Definability of jump operator in the ω-enumeration degrees

Andrey Sariev
(joint work with Hristo Ganchev ${ }^{1}$)

Sofia University
Sofia, Bulgaria
PLS 11,
Delphi, 2017

[^0]
ω-enumeration reducibility and degrees

- For a given sequence $\mathcal{A}=\left\{A_{k}\right\}_{k<\omega}$ of sets of natural numbers, denote

$$
J(\mathcal{A})=\left\{\operatorname{deg}_{T}(X): A_{k} \leq_{\text {c.e. }} X_{T}^{(k)} \text { uniformly in } k\right\} .
$$

$$
\begin{aligned}
& \mathcal{A} \leq_{\omega} \mathcal{B} \Longleftrightarrow J(\mathcal{B}) \subseteq J(\mathcal{A}) ; \\
& \mathcal{A} \equiv_{\omega} \mathcal{B} \Longleftrightarrow J(\mathcal{B})=J(\mathcal{A}) .
\end{aligned}
$$

- Given sequence of sets of natural numbers \mathcal{A}, set $\operatorname{deg}_{\omega}(\mathcal{A})=\left\{\mathcal{B}: \mathcal{B} \equiv_{\omega} \mathcal{A}\right\} ;$
- Denote by \mathcal{D}_{ω} the set of all ω-enumeration degrees.

ω-enumeration reducibility and degrees

- For a given sequence $\mathcal{A}=\left\{A_{k}\right\}_{k<\omega}$ of sets of natural numbers, denote

$$
J(\mathcal{A})=\left\{\operatorname{deg}_{T}(X): A_{k} \leq_{\text {c.e. }} X_{T}^{(k)} \text { uniformly in } k\right\} .
$$

$$
\begin{aligned}
& \mathcal{A} \leq_{\omega} \mathcal{B} \Longleftrightarrow J(\mathcal{B}) \subseteq J(\mathcal{A}) ; \\
& \mathcal{A} \equiv_{\omega} \mathcal{B} \Longleftrightarrow J(\mathcal{B})=J(\mathcal{A}) .
\end{aligned}
$$

- Given sequence of sets of natural numbers \mathcal{A}, set $\operatorname{deg}_{\omega}(\mathcal{A})=\left\{\mathcal{B}: \mathcal{B} \equiv_{\omega} \mathcal{A}\right\} ;$
- Denote by \mathcal{D}_{ω} the set of all ω-enumeration degrees.

ω-enumeration reducibility and degrees

- For a given sequence $\mathcal{A}=\left\{A_{k}\right\}_{k<\omega}$ of sets of natural numbers, denote

$$
\begin{aligned}
& J(\mathcal{A})=\left\{\operatorname{deg}_{T}(X): A_{k} \leq_{\text {c.e. }} X_{T}^{(k)} \text { uniformly in } k\right\} . \\
& \mathcal{A} \leq_{\omega} \mathcal{B} \Longleftrightarrow J(\mathcal{B}) \subseteq J(\mathcal{A}) ; \\
& \mathcal{A} \equiv_{\omega} \mathcal{B} \Longleftrightarrow J(\mathcal{B})=J(\mathcal{A}) .
\end{aligned}
$$

- Given sequence of sets of natural numbers \mathcal{A}, set $\operatorname{deg}_{\omega}(\mathcal{A})=\left\{\mathcal{B}: \mathcal{B} \equiv_{\omega} \mathcal{A}\right\} ;$
- Denote by \mathcal{D}_{ω} the set of all ω-enumeration degrees.

ω-enumeration reducibility and degrees

\mathcal{D}_{ω} is an upper semi-lattice:

- partial order: $\operatorname{deg}_{\omega}(\mathcal{A}) \leq \operatorname{deg}_{\omega}(\mathcal{B}) \Longleftrightarrow \mathcal{A} \leq \omega \mathcal{B}$;
- least element: $\mathbf{0}_{\omega}=\operatorname{deg}_{\omega}\left(\{\emptyset\}_{k<\omega}\right)$;
- I.u.b.: $\operatorname{deg}_{\omega}\left(\left\{A_{k}\right\}_{k<\omega}\right) \vee \operatorname{deg}_{\omega}\left(\left\{B_{k}\right\}_{k<\omega}\right)=\operatorname{deg}_{\omega}\left(\left\{A_{k} \oplus B_{k}\right\}_{k<\omega}\right)$.

