Complexity of some real numbers and functions with respect to the subrecursive class \mathcal{M}^{2}

Ivan Georgiev ${ }^{1}$
Prof. d-r Asen Zlatarov University, Burgas, Bulgaria

Computability and Complexity in Analysis

$$
\text { Daejeon, Republic of Korea, 24-27 July } 2017
$$

${ }^{1}$ This work was supported by the Bulgarian National Science Fund through contract DN-02-16/19.12.2016

Introduction

This talk is about relative computability of real numbers and real functions.

Introduction

This talk is about relative computability of real numbers and real functions. Our aim is to study the complexity of integration.

Introduction

This talk is about relative computability of real numbers and real functions. Our aim is to study the complexity of integration. The motivating question is:
Given a real function $\theta:[a, b] \rightarrow \mathbb{R}$ and real numbers a, b, which are efficiently computable, is it true that the real number

$$
\int_{a}^{b} \theta(x) d x
$$

is also efficiently computable?

Introduction

This talk is about relative computability of real numbers and real functions. Our aim is to study the complexity of integration.
The motivating question is:
Given a real function $\theta:[a, b] \rightarrow \mathbb{R}$ and real numbers a, b, which are efficiently computable, is it true that the real number

$$
\int_{a}^{b} \theta(x) d x
$$

is also efficiently computable?
Our framework for complexity is subrecursive, that is we are interested in inductively defined classes of total functions in \mathbb{N}, contained in the low levels of Grzegorczyk's hierarchy.

The classes $\mathcal{M}^{2}, \mathcal{L}^{2}, \mathcal{E}^{2}$

We denote $\mathcal{T}_{m}=\left\{a \mid a: \mathbb{N}^{m} \rightarrow \mathbb{N}\right\}$ and $\mathcal{T}=\bigcup_{m} \mathcal{T}_{m}$.

The classes $\mathcal{M}^{2}, \mathcal{L}^{2}, \mathcal{E}^{2}$

We denote $\mathcal{T}_{m}=\left\{a \mid a: \mathbb{N}^{m} \rightarrow \mathbb{N}\right\}$ and $\mathcal{T}=\bigcup_{m} \mathcal{T}_{m}$.
The functions $\lambda x_{1} \ldots x_{n} \cdot x_{m}(1 \leq m \leq n), \lambda x \cdot x+1, \lambda x y . x \doteq y$, $\lambda x y . x y$, belonging to \mathcal{T}, will be called the initial functions.

The classes $\mathcal{M}^{2}, \mathcal{L}^{2}, \mathcal{E}^{2}$

We denote $\mathcal{T}_{m}=\left\{a \mid a: \mathbb{N}^{m} \rightarrow \mathbb{N}\right\}$ and $\mathcal{T}=\bigcup_{m} \mathcal{T}_{m}$.
The functions $\lambda x_{1} \ldots x_{n} \cdot x_{m}(1 \leq m \leq n), \lambda x \cdot x+1, \lambda x y \cdot x \dot{-}$, $\lambda x y . x y$, belonging to \mathcal{T}, will be called the initial functions.
Definition
The class \mathcal{M}^{2} is the smallest subclass of \mathcal{T}, which contains the initial functions and is closed under substitution and bounded minimization $\left(f \mapsto \lambda \vec{x} y . \mu_{z \leq y}[f(\vec{x}, z)=0]\right)$.

The classes $\mathcal{M}^{2}, \mathcal{L}^{2}, \mathcal{E}^{2}$

We denote $\mathcal{T}_{m}=\left\{a \mid a: \mathbb{N}^{m} \rightarrow \mathbb{N}\right\}$ and $\mathcal{T}=\bigcup_{m} \mathcal{T}_{m}$.
The functions $\lambda x_{1} \ldots x_{n} \cdot x_{m}(1 \leq m \leq n), \lambda x \cdot x+1, \lambda x y \cdot x \dot{-}$, $\lambda x y . x y$, belonging to \mathcal{T}, will be called the initial functions.

Definition
The class \mathcal{M}^{2} is the smallest subclass of \mathcal{T}, which contains the initial functions and is closed under substitution and bounded minimization $\left(f \mapsto \lambda \vec{x} y . \mu_{z \leq y}[f(\vec{x}, z)=0]\right)$.
The class \mathcal{L}^{2} has the same definition as \mathcal{M}^{2}, but bounded minimization is replaced by bounded summation.

The classes $\mathcal{M}^{2}, \mathcal{L}^{2}, \mathcal{E}^{2}$

We denote $\mathcal{T}_{m}=\left\{a \mid a: \mathbb{N}^{m} \rightarrow \mathbb{N}\right\}$ and $\mathcal{T}=\bigcup_{m} \mathcal{T}_{m}$.
The functions $\lambda x_{1} \ldots x_{n} \cdot x_{m}(1 \leq m \leq n), \lambda x \cdot x+1, \lambda x y \cdot x \dot{-}$, $\lambda x y . x y$, belonging to \mathcal{T}, will be called the initial functions.

Definition
The class \mathcal{M}^{2} is the smallest subclass of \mathcal{T}, which contains the initial functions and is closed under substitution and bounded minimization $\left(f \mapsto \lambda \vec{x} y . \mu_{z \leq y}[f(\vec{x}, z)=0]\right)$.
The class \mathcal{L}^{2} has the same definition as \mathcal{M}^{2}, but bounded minimization is replaced by bounded summation.
The same for the class \mathcal{E}^{2}, where bounded minimization is replaced by limited primitive recursion.

