On the complexity of irrational numbers under different representations

Ivan Georgiev
Prof. Asen Zlatarov University, Burgas, Bulgaria

Scientific session, dedicated to the 80th anniversary of Prof. Dimiter Vakarelov

Gyolechitsa, 12-14 May 2018

Acknowledgements

This is a joint research initiated by prof. Lars Kristiansen from Oslo University [2, 3] together with prof. Frank Stephan from the National University of Singapore.

Acknowledgements

This is a joint research initiated by prof. Lars Kristiansen from Oslo University [2,3] together with prof. Frank Stephan from the National University of Singapore.

It is partially funded by the Bulgarian National Science Fund through the project "Models of computability",
DN-02-16/19.12.2016.

Introduction

There are many different ways to represent a real number ξ :

Introduction

There are many different ways to represent a real number ξ :

- Dedekind cuts: the real number ξ is represented by the set of all rationals $q<\xi$.

Introduction

There are many different ways to represent a real number ξ :

- Dedekind cuts: the real number ξ is represented by the set of all rationals $q<\xi$.
- Cauchy sequences: the real number ξ is represented by a sequence q_{n} of rationals, which converges to ξ with a pre-specified rate of convergence.

Introduction

There are many different ways to represent a real number ξ :

- Dedekind cuts: the real number ξ is represented by the set of all rationals $q<\xi$.
- Cauchy sequences: the real number ξ is represented by a sequence q_{n} of rationals, which converges to ξ with a pre-specified rate of convergence.
- Base b-expansions: the real number ξ is represented by its sequence of digits in base $b \geq 2$.

Introduction

There are many different ways to represent a real number ξ :

- Dedekind cuts: the real number ξ is represented by the set of all rationals $q<\xi$.
- Cauchy sequences: the real number ξ is represented by a sequence q_{n} of rationals, which converges to ξ with a pre-specified rate of convergence.
- Base b-expansions: the real number ξ is represented by its sequence of digits in base $b \geq 2$.
Our aim is to compare the complexity of these representations.

Introduction

There are many different ways to represent a real number ξ :

- Dedekind cuts: the real number ξ is represented by the set of all rationals $q<\xi$.
- Cauchy sequences: the real number ξ is represented by a sequence q_{n} of rationals, which converges to ξ with a pre-specified rate of convergence.
- Base b-expansions: the real number ξ is represented by its sequence of digits in base $b \geq 2$.
Our aim is to compare the complexity of these representations.
Our framework for complexity is subrecursive: roughly speaking, a computation is subrecursive if the number of iterations in any cycle can be computed in advance, just before executing the cycle.

Introduction

There are many different ways to represent a real number ξ :

- Dedekind cuts: the real number ξ is represented by the set of all rationals $q<\xi$.
- Cauchy sequences: the real number ξ is represented by a sequence q_{n} of rationals, which converges to ξ with a pre-specified rate of convergence.
- Base b-expansions: the real number ξ is represented by its sequence of digits in base $b \geq 2$.
Our aim is to compare the complexity of these representations.
Our framework for complexity is subrecursive: roughly speaking, a computation is subrecursive if the number of iterations in any cycle can be computed in advance, just before executing the cycle. Thus unbounded search is not allowed in a subrecursive computation.

Representations of real numbers

Let ξ be an irrational number.
Definition
The function $C: \mathbb{N} \rightarrow \mathbb{Q}$ is a Cauchy sequence for ξ if and only if for all $n \in \mathbb{N}$

$$
|C(n)-\xi|<\frac{1}{2^{n}}
$$

Representations of real numbers

Let ξ be an irrational number.
Definition
The function $C: \mathbb{N} \rightarrow \mathbb{Q}$ is a Cauchy sequence for ξ if and only if for all $n \in \mathbb{N}$

$$
|C(n)-\xi|<\frac{1}{2^{n}}
$$

The function $D: \mathbb{Q} \rightarrow\{0,1\}$ is a Dedekind cut of ξ if and only if for all $q \in \mathbb{Q}$

$$
D(q)=0 \Leftrightarrow q<\xi
$$

Representations of real numbers

Let ξ be an irrational number.
Definition
The function $C: \mathbb{N} \rightarrow \mathbb{Q}$ is a Cauchy sequence for ξ if and only if for all $n \in \mathbb{N}$

$$
|C(n)-\xi|<\frac{1}{2^{n}}
$$

The function $D: \mathbb{Q} \rightarrow\{0,1\}$ is a Dedekind cut of ξ if and only if for all $q \in \mathbb{Q}$

$$
D(q)=0 \Leftrightarrow q<\xi
$$

The function $T: \mathbb{Q} \rightarrow \mathbb{Q}$ is a trace function for ξ if and only if for all $q \in \mathbb{Q}$

$$
|T(q)-\xi|<|q-\xi|
$$

Subrecursive classes

Let ϕ, ψ be total functions in the natural numbers.
We say that ϕ is elementary in $\psi\left(\phi \leq_{E} \psi\right)$ if and only if ϕ can be generated from ψ and the initial functions (projections, constants, successor, $\lambda n .2^{n}$) using elementary operations (composition and bounded primitive recursion).

