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Introduction

There are many different ways to represent a real number ξ:

I Dedekind cuts: the real number ξ is represented by the set of
all rationals q < ξ.

I Cauchy sequences: the real number ξ is represented by a
sequence qn of rationals, which converges to ξ with a
pre-specified rate of convergence.

I Base b-expansions: the real number ξ is represented by its
sequence of digits in base b ≥ 2.

Our aim is to compare the complexity of these representations.
Our framework for complexity is subrecursive: roughly speaking, a
computation is subrecursive if the number of iterations in any cycle
can be computed in advance, just before executing the cycle. Thus
unbounded search is not allowed in a subrecursive computation.
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Representations of real numbers

Let ξ be an irrational number.

Definition
The function C : N→ Q is a Cauchy sequence for ξ if and only if
for all n ∈ N

|C (n)− ξ| < 1

2n
.

The function D : Q→ {0, 1} is a Dedekind cut of ξ if and only if
for all q ∈ Q

D(q) = 0 ⇔ q < ξ.

The function T : Q→ Q is a trace function for ξ if and only if for
all q ∈ Q

|T (q)− ξ| < |q − ξ| .
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Subrecursive classes

Let φ, ψ be total functions in the natural numbers.
We say that φ is elementary in ψ (φ ≤E ψ) if and only if φ can be
generated from ψ and the initial functions (projections, constants,
successor, λn.2n) using elementary operations (composition and
bounded primitive recursion).

The function φ is elementary if and only if φ ≤E 0.
We say that φ is primitive recursive in ψ (φ ≤PR ψ) if and only if
φ can be generated from ψ and the initial functions using primitive
recursive operations (composition and (unbounded) primitive
recursion).
The function φ is primitive recursive if and only if φ ≤PR 0.
We assume some coding of Z and Q into the natural numbers.
Under this coding all of the usual basic operations will be
elementary. Thus we allow Z or Q in place of N for the arguments
and/or the result of the functions φ, ψ.
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Subrecursive classes II

A function h : N→ N is honest if h is monotonically increasing
(h(n) ≤ h(n + 1)), dominates λn.2n (h(n) ≥ 2n) and has
elementary graph (the relation f (x) = y is elementary).

A subrecursive class S is any efficiently enumerable class of
computable total functions.
For any subrecursive class S there exists an honest function f , such
that f /∈ S.
Roughly speaking, the graph of f is easily computable, but f grows
too fast to belong ot S.
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Recursive real numbers

Proposition

The following are equivalent for an irrational number ξ:

I there exists a computable Cauchy sequence for ξ;

I the Dedekind cut of ξ is computable;

I there exists a computable trace function for ξ.

The proof is uniform in ξ, because ξ is assumed irrational.
Without this assumption the uniformity is lost, but the proposition
remains true.
From our viewpoint any representation of the rational numbers is
considered trivial.
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From Dedekind cut to Cauchy sequence

Given a Dedekind cut of the irrational number ξ we can
subrecursively compute a Cauchy sequence for ξ.

In fact, we can compute subrecursively the decimal digits of ξ.
The only problem is with the whole part of ξ: an unbounded
search is needed to find n ∈ N, such that n < ξ < n + 1.
We assume we know this n in advance and use it as a constant in
the algorithm.
The remaining digits to the right of the decimal point of ξ can be
computed subrecursively.
Finally, by taking qn to be the rational number, consisting of the
whole part of ξ and its first n digits after the decimal point, we
obtain a Cauchy sequence for ξ.
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From Cauchy sequence to Dedekind cut

In the reverse direction, it is not possible to compute subrecursively
the Dedekind cut of an irrational number ξ given a Cauchy
sequence for ξ.