ω-enumeration reducibility and degrees

\mathcal{D}_{ω} is an upper semi-lattice:

- partial order: $\operatorname{deg}_{\omega}(\mathcal{A}) \leq \operatorname{deg}_{\omega}(\mathcal{B}) \Longleftrightarrow \mathcal{A} \leq_{\omega} \mathcal{B}$;
- least element: $0_{\omega}=\operatorname{deg}_{\omega}\left(\{\phi\}_{k<\omega}\right)$;
- I.u.b.: $\operatorname{deg}_{\omega}\left(\left\{A_{k}\right\}_{k<\omega}\right) \vee \operatorname{deg}_{\omega}\left(\left\{B_{k}\right\}_{k<\omega}\right)=\operatorname{deg}_{\omega}\left(\left\{A_{k} \oplus B_{k}\right\}_{k<\omega}\right)$.

ω-enumeration reducibility and degrees

\mathcal{D}_{ω} is an upper semi-lattice:

- partial order: $\operatorname{deg}_{\omega}(\mathcal{A}) \leq \operatorname{deg}_{\omega}(\mathcal{B}) \Longleftrightarrow \mathcal{A} \leq_{\omega} \mathcal{B}$;
- least element: $\mathbf{0}_{\omega}=\operatorname{deg}_{\omega}\left(\{\emptyset\}_{k<\omega}\right)$;
- l.u.b.: $\operatorname{deg}_{\omega}\left(\left\{A_{k}\right\}_{k<\omega}\right) \vee \operatorname{deg}_{\omega}\left(\left\{B_{k}\right\}_{k<\omega}\right)=\operatorname{deg} \omega\left(\left\{A_{k} \oplus B_{k}\right\}_{k<\omega}\right)$.

ω-enumeration reducibility and degrees

\mathcal{D}_{ω} is an upper semi-lattice:

- partial order: $\operatorname{deg}_{\omega}(\mathcal{A}) \leq \operatorname{deg}_{\omega}(\mathcal{B}) \Longleftrightarrow \mathcal{A} \leq_{\omega} \mathcal{B}$;
- least element: $\mathbf{0}_{\omega}=\operatorname{deg} g_{\omega}\left(\{\emptyset\}_{k<\omega}\right)$;
- l.u.b.: $\operatorname{deg}_{\omega}\left(\left\{A_{k}\right\}_{k<\omega}\right) \vee \operatorname{deg}_{\omega}\left(\left\{B_{k}\right\}_{k<\omega}\right)=\operatorname{deg}_{\omega}\left(\left\{A_{k} \oplus B_{k}\right\}_{k<\omega}\right)$.

jump operation, jump inversion

- Define $\left(A_{0}, A_{1}, A_{2}, \ldots, A_{n}, \ldots\right)^{\prime}=\left(A_{0}^{\prime} \oplus A_{1}, A_{2}, \ldots, A_{n}, \ldots\right)$;
- $\mathcal{A}<{ }_{\omega} \mathcal{A}^{\prime}$ and $\mathcal{A} \leq \omega \mathcal{B} \Rightarrow \mathcal{A}^{\prime} \leq{ }_{\omega} \mathcal{B}^{\prime}$;
- $\operatorname{deg}_{\omega}(\mathcal{A})^{\prime}=\operatorname{deg}_{\omega}\left(\mathcal{A}^{\prime}\right)$; $\left\{\emptyset^{(k+1)}\right\}_{k<\omega} \in 0_{\omega}^{\prime}$.
- least jump inversion:

For each $\mathrm{a} \in \mathcal{D}_{\omega}$ above $\mathbf{0}_{\omega}^{(n)}$ there exists a least solution to the equation

jump operation, jump inversion

- Define $\left(A_{0}, A_{1}, A_{2}, \ldots, A_{n}, \ldots\right)^{\prime}=\left(A_{0}^{\prime} \oplus A_{1}, A_{2}, \ldots, A_{n}, \ldots\right)$;
- $\mathcal{A}<_{\omega} \mathcal{A}^{\prime}$ and $\mathcal{A} \leq_{\omega} \mathcal{B} \Rightarrow \mathcal{A}^{\prime} \leq_{\omega} \mathcal{B}^{\prime}$;
- $\operatorname{deg}_{\omega}(\mathcal{A})^{\prime}=\operatorname{deg} \omega\left(\mathcal{A}^{\prime}\right)$; $\left\{\emptyset^{(k+1)}\right\}_{k<\omega} \in 0_{\omega}^{\prime}$.
- least jump inversion:

For each $\mathrm{a} \in \mathcal{D}_{\omega}$ above $0_{\omega}^{(n)}$ there exists a least solution to the equation

jump operation, jump inversion

- Define $\left(A_{0}, A_{1}, A_{2}, \ldots, A_{n}, \ldots\right)^{\prime}=\left(A_{0}^{\prime} \oplus A_{1}, A_{2}, \ldots, A_{n}, \ldots\right)$;
- $\mathcal{A}<{ }_{\omega} \mathcal{A}^{\prime}$ and $\mathcal{A} \leq_{\omega} \mathcal{B} \Rightarrow \mathcal{A}^{\prime} \leq_{\omega} \mathcal{B}^{\prime}$;
- $\operatorname{deg}_{\omega}(\mathcal{A})^{\prime}=\operatorname{deg}_{\omega}\left(\mathcal{A}^{\prime}\right)$;
$\left\{\emptyset^{(k+1)}\right\}_{k<\omega} \in \mathbf{0}_{\omega}^{\prime}$.
- least jump inversion:

For each $\mathbf{a} \in \mathcal{D}_{\omega}$ above $\mathbf{0}_{\omega}^{(n)}$ there exists a least solution to the equation

jump operation, jump inversion

- Define $\left(A_{0}, A_{1}, A_{2}, \ldots, A_{n}, \ldots\right)^{\prime}=\left(A_{0}^{\prime} \oplus A_{1}, A_{2}, \ldots, A_{n}, \ldots\right)$;
- $\mathcal{A}<{ }_{\omega} \mathcal{A}^{\prime}$ and $\mathcal{A} \leq_{\omega} \mathcal{B} \Rightarrow \mathcal{A}^{\prime} \leq{ }_{\omega} \mathcal{B}^{\prime}$;
- $\operatorname{deg}_{\omega}(\mathcal{A})^{\prime}=\operatorname{deg}_{\omega}\left(\mathcal{A}^{\prime}\right)$; $\left\{\emptyset^{(k+1)}\right\}_{k<\omega} \in \mathbf{0}_{\omega}^{\prime}$.
- least jump inversion:

For each $\mathbf{a} \in \mathcal{D}_{\omega}$ above $\mathbf{0}_{\omega}^{(n)}$ there exists a least solution to the equation

$$
\mathbf{x}^{(n)}=\mathbf{a} .
$$

Embedding of enumeration degrees. Definability

- $\kappa: \mathcal{D}_{e} \rightarrow \mathcal{D}_{\omega}$ defined by

$$
\kappa\left(\operatorname{deg}_{e}(A)\right)=\operatorname{deg}_{\omega}(A, \emptyset, \ldots, \emptyset, \ldots)
$$

is an embedding which preserves:

- the order: $\mathbf{x} \leq \mathbf{y} \Longrightarrow \kappa(\mathbf{x}) \leq \kappa(\mathbf{y})$,
- the l.u.b. operation: $\kappa(\mathbf{x} \vee \mathbf{y})=\kappa(\mathbf{x}) \vee \kappa(\mathbf{y})$,
- and the jump: $\kappa\left(\mathbf{x}^{\prime}\right)=\kappa(\mathbf{x})^{\prime}$;
- the range of κ is denoted by $\mathbf{D}_{1}, \mathbf{D}_{1}=\kappa\left[\mathcal{D}_{e}\right]$;
(Soskov, Ganchev) D_{1} is definable in \mathcal{D}_{ω} by a first-order formula in the language $\mathcal{L}\left(\leq,{ }^{\prime}\right)$;
- (Soskov, Ganchev) $\operatorname{Aut}\left(\mathcal{D}_{e}\right) \cong \operatorname{Aut}\left(\mathcal{D}_{\omega}^{\prime}\right)$;

Embedding of enumeration degrees. Definability

- $\kappa: \mathcal{D}_{e} \rightarrow \mathcal{D}_{\omega}$ defined by

$$
\kappa\left(\operatorname{deg}_{e}(A)\right)=\operatorname{deg}_{\omega}(A, \emptyset, \ldots, \emptyset, \ldots)
$$

is an embedding which preserves:

- the order: $\mathbf{x} \leq \mathbf{y} \Longrightarrow \kappa(\mathbf{x}) \leq \kappa(\mathbf{y})$,
- the l.u.b. operation: $\kappa(\mathbf{x} \vee \mathbf{y})=\kappa(\mathbf{x}) \vee \kappa(\mathbf{y})$,
- and the jump: $\kappa\left(\mathbf{x}^{\prime}\right)=\kappa(\mathbf{x})^{\prime}$;
- the range of κ is denoted by $\mathbf{D}_{1}, \mathbf{D}_{1}=\kappa\left[\mathcal{D}_{e}\right]$;
- (Soskov, Ganchev) D_{1} is definable in \mathcal{D}_{ω} by a first-order formula in the language $\mathcal{L}\left(\leq,{ }^{\prime}\right)$;
- (Soskov, Ganchev) $\operatorname{Aut}\left(\mathcal{D}_{e}\right) \cong \operatorname{Aut}\left(\mathcal{D}_{\omega}^{\prime}\right)$;

Embedding of enumeration degrees. Definability

- $\kappa: \mathcal{D}_{e} \rightarrow \mathcal{D}_{\omega}$ defined by

$$
\kappa\left(\operatorname{deg}_{e}(A)\right)=\operatorname{deg}_{\omega}(A, \emptyset, \ldots, \emptyset, \ldots)
$$

is an embedding which preserves:

- the order: $\mathbf{x} \leq \mathbf{y} \Longrightarrow \kappa(\mathbf{x}) \leq \kappa(\mathbf{y})$,
- the l.u.b. operation: $\kappa(\mathbf{x} \vee \mathbf{y})=\kappa(\mathbf{x}) \vee \kappa(\mathbf{y})$,
- and the jump: $\kappa\left(\mathbf{x}^{\prime}\right)=\kappa(\mathbf{x})^{\prime}$;
- the range of κ is denoted by $\mathbf{D}_{1}, \mathbf{D}_{1}=\kappa\left[\mathcal{D}_{e}\right]$;
- (Soskov, Ganchev) D_{1} is definable in \mathcal{D}_{ω} by a first-order formula in the language $\mathcal{L}\left(\leq,{ }^{\prime}\right)$;
- (Soskov, Ganchev) $\operatorname{Aut}\left(\mathcal{D}_{e}\right) \cong \operatorname{Aut}\left(\mathcal{D}_{\omega}^{\prime}\right)$;

Embedding of enumeration degrees. Definability

- $\kappa: \mathcal{D}_{e} \rightarrow \mathcal{D}_{\omega}$ defined by

$$
\kappa\left(\operatorname{deg}_{e}(A)\right)=\operatorname{deg}_{\omega}(A, \emptyset, \ldots, \emptyset, \ldots)
$$

is an embedding which preserves:

- the order: $\mathbf{x} \leq \mathbf{y} \Longrightarrow \kappa(\mathbf{x}) \leq \kappa(\mathbf{y})$,
- the l.u.b. operation: $\kappa(\mathbf{x} \vee \mathbf{y})=\kappa(\mathbf{x}) \vee \kappa(\mathbf{y})$,
- and the jump: $\kappa\left(\mathbf{x}^{\prime}\right)=\kappa(\mathbf{x})^{\prime}$;
- the range of κ is denoted by $\mathbf{D}_{1}, \mathbf{D}_{1}=\kappa\left[\mathcal{D}_{e}\right]$;
- (Soskov, Ganchev) D_{1} is definable in \mathcal{D}_{ω} by a first-order formula in the language $\mathcal{L}\left(\leq,{ }^{\prime}\right)$;
- (Soskov, Ganchev) $\operatorname{Aut}\left(\mathcal{D}_{e}\right) \cong \operatorname{Aut}\left(\mathcal{D}_{\omega}^{\prime}\right)$;

A property of the least enumeration degree

- $\mathbf{0}_{e}$ is the only enumeration degree \mathbf{x}, such that:

$$
(\forall \mathbf{y})\left[\mathbf{x} \vee \mathbf{y} \geq \mathbf{0}_{e}{ }^{\prime} \rightarrow \mathbf{y} \geq \mathbf{0}_{e}{ }^{\prime}\right]
$$

- (Ganchev, M. Soskova) for every nonzero enumeration degree u $\in \mathcal{D}_{e}$, \mathbf{u}^{\prime} is the greatest among the all least upper bounds $\mathbf{a} \vee \mathbf{b}$ of nontrivial \mathcal{K}-pairs $\{\mathrm{a}, \mathrm{b}\}$, such that $\mathrm{a} \leq_{e} \mathrm{u}$.