The classes $\mathcal{M}^{2}, \mathcal{L}^{2}, \mathcal{E}^{2}$

We denote $\mathcal{T}_{m}=\left\{a \mid a: \mathbb{N}^{m} \rightarrow \mathbb{N}\right\}$ and $\mathcal{T}=\bigcup_{m} \mathcal{T}_{m}$.
The functions $\lambda x_{1} \ldots x_{n} \cdot x_{m}(1 \leq m \leq n), \lambda x \cdot x+1, \lambda x y \cdot x \dot{-}$, $\lambda x y . x y$, belonging to \mathcal{T}, will be called the initial functions.

Definition
The class \mathcal{M}^{2} is the smallest subclass of \mathcal{T}, which contains the initial functions and is closed under substitution and bounded minimization $\left(f \mapsto \lambda \vec{x} y . \mu_{z \leq y}[f(\vec{x}, z)=0]\right)$.
The class \mathcal{L}^{2} has the same definition as \mathcal{M}^{2}, but bounded minimization is replaced by bounded summation.
The same for the class \mathcal{E}^{2}, where bounded minimization is replaced by limited primitive recursion.
We have $\mathcal{M}^{2} \subseteq \mathcal{L}^{2} \subseteq \mathcal{E}^{2}$ and whether each of these inclusions is proper is an open question.

Log-bounded sums

The classes \mathcal{L}^{2} and \mathcal{E}^{2} are closed under bounded summation, but it is not known whether the same is true for \mathcal{M}^{2}.

Log-bounded sums

The classes \mathcal{L}^{2} and \mathcal{E}^{2} are closed under bounded summation, but it is not known whether the same is true for \mathcal{M}^{2}.
Nevertheless, we have the following:

Theorem ([1])

For any $k, m \in \mathbb{N}$ and any function $f \in \mathcal{T}_{m+1} \cap \mathcal{M}^{2}$, the function $g \in \mathcal{T}_{m+1}$ defined by

$$
g(\vec{x}, y)=\sum_{z \leq \log _{2}^{k}(y+1)} f(\vec{x}, z)
$$

also belongs to \mathcal{M}^{2}.

Relative computability of real numbers

Definition
The triple of functions $(f, g, h) \in \mathcal{T}_{1}^{3}$ is a name of the real number ξ iff for all $n \in \mathbb{N}$,

$$
\left|\frac{f(n)-g(n)}{h(n)+1}-\xi\right|<\frac{1}{n+1} .
$$

Relative computability of real numbers

Definition

The triple of functions $(f, g, h) \in \mathcal{T}_{1}^{3}$ is a name of the real number ξ iff for all $n \in \mathbb{N}$,

$$
\left|\frac{f(n)-g(n)}{h(n)+1}-\xi\right|<\frac{1}{n+1}
$$

For a class \mathcal{F} of functions, a real number ξ is \mathcal{F}-computable iff there exists a triple $(f, g, h) \in \mathcal{F}^{3}$ which is a name of ξ.

Relative computability of real numbers

Definition

The triple of functions $(f, g, h) \in \mathcal{T}_{1}^{3}$ is a name of the real number ξ iff for all $n \in \mathbb{N}$,

$$
\left|\frac{f(n)-g(n)}{h(n)+1}-\xi\right|<\frac{1}{n+1}
$$

For a class \mathcal{F} of functions, a real number ξ is \mathcal{F}-computable iff there exists a triple $(f, g, h) \in \mathcal{F}^{3}$ which is a name of ξ.
For $\mathcal{F} \in\left\{\mathcal{M}^{2}, \mathcal{L}^{2}, \mathcal{E}^{2}\right\}$ the set of all \mathcal{F}-computable real numbers is a real-closed field.

Relative computability of real numbers

Definition

The triple of functions $(f, g, h) \in \mathcal{T}_{1}^{3}$ is a name of the real number ξ iff for all $n \in \mathbb{N}$,

$$
\left|\frac{f(n)-g(n)}{h(n)+1}-\xi\right|<\frac{1}{n+1}
$$

For a class \mathcal{F} of functions, a real number ξ is \mathcal{F}-computable iff there exists a triple $(f, g, h) \in \mathcal{F}^{3}$ which is a name of ξ.
For $\mathcal{F} \in\left\{\mathcal{M}^{2}, \mathcal{L}^{2}, \mathcal{E}^{2}\right\}$ the set of all \mathcal{F}-computable real numbers is a real-closed field. The numbers π and e are also \mathcal{M}^{2}-computable.

Relative computability of real numbers

Definition

The triple of functions $(f, g, h) \in \mathcal{T}_{1}^{3}$ is a name of the real number ξ iff for all $n \in \mathbb{N}$,

$$
\left|\frac{f(n)-g(n)}{h(n)+1}-\xi\right|<\frac{1}{n+1}
$$

For a class \mathcal{F} of functions, a real number ξ is \mathcal{F}-computable iff there exists a triple $(f, g, h) \in \mathcal{F}^{3}$ which is a name of ξ.
For $\mathcal{F} \in\left\{\mathcal{M}^{2}, \mathcal{L}^{2}, \mathcal{E}^{2}\right\}$ the set of all \mathcal{F}-computable real numbers is a real-closed field. The numbers π and e are also \mathcal{M}^{2}-computable. A function $S: D \rightarrow \mathbb{R}, D \subseteq \mathbb{N}^{k}$ is \mathcal{F}-computable, if there exist $f, g, h \in \mathcal{T}_{k+1} \cap \mathcal{F}$, such that for all $\vec{s} \in D$

$$
(\lambda n \cdot f(\vec{s}, n), \lambda n \cdot g(\vec{s}, n), \lambda n \cdot h(\vec{s}, n))
$$

is a name for the real number $S(\vec{s})$.

Computing real functions

For $k, m \in \mathbb{N}$, a (k, m)-operator F is a total mapping
$F: \mathcal{T}_{1}^{k} \rightarrow \mathcal{T}_{m}$.

