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The aim of the paper is to apply an exponential trapezoidal quadrature rule to an
integral representation of the Euler-Mascheroni constant. The resulting sequence has
subexponential convergence rate and is particularly useful for estimating the subrecur-
sive complexity of the constant.
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1. INTRODUCTION

The Euler-Mascheroni constant is usually denoted by + and is defined by the
equality

n—oo

. ( 1 1 )
v=lim (1+-+---4+——Inn .
2 n

Since this sequence converges to 7y very slowly, it is not suitable for the effective
computation of . This is why other much faster methods are invented, like the
method of Karatsuba in [2], which is suitable to prove polynomial-time computabil-
ity of .

Our aim is to study the complexity of v in another context, namely the sub-
recursive class M2, contained in the third level £2 of Grzegorczyk’s hierarchy. It
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appears that the known methods for effective computation of « are not suitable in
this context.

The author has proven in [1] that 7 is M?-computable, as a consequence of
some results on M2-computability of integration. The aim of the present paper is
to extract an actual sequence from this proof, which converges to + with subexpo-
nential convergence rate. This will be done by a careful estimation of the error of
approximation.

The starting point is the following well-known representation

—'y:/ e *lnzdr.
0
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11:/ e*ﬂnxdz:f/ t~2e % Intdt,
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Ig:/ e “Inxdr,
1

Let us define

so that v = -1, — I5.

2. EXPONENTIAL TRAPEZOIDAL RULE

The trapezoidal quadrature rule is a famous method for numerical integration.
It approximates the definite integral of a real function over an interval with the
area of a trapezoid. In practice, the initial interval is split into sufficiently many
subintervals of equal length, the rule is applied to each one of them and the ob-
tained results are summed. It is known that in certain situations the result of this
method approaches the exact answer very quickly when increasing the number of
subintervals. This phenomenon is described in great detail in the paper [3]. The
results from Section 1.5 in [3] can be used to estimate the subrecursive complexity
of the integration operation. More concretely, the author has proved in [1] that the
definite integral of an analytic real function, belonging to a certain low subrecursive
class of computable real functions, is itself computable in this class. The steps in
this proof proceed as follows:

1. We start with a function 6, which is analytic on an open set of the com-
plex plane containing the interval [«, 5] and we wish to approximate I =

ff 0(z) dx.
2. By a linear change of variables we may assume [a, §] = [—1,1].

3. We apply the transformation « = tanh(¢) and thus we obtain the integral

+oo
I— /_ e(tanh(t))m};(t) dt.

(This is the so-called tanh-rule.)
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4. We discretise the integral by the trapezoidal quadrature rule with step h and
then truncate the obtained infinite series to its (two-way) n-th partial sum.

1
Finally, we put h = — and the result is

N

[n] _ - #—i 3 an i #
Ly =h Z e(tanh(kh))coshQ(kh) B \/ﬁk;ne <t h(\/ﬁ)) cosh*( %)

k=—n — vn

n
for every positive integer number n.

5. The error of the approximation is

M(2rm +4)

-1 <
| h|—€%\/ﬁ_17

where C, M depend on 0, o, 8 only. (See the proof of Theorem 5.3 in [1].)

3. APPROXIMATION OF I,

Let ¢ : [1,00) = R be defined by
o(t) =t 2e 7 Int.

Lemma 1. For any fized £ > 0, the function ¢ has an analytic continuation
to an open set of the complex plane C containing the set

Dg—{zeC‘Reze[l,f—i—lL Imz e {—g,g}} (1)

Moreover, |¢(z)] <In(€+ 1)+ for z€ Dg.

Proof. The first claim is obviously true, assuming the principal value of the
logarithmic function with branch cut the non-positive real numbers. In fact, ¢ has
an analytic continuation defined on the whole halfplane Re z > 0.

Now we estimate |¢(z)|, z € D¢. Let £ > 0 and z € Dg, where z = x + Bi with
1<xz<&+1and |B|§%. We have

1

()] = le™= .| In 2.