Subrecursive classes

Let ϕ, ψ be total functions in the natural numbers.
We say that ϕ is elementary in $\psi\left(\phi \leq_{E} \psi\right)$ if and only if ϕ can be generated from ψ and the initial functions (projections, constants, successor, $\lambda n .2^{n}$) using elementary operations (composition and bounded primitive recursion).
The function ϕ is elementary if and only if $\phi \leq_{E} 0$.

Subrecursive classes

Let ϕ, ψ be total functions in the natural numbers.
We say that ϕ is elementary in $\psi\left(\phi \leq_{E} \psi\right)$ if and only if ϕ can be generated from ψ and the initial functions (projections, constants, successor, $\lambda n .2^{n}$) using elementary operations (composition and bounded primitive recursion).
The function ϕ is elementary if and only if $\phi \leq_{E} 0$.
We say that ϕ is primitive recursive in $\psi\left(\phi \leq_{P R} \psi\right)$ if and only if ϕ can be generated from ψ and the initial functions using primitive recursive operations (composition and (unbounded) primitive recursion).

Subrecursive classes

Let ϕ, ψ be total functions in the natural numbers.
We say that ϕ is elementary in $\psi\left(\phi \leq_{E} \psi\right)$ if and only if ϕ can be generated from ψ and the initial functions (projections, constants, successor, $\lambda n .2^{n}$) using elementary operations (composition and bounded primitive recursion).
The function ϕ is elementary if and only if $\phi \leq_{E} 0$.
We say that ϕ is primitive recursive in $\psi\left(\phi \leq_{P R} \psi\right)$ if and only if ϕ can be generated from ψ and the initial functions using primitive recursive operations (composition and (unbounded) primitive recursion).
The function ϕ is primitive recursive if and only if $\phi \leq_{P R} 0$.

Subrecursive classes

Let ϕ, ψ be total functions in the natural numbers.
We say that ϕ is elementary in $\psi\left(\phi \leq_{E} \psi\right)$ if and only if ϕ can be generated from ψ and the initial functions (projections, constants, successor, $\lambda n .2^{n}$) using elementary operations (composition and bounded primitive recursion).
The function ϕ is elementary if and only if $\phi \leq_{E} 0$.
We say that ϕ is primitive recursive in $\psi\left(\phi \leq_{P R} \psi\right)$ if and only if
ϕ can be generated from ψ and the initial functions using primitive recursive operations (composition and (unbounded) primitive recursion).
The function ϕ is primitive recursive if and only if $\phi \leq_{P R} 0$. We assume some coding of \mathbb{Z} and \mathbb{Q} into the natural numbers. Under this coding all of the usual basic operations will be elementary. Thus we allow \mathbb{Z} or \mathbb{Q} in place of \mathbb{N} for the arguments and/or the result of the functions ϕ, ψ.

Subrecursive classes II

A function $h: \mathbb{N} \rightarrow \mathbb{N}$ is honest if h is monotonically increasing $(h(n) \leq h(n+1))$, dominates $\lambda n .2^{n}\left(h(n) \geq 2^{n}\right)$ and has elementary graph (the relation $f(x)=y$ is elementary).

Subrecursive classes II

A function $h: \mathbb{N} \rightarrow \mathbb{N}$ is honest if h is monotonically increasing $(h(n) \leq h(n+1))$, dominates $\lambda n .2^{n}\left(h(n) \geq 2^{n}\right)$ and has elementary graph (the relation $f(x)=y$ is elementary). A subrecursive class \mathcal{S} is any efficiently enumerable class of computable total functions.

Subrecursive classes II

A function $h: \mathbb{N} \rightarrow \mathbb{N}$ is honest if h is monotonically increasing $(h(n) \leq h(n+1))$, dominates $\lambda n .2^{n}\left(h(n) \geq 2^{n}\right)$ and has elementary graph (the relation $f(x)=y$ is elementary). A subrecursive class \mathcal{S} is any efficiently enumerable class of computable total functions.
For any subrecursive class \mathcal{S} there exists an honest function f, such that $f \notin \mathcal{S}$.

Subrecursive classes II

A function $h: \mathbb{N} \rightarrow \mathbb{N}$ is honest if h is monotonically increasing $(h(n) \leq h(n+1))$, dominates $\lambda n .2^{n}\left(h(n) \geq 2^{n}\right)$ and has elementary graph (the relation $f(x)=y$ is elementary). A subrecursive class \mathcal{S} is any efficiently enumerable class of computable total functions.
For any subrecursive class \mathcal{S} there exists an honest function f, such that $f \notin \mathcal{S}$.
Roughly speaking, the graph of f is easily computable, but f grows too fast to belong ot \mathcal{S}.

Recursive real numbers

Proposition

The following are equivalent for an irrational number ξ :

- there exists a computable Cauchy sequence for ξ;
- the Dedekind cut of ξ is computable;
- there exists a computable trace function for ξ.

Recursive real numbers

Proposition

The following are equivalent for an irrational number ξ :

- there exists a computable Cauchy sequence for ξ;
- the Dedekind cut of ξ is computable;
- there exists a computable trace function for ξ.

The proof is uniform in ξ, because ξ is assumed irrational.

Recursive real numbers

Proposition

The following are equivalent for an irrational number ξ :

- there exists a computable Cauchy sequence for ξ;
- the Dedekind cut of ξ is computable;
- there exists a computable trace function for ξ.