Computing real functions

For $k, m \in \mathbb{N}$, a (k, m)-operator F is a total mapping
$F: \mathcal{T}_{1}^{k} \rightarrow \mathcal{T}_{m}$. An operator is a (k, m)-operator for some $k, m \in \mathbb{N}$.

Computing real functions

For $k, m \in \mathbb{N}$, a (k, m)-operator F is a total mapping
$F: \mathcal{T}_{1}^{k} \rightarrow \mathcal{T}_{m}$. An operator is a (k, m)-operator for some $k, m \in \mathbb{N}$.
Definition
Let $k \in \mathbb{N}$ and θ be a real function, $\theta: D \rightarrow \mathbb{R}$, where $D \subseteq \mathbb{R}^{k}$. The triple (F, G, H), where F, G, H are $(3 k, 1)$-operators, is called a computing system for θ if for all $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{k}\right) \in D$ and triples (f_{i}, g_{i}, h_{i}) that name ξ_{i} for $i=1,2, \ldots, k$, the triple

$$
\begin{aligned}
& \left(F\left(f_{1}, g_{1}, h_{1}, f_{2}, g_{2}, h_{2}, \ldots, f_{k}, g_{k}, h_{k}\right),\right. \\
& G\left(f_{1}, g_{1}, h_{1}, f_{2}, g_{2}, h_{2}, \ldots, f_{k}, g_{k}, h_{k}\right) \\
& \left.H\left(f_{1}, g_{1}, h_{1}, f_{2}, g_{2}, h_{2}, \ldots, f_{k}, g_{k}, h_{k}\right)\right)
\end{aligned}
$$

names the real number $\theta\left(\xi_{1}, \xi_{2}, \ldots, \xi_{k}\right)$.

Computing real functions

For $k, m \in \mathbb{N}$, a (k, m)-operator F is a total mapping
$F: \mathcal{T}_{1}^{k} \rightarrow \mathcal{T}_{m}$. An operator is a (k, m)-operator for some $k, m \in \mathbb{N}$.
Definition
Let $k \in \mathbb{N}$ and θ be a real function, $\theta: D \rightarrow \mathbb{R}$, where $D \subseteq \mathbb{R}^{k}$. The triple (F, G, H), where F, G, H are $(3 k, 1)$-operators, is called a computing system for θ if for all $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{k}\right) \in D$ and triples (f_{i}, g_{i}, h_{i}) that name ξ_{i} for $i=1,2, \ldots, k$, the triple

$$
\begin{aligned}
& \left(F\left(f_{1}, g_{1}, h_{1}, f_{2}, g_{2}, h_{2}, \ldots, f_{k}, g_{k}, h_{k}\right)\right. \\
& G\left(f_{1}, g_{1}, h_{1}, f_{2}, g_{2}, h_{2}, \ldots, f_{k}, g_{k}, h_{k}\right) \\
& \left.H\left(f_{1}, g_{1}, h_{1}, f_{2}, g_{2}, h_{2}, \ldots, f_{k}, g_{k}, h_{k}\right)\right)
\end{aligned}
$$

names the real number $\theta\left(\xi_{1}, \xi_{2}, \ldots, \xi_{k}\right)$.
For a class \mathbf{O} of operators, the function θ is uniformly
O-computable, if there exists a computing system (F, G, H) for θ, such that $F, G, H \in \mathbf{O}$.

Rudimentary operators

Definition
The class $\mathbf{R O}$ of rudimentary operators is the smallest class of operators, such that:

Rudimentary operators

Definition

The class RO of rudimentary operators is the smallest class of operators, such that:

1. For any n, m and m-argument initial function a, the (n, m)-operator F defined by $F(\vec{f})(\vec{x})=a(\vec{x})$ belongs to RO.

Rudimentary operators

Definition

The class $\mathbf{R O}$ of rudimentary operators is the smallest class of operators, such that:

1. For any n, m and m-argument initial function a, the (n, m)-operator F defined by $F(\vec{f})(\vec{x})=a(\vec{x})$ belongs to RO.
2. For all n, k with $1 \leq k \leq n$, the $(n, 1)$-operator F defined by $F\left(f_{1}, \ldots, f_{n}\right)(x)=f_{k}(x)$ belongs to RO.

Rudimentary operators

Definition

The class $\mathbf{R O}$ of rudimentary operators is the smallest class of operators, such that:

1. For any n, m and m-argument initial function a, the (n, m)-operator F defined by $F(\vec{f})(\vec{x})=a(\vec{x})$ belongs to RO.
2. For all n, k with $1 \leq k \leq n$, the $(n, 1)$-operator F defined by $F\left(f_{1}, \ldots, f_{n}\right)(x)=f_{k}(x)$ belongs to RO.
3. For all n, m, k, if F_{0} is an (n, k)-operator and F_{1}, \ldots, F_{k} are (n, m)-operators all belonging to RO, then the (n, m)-operator F defined by

$$
F(\vec{f})(\vec{x})=F_{0}(\vec{f})\left(F_{1}(\vec{f})(\vec{x}), \ldots, F_{k}(\vec{f})(\vec{x})\right)
$$

also belongs to RO.