For the first two factors we have
1 1 1

|22 2?2+ B2~ 1+B%2~ "7

\e_%\ = eRe(-2) = 7757 < 1.
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The third factor is estimated as follows:

|Inz| = \/In?|z| + Arg? z < |In|2|| + | Arg 2|

<-ln@@*+B*)+7< %ln((f +1)2 +

52
Tt

<

N — N —

ln(Z(ﬁ 1)) 4 <In(E+1) + g

The result follows trivially. O
We replace the integral —I; = floo o(t) dt by
e

1

where £ > 0 will be specified later. For the truncation error e;(§) we have (using
that e=® < 1 for any > 0)

T 1 a1 -
61(5):/ t™e tlntdt:/ (—Inz)e *dx
3 0

+1

S CIn(é+1)+1
S/o ( lnx)dx—ig_i_l .

Following the steps from the previous section we have

1
=5 [ oo

where )
+
o0, =0 (Gt £57).
Then we approximate Jg by
£1 <& ( k ) 1
Jl, =2— tanh(—),¢ | ———.
&= ovm 2 )

In the proof of Theorem 5.3 in [1] we can arrange A’ = 1,a = %,C’ =1 and by

Lemma 1 we obtain

E(n(E+1)+F)(2r+4)
2

|[Je = Jen| < P

for any £ > 0 and positive integer number n.

188 Ann. Sofia Univ., Fac. Math and Inf., 104, 2017, 185-191.



4. APPROXIMATION OF I,

Let 9 : [1,00) — R be defined by
Y(r) =e “Inz.

Lemma 2. For any fized £ > 0, the function ¥ has an analytic continuation
to an open set in C containing the set D¢ defined in (1).

Moreover, |(z)] <In(€+1)+ I for z€ Dg.

Proof. Analogous to the proof of Lemma 1, this time using that

|67z| _ 6Re(fz) — e~ Re(z) <1,

for any complex number z with Rez > 0. O

We replace I> by
) E+1
JE = /1 V(@) dr,

where £ > 0. For the error e5(€) after this replacement we have (using lnx < z for
any real number x > 1)

oo oo 2
ea (&) = / e Plnxdt < / e fx dx = E;rH .
£+1 £+1 €

Following the steps from Section 2 we have

1
Jg = g[lwl(uag) du7

where
(w9 = (Sur 2.

Then we approximate Jg by

£l & k 1
J2 o =2— Z 1 | tanh(—=),§ | ————.
&n 1 ) 12/ k
2y/n P Vn cosh (ﬁ)
Again we can arrange C' = 1 in the proof of Theorem 5.3 in [1] and similarly obtain
(In(é+1)+ I)(2mr +4)
evn —1

2 12 §
[JE = Teul < 5

for any £ > 0 and positive integer number n.
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5. MAIN RESULT

After approximating —I; by ng,n and Is by Jg,n’ we are ready to approximate
v = —I1 — I> and estimate the error of the approximation by choosing a suitable &
depending on n.

lnx+1
Let p(x) = + . It is easy to see that p is decreasing in the interval
x

[1,400). Therefore,

ea(§) = p(et™) < p(€+1) = ex(§),

since eft1 > ¢ + 1 for £ > 0.

Now the approximation of v by ng,n — Jg)n leads to an error, which is bounded
above by

EMmE+D+5)Cr+4) _ (In(€ +1) + F) (27 +4)

61(€)+€2(§)+2§ 1 < 2e1(€) + o

for any £ > 0 and any positive integer number n. To produce the desired sequence
A, we choose £ = \/E‘/ﬁ — 1 to obtain

vn n
— 1 n 1
A(TL) = J{ljn — Jén = \/> Z (tanh 7) \/>\/7 ) m,
k=—n vn

where 0(u, &) = ¢1(u, &) — 1 (u, §).

For any positive integer n, the error of approximation of v by A(n) satisfies

e\/ﬁ— 1 n 7 T
A(n) — 4] < 2en (e — 1)+ Y° ”SXﬁt”@ +4)

_ 2(3y/n+1) +(f+7)(7r+2) (m+3)y/n+Tr + 16
veV" veter T e

6. CONCLUSION

The sequence A is suitable for proving M?2-computability of «. It turns out
that the sequence B, defined by

B(m) = A([logy(m +1)]?),

is M?-computable and has polynomial convergence rate.

Unfortunately, the expression for the general term of A is too complex to be
used in practice for computation of many decimal digits of . Simple numerical
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experiments with Simulink/Matlab using high precision calculations give 18 correct
decimal digits for n = 10000 and 30 correct decimal digits for n = 25000.
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