Dedekind cuts and trace functions

Given a trace function T of an irrational number ξ we can subrecursively compute the Dedekind cut of ξ by

$$
\begin{aligned}
& T(q)<q \Rightarrow \xi<q \\
& T(q)>q \Rightarrow q<\xi
\end{aligned}
$$

But conversely, given the Dedekind cut of ξ is not possible to obtain a trace function T subrecursively.

Dedekind cuts and trace functions

Given a trace function T of an irrational number ξ we can subrecursively compute the Dedekind cut of ξ by

$$
\begin{aligned}
& T(q)<q \Rightarrow \xi<q \\
& T(q)>q \Rightarrow q<\xi
\end{aligned}
$$

But conversely, given the Dedekind cut of ξ is not possible to obtain a trace function T subrecursively. Given $q \in \mathbb{Q}$, an unbounded search is needed to find $T(q) \in \mathbb{Q}$, such that $q<T(q)<\xi$ or $\xi<T(q)<q$.

Formal result

For a class \mathcal{S} of functions, we denote by $\mathcal{S}_{T}, \mathcal{S}_{D}, \mathcal{S}_{C}$ the set of all real numbers, which have a trace function, Dedekind cut or Cauchy sequence in \mathcal{S}, respectively.

Formal result

For a class \mathcal{S} of functions, we denote by $\mathcal{S}_{T}, \mathcal{S}_{D}, \mathcal{S}_{C}$ the set of all real numbers, which have a trace function, Dedekind cut or Cauchy sequence in \mathcal{S}, respectively.
Theorem (Kristiansen)
For any subrecursive class \mathcal{S}, closed under elementary operations we have

$$
\mathcal{S}_{T} \subset \mathcal{S}_{D} \subset \mathcal{S}_{C}
$$

Base-b expansions

From now on we consider only irrational numbers $\xi \in(0,1)$.

Base- b expansions

From now on we consider only irrational numbers $\xi \in(0,1)$.
For any base $b \geq 2$, there exists a unique sequence $D_{1}, D_{2}, \ldots, D_{n} \ldots$ of b-digits, such that for all $n \in \mathbb{N}$

$$
0 . D_{1} D_{2} \ldots D_{n}<\xi<0 . D_{1} D_{2} \ldots D_{n}+\frac{1}{b^{n}} .
$$

Base- b expansions

From now on we consider only irrational numbers $\xi \in(0,1)$.
For any base $b \geq 2$, there exists a unique sequence $D_{1}, D_{2}, \ldots, D_{n} \ldots$ of b-digits, such that for all $n \in \mathbb{N}$

$$
0 . D_{1} D_{2} \ldots D_{n}<\xi<0 . D_{1} D_{2} \ldots D_{n}+\frac{1}{b^{n}}
$$

For a class \mathcal{S} of functions, we denote by $\mathcal{S}_{b E}$ the set of all real numbers, whose sequence of b-digits belongs to \mathcal{S}.

Base- b expansions

From now on we consider only irrational numbers $\xi \in(0,1)$.
For any base $b \geq 2$, there exists a unique sequence
$D_{1}, D_{2}, \ldots, D_{n} \ldots$ of b-digits, such that for all $n \in \mathbb{N}$

$$
0 . D_{1} D_{2} \ldots D_{n}<\xi<0 . D_{1} D_{2} \ldots D_{n}+\frac{1}{b^{n}}
$$

For a class \mathcal{S} of functions, we denote by $\mathcal{S}_{b E}$ the set of all real numbers, whose sequence of b-digits belongs to \mathcal{S}.
Theorem (Mostowski, Kristiansen)
For any subrecursive class \mathcal{S}, closed under elementary operations and any two bases a, b we have

$$
\mathcal{S}_{b E} \subseteq \mathcal{S}_{a E} \Longleftrightarrow \text { every prime factor of } a \text { is a prime factor of } b
$$

Base- b expansions

From now on we consider only irrational numbers $\xi \in(0,1)$.
For any base $b \geq 2$, there exists a unique sequence
$D_{1}, D_{2}, \ldots, D_{n} \ldots$ of b-digits, such that for all $n \in \mathbb{N}$

$$
0 . D_{1} D_{2} \ldots D_{n}<\xi<0 . D_{1} D_{2} \ldots D_{n}+\frac{1}{b^{n}} .
$$