Rudimentary operators

Definition

The class $\mathbf{R O}$ of rudimentary operators is the smallest class of operators, such that:

1. For any n, m and m-argument initial function a, the (n, m)-operator F defined by $F(\vec{f})(\vec{x})=a(\vec{x})$ belongs to RO.
2. For all n, k with $1 \leq k \leq n$, the $(n, 1)$-operator F defined by $F\left(f_{1}, \ldots, f_{n}\right)(x)=f_{k}(x)$ belongs to RO.
3. For all n, m, k, if F_{0} is an (n, k)-operator and F_{1}, \ldots, F_{k} are (n, m)-operators all belonging to RO, then the (n, m)-operator F defined by

$$
F(\vec{f})(\vec{x})=F_{0}(\vec{f})\left(F_{1}(\vec{f})(\vec{x}), \ldots, F_{k}(\vec{f})(\vec{x})\right)
$$

also belongs to RO.
4. For all m, n, if F_{0} is an $(n, m+1)$-operator which belongs to RO, then so is the operator F defined by

$$
F(\vec{f})(\vec{x}, y)=\mu_{z \leq y}\left[F_{0}(\vec{f})(\vec{x}, z)=0\right] .
$$

Log-rudimentary operators

The definition of the class \log RO of log-rudimentary operators contains the same clauses as the definition for $\mathbf{R O}$ and also the following clause:

Log-rudimentary operators

The definition of the class \log RO of log-rudimentary operators contains the same clauses as the definition for $\mathbf{R O}$ and also the following clause:
5. For all m, n, k, if F_{0} is an ($n, m+1$)-operator which belongs to $\log R \mathrm{O}$, then so is the operator F defined by

$$
F(\vec{f})(\vec{x}, y)=\sum_{z \leq \log _{2}^{k}(y+1)}\left[F_{0}(\vec{f})(\vec{x}, z)=0\right]
$$

Log-rudimentary operators

The definition of the class \log RO of log-rudimentary operators contains the same clauses as the definition for $\mathbf{R O}$ and also the following clause:
5. For all m, n, k, if F_{0} is an $(n, m+1)$-operator which belongs to $\log R \mathrm{O}$, then so is the operator F defined by

$$
F(\vec{f})(\vec{x}, y)=\sum_{z \leq \log _{2}^{k}(y+1)}\left[F_{0}(\vec{f})(\vec{x}, z)=0\right]
$$

If there is a uniform definition of log-bounded summation for the class \mathcal{M}^{2}, then the same definition, easily modified for operators, will show that $\mathbf{R O}=\log \mathbf{R O}$.

\mathcal{M}^{2}-substitutional operators

Definition
The class MSO of \mathcal{M}^{2}-substitutional operators is the smallest class of operators, such that:

\mathcal{M}^{2}-substitutional operators

Definition

The class MSO of \mathcal{M}^{2}-substitutional operators is the smallest class of operators, such that:

1. For all m, n, i with $1 \leq i \leq m$, the (n, m)-operator F defined by $F(\vec{f})(\vec{x})=x_{i}$ belongs to MSO.

\mathcal{M}^{2}-substitutional operators

Definition

The class MSO of \mathcal{M}^{2}-substitutional operators is the smallest class of operators, such that:

1. For all m, n, i with $1 \leq i \leq m$, the (n, m)-operator F defined by $F(\vec{f})(\vec{x})=x_{i}$ belongs to MSO.
2. For any m, n and $k \in\{1, \ldots, n\}$, if F_{0} is an (n, m)-operator which belongs to MSO, then the (n, m)-operator F defined by

$$
F(\vec{f})(\vec{x})=f_{k}\left(F_{0}(\vec{f})(\vec{x})\right)
$$

also belongs to MSO.

\mathcal{M}^{2}-substitutional operators

Definition

The class MSO of \mathcal{M}^{2}-substitutional operators is the smallest class of operators, such that:

1. For all m, n, i with $1 \leq i \leq m$, the (n, m)-operator F defined by $F(\vec{f})(\vec{x})=x_{i}$ belongs to MSO.
2. For any m, n and $k \in\{1, \ldots, n\}$, if F_{0} is an (n, m)-operator which belongs to MSO, then the (n, m)-operator F defined by

$$
F(\vec{f})(\vec{x})=f_{k}\left(F_{0}(\vec{f})(\vec{x})\right)
$$

also belongs to MSO.
3. For any m, n, k and $a \in \mathcal{T}_{k} \cap \mathcal{M}^{2}$, if F_{1}, \ldots, F_{k} are (n, m)-operators which belong to MSO, then so is the operator F defined by

$$
F(\vec{f})(\vec{x})=a\left(F_{1}(\vec{f})(\vec{x}), \ldots, F_{k}(\vec{f})(\vec{x})\right)
$$

Some general results

It is easy to see that MSO is a proper subclass of RO.

Some general results

It is easy to see that MSO is a proper subclass of RO. All elementary functions of calculus, restricted to compact subsets of their domains, are uniformly MSO-computable.

Some general results

It is easy to see that MSO is a proper subclass of RO. All elementary functions of calculus, restricted to compact subsets of their domains, are uniformly MSO-computable.
The reason is that any real function, which is uniformly MSO-computable is bounded by a polynomial.

Some general results

It is easy to see that MSO is a proper subclass of RO.
All elementary functions of calculus, restricted to compact subsets of their domains, are uniformly MSO-computable.
The reason is that any real function, which is uniformly MSO-computable is bounded by a polynomial.
This rules out the reciprocal function, the logarithmic function and the exponential function.

Some general results

It is easy to see that MSO is a proper subclass of RO.
All elementary functions of calculus, restricted to compact subsets of their domains, are uniformly MSO-computable.
The reason is that any real function, which is uniformly MSO-computable is bounded by a polynomial.
This rules out the reciprocal function, the logarithmic function and the exponential function.
The pairs $\left(\mathcal{M}^{2}, \mathbf{M S O}\right),\left(\mathcal{M}^{2}, \mathbf{R O}\right)$ and $\left(\mathcal{M}^{2}, \operatorname{LogRO}\right)$ are acceptable in the sense of [2].