The proof is uniform in ξ, because ξ is assumed irrational.
Without this assumption the uniformity is lost, but the proposition remains true.

Recursive real numbers

Proposition

The following are equivalent for an irrational number ξ :

- there exists a computable Cauchy sequence for ξ;
- the Dedekind cut of ξ is computable;
- there exists a computable trace function for ξ.

The proof is uniform in ξ, because ξ is assumed irrational.
Without this assumption the uniformity is lost, but the proposition remains true.
From our viewpoint any representation of the rational numbers is considered trivial.

From Dedekind cut to Cauchy sequence

Given a Dedekind cut of the irrational number ξ we can subrecursively compute a Cauchy sequence for ξ.

From Dedekind cut to Cauchy sequence

Given a Dedekind cut of the irrational number ξ we can subrecursively compute a Cauchy sequence for ξ.
In fact, we can compute subrecursively the decimal digits of ξ.

From Dedekind cut to Cauchy sequence

Given a Dedekind cut of the irrational number ξ we can subrecursively compute a Cauchy sequence for ξ.
In fact, we can compute subrecursively the decimal digits of ξ. The only problem is with the whole part of ξ : an unbounded search is needed to find $n \in \mathbb{N}$, such that $n<\xi<n+1$.

From Dedekind cut to Cauchy sequence

Given a Dedekind cut of the irrational number ξ we can subrecursively compute a Cauchy sequence for ξ. In fact, we can compute subrecursively the decimal digits of ξ. The only problem is with the whole part of ξ : an unbounded search is needed to find $n \in \mathbb{N}$, such that $n<\xi<n+1$. We assume we know this n in advance and use it as a constant in the algorithm.

From Dedekind cut to Cauchy sequence

Given a Dedekind cut of the irrational number ξ we can subrecursively compute a Cauchy sequence for ξ.
In fact, we can compute subrecursively the decimal digits of ξ.
The only problem is with the whole part of ξ : an unbounded search is needed to find $n \in \mathbb{N}$, such that $n<\xi<n+1$.
We assume we know this n in advance and use it as a constant in the algorithm.
The remaining digits to the right of the decimal point of ξ can be computed subrecursively.

From Dedekind cut to Cauchy sequence

Given a Dedekind cut of the irrational number ξ we can subrecursively compute a Cauchy sequence for ξ.
In fact, we can compute subrecursively the decimal digits of ξ.
The only problem is with the whole part of ξ : an unbounded search is needed to find $n \in \mathbb{N}$, such that $n<\xi<n+1$.
We assume we know this n in advance and use it as a constant in the algorithm.
The remaining digits to the right of the decimal point of ξ can be computed subrecursively.
Finally, by taking q_{n} to be the rational number, consisting of the whole part of ξ and its first n digits after the decimal point, we obtain a Cauchy sequence for ξ.

From Cauchy sequence to Dedekind cut

In the reverse direction, it is not possible to compute subrecursively the Dedekind cut of an irrational number ξ given a Cauchy sequence for ξ.

From Cauchy sequence to Dedekind cut

In the reverse direction, it is not possible to compute subrecursively the Dedekind cut of an irrational number ξ given a Cauchy sequence for ξ.
To decide whether $q<\xi$ given a Cauchy sequence q_{n} for ξ an unbounded search is needed to produce an interval, containing ξ, which is either to the left or to the right of q.

From Cauchy sequence to Dedekind cut

In the reverse direction, it is not possible to compute subrecursively the Dedekind cut of an irrational number ξ given a Cauchy sequence for ξ.
To decide whether $q<\xi$ given a Cauchy sequence q_{n} for ξ an unbounded search is needed to produce an interval, containing ξ, which is either to the left or to the right of q.

From Cauchy sequence to Dedekind cut

In the reverse direction, it is not possible to compute subrecursively the Dedekind cut of an irrational number ξ given a Cauchy sequence for ξ.
To decide whether $q<\xi$ given a Cauchy sequence q_{n} for ξ an unbounded search is needed to produce an interval, containing ξ, which is either to the left or to the right of q.

Dedekind cuts and trace functions

Given a trace function T of an irrational number ξ we can subrecursively compute the Dedekind cut of ξ by

$$
\begin{aligned}
& T(q)<q \Rightarrow \xi<q \\
& T(q)>q \Rightarrow q<\xi
\end{aligned}
$$

Dedekind cuts and trace functions

Given a trace function T of an irrational number ξ we can subrecursively compute the Dedekind cut of ξ by

$$
\begin{aligned}
& T(q)<q \Rightarrow \xi<q \\
& T(q)>q \Rightarrow q<\xi
\end{aligned}
$$

But conversely, given the Dedekind cut of ξ is not possible to obtain a trace function T subrecursively.

Dedekind cuts and trace functions

Given a trace function T of an irrational number ξ we can subrecursively compute the Dedekind cut of ξ by

$$
\begin{aligned}
& T(q)<q \Rightarrow \xi<q \\
& T(q)>q \Rightarrow q<\xi
\end{aligned}
$$

But conversely, given the Dedekind cut of ξ is not possible to obtain a trace function T subrecursively. Given $q \in \mathbb{Q}$, an unbounded search is needed to find $T(q) \in \mathbb{Q}$, such that $q<T(q)<\xi$ or $\xi<T(q)<q$.

