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Introduction

This talk is about relative computability of real numbers and real
functions.

Our aim is to study the complexity of integration.
The motivating question is:
Given a real function θ : [a, b]→ R and real numbers a, b, which
are efficiently computable, is it true that the real number∫ b

a
θ(x)dx

is also efficiently computable?
Our framework for complexity is subrecursive, that is we are
interested in inductively defined classes of total functions in N,
contained in the low levels of Grzegorczyk’s hierarchy.
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The classes M2,L2, E2

We denote Tm = {a|a : Nm → N} and T =
⋃

m Tm.

The functions λx1 . . . xn.xm(1 ≤ m ≤ n), λx .x + 1, λxy .x .− y ,
λxy .xy , belonging to T , will be called the initial functions.

Definition
The class M2 is the smallest subclass of T , which contains the
initial functions and is closed under substitution and bounded
minimization (f 7→ λ~xy .µz≤y [f (~x , z) = 0]).

The class L2 has the same definition as M2, but bounded
minimization is replaced by bounded summation.
The same for the class E2, where bounded minimization is replaced
by limited primitive recursion.
We have M2 ⊆ L2 ⊆ E2 and whether each of these inclusions is
proper is an open question.
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Log-bounded sums

The classes L2 and E2 are closed under bounded summation, but
it is not known whether the same is true for M2.

Nevertheless, we have the following:

Theorem ([1])

For any k ,m ∈ N and any function f ∈ Tm+1 ∩M2, the function
g ∈ Tm+1 defined by

g(~x , y) =
∑

z≤logk2(y+1)

f (~x , z)

also belongs to M2.
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Relative computability of real numbers

Definition
The triple of functions (f , g , h) ∈ T 3

1 is a name of the real number
ξ iff for all n ∈ N, ∣∣∣∣ f (n)− g(n)

h(n) + 1
− ξ
∣∣∣∣ < 1

n + 1
.

For a class F of functions, a real number ξ is F-computable iff
there exists a triple (f , g , h) ∈ F3 which is a name of ξ.

For F ∈ {M2,L2, E2} the set of all F-computable real numbers is
a real-closed field. The numbers π and e are also M2-computable.
A function S : D → R,D ⊆ Nk is F-computable, if there exist
f , g , h ∈ Tk+1 ∩ F , such that for all ~s ∈ D

(λn.f (~s, n), λn.g(~s, n), λn.h(~s, n))

is a name for the real number S(~s).
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Computing real functions

For k,m ∈ N, a (k ,m)-operator F is a total mapping
F : T k

1 → Tm.

An operator is a (k ,m)-operator for some k ,m ∈ N.

Definition
Let k ∈ N and θ be a real function, θ : D → R, where D ⊆ Rk .
The triple (F ,G ,H), where F ,G ,H are (3k , 1)-operators, is called
a computing system for θ if for all (ξ1, ξ2, . . . , ξk) ∈ D and triples
(fi , gi , hi ) that name ξi for i = 1, 2, . . . , k , the triple

(F (f1, g1, h1, f2, g2, h2, . . . , fk , gk , hk),

G (f1, g1, h1, f2, g2, h2, . . . , fk , gk , hk),

H(f1, g1, h1, f2, g2, h2, . . . , fk , gk , hk))

names the real number θ(ξ1, ξ2, . . . , ξk).

For a class O of operators, the function θ is uniformly
O-computable, if there exists a computing system (F ,G ,H) for θ,
such that F ,G ,H ∈ O.
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Rudimentary operators

Definition
The class RO of rudimentary operators is the smallest class of
operators, such that:

1. For any n,m and m-argument initial function a, the
(n,m)-operator F defined by F (~f )(~x) = a(~x) belongs to RO.

2. For all n, k with 1 ≤ k ≤ n, the (n, 1)-operator F defined by
F (f1, . . . , fn)(x) = fk(x) belongs to RO.

3. For all n,m, k, if F0 is an (n, k)-operator and F1, . . . ,Fk are
(n,m)-operators all belonging to RO, then the
(n,m)-operator F defined by

F (~f )(~x) = F0(~f )(F1(~f )(~x), . . . ,Fk(~f )(~x))

also belongs to RO.