Some general results

It is easy to see that MSO is a proper subclass of RO.
All elementary functions of calculus, restricted to compact subsets of their domains, are uniformly MSO-computable.
The reason is that any real function, which is uniformly MSO-computable is bounded by a polynomial.
This rules out the reciprocal function, the logarithmic function and the exponential function.
The pairs $\left(\mathcal{M}^{2}, \mathbf{M S O}\right),\left(\mathcal{M}^{2}, \mathbf{R O}\right)$ and $\left(\mathcal{M}^{2}, \operatorname{LogRO}\right)$ are acceptable in the sense of [2]. Therefore, by the characterization theorem of Skordev in [2], the following three conditions are equivalent for a real function θ :

- θ is uniformly MSO-computable;
- θ is uniformly RO-computable;
- θ is uniformly LogRO-computable.

First theorem on integration

Theorem
Let a, b be \mathcal{M}^{2}-computable real numbers and $\theta:[a, b] \rightarrow \mathbb{R}$ be uniformly MSO-computable and analytic real function. Then the definite integral $\int_{a}^{b} \theta(x) d x$ is an \mathcal{M}^{2}-computable real number.

First theorem on integration

Theorem
Let a, b be \mathcal{M}^{2}-computable real numbers and $\theta:[a, b] \rightarrow \mathbb{R}$ be uniformly MSO-computable and analytic real function. Then the definite integral $\int_{a}^{b} \theta(x) d x$ is an \mathcal{M}^{2}-computable real number.
Because we can use only log-bounded sums, we need an exponentially convergent quadrature method.

First theorem on integration

Theorem
Let a, b be \mathcal{M}^{2}-computable real numbers and $\theta:[a, b] \rightarrow \mathbb{R}$ be uniformly MSO-computable and analytic real function. Then the definite integral $\int_{a}^{b} \theta(x) d x$ is an \mathcal{M}^{2}-computable real number.
Because we can use only log-bounded sums, we need an exponentially convergent quadrature method.
By a linear change of variables we may assume $[a, b]=[-1,1]$.

First theorem on integration

Theorem
Let a, b be \mathcal{M}^{2}-computable real numbers and $\theta:[a, b] \rightarrow \mathbb{R}$ be uniformly MSO-computable and analytic real function. Then the definite integral $\int_{a}^{b} \theta(x) d x$ is an \mathcal{M}^{2}-computable real number.
Because we can use only log-bounded sums, we need an exponentially convergent quadrature method.
By a linear change of variables we may assume $[a, b]=[-1,1]$. Next we apply the so called tanh-rule and we obtain

$$
\int_{-1}^{1} \theta(x) d x=\int_{-\infty}^{\infty} \theta(\tanh (t)) \cdot \frac{1}{\cosh ^{2}(t)} d t
$$

First theorem on integration

Theorem
Let a, b be \mathcal{M}^{2}-computable real numbers and $\theta:[a, b] \rightarrow \mathbb{R}$ be uniformly MSO-computable and analytic real function. Then the definite integral $\int_{a}^{b} \theta(x) d x$ is an \mathcal{M}^{2}-computable real number.
Because we can use only log-bounded sums, we need an exponentially convergent quadrature method.
By a linear change of variables we may assume $[a, b]=[-1,1]$. Next we apply the so called tanh-rule and we obtain

$$
\begin{gathered}
\int_{-1}^{1} \theta(x) d x=\int_{-\infty}^{\infty} \theta(\tanh (t)) \cdot \frac{1}{\cosh ^{2}(t)} d t \\
\quad \approx h \sum_{k=-\infty}^{+\infty} \theta(\tanh (k h)) \cdot \frac{1}{\cosh ^{2}(k h)}
\end{gathered}
$$

First theorem on integration

Theorem
Let a, b be \mathcal{M}^{2}-computable real numbers and $\theta:[a, b] \rightarrow \mathbb{R}$ be uniformly MSO-computable and analytic real function. Then the definite integral $\int_{a}^{b} \theta(x) d x$ is an \mathcal{M}^{2}-computable real number.
Because we can use only log-bounded sums, we need an exponentially convergent quadrature method.
By a linear change of variables we may assume $[a, b]=[-1,1]$. Next we apply the so called tanh-rule and we obtain

$$
\begin{aligned}
& \int_{-1}^{1} \theta(x) d x=\int_{-\infty}^{\infty} \theta(\tanh (t)) \cdot \frac{1}{\cosh ^{2}(t)} d t \\
& \approx h \sum_{k=-\infty}^{+\infty} \theta(\tanh (k h)) \cdot \frac{1}{\cosh ^{2}(k h)} \\
& \approx h \sum_{k=-n}^{n} \theta(\tanh (k h)) \cdot \frac{1}{\cosh ^{2}(k h)}=I_{h, n}
\end{aligned}
$$

First theorem on integration (continued)

By a careful choice h (depending on n) and using the analyticity of g we can obtain

$$
\left|I_{n}-\int_{-1}^{1} \theta(x) d x\right| \leq \frac{M}{e^{A \sqrt{n}}-1}
$$

for some positive real constants A, M

First theorem on integration (continued)

By a careful choice h (depending on n) and using the analyticity of g we can obtain

$$
\left|I_{n}-\int_{-1}^{1} \theta(x) d x\right| \leq \frac{M}{e^{A \sqrt{n}}-1}
$$

for some positive real constants A, M and therefore

$$
\left|\ell_{\log _{2}^{2}(n+1)}-\int_{-1}^{1} \theta(x) d x\right| \leq \frac{M}{(n+1)^{A}-1}
$$

Second theorem on integration

Theorem
Let a, b be \mathcal{M}^{2}-computable real numbers and $\theta:[a, b] \times D \rightarrow \mathbb{R}$ be uniformly MSO-computable.