First result

For a class \mathcal{S} of functions, we denote by $\mathcal{S}_{T}, \mathcal{S}_{D}, \mathcal{S}_{C}$ the set of all real numbers, which have a trace function, Dedekind cut or Cauchy sequence in \mathcal{S}, respectively.

First result

For a class \mathcal{S} of functions, we denote by $\mathcal{S}_{T}, \mathcal{S}_{D}, \mathcal{S}_{C}$ the set of all real numbers, which have a trace function, Dedekind cut or Cauchy sequence in \mathcal{S}, respectively.
Theorem (Kristiansen)
For any subrecursive class \mathcal{S}, closed under elementary operations we have

$$
\mathcal{S}_{T} \subset \mathcal{S}_{D} \subset \mathcal{S}_{C}
$$

Base- b expansions

From now on we consider only irrational numbers $\xi \in(0,1)$.

Base- b expansions

From now on we consider only irrational numbers $\xi \in(0,1)$. For any base $b \geq 2$, there exists a unique sequence $D_{1} D_{2} \ldots D_{n} \ldots$ of b-digits, such that

$$
0 . D_{1} D_{2} \ldots D_{n}<\xi<0 . D_{1} D_{2} \ldots D_{n}+\frac{1}{b^{n}}
$$

for any number $n \in \mathbb{N}$.

Base- b expansions

From now on we consider only irrational numbers $\xi \in(0,1)$. For any base $b \geq 2$, there exists a unique sequence $D_{1} D_{2} \ldots D_{n} \ldots$ of b-digits, such that

$$
0 . D_{1} D_{2} \ldots D_{n}<\xi<0 . D_{1} D_{2} \ldots D_{n}+\frac{1}{b^{n}}
$$

for any number $n \in \mathbb{N}$.
For a class \mathcal{S} of functions, we denote by $\mathcal{S}_{b E}$ the set of all real numbers, whose sequence of b-digits belongs to \mathcal{S}.

Base-b expansions

From now on we consider only irrational numbers $\xi \in(0,1)$. For any base $b \geq 2$, there exists a unique sequence $D_{1} D_{2} \ldots D_{n} \ldots$ of b-digits, such that

$$
0 . D_{1} D_{2} \ldots D_{n}<\xi<0 . D_{1} D_{2} \ldots D_{n}+\frac{1}{b^{n}}
$$

for any number $n \in \mathbb{N}$.
For a class \mathcal{S} of functions, we denote by $\mathcal{S}_{b E}$ the set of all real numbers, whose sequence of b-digits belongs to \mathcal{S}.
Theorem (Mostowski, Kristiansen)
For any subrecursive class \mathcal{S}, closed under elementary operations and any two bases a, b we have

$$
\mathcal{S}_{b E} \subseteq \mathcal{S}_{a E} \Longleftrightarrow \text { every prime factor of } a \text { is a prime factor of } b
$$

Base-b expansions II

It follows trivially that for any base b there exists base a, such that $\mathcal{S}_{a E}$ and $\mathcal{S}_{b E}$ are not comparable with respect to inclusion.

Base-b expansions II

It follows trivially that for any base b there exists base a, such that $\mathcal{S}_{a E}$ and $\mathcal{S}_{b E}$ are not comparable with respect to inclusion. But from the considerations above we have $\mathcal{S}_{D} \subseteq \mathcal{S}_{a E} \subseteq \mathcal{S}_{C}$,

Base-b expansions II

It follows trivially that for any base b there exists base a, such that $\mathcal{S}_{a E}$ and $\mathcal{S}_{b E}$ are not comparable with respect to inclusion. But from the considerations above we have $\mathcal{S}_{D} \subseteq \mathcal{S}_{a E} \subseteq \mathcal{S}_{C}$, therefore

$$
\mathcal{S}_{T} \subset \mathcal{S}_{D} \subset \mathcal{S}_{b E} \subset \mathcal{S}_{C}
$$

for any subrecursive class \mathcal{S}, closed under elementary operations and any base b.

Base- b sum approximations from below

Let us fix some base b. Any irrational number $\xi \in(0,1)$ can be written in the form

$$
\xi=\frac{d_{1}}{b^{k_{1}}}+\frac{d_{2}}{b^{k_{2}}}+\frac{d_{3}}{b^{k_{3}}}+\ldots
$$

where k_{n} is a strictly increasing sequence of positive integers and d_{n} are non-zero base- b digits, $d_{n} \in\{1, \ldots, b-1\}$.

Base- b sum approximations from below

Let us fix some base b. Any irrational number $\xi \in(0,1)$ can be written in the form

$$
\xi=\frac{d_{1}}{b^{k_{1}}}+\frac{d_{2}}{b^{k_{2}}}+\frac{d_{3}}{b^{k_{3}}}+\ldots
$$

where k_{n} is a strictly increasing sequence of positive integers and d_{n} are non-zero base- b digits, $d_{n} \in\{1, \ldots, b-1\}$.
Definition
The function \hat{A}_{b}^{ξ}, defined by $\hat{A}_{b}^{\xi}(n)=d_{n} b^{-k_{n}}$ for $n>0$ and $\hat{A}_{b}^{\xi}(0)=0$ is called base-b sum approximation from below of the number ξ.