To decide whether q < ξ given a Cauchy sequence qn for ξ an
unbounded search is needed to produce an interval, containing ξ,
which is either to the left or to the right of q.

qn − 2−n ξ qn + 2−n q

qn − 2−n ξ qn + 2−nq



From Cauchy sequence to Dedekind cut

In the reverse direction, it is not possible to compute subrecursively
the Dedekind cut of an irrational number ξ given a Cauchy
sequence for ξ.
To decide whether q < ξ given a Cauchy sequence qn for ξ an
unbounded search is needed to produce an interval, containing ξ,
which is either to the left or to the right of q.

qn − 2−n ξ qn + 2−n q

qn − 2−n ξ qn + 2−nq



From Cauchy sequence to Dedekind cut

In the reverse direction, it is not possible to compute subrecursively
the Dedekind cut of an irrational number ξ given a Cauchy
sequence for ξ.
To decide whether q < ξ given a Cauchy sequence qn for ξ an
unbounded search is needed to produce an interval, containing ξ,
which is either to the left or to the right of q.

qn − 2−n ξ qn + 2−n q

qn − 2−n ξ qn + 2−nq



From Cauchy sequence to Dedekind cut

In the reverse direction, it is not possible to compute subrecursively
the Dedekind cut of an irrational number ξ given a Cauchy
sequence for ξ.
To decide whether q < ξ given a Cauchy sequence qn for ξ an
unbounded search is needed to produce an interval, containing ξ,
which is either to the left or to the right of q.

qn − 2−n ξ qn + 2−n q

qn − 2−n ξ qn + 2−nq



Dedekind cuts and trace functions

Given a trace function T of an irrational number ξ we can
subrecursively compute the Dedekind cut of ξ by

T (q) < q ⇒ ξ < q,

T (q) > q ⇒ q < ξ.

But conversely, given the Dedekind cut of ξ is not possible to
obtain a trace function T subrecursively.
Given q ∈ Q, an unbounded search is needed to find T (q) ∈ Q,
such that q < T (q) < ξ or ξ < T (q) < q.
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First result

For a class S of functions, we denote by ST ,SD ,SC the set of all
real numbers, which have a trace function, Dedekind cut or
Cauchy sequence in S, respectively.

Theorem (Kristiansen)

For any subrecursive class S, closed under elementary operations
we have

ST ⊂ SD ⊂ SC .
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Base-b expansions

From now on we consider only irrational numbers ξ ∈ (0, 1).

For any base b ≥ 2, there exists a unique sequence D1D2 . . .Dn . . .
of b-digits, such that

0.D1D2 . . .Dn < ξ < 0.D1D2 . . .Dn +
1

bn

for any number n ∈ N.
For a class S of functions, we denote by SbE the set of all real
numbers, whose sequence of b-digits belongs to S.

Theorem (Mostowski, Kristiansen)

For any subrecursive class S, closed under elementary operations
and any two bases a, b we have

SbE ⊆ SaE ⇐⇒ every prime factor of a is a prime factor of b.
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Base-b expansions II

It follows trivially that for any base b there exists base a, such that
SaE and SbE are not comparable with respect to inclusion.

But from the considerations above we have SD ⊆ SaE ⊆ SC ,
therefore

ST ⊂ SD ⊂ SbE ⊂ SC
for any subrecursive class S, closed under elementary operations
and any base b.
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Base-b sum approximations from below

Let us fix some base b. Any irrational number ξ ∈ (0, 1) can be
written in the form

ξ =
d1
bk1

+
d2
bk2

+
d3
bk3

+ . . . ,

where kn is a strictly increasing sequence of positive integers and
dn are non-zero base-b digits, dn ∈ {1, . . . , b − 1}.

Definition
The function Âξ

b, defined by Âξ
b(n) = dnb

−kn for n > 0 and

Âξ
b(0) = 0 is called base-b sum approximation from below of the

number ξ.

For a class of functions S we denote by Sb↑ the set of all real
numbers, which have a base-b sum approximation from below in
S, that is

ξ ∈ Sb↑ ⇐⇒ Âξ
b ∈ S.
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b(n) = d ′nb

−mn for n > 0 and

Ǎξ
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Example in base 10

For example, let us have ξ = 0.05439990003 . . . in base b = 10.