Second theorem on integration

Theorem
Let a, b be \mathcal{M}^{2}-computable real numbers and $\theta:[a, b] \times D \rightarrow \mathbb{R}$ be uniformly MSO-computable. Let there exist a real constant $A>0$, such that for any fixed $y \in D, \theta$ has an analytic continuation defined in $[a, b] \times[-A, A] \subseteq \mathbb{C}$.

Second theorem on integration

Theorem
Let a, b be \mathcal{M}^{2}-computable real numbers and $\theta:[a, b] \times D \rightarrow \mathbb{R}$ be uniformly MSO-computable. Let there exist a real constant $A>0$, such that for any fixed $y \in D, \theta$ has an analytic continuation defined in $[a, b] \times[-A, A] \subseteq \mathbb{C}$. Let there also exist a polynomial P, such that $|\theta(x \pm B i, y)| \leq P(|y|)$ for all $y \in D, x \in[a, b], B \leq A$.

Second theorem on integration

Theorem
Let a, b be \mathcal{M}^{2}-computable real numbers and $\theta:[a, b] \times D \rightarrow \mathbb{R}$ be uniformly MSO-computable. Let there exist a real constant $A>0$, such that for any fixed $y \in D, \theta$ has an analytic continuation defined in $[a, b] \times[-A, A] \subseteq \mathbb{C}$. Let there also exist a polynomial P, such that $|\theta(x \pm B i, y)| \leq P(|y|)$ for all $y \in D, x \in[a, b], B \leq A$. Then the real function $I: D \rightarrow \mathbb{R}$, defined by

$$
I(y)=\int_{a}^{b} \theta(x, y) d x
$$

is uniformly MSO-computable.

Second theorem on integration

Theorem

Let a, b be \mathcal{M}^{2}-computable real numbers and $\theta:[a, b] \times D \rightarrow \mathbb{R}$ be uniformly MSO-computable. Let there exist a real constant $A>0$, such that for any fixed $y \in D, \theta$ has an analytic continuation defined in $[a, b] \times[-A, A] \subseteq \mathbb{C}$. Let there also exist a polynomial P, such that $|\theta(x \pm B i, y)| \leq P(|y|)$ for all $y \in D, x \in[a, b], B \leq A$. Then the real function $I: D \rightarrow \mathbb{R}$, defined by

$$
I(y)=\int_{a}^{b} \theta(x, y) d x
$$

is uniformly MSO-computable.
The proof follows the same argument. The important thing to show is that the log-bounded sum of a uniformly MSO-computable real function is again uniformly MSO-computable. This requires the use of log-rudimentary operators.

Third theorem on integration

Theorem
Let a be an \mathcal{M}^{2}-computable real number. Let $\theta:[a,+\infty) \rightarrow \mathbb{R}$ be uniformly MSO-computable real function, which has an analytic continuation defined in the half-plane $\operatorname{Re}(z) \geq a$.

Third theorem on integration

Theorem
Let a be an \mathcal{M}^{2}-computable real number. Let $\theta:[a,+\infty) \rightarrow \mathbb{R}$ be uniformly MSO-computable real function, which has an analytic continuation defined in the half-plane $\operatorname{Re}(z) \geq a$. Let there exist a real constant $A>0$ and a polynomial P, such that $|\theta(x+y i)| \leq P(|\xi|)$ for all $\xi \geq a, x \in[a, \xi],|y| \leq A(\xi-a)$.

Third theorem on integration

Theorem
Let a be an \mathcal{M}^{2}-computable real number. Let $\theta:[a,+\infty) \rightarrow \mathbb{R}$ be uniformly MSO-computable real function, which has an analytic continuation defined in the half-plane $\operatorname{Re}(z) \geq$ a. Let there exist a real constant $A>0$ and a polynomial P, such that $|\theta(x+y i)| \leq P(|\xi|)$ for all $\xi \geq a, x \in[a, \xi],|y| \leq A(\xi-a)$. Then the real function $I:[a,+\infty) \rightarrow \mathbb{R}$, defined by

$$
I(\xi)=\int_{a}^{\xi} \theta(x) d x
$$

is uniformly MSO-computable.

Third theorem on integration

Theorem
Let a be an \mathcal{M}^{2}-computable real number. Let $\theta:[a,+\infty) \rightarrow \mathbb{R}$ be uniformly MSO-computable real function, which has an analytic continuation defined in the half-plane $\operatorname{Re}(z) \geq a$. Let there exist a real constant $A>0$ and a polynomial P, such that $|\theta(x+y i)| \leq P(|\xi|)$ for all $\xi \geq a, x \in[a, \xi],|y| \leq A(\xi-a)$. Then the real function $I:[a,+\infty) \rightarrow \mathbb{R}$, defined by

$$
I(\xi)=\int_{a}^{\xi} \theta(x) d x
$$

is uniformly MSO-computable.
By the linear change $x=\frac{\xi-a}{2} t+\frac{\xi+a}{2}$ we have

$$
I(\xi)=\int_{a}^{\xi} \theta(x) d x=\frac{\xi-a}{2} \int_{-1}^{1} \theta\left(\frac{\xi-a}{2} t+\frac{\xi+a}{2}\right) d t
$$

and we can apply the second theorem.

Euler-Mascheroni constant

Theorem
Euler's constant γ is \mathcal{M}^{2}-computable.

Euler-Mascheroni constant

Theorem
Euler's constant γ is \mathcal{M}^{2}-computable.
We use the following representation

$$
\gamma=-\int_{0}^{\infty} e^{-x} \ln x d x
$$

Euler-Mascheroni constant

Theorem
Euler's constant γ is \mathcal{M}^{2}-computable.
We use the following representation

$$
\gamma=-\int_{0}^{\infty} e^{-x} \ln x d x
$$

This integral is the sum of the following two integrals:

$$
\begin{gathered}
I_{1}=\int_{1}^{\infty} e^{-x} \ln x d x \\
I_{2}=\int_{0}^{1} e^{-x} \ln x d x=\int_{1}^{\infty} e^{-\frac{1}{t}} \ln t \frac{1}{t^{2}} d t
\end{gathered}
$$

which are easily seen to be \mathcal{M}^{2}-computable by using the third theorem.