For a class \mathcal{S} of functions, we denote by $\mathcal{S}_{b E}$ the set of all real numbers, whose sequence of b-digits belongs to \mathcal{S}.
Theorem (Mostowski, Kristiansen)
For any subrecursive class \mathcal{S}, closed under elementary operations and any two bases a, b we have

$$
\mathcal{S}_{b E} \subseteq \mathcal{S}_{a E} \Longleftrightarrow \text { every prime factor of } a \text { is a prime factor of } b
$$

It follows that

$$
\mathcal{S}_{T} \subset \mathcal{S}_{D} \subset \mathcal{S}_{b E} \subset \mathcal{S}_{C}
$$

for any subrecursive class \mathcal{S}, closed under elementary operations and any base $b \geq 2$.

\mathcal{E}^{2}-irrationality

Definition

A real number ξ will be called \mathcal{E}^{2}-irrational iff there exists a function $v \in \mathcal{E}^{2}$, such that

$$
\left|\xi-\frac{m}{n}\right|>\frac{1}{v(n)}
$$

for all integers m and $n>0$.

\mathcal{E}^{2}-irrationality

Definition

A real number ξ will be called \mathcal{E}^{2}-irrational iff there exists a function $v \in \mathcal{E}^{2}$, such that

$$
\left|\xi-\frac{m}{n}\right|>\frac{1}{v(n)}
$$

for all integers m and $n>0$.
In fact, ξ is \mathcal{E}^{2}-irrational iff ξ has a finite irrationality measure and v can be chosen a polynomial of n.

\mathcal{E}^{2}-irrationality

Definition

A real number ξ will be called \mathcal{E}^{2}-irrational iff there exists a function $v \in \mathcal{E}^{2}$, such that

$$
\left|\xi-\frac{m}{n}\right|>\frac{1}{v(n)}
$$

for all integers m and $n>0$.
In fact, ξ is \mathcal{E}^{2}-irrational iff ξ has a finite irrationality measure and v can be chosen a polynomial of n.

Theorem
For a subrecursive class \mathcal{S}, closed under elementary operations and a real number ξ, which is \mathcal{E}^{2}-irrational we have:

$$
\xi \in \mathcal{S}_{T} \Longleftrightarrow \xi \in \mathcal{S}_{D} \Longleftrightarrow \xi \in \mathcal{S}_{b E} \Longleftrightarrow \xi \in \mathcal{S}_{C}
$$

Arbitrary base representation I

We denote $\mathcal{S}_{E}=\bigcup_{b=2}^{\infty} \mathcal{S}_{b E}$.

Arbitrary base representation I

We denote $\mathcal{S}_{E}=\bigcup_{b=2}^{\infty} \mathcal{S}_{b E}$.
Theorem
There exists a real number ξ, such that $\xi \in \mathcal{S}_{C}$ and $\xi \notin \mathcal{S}_{E}$.

Arbitrary base representation I

We denote $\mathcal{S}_{E}=\bigcup_{b=2}^{\infty} \mathcal{S}_{b E}$.
Theorem
There exists a real number ξ, such that $\xi \in \mathcal{S}_{C}$ and $\xi \notin \mathcal{S}_{E}$.
The theorem can be generalised in the following way:
Theorem
For any \mathcal{E}^{2}-irrational number $\alpha \in \mathcal{S}_{C}$ there exists an \mathcal{E}^{2}-irrational number $\beta \in \mathcal{S}_{C}$, such that $\alpha+\beta \notin \mathcal{S}_{E}$.

Arbitrary base representation I

We denote $\mathcal{S}_{E}=\bigcup_{b=2}^{\infty} \mathcal{S}_{b E}$.
Theorem
There exists a real number ξ, such that $\xi \in \mathcal{S}_{C}$ and $\xi \notin \mathcal{S}_{E}$.
The theorem can be generalised in the following way:
Theorem
For any \mathcal{E}^{2}-irrational number $\alpha \in \mathcal{S}_{C}$ there exists an \mathcal{E}^{2}-irrational number $\beta \in \mathcal{S}_{C}$, such that $\alpha+\beta \notin \mathcal{S}_{E}$.
And similarly:
Theorem
For any \mathcal{E}^{2}-irrational number $\alpha \in \mathcal{S}_{C}$ there exists an \mathcal{E}^{2}-irrational number $\beta \in \mathcal{S}_{C}$, such that $\alpha \beta \notin \mathcal{S}_{E}$.