Base- b sum approximations from below

Let us fix some base b. Any irrational number $\xi \in(0,1)$ can be written in the form

$$
\xi=\frac{d_{1}}{b^{k_{1}}}+\frac{d_{2}}{b^{k_{2}}}+\frac{d_{3}}{b^{k_{3}}}+\ldots
$$

where k_{n} is a strictly increasing sequence of positive integers and d_{n} are non-zero base- b digits, $d_{n} \in\{1, \ldots, b-1\}$.
Definition
The function \hat{A}_{b}^{ξ}, defined by $\hat{A}_{b}^{\xi}(n)=d_{n} b^{-k_{n}}$ for $n>0$ and $\hat{A}_{b}^{\xi}(0)=0$ is called base-b sum approximation from below of the number ξ.
For a class of functions \mathcal{S} we denote by $\mathcal{S}_{b \uparrow}$ the set of all real numbers, which have a base- b sum approximation from below in \mathcal{S}, that is

$$
\xi \in \mathcal{S}_{b \uparrow} \Longleftrightarrow \hat{A}_{b}^{\xi} \in \mathcal{S}
$$

Base- b sum approximations from above

Moreover, we can write

$$
\xi=1-\frac{d_{1}^{\prime}}{b^{m_{1}}}-\frac{d_{2}^{\prime}}{b^{m_{2}}}-\frac{d_{3}^{\prime}}{b^{m_{3}}}-\ldots,
$$

where m_{n} is a strictly increasing sequence of positive integers and d_{n}^{\prime} are non-zero base- b digits.

Base- b sum approximations from above

Moreover, we can write

$$
\xi=1-\frac{d_{1}^{\prime}}{b^{m_{1}}}-\frac{d_{2}^{\prime}}{b^{m_{2}}}-\frac{d_{3}^{\prime}}{b^{m_{3}}}-\ldots
$$

where m_{n} is a strictly increasing sequence of positive integers and d_{n}^{\prime} are non-zero base- b digits.
Definition
The function \check{A}_{b}^{ξ}, defined by $\check{A}_{b}^{\xi}(n)=d_{n}^{\prime} b^{-m_{n}}$ for $n>0$ and $\breve{A}_{b}^{\xi}(0)=0$ is called base-b sum approximation from above of the number ξ.

Base- b sum approximations from above

Moreover, we can write

$$
\xi=1-\frac{d_{1}^{\prime}}{b^{m_{1}}}-\frac{d_{2}^{\prime}}{b^{m_{2}}}-\frac{d_{3}^{\prime}}{b^{m_{3}}}-\ldots
$$

where m_{n} is a strictly increasing sequence of positive integers and d_{n}^{\prime} are non-zero base- b digits.
Definition
The function \check{A}_{b}^{ξ}, defined by $\check{A}_{b}^{\xi}(n)=d_{n}^{\prime} b^{-m_{n}}$ for $n>0$ and $\breve{A}_{b}^{\xi}(0)=0$ is called base-b sum approximation from above of the number ξ.
For a class of functions \mathcal{S} we denote by $\mathcal{S}_{b \downarrow}$ the set of all real numbers, which have a base- b sum approximation from above in \mathcal{S}, that is

$$
\xi \in \mathcal{S}_{b \downarrow} \Longleftrightarrow \check{A}_{b}^{\xi} \in \mathcal{S} .
$$

Example in base 10

For example, let us have $\xi=0.05439990003 \ldots$ in base $b=10$.

Example in base 10

For example, let us have $\xi=0.05439990003 \ldots$ in base $b=10$. Then

$$
\xi=\frac{5}{10^{2}}+\frac{4}{10^{3}}+\frac{3}{10^{4}}+\frac{9}{10^{5}}+\frac{9}{10^{6}}+\frac{9}{10^{7}}+\frac{3}{10^{11}}+\ldots,
$$

Example in base 10

For example, let us have $\xi=0.05439990003 \ldots$ in base $b=10$. Then

$$
\xi=\frac{5}{10^{2}}+\frac{4}{10^{3}}+\frac{3}{10^{4}}+\frac{9}{10^{5}}+\frac{9}{10^{6}}+\frac{9}{10^{7}}+\frac{3}{10^{11}}+\ldots,
$$

thus

$$
\hat{A}_{10}^{\xi}(1)=\frac{5}{10^{2}}, \quad \hat{A}_{10}^{\xi}(2)=\frac{4}{10^{3}}, \ldots
$$

Example in base 10

For example, let us have $\xi=0.05439990003 \ldots$ in base $b=10$. Then

$$
\xi=\frac{5}{10^{2}}+\frac{4}{10^{3}}+\frac{3}{10^{4}}+\frac{9}{10^{5}}+\frac{9}{10^{6}}+\frac{9}{10^{7}}+\frac{3}{10^{11}}+\ldots,
$$

thus

$$
\hat{A}_{10}^{\xi}(1)=\frac{5}{10^{2}}, \quad \hat{A}_{10}^{\xi}(2)=\frac{4}{10^{3}}, \ldots
$$

Moreover,
$\xi=1-\frac{9}{10^{1}}-\frac{4}{10^{2}}-\frac{5}{10^{3}}-\frac{6}{10^{4}}-\frac{9}{10^{8}}-\frac{9}{10^{9}}-\frac{9}{10^{10}}-\frac{6}{10^{11}}+\ldots$,