Euler-Mascheroni constant (continued)

In fact, by a careful estimation of the error of approximation, we can extract an actual sequence, which converges to γ with subexponential rate.

Euler-Mascheroni constant (continued)

In fact, by a careful estimation of the error of approximation, we can extract an actual sequence, which converges to γ with subexponential rate. Let $\phi(t)$ be the integrand of I_{2} and $\psi(x)$ be the integrand of I_{1} and let us define

$$
A(n)=\frac{\sqrt{e}}{2 \sqrt{n}}-1 \sum_{k=-n}^{n} \theta\left(\tanh \left(\frac{k}{\sqrt{n}}\right), \sqrt{e}^{\sqrt{n}}-1\right) \frac{1}{\cosh ^{2}\left(\frac{k}{\sqrt{n}}\right)},
$$

where $\theta(u, \xi)=\phi\left(\frac{\xi}{2} \cdot u+\frac{\xi+2}{2}\right)-\psi\left(\frac{\xi}{2} \cdot u+\frac{\xi+2}{2}\right)$.

Euler-Mascheroni constant (continued)

In fact, by a careful estimation of the error of approximation, we can extract an actual sequence, which converges to γ with subexponential rate. Let $\phi(t)$ be the integrand of I_{2} and $\psi(x)$ be the integrand of I_{1} and let us define

$$
A(n)=\frac{\sqrt{e} \sqrt{\sqrt{n}}-1}{2 \sqrt{n}} \sum_{k=-n}^{n} \theta\left(\tanh \left(\frac{k}{\sqrt{n}}\right), \sqrt{e}^{\sqrt{n}}-1\right) \frac{1}{\cosh ^{2}\left(\frac{k}{\sqrt{n}}\right)},
$$

where $\theta(u, \xi)=\phi\left(\frac{\xi}{2} \cdot u+\frac{\xi+2}{2}\right)-\psi\left(\frac{\xi}{2} \cdot u+\frac{\xi+2}{2}\right)$. Then

$$
|A(n)-\gamma| \leq \frac{(\pi+3) \sqrt{n}+7 \pi+16}{\sqrt{e}^{\sqrt{n}}}
$$

for all $n>0$.

Conditional computability of real functions

Let $k \in \mathbb{N}, \theta: D \rightarrow \mathbb{R}, D \subseteq \mathbb{R}^{k}$ and \mathbf{O} be a class of operators.

Conditional computability of real functions

Let $k \in \mathbb{N}, \theta: D \rightarrow \mathbb{R}, D \subseteq \mathbb{R}^{k}$ and \mathbf{O} be a class of operators. The real function θ is conditionally \mathbf{O}-computable, if there exist a (3k, 1)-operator $E \in \mathbf{O}$ and (3k, 2)-operators $F, G, H \in \mathbf{O}$,

Conditional computability of real functions

Let $k \in \mathbb{N}, \theta: D \rightarrow \mathbb{R}, D \subseteq \mathbb{R}^{k}$ and \mathbf{O} be a class of operators. The real function θ is conditionally \mathbf{O}-computable, if there exist a (3k, 1)-operator $E \in \mathbf{O}$ and (3k, 2)-operators $F, G, H \in \mathbf{O}$, such that for all $\left(\xi_{1}, \ldots, \xi_{k}\right) \in D$ and all triples $\left(f_{i}, g_{i}, h_{i}\right)$ that name ξ_{i} for $i=1,2, \ldots, k$, the following two hold:

Conditional computability of real functions

Let $k \in \mathbb{N}, \theta: D \rightarrow \mathbb{R}, D \subseteq \mathbb{R}^{k}$ and \mathbf{O} be a class of operators. The real function θ is conditionally \mathbf{O}-computable, if there exist a (3k, 1)-operator $E \in \mathbf{O}$ and (3k, 2)-operators $F, G, H \in \mathbf{O}$, such that for all $\left(\xi_{1}, \ldots, \xi_{k}\right) \in D$ and all triples $\left(f_{i}, g_{i}, h_{i}\right)$ that name ξ_{i} for $i=1,2, \ldots, k$, the following two hold:

- There exists a natural number s satisfying the equality

$$
E\left(f_{1}, g_{1}, h_{1}, \ldots, f_{k}, g_{k}, h_{k}\right)(s)=0
$$

Conditional computability of real functions

Let $k \in \mathbb{N}, \theta: D \rightarrow \mathbb{R}, D \subseteq \mathbb{R}^{k}$ and \mathbf{O} be a class of operators.
The real function θ is conditionally \mathbf{O}-computable, if there exist a (3k, 1)-operator $E \in \mathbf{O}$ and (3k, 2)-operators $F, G, H \in \mathbf{O}$, such that for all $\left(\xi_{1}, \ldots, \xi_{k}\right) \in D$ and all triples $\left(f_{i}, g_{i}, h_{i}\right)$ that name ξ_{i} for $i=1,2, \ldots, k$, the following two hold:

- There exists a natural number s satisfying the equality

$$
E\left(f_{1}, g_{1}, h_{1}, \ldots, f_{k}, g_{k}, h_{k}\right)(s)=0
$$

- For any natural number s satisfying the above equality, the triple $(\tilde{f}, \tilde{g}, \tilde{h})$ names the real number $\theta\left(\xi_{1}, \ldots, \xi_{k}\right)$, where

$$
\begin{aligned}
\tilde{f} & =\lambda t . F\left(f_{1}, g_{1}, h_{1}, \ldots, f_{k}, g_{k}, h_{k}\right)(s, t), \\
\tilde{g} & =\lambda t \cdot G\left(f_{1}, g_{1}, h_{1}, \ldots, f_{k}, g_{k}, h_{k}\right)(s, t), \\
\tilde{h} & =\lambda t . H\left(f_{1}, g_{1}, h_{1}, \ldots, f_{k}, g_{k}, h_{k}\right)(s, t) .
\end{aligned}
$$

Properties of conditional computability

All uniformly MSO-computable real functions are conditionally MSO-computable, but not conversely.