Arbitrary base representation II

Let R any of the known representations, not equivalent to Cauchy sequences and \mathcal{S}_{R} be the set of irrational numbers, which possess an R-representation, computable through functions from \mathcal{S}.

Arbitrary base representation II

Let R any of the known representations, not equivalent to Cauchy sequences and \mathcal{S}_{R} be the set of irrational numbers, which possess an R-representation, computable through functions from \mathcal{S}. Then we have

$$
\left\{\alpha \in \mathcal{S}_{C} \mid \alpha \text { is } \mathcal{E}^{2} \text {-irrational }\right\} \subseteq \mathcal{S}_{R} \subseteq \mathcal{S}_{E}
$$

Arbitrary base representation II

Let R any of the known representations, not equivalent to Cauchy sequences and \mathcal{S}_{R} be the set of irrational numbers, which possess an R-representation, computable through functions from \mathcal{S}. Then we have

$$
\left\{\alpha \in \mathcal{S}_{C} \mid \alpha \text { is } \mathcal{E}^{2} \text {-irrational }\right\} \subseteq \mathcal{S}_{R} \subseteq \mathcal{S}_{E}
$$

and it follows from the last two theorems that \mathcal{S}_{R} is not closed under addition or multiplication.

Base- b sum approximations from below

Let us fix some base b. Any irrational number $\xi \in(0,1)$ can be written in the form

$$
\xi=\frac{d_{1}}{b^{k_{1}}}+\frac{d_{2}}{b^{k_{2}}}+\frac{d_{3}}{b^{k_{3}}}+\ldots
$$

where k_{n} is a strictly increasing sequence of positive integers and d_{n} are non-zero base- b digits, $d_{n} \in\{1, \ldots, b-1\}$.

Base- b sum approximations from below

Let us fix some base b. Any irrational number $\xi \in(0,1)$ can be written in the form

$$
\xi=\frac{d_{1}}{b^{k_{1}}}+\frac{d_{2}}{b^{k_{2}}}+\frac{d_{3}}{b^{k_{3}}}+\ldots
$$

where k_{n} is a strictly increasing sequence of positive integers and d_{n} are non-zero base- b digits, $d_{n} \in\{1, \ldots, b-1\}$.
Definition
The function \hat{A}_{b}^{ξ}, defined by $\hat{A}_{b}^{\xi}(n)=d_{n} b^{-k_{n}}$ for $n>0$ and $\hat{A}_{b}^{\xi}(0)=0$ is called base-b sum approximation from below of the number ξ.

Base- b sum approximations from below

Let us fix some base b. Any irrational number $\xi \in(0,1)$ can be written in the form

$$
\xi=\frac{d_{1}}{b^{k_{1}}}+\frac{d_{2}}{b^{k_{2}}}+\frac{d_{3}}{b^{k_{3}}}+\ldots
$$

where k_{n} is a strictly increasing sequence of positive integers and d_{n} are non-zero base- b digits, $d_{n} \in\{1, \ldots, b-1\}$.
Definition
The function \hat{A}_{b}^{ξ}, defined by $\hat{A}_{b}^{\xi}(n)=d_{n} b^{-k_{n}}$ for $n>0$ and $\hat{A}_{b}^{\xi}(0)=0$ is called base-b sum approximation from below of the number ξ.
For a class of functions \mathcal{S} we denote by $\mathcal{S}_{b \uparrow}$ the set of all real numbers, which have a base- b sum approximation from below in \mathcal{S}, that is

$$
\xi \in \mathcal{S}_{b \uparrow} \Longleftrightarrow \hat{A}_{b}^{\xi} \in \mathcal{S}
$$

Base- b sum approximations from above

Moreover, we can write

$$
\xi=1-\frac{d_{1}^{\prime}}{b^{m_{1}}}-\frac{d_{2}^{\prime}}{b^{m_{2}}}-\frac{d_{3}^{\prime}}{b^{m_{3}}}-\ldots,
$$

where m_{n} is a strictly increasing sequence of positive integers and d_{n}^{\prime} are non-zero base- b digits.

Base- b sum approximations from above

Moreover, we can write

$$
\xi=1-\frac{d_{1}^{\prime}}{b^{m_{1}}}-\frac{d_{2}^{\prime}}{b^{m_{2}}}-\frac{d_{3}^{\prime}}{b^{m_{3}}}-\ldots
$$

where m_{n} is a strictly increasing sequence of positive integers and d_{n}^{\prime} are non-zero base- b digits.
Definition
The function \check{A}_{b}^{ξ}, defined by $\check{A}_{b}^{\xi}(n)=d_{n}^{\prime} b^{-m_{n}}$ for $n>0$ and $\breve{A}_{b}^{\xi}(0)=0$ is called base-b sum approximation from above of the number ξ.