4. For all m, n, if F0 is an (n,m + 1)-operator which belongs to
RO, then so is the operator F defined by

F (~f )(~x , y) = µz≤y [F0(~f )(~x , z) = 0].
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Log-rudimentary operators

The definition of the class logRO of log-rudimentary operators
contains the same clauses as the definition for RO and also the
following clause:

5. For all m, n, k , if F0 is an (n,m + 1)-operator which belongs to
logRO, then so is the operator F defined by

F (~f )(~x , y) =
∑

z≤logk2(y+1)

[F0(~f )(~x , z) = 0].

If there is a uniform definition of log-bounded summation for the
class M2, then the same definition, easily modified for operators,
will show that RO = logRO.
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operator F defined by

F (~f )(~x) = a(F1(~f )(~x), . . . ,Fk(~f )(~x)).



Some general results

It is easy to see that MSO is a proper subclass of RO.

All elementary functions of calculus, restricted to compact subsets
of their domains, are uniformly MSO-computable.
The reason is that any real function, which is uniformly
MSO-computable is bounded by a polynomial.
This rules out the reciprocal function, the logarithmic function and
the exponential function.
The pairs (M2,MSO), (M2,RO) and (M2,LogRO) are
acceptable in the sense of [2]. Therefore, by the characterization
theorem of Skordev in [2], the following three conditions are
equivalent for a real function θ:

I θ is uniformly MSO-computable;

I θ is uniformly RO-computable;

I θ is uniformly LogRO-computable.
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First theorem on integration

Theorem
Let a, b be M2-computable real numbers and θ : [a, b]→ R be
uniformly MSO-computable and analytic real function. Then the
definite integral

∫ b
a θ(x)dx is an M2-computable real number.

Because we can use only log-bounded sums, we need an
exponentially convergent quadrature method.
By a linear change of variables we may assume [a, b] = [−1, 1].
Next we apply the so called tanh-rule and we obtain∫ 1

−1
θ(x)dx =

∫ ∞
−∞

θ(tanh(t)).
1

cosh2(t)
dt

≈ h
+∞∑

k=−∞
θ(tanh(kh)).

1

cosh2(kh)

≈ h
n∑

k=−n
θ(tanh(kh)).

1

cosh2(kh)
= Ih,n.
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First theorem on integration (continued)

By a careful choice h (depending on n) and using the analyticity of
g we can obtain ∣∣∣∣In − ∫ 1

−1
θ(x)dx

∣∣∣∣ ≤ M

eA
√
n − 1

for some positive real constants A,M

and therefore∣∣∣∣Ilog22(n+1) −
∫ 1

−1
θ(x)dx

∣∣∣∣ ≤ M

(n + 1)A − 1
.
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Second theorem on integration

Theorem
Let a, b be M2-computable real numbers and θ : [a, b]× D → R
be uniformly MSO-computable.

Let there exist a real constant
A > 0, such that for any fixed y ∈ D, θ has an analytic
continuation defined in [a, b]× [−A,A] ⊆ C. Let there also exist a
polynomial P, such that |θ(x ± Bi , y)| ≤ P(|y |) for all
y ∈ D, x ∈ [a, b],B ≤ A. Then the real function I : D → R,
defined by

I (y) =

∫ b

a
θ(x , y)dx

is uniformly MSO-computable.

The proof follows the same argument. The important thing to
show is that the log-bounded sum of a uniformly MSO-computable
real function is again uniformly MSO-computable. This requires
the use of log-rudimentary operators.
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Third theorem on integration

Theorem
Let a be an M2-computable real number. Let θ : [a,+∞)→ R be
uniformly MSO-computable real function, which has an analytic
continuation defined in the half-plane Re(z) ≥ a.

Let there exist a
real constant A > 0 and a polynomial P, such that
|θ(x + yi)| ≤ P(|ξ|) for all ξ ≥ a, x ∈ [a, ξ], |y | ≤ A(ξ − a). Then
the real function I : [a,+∞)→ R, defined by

I (ξ) =

∫ ξ

a
θ(x)dx

is uniformly MSO-computable.