Properties of conditional computability

All uniformly MSO-computable real functions are conditionally MSO-computable, but not conversely.
All elementary functions of calculus, on their whole domains, are conditionally MSO-computable.

Properties of conditional computability

All uniformly MSO-computable real functions are conditionally MSO-computable, but not conversely.
All elementary functions of calculus, on their whole domains, are conditionally MSO-computable.
Results in [3] show that

- Conditional MSO-computability is preserved by substitution.

Properties of conditional computability

All uniformly MSO-computable real functions are conditionally MSO-computable, but not conversely.
All elementary functions of calculus, on their whole domains, are conditionally MSO-computable.
Results in [3] show that

- Conditional MSO-computability is preserved by substitution.
- All conditionally MSO-computable real functions are locally uniformly MSO-computable.

Properties of conditional computability

All uniformly MSO-computable real functions are conditionally MSO-computable, but not conversely.
All elementary functions of calculus, on their whole domains, are conditionally MSO-computable.
Results in [3] show that

- Conditional MSO-computability is preserved by substitution.
- All conditionally MSO-computable real functions are locally uniformly MSO-computable.
- On compact domains, conditional MSO-computability and uniform MSO-computability are equivalent.

Properties of conditional computability

All uniformly MSO-computable real functions are conditionally MSO-computable, but not conversely.
All elementary functions of calculus, on their whole domains, are conditionally MSO-computable.
Results in [3] show that

- Conditional MSO-computability is preserved by substitution.
- All conditionally MSO-computable real functions are locally uniformly MSO-computable.
- On compact domains, conditional MSO-computability and uniform MSO-computability are equivalent.
Moreover, the characterization theorem can be extended to show that for a real function θ :
- θ is conditionally MSO-computable;
- θ is conditionally RO-computable;
- θ is conditionally LogRO-computable.

Gamma function and Riemann zeta function

By using the results on integration, we can prove that the gamma function

$$
\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

is conditionally MSO-computable for $s>0$.

Gamma function and Riemann zeta function

By using the results on integration, we can prove that the gamma function

$$
\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

is conditionally MSO-computable for $s>0$. It is even uniformly MSO-computable, if regarded as a real function with domain $\left\{(s, t) \in \mathbb{R}^{2} \mid 0<s \leq 1, s t \geq 1\right\}$.

Gamma function and Riemann zeta function

By using the results on integration, we can prove that the gamma function

$$
\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

is conditionally MSO-computable for $s>0$. It is even uniformly MSO-computable, if regarded as a real function with domain $\left\{(s, t) \in \mathbb{R}^{2} \mid 0<s \leq 1, s t \geq 1\right\}$. A famous formula, which connects the Gamma function and the Riemann zeta function is

$$
\zeta(s) \Gamma(s)=\int_{0}^{\infty} \frac{x^{s-1}}{e^{x}-1} d x
$$

for $s>1$.

Gamma function and Riemann zeta function

By using the results on integration, we can prove that the gamma function

$$
\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

is conditionally MSO-computable for $s>0$. It is even uniformly MSO-computable, if regarded as a real function with domain $\left\{(s, t) \in \mathbb{R}^{2} \mid 0<s \leq 1, s t \geq 1\right\}$. A famous formula, which connects the Gamma function and the Riemann zeta function is

$$
\zeta(s) \Gamma(s)=\int_{0}^{\infty} \frac{x^{s-1}}{e^{x}-1} d x
$$

for $s>1$. It can be shown that the right-hand side of this equality is conditionally MSO-computable for $s>1$.

Gamma function and Riemann zeta function

By using the results on integration, we can prove that the gamma function

$$
\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

is conditionally MSO-computable for $s>0$. It is even uniformly MSO-computable, if regarded as a real function with domain $\left\{(s, t) \in \mathbb{R}^{2} \mid 0<s \leq 1, s t \geq 1\right\}$. A famous formula, which connects the Gamma function and the Riemann zeta function is

$$
\zeta(s) \Gamma(s)=\int_{0}^{\infty} \frac{x^{s-1}}{e^{x}-1} d x
$$

for $s>1$. It can be shown that the right-hand side of this equality is conditionally MSO-computable for $s>1$. It follows that the same is true for the Riemann zeta function.

Bibliography

E. Paris, A. Wilkie \& A. Woods. Provability of the pigeonhole principle and the existence of infinitely many primes. Journal of Symbolic Logic, 53(4):1235-1244, 1998.
D. Skordev. On some computability notions for real functions. Computability, 2:67-73, 2013.
围 D. Skordev \& I. Georgiev. On a relative computability notion for real functions. CIE Proceedings, Lecture Notes in Computer Science, 6735:270-279, 2011.

目 D. Skordev, A. Weiermann \& I. Georgiev. \mathcal{M}^{2}-computable real numbers. Journal of Logic and Computation, 22(4):899-925, 2012.
(1. L. N. Trefethen \& J. A. C. Weideman. The exponentially convergent trapezoidal rule. Society for Industrial and Applied Mathematics, 56(3):385-458, 2014.

Thank you for your attention!