Then
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Ǎξ
10(1) =

9

101
, Ǎξ
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Âξ
10(1) =

5

102
, Âξ
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, Âξ

10(2) =
4

103
, . . .

Moreover,

ξ = 1− 9

101
− 4

102
− 5

103
− 6

104
− 9

108
− 9

109
− 9

1010
− 6

1011
+ . . . ,

thus

Ǎξ
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Results on sum approximations

Theorem (Kristiansen)

Let S be a subrecursive class, closed under elementary operations.
For any base b we have

Sb↑ * Sb↓ and Sb↓ * Sb↑.

Theorem (Kristiansen)

Let S be a subrecursive class, closed under primitive recursive
operations. For all bases a, b we have

Sb↑ ⊆ Sa↑ ⇐⇒ Sb↓ ⊆ Sa↓

if and only if every prime factor of a is a prime factor of b.
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General sum approximations
Let ξ ∈ (0, 1) be an irrational number and b be any base.

Definition
The function Ĝ : N× N→ Q, such that

Ĝ (b, n) = Âξ
b(n), Ĝ (b, n) = 0 for b < 2,

will be called general sum approximation from below of ξ.

We denote by Sg↑ the set of all real numbers, which have a general
sum approximation from below in S.

Definition
The function Ǧ : N× N→ Q, such that

Ǧ (b, n) = Ǎξ
b(n), Ǧ (b, n) = 0 for b < 2,

will be called general sum approximation from above of ξ.

We denote by Sg↓ the set of all real numbers, which have a general
sum approximation from above in S.
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Property of general sum approximations

A function T̂ : Q→ Q will be called trace function from below for
the irrational number ξ if and only if q < T (q) < ξ for any
rational q < ξ.

For any class of functions S, let us denote by ST↑ the set of all
real numbers, which have a trace function from below in S.
A function Ť : Q→ Q will be called trace function from above for
the irrational number ξ if and only if q > T (q) > ξ for any
rational q > ξ.
For any class of functions S, let us denote by ST↓ the set of all
real numbers, which have a trace function from above in S.

Proposition

For any subrecursive class S, closed under primitive recursive
operations we have

ST↑ ∩ SD = Sg↑ and ST↓ ∩ SD = Sg↓.
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Numbers with interesting properties

Let Pn denote the n-th prime (P0 = 2,P1 = 3, . . .).
For any honest function f we define the rational number αf

n and
the irrational number αf by

αf
n =

n∑
i=0

P
−f (i)
i , αf = lim

n→∞
αf
n.

In fact, f is not arbitrary, it must satisfy a certain growth property,
but the definition is easily modified to work in all cases.

Theorem (Georgiev, Kristiansen, Stephan)

For any honest function f and any base b the function Âαf

b is
elementary.

Theorem (Georgiev, Kristiansen, Stephan)

For any honest function f we have f ≤PR Ĝ , where Ĝ is the
general sum approximation from below of αf .
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Numbers with interesting properties II
Thus we have

Sg↑ ⊂
∞⋂
b=2

Sb↑

and a symmetric argument gives

Sg↓ ⊂
∞⋂
b=2

Sb↓

for any subrecursive class S, closed under primitive recursive
operations.

Theorem (Georgiev, Kristiansen, Stephan)

For any honest function f there exists an elementary function
Ť : Q→ Q, such that

Ť (q) = 0 if q < αf , q > Ť (q) > αf if q > αf .

It follows that αf has an elementary trace function from above, as
well as elementary Dedekind cut.
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Numbers with interesting properties III

Let S be any subrecursive class, closed under primitive recursive
operations.

Let us choose an honest function f , such that f /∈ S.
Using the above results it follows that αf ∈ ST↓ ∩ SD = Sg↓.
On the other hand, Ĝ /∈ S, because f /∈ S.
Thus we obtain Sg↓ * Sg↑.
A symmetric argument yields Sg↑ * Sg↓.
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