Base- b sum approximations from above

Moreover, we can write

$$
\xi=1-\frac{d_{1}^{\prime}}{b^{m_{1}}}-\frac{d_{2}^{\prime}}{b^{m_{2}}}-\frac{d_{3}^{\prime}}{b^{m_{3}}}-\ldots
$$

where m_{n} is a strictly increasing sequence of positive integers and d_{n}^{\prime} are non-zero base- b digits.
Definition
The function \check{A}_{b}^{ξ}, defined by $\check{A}_{b}^{\xi}(n)=d_{n}^{\prime} b^{-m_{n}}$ for $n>0$ and $\breve{A}_{b}^{\xi}(0)=0$ is called base-b sum approximation from above of the number ξ.
For a class of functions \mathcal{S} we denote by $\mathcal{S}_{b \downarrow}$ the set of all real numbers, which have a base- b sum approximation from above in \mathcal{S}, that is

$$
\xi \in \mathcal{S}_{b \downarrow} \Longleftrightarrow \check{A}_{b}^{\xi} \in \mathcal{S} .
$$

Example in base 10

For example, let us have $\xi=0.05439990003 \ldots$ in base $b=10$.

Example in base 10

For example, let us have $\xi=0.05439990003 \ldots$ in base $b=10$. Then

$$
\xi=\frac{5}{10^{2}}+\frac{4}{10^{3}}+\frac{3}{10^{4}}+\frac{9}{10^{5}}+\frac{9}{10^{6}}+\frac{9}{10^{7}}+\frac{3}{10^{11}}+\ldots,
$$

Example in base 10

For example, let us have $\xi=0.05439990003 \ldots$ in base $b=10$. Then

$$
\xi=\frac{5}{10^{2}}+\frac{4}{10^{3}}+\frac{3}{10^{4}}+\frac{9}{10^{5}}+\frac{9}{10^{6}}+\frac{9}{10^{7}}+\frac{3}{10^{11}}+\ldots,
$$

thus

$$
\hat{A}_{10}^{\xi}(1)=\frac{5}{10^{2}}, \quad \hat{A}_{10}^{\xi}(2)=\frac{4}{10^{3}}, \ldots
$$

Example in base 10

For example, let us have $\xi=0.05439990003 \ldots$ in base $b=10$. Then

$$
\xi=\frac{5}{10^{2}}+\frac{4}{10^{3}}+\frac{3}{10^{4}}+\frac{9}{10^{5}}+\frac{9}{10^{6}}+\frac{9}{10^{7}}+\frac{3}{10^{11}}+\ldots,
$$

thus

$$
\hat{A}_{10}^{\xi}(1)=\frac{5}{10^{2}}, \quad \hat{A}_{10}^{\xi}(2)=\frac{4}{10^{3}}, \ldots
$$

Moreover,
$\xi=1-\frac{9}{10^{1}}-\frac{4}{10^{2}}-\frac{5}{10^{3}}-\frac{6}{10^{4}}-\frac{9}{10^{8}}-\frac{9}{10^{9}}-\frac{9}{10^{10}}-\frac{6}{10^{11}}+\ldots$,

Example in base 10

For example, let us have $\xi=0.05439990003 \ldots$ in base $b=10$. Then

$$
\xi=\frac{5}{10^{2}}+\frac{4}{10^{3}}+\frac{3}{10^{4}}+\frac{9}{10^{5}}+\frac{9}{10^{6}}+\frac{9}{10^{7}}+\frac{3}{10^{11}}+\ldots,
$$

thus

$$
\hat{A}_{10}^{\xi}(1)=\frac{5}{10^{2}}, \quad \hat{A}_{10}^{\xi}(2)=\frac{4}{10^{3}}, \ldots
$$

Moreover,
$\xi=1-\frac{9}{10^{1}}-\frac{4}{10^{2}}-\frac{5}{10^{3}}-\frac{6}{10^{4}}-\frac{9}{10^{8}}-\frac{9}{10^{9}}-\frac{9}{10^{10}}-\frac{6}{10^{11}}+\ldots$,
thus

$$
\check{A}_{10}^{\xi}(1)=\frac{9}{10^{1}}, \quad \check{A}_{10}^{\xi}(2)=\frac{4}{10^{2}}, \ldots
$$