Example in base 10

For example, let us have $\xi=0.05439990003 \ldots$ in base $b=10$. Then

$$
\xi=\frac{5}{10^{2}}+\frac{4}{10^{3}}+\frac{3}{10^{4}}+\frac{9}{10^{5}}+\frac{9}{10^{6}}+\frac{9}{10^{7}}+\frac{3}{10^{11}}+\ldots,
$$

thus

$$
\hat{A}_{10}^{\xi}(1)=\frac{5}{10^{2}}, \quad \hat{A}_{10}^{\xi}(2)=\frac{4}{10^{3}}, \ldots
$$

Moreover,
$\xi=1-\frac{9}{10^{1}}-\frac{4}{10^{2}}-\frac{5}{10^{3}}-\frac{6}{10^{4}}-\frac{9}{10^{8}}-\frac{9}{10^{9}}-\frac{9}{10^{10}}-\frac{6}{10^{11}}+\ldots$,
thus

$$
\check{A}_{10}^{\xi}(1)=\frac{9}{10^{1}}, \quad \check{A}_{10}^{\xi}(2)=\frac{4}{10^{2}}, \ldots
$$

Results on sum approximations

Theorem (Kristiansen)
Let \mathcal{S} be a subrecursive class, closed under elementary operations. For any base b we have

$$
\mathcal{S}_{b \uparrow} \nsubseteq \mathcal{S}_{b \downarrow} \text { and } \mathcal{S}_{b \downarrow} \nsubseteq \mathcal{S}_{b \uparrow} .
$$

Results on sum approximations

Theorem (Kristiansen)
Let \mathcal{S} be a subrecursive class, closed under elementary operations.
For any base b we have

$$
\mathcal{S}_{b \uparrow} \nsubseteq \mathcal{S}_{b \downarrow} \text { and } \mathcal{S}_{b \downarrow} \nsubseteq \mathcal{S}_{b \uparrow}
$$

Theorem (Kristiansen)
Let \mathcal{S} be a subrecursive class, closed under primitive recursive operations. For all bases a, b we have

$$
\mathcal{S}_{b \uparrow} \subseteq \mathcal{S}_{a \uparrow} \Longleftrightarrow \mathcal{S}_{b \downarrow} \subseteq \mathcal{S}_{a \downarrow}
$$

if and only if every prime factor of a is a prime factor of b.

General sum approximations

Let $\xi \in(0,1)$ be an irrational number and b be any base.
Definition
The function $\hat{G}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$, such that

$$
\hat{G}(b, n)=\hat{A}_{b}^{\xi}(n), \quad \hat{G}(b, n)=0 \text { for } b<2
$$

will be called general sum approximation from below of ξ.

General sum approximations

Let $\xi \in(0,1)$ be an irrational number and b be any base.
Definition
The function $\hat{G}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$, such that

$$
\hat{G}(b, n)=\hat{A}_{b}^{\xi}(n), \quad \hat{G}(b, n)=0 \text { for } b<2
$$

will be called general sum approximation from below of ξ.
We denote by $\mathcal{S}_{g \uparrow}$ the set of all real numbers, which have a general sum approximation from below in \mathcal{S}.

General sum approximations

Let $\xi \in(0,1)$ be an irrational number and b be any base.
Definition
The function $\hat{G}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$, such that

$$
\hat{G}(b, n)=\hat{A}_{b}^{\xi}(n), \quad \hat{G}(b, n)=0 \text { for } b<2
$$

will be called general sum approximation from below of ξ.
We denote by $\mathcal{S}_{g \uparrow}$ the set of all real numbers, which have a general sum approximation from below in \mathcal{S}.

Definition

The function $\check{G}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$, such that

$$
\check{G}(b, n)=\check{A}_{b}^{\xi}(n), \quad \check{G}(b, n)=0 \text { for } b<2,
$$

will be called general sum approximation from above of ξ.

General sum approximations

Let $\xi \in(0,1)$ be an irrational number and b be any base.
Definition
The function $\hat{G}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$, such that

$$
\hat{G}(b, n)=\hat{A}_{b}^{\xi}(n), \quad \hat{G}(b, n)=0 \text { for } b<2
$$

will be called general sum approximation from below of ξ.
We denote by $\mathcal{S}_{g \uparrow}$ the set of all real numbers, which have a general sum approximation from below in \mathcal{S}.

Definition

The function $\check{G}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$, such that

$$
\check{G}(b, n)=\check{A}_{b}^{\xi}(n), \quad \check{G}(b, n)=0 \text { for } b<2,
$$

will be called general sum approximation from above of ξ.
We denote by $\mathcal{S}_{g \downarrow}$ the set of all real numbers, which have a general sum approximation from above in \mathcal{S}.

Property of general sum approximations

A function $\hat{T}: \mathbb{Q} \rightarrow \mathbb{Q}$ will be called trace function from below for the irrational number ξ if and only if $q<T(q)<\xi$ for any rational $q<\xi$.

Property of general sum approximations

A function $\hat{T}: \mathbb{Q} \rightarrow \mathbb{Q}$ will be called trace function from below for the irrational number ξ if and only if $q<T(q)<\xi$ for any rational $q<\xi$.
For any class of functions \mathcal{S}, let us denote by $\mathcal{S}_{T \uparrow}$ the set of all real numbers, which have a trace function from below in \mathcal{S}.