By the linear change x =
ξ − a

2
t +

ξ + a

2
we have

I (ξ) =

∫ ξ

a
θ(x)dx =

ξ − a

2

∫ 1

−1
θ

(
ξ − a

2
t +

ξ + a

2

)
dt

and we can apply the second theorem.
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Euler-Mascheroni constant

Theorem
Euler’s constant γ is M2-computable.

We use the following representation

γ = −
∫ ∞
0

e−x ln x dx .

This integral is the sum of the following two integrals:

I1 =

∫ ∞
1

e−x ln x dx ,

I2 =

∫ 1

0
e−x ln x dx =

∫ ∞
1

e−
1
t ln t

1

t2
dt,

which are easily seen to be M2-computable by using the third
theorem.
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Euler-Mascheroni constant (continued)

In fact, by a careful estimation of the error of approximation, we
can extract an actual sequence, which converges to γ with
subexponential rate.

Let φ(t) be the integrand of I2 and ψ(x) be
the integrand of I1 and let us define

A(n) =

√
e
√
n − 1

2
√
n

n∑
k=−n

θ

(
tanh(

k√
n

),
√
e
√
n − 1

)
1

cosh2( k√
n

)
,

where θ(u, ξ) = φ( ξ2 .u + ξ+2
2 )− ψ( ξ2 .u + ξ+2

2 ). Then

|A(n)− γ| ≤ (π + 3)
√
n + 7π + 16
√
e
√
n

for all n > 0.
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Conditional computability of real functions

Let k ∈ N, θ : D → R,D ⊆ Rk and O be a class of operators.

The real function θ is conditionally O-computable, if there exist a
(3k , 1)-operator E ∈ O and (3k , 2)-operators F ,G ,H ∈ O, such
that for all (ξ1, . . . , ξk) ∈ D and all triples (fi , gi , hi ) that name ξi
for i = 1, 2, . . . , k , the following two hold:

I There exists a natural number s satisfying the equality

E (f1, g1, h1, . . . , fk , gk , hk)(s) = 0.

I For any natural number s satisfying the above equality, the
triple (f̃ , g̃ , h̃) names the real number θ(ξ1, . . . , ξk), where

f̃ = λt.F (f1, g1, h1, . . . , fk , gk , hk)(s, t),

g̃ = λt.G (f1, g1, h1, . . . , fk , gk , hk)(s, t),

h̃ = λt.H(f1, g1, h1, . . . , fk , gk , hk)(s, t).
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The real function θ is conditionally O-computable, if there exist a
(3k , 1)-operator E ∈ O and (3k , 2)-operators F ,G ,H ∈ O, such
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Properties of conditional computability

All uniformly MSO-computable real functions are conditionally
MSO-computable, but not conversely.

All elementary functions of calculus, on their whole domains, are
conditionally MSO-computable.
Results in [3] show that

I Conditional MSO-computability is preserved by substitution.

I All conditionally MSO-computable real functions are locally
uniformly MSO-computable.

I On compact domains, conditional MSO-computability and
uniform MSO-computability are equivalent.

Moreover, the characterization theorem can be extended to show
that for a real function θ:

I θ is conditionally MSO-computable;

I θ is conditionally RO-computable;

I θ is conditionally LogRO-computable.
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Gamma function and Riemann zeta function

By using the results on integration, we can prove that the gamma
function

Γ(s) =

∫ ∞
0

x s−1e−x dx

is conditionally MSO-computable for s > 0.

It is even uniformly
MSO-computable, if regarded as a real function with domain
{(s, t) ∈ R2|0 < s ≤ 1, st ≥ 1}. A famous formula, which connects
the Gamma function and the Riemann zeta function is

ζ(s)Γ(s) =

∫ ∞
0

x s−1

ex − 1
dx

for s > 1. It can be shown that the right-hand side of this equality
is conditionally MSO-computable for s > 1. It follows that the
same is true for the Riemann zeta function.
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