Results on sum approximations

Theorem (Kristiansen)
Let \mathcal{S} be a subrecursive class, closed under elementary operations.
For any base b we have

$$
\mathcal{S}_{b \uparrow} \nsubseteq \mathcal{S}_{b \downarrow} \text { and } \mathcal{S}_{b \downarrow} \nsubseteq \mathcal{S}_{b \uparrow}
$$

Results on sum approximations

Theorem (Kristiansen)
Let \mathcal{S} be a subrecursive class, closed under elementary operations.
For any base b we have

$$
\mathcal{S}_{b \uparrow} \nsubseteq \mathcal{S}_{b \downarrow} \text { and } \mathcal{S}_{b \downarrow} \nsubseteq \mathcal{S}_{b \uparrow}
$$

It easily follows that

$$
\mathcal{S}_{b \uparrow} \subset \mathcal{S}_{b E} \text { and } \mathcal{S}_{b \downarrow} \subset \mathcal{S}_{b E}
$$

Arbitary base sum approximation

$$
\text { Let us denote } \mathcal{S}_{\uparrow}=\bigcup_{b=2}^{\infty} \mathcal{S}_{b \uparrow}, \quad \mathcal{S}_{\downarrow}=\bigcup_{b=2}^{\infty} \mathcal{S}_{b \downarrow} \text {. }
$$

Arbitary base sum approximation

Let us denote $\mathcal{S}_{\uparrow}=\bigcup_{b=2}^{\infty} \mathcal{S}_{b \uparrow}, \quad \mathcal{S}_{\downarrow}=\bigcup_{b=2}^{\infty} \mathcal{S}_{b \downarrow}$.
Kristiansen conjectured that $\mathcal{S}_{\uparrow}=\mathcal{S}_{\downarrow}=\mathcal{S}_{E}$.

Arbitary base sum approximation

Let us denote $\mathcal{S}_{\uparrow}=\bigcup_{b=2}^{\infty} \mathcal{S}_{b \uparrow}, \quad \mathcal{S}_{\downarrow}=\bigcup_{b=2}^{\infty} \mathcal{S}_{b \downarrow}$.
Kristiansen conjectured that $\mathcal{S}_{\uparrow}=\mathcal{S}_{\downarrow}=\mathcal{S}_{E}$.
Theorem
For any finite set of primes $\left\{p_{1}, \ldots, p_{k}\right\}$ and prime p not belonging to the set there exists a real number ξ, such that $\xi \in \mathcal{S}_{p_{1} \uparrow} \cap \ldots \cap \mathcal{S}_{p_{k} \uparrow}$ and $\xi \notin \mathcal{S}_{p \uparrow}$.

Arbitary base sum approximation

Let us denote $\mathcal{S}_{\uparrow}=\bigcup_{b=2}^{\infty} \mathcal{S}_{b \uparrow}, \quad \mathcal{S}_{\downarrow}=\bigcup_{b=2}^{\infty} \mathcal{S}_{b \downarrow}$.
Kristiansen conjectured that $\mathcal{S}_{\uparrow}=\mathcal{S}_{\downarrow}=\mathcal{S}_{E}$.
Theorem
For any finite set of primes $\left\{p_{1}, \ldots, p_{k}\right\}$ and prime p not belonging to the set there exists a real number ξ, such that
$\xi \in \mathcal{S}_{p_{1} \uparrow} \cap \ldots \cap \mathcal{S}_{p_{k} \uparrow}$ and $\xi \notin \mathcal{S}_{p \uparrow}$.
But actually the conjecture is false:
Theorem
There exist a real number $\xi \in \mathcal{S}_{D}$, such that $\xi \notin \mathcal{S}_{\uparrow}$.

Bibliography

國 Ivan Georgiev，Lars Kristiansen，Frank Stephan．
On general sum approximations of irrational numbers．
CiE 2018 Proceedings，Lectures Notes in Computer Science， vol． 10936 （2018），194－203．
圊 Lars Kristiansen．
On subrecursive representability of irrational numbers．
Computability，vol．6（3）（2017），249－276．
围 Lars Kristiansen．
On subrecursive representability of irrational numbers，part II． Computability，vol．8（1）（2019），43－65．

Thank you for your attention!