Property of general sum approximations

A function $\hat{T}: \mathbb{Q} \rightarrow \mathbb{Q}$ will be called trace function from below for the irrational number ξ if and only if $q<T(q)<\xi$ for any rational $q<\xi$.
For any class of functions \mathcal{S}, let us denote by $\mathcal{S}_{T \uparrow}$ the set of all real numbers, which have a trace function from below in \mathcal{S}. A function $\bar{T}: \mathbb{Q} \rightarrow \mathbb{Q}$ will be called trace function from above for the irrational number ξ if and only if $q>T(q)>\xi$ for any rational $q>\xi$.

Property of general sum approximations

A function $\hat{T}: \mathbb{Q} \rightarrow \mathbb{Q}$ will be called trace function from below for the irrational number ξ if and only if $q<T(q)<\xi$ for any rational $q<\xi$.
For any class of functions \mathcal{S}, let us denote by $\mathcal{S}_{T \uparrow}$ the set of all real numbers, which have a trace function from below in \mathcal{S}. A function $\bar{T}: \mathbb{Q} \rightarrow \mathbb{Q}$ will be called trace function from above for the irrational number ξ if and only if $q>T(q)>\xi$ for any rational $q>\xi$.
For any class of functions \mathcal{S}, let us denote by $\mathcal{S}_{T \downarrow}$ the set of all real numbers, which have a trace function from above in \mathcal{S}.

Property of general sum approximations

A function $\hat{T}: \mathbb{Q} \rightarrow \mathbb{Q}$ will be called trace function from below for the irrational number ξ if and only if $q<T(q)<\xi$ for any rational $q<\xi$.
For any class of functions \mathcal{S}, let us denote by $\mathcal{S}_{T \uparrow}$ the set of all real numbers, which have a trace function from below in \mathcal{S}.
A function $\bar{T}: \mathbb{Q} \rightarrow \mathbb{Q}$ will be called trace function from above for the irrational number ξ if and only if $q>T(q)>\xi$ for any rational $q>\xi$.
For any class of functions \mathcal{S}, let us denote by $\mathcal{S}_{T \downarrow}$ the set of all real numbers, which have a trace function from above in \mathcal{S}.

Proposition

For any subrecursive class \mathcal{S}, closed under primitive recursive operations we have

$$
\mathcal{S}_{T \uparrow} \cap \mathcal{S}_{D}=\mathcal{S}_{g \uparrow} \text { and } \mathcal{S}_{T \downarrow} \cap \mathcal{S}_{D}=\mathcal{S}_{g \downarrow} .
$$

Numbers with interesting properties

Let P_{n} denote the n-th prime $\left(P_{0}=2, P_{1}=3, \ldots\right)$.
For any honest function f we define the rational number α_{n}^{f} and the irrational number α^{f} by

$$
\alpha_{n}^{f}=\sum_{i=0}^{n} P_{i}^{-f(i)}, \quad \alpha^{f}=\lim _{n \rightarrow \infty} \alpha_{n}^{f}
$$

Numbers with interesting properties

Let P_{n} denote the n-th prime $\left(P_{0}=2, P_{1}=3, \ldots\right)$.
For any honest function f we define the rational number α_{n}^{f} and the irrational number α^{f} by

$$
\alpha_{n}^{f}=\sum_{i=0}^{n} P_{i}^{-f(i)}, \alpha^{f}=\lim _{n \rightarrow \infty} \alpha_{n}^{f}
$$

In fact, f is not arbitrary, it must satisfy a certain growth property, but the definition is easily modified to work in all cases.

Numbers with interesting properties

Let P_{n} denote the n-th prime $\left(P_{0}=2, P_{1}=3, \ldots\right)$.
For any honest function f we define the rational number α_{n}^{f} and the irrational number α^{f} by

$$
\alpha_{n}^{f}=\sum_{i=0}^{n} P_{i}^{-f(i)}, \quad \alpha^{f}=\lim _{n \rightarrow \infty} \alpha_{n}^{f}
$$

In fact, f is not arbitrary, it must satisfy a certain growth property, but the definition is easily modified to work in all cases.
Theorem (Georgiev, Kristiansen, Stephan)
For any honest function f and any base b the function $\hat{A}_{b}^{\alpha^{f}}$ is elementary.

Numbers with interesting properties

Let P_{n} denote the n-th prime $\left(P_{0}=2, P_{1}=3, \ldots\right)$.
For any honest function f we define the rational number α_{n}^{f} and the irrational number α^{f} by

$$
\alpha_{n}^{f}=\sum_{i=0}^{n} P_{i}^{-f(i)}, \quad \alpha^{f}=\lim _{n \rightarrow \infty} \alpha_{n}^{f}
$$

In fact, f is not arbitrary, it must satisfy a certain growth property, but the definition is easily modified to work in all cases.

Theorem (Georgiev, Kristiansen, Stephan)

For any honest function f and any base b the function $\hat{A}_{b}^{\alpha^{f}}$ is elementary.

Theorem (Georgiev, Kristiansen, Stephan)
For any honest function f we have $f \leq_{P R} \hat{G}$, where \hat{G} is the general sum approximation from below of α^{f}.

Numbers with interesting properties II

Thus we have

$$
\mathcal{S}_{g \uparrow} \subset \bigcap_{b=2}^{\infty} \mathcal{S}_{b \uparrow}
$$

and a symmetric argument gives

$$
\mathcal{S}_{g \downarrow} \subset \bigcap_{b=2}^{\infty} \mathcal{S}_{b \downarrow}
$$

for any subrecursive class \mathcal{S}, closed under primitive recursive operations.

Numbers with interesting properties II

Thus we have

$$
\mathcal{S}_{g \uparrow} \subset \bigcap_{b=2}^{\infty} \mathcal{S}_{b \uparrow}
$$

and a symmetric argument gives

$$
\mathcal{S}_{g \downarrow} \subset \bigcap_{b=2}^{\infty} \mathcal{S}_{b \downarrow}
$$

for any subrecursive class \mathcal{S}, closed under primitive recursive operations.
Theorem (Georgiev, Kristiansen, Stephan)
For any honest function f there exists an elementary function $\check{T}: \mathbb{Q} \rightarrow \mathbb{Q}$, such that

$$
\check{T}(q)=0 \text { if } q<\alpha^{f}, \quad q>\check{T}(q)>\alpha^{f} \text { if } q>\alpha^{f} .
$$

Numbers with interesting properties II

Thus we have

$$
\mathcal{S}_{g \uparrow} \subset \bigcap_{b=2}^{\infty} \mathcal{S}_{b \uparrow}
$$

and a symmetric argument gives

$$
\mathcal{S}_{g \downarrow} \subset \bigcap_{b=2}^{\infty} \mathcal{S}_{b \downarrow}
$$

for any subrecursive class \mathcal{S}, closed under primitive recursive operations.
Theorem (Georgiev, Kristiansen, Stephan)
For any honest function f there exists an elementary function $\bar{T}: \mathbb{Q} \rightarrow \mathbb{Q}$, such that

$$
\check{T}(q)=0 \text { if } q<\alpha^{f}, \quad q>\check{T}(q)>\alpha^{f} \text { if } q>\alpha^{f} .
$$

It follows that α_{f} has an elementary trace function from above, as well as elementary Dedekind cut.

Numbers with interesting properties III

Let \mathcal{S} be any subrecursive class, closed under primitive recursive operations.

Numbers with interesting properties III

Let \mathcal{S} be any subrecursive class, closed under primitive recursive operations.
Let us choose an honest function f, such that $f \notin \mathcal{S}$.

Numbers with interesting properties III

Let \mathcal{S} be any subrecursive class, closed under primitive recursive operations.
Let us choose an honest function f, such that $f \notin \mathcal{S}$.
Using the above results it follows that $\alpha^{f} \in \mathcal{S}_{T \downarrow} \cap \mathcal{S}_{D}=\mathcal{S}_{g \downarrow}$.

Numbers with interesting properties III

Let \mathcal{S} be any subrecursive class, closed under primitive recursive operations.
Let us choose an honest function f, such that $f \notin \mathcal{S}$.
Using the above results it follows that $\alpha^{f} \in \mathcal{S}_{T \downarrow} \cap \mathcal{S}_{D}=\mathcal{S}_{g \downarrow}$.
On the other hand, $\hat{G} \notin \mathcal{S}$, because $f \notin \mathcal{S}$.

Numbers with interesting properties III

Let \mathcal{S} be any subrecursive class, closed under primitive recursive operations.
Let us choose an honest function f, such that $f \notin \mathcal{S}$.
Using the above results it follows that $\alpha^{f} \in \mathcal{S}_{T \downarrow} \cap \mathcal{S}_{D}=\mathcal{S}_{g \downarrow}$.
On the other hand, $\hat{G} \notin \mathcal{S}$, because $f \notin \mathcal{S}$.
Thus we obtain $\mathcal{S}_{g \downarrow} \nsubseteq \mathcal{S}_{g \uparrow}$.

Numbers with interesting properties III

Let \mathcal{S} be any subrecursive class, closed under primitive recursive operations.
Let us choose an honest function f, such that $f \notin \mathcal{S}$.
Using the above results it follows that $\alpha^{f} \in \mathcal{S}_{T \downarrow} \cap \mathcal{S}_{D}=\mathcal{S}_{g \downarrow}$.
On the other hand, $\hat{G} \notin \mathcal{S}$, because $f \notin \mathcal{S}$.
Thus we obtain $\mathcal{S}_{g \downarrow} \nsubseteq \mathcal{S}_{g \uparrow}$.
A symmetric argument yields $\mathcal{S}_{g \uparrow} \nsubseteq \mathcal{S}_{g \downarrow}$.

Bibliography

E Ivan Georgiev, Lars Kristiansen, Frank Stephan.
On general sum approximations of irrational numbers.
To be presented in full text at CIE 2018.
围 Lars Kristiansen.
On subrecursive representability of irrational numbers. Computability, 6(3):249-276, 2017.
圊 Lars Kristiansen.
On subrecursive representability of irrational numbers, part II. Computability, Preprint:1-23, 2017.

My favourite theorem from logic course

HAPPY 80TH ANNIVERSARY, PROFESSOR VAKARELOV!

Thank you for your attention!