A property of the least enumeration degree

- $\mathbf{0}_{e}$ is the only enumeration degree x , such that:

$$
(\forall \mathbf{y})\left[\mathbf{x} \vee \mathbf{y} \geq \mathbf{0}_{e}{ }^{\prime} \rightarrow \mathbf{y} \geq \mathbf{0}_{e}{ }^{\prime}\right]
$$

- (Ganchev, M. Soskova) for every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_{e}$, \mathbf{u}^{\prime} is the greatest among the all least upper bounds $\mathbf{a} \vee \mathbf{b}$ of nontrivial \mathcal{K}-pairs $\{\mathbf{a}, \mathbf{b}\}$, such that $\mathbf{a} \leq_{e} \mathbf{u}$.

Definability of the enumeration degrees

- What is the class of ω-enumeration degrees, defined by the above formula?
- $D_{1}=\left\{x \in D_{\omega} \mid\left(\exists\left\{X_{k}\right\}_{k<\omega} \in x\right)\left[X_{0}=\emptyset\right] ;\right.$
- (Ganchev, S.): 0_{ω}^{\prime} is first-order definable in \mathcal{D}_{ω};
- D_{1} is first-order definable in \mathcal{D}_{ω} :
- $\mu(a)$ is the least (ω-enumeration) degree x, for which exists degree $y \in D_{1}$ s.t. $\quad x \vee y=a . ;$
- $\left\{A_{k}\right\}_{k<\omega} \in \mathbf{a} \Longrightarrow\left(A_{0}, \emptyset, \ldots, \emptyset, \ldots\right) \in \mu(a) ;$
- $D_{1}=\left\{\mu(a) \mid a \in \mathcal{D}_{\omega}\right\}$ is first-order definable;

Definability of the enumeration degrees

- What is the class of ω-enumeration degrees, defined by the above formula?
- $\mathbf{D}_{1}=\left\{\mathbf{x} \in \mathbf{D}_{\omega} \mid\left(\exists\left\{X_{k}\right\}_{k<\omega} \in \mathbf{x}\right)\left[X_{0}=\emptyset\right] ;\right.$
- (Ganchev, S.): 0_{ω}^{\prime} is first-order definable in \mathcal{D}_{ω};
- D_{1} is first-order definable in \mathcal{D}_{ω};
- $\mu(\mathbf{a})$ is the least (ω-enumeration) degree x , for which exists degree
- $\left\{A_{k}\right\}_{k<\omega} \in \mathbf{a} \Longrightarrow\left(A_{0}, \emptyset, \ldots, \emptyset, \ldots\right) \in \mu(\mathbf{a})$;
- $D_{1}=\left\{\mu(a) \mid a \in \mathcal{D}_{\omega}\right\}$ is first-order definable;

Definability of the enumeration degrees

- What is the class of ω-enumeration degrees, defined by the above formula?
- $\mathbf{D}_{1}=\left\{\mathbf{x} \in \mathbf{D}_{\omega} \mid\left(\exists\left\{X_{k}\right\}_{k<\omega} \in \mathbf{x}\right)\left[X_{0}=\emptyset\right] ;\right.$
- (Ganchev, S.): $\mathbf{0}_{\omega}^{\prime}$ is first-order definable in \mathcal{D}_{ω};
- D_{1} is first-order definable in \mathcal{D}_{ω};
- $\mu(\mathbf{a})$ is the least (ω-enumeration) degree \mathbf{x}, for which exists degree
- $\left\{A_{k}\right\}_{k<\omega} \in \mathrm{a} \Longrightarrow\left(A_{0}, \emptyset, \ldots, \emptyset, \ldots\right) \in \mu(\mathrm{a})$;
- $\mathbf{D}_{1}=\left\{\mu(\mathbf{a}) \mid \mathbf{a} \in \mathcal{D}_{\omega}\right\}$ is first-order definable;

Definability of the enumeration degrees

- What is the class of ω-enumeration degrees, defined by the above formula?
- $\widetilde{\mathbf{D}_{1}}=\left\{\mathbf{x} \in \mathbf{D}_{\omega} \mid\left(\exists\left\{X_{k}\right\}_{k<\omega} \in \mathbf{x}\right)\left[X_{0}=\emptyset\right] ;\right.$
- (Ganchev, S.): $\mathbf{0}_{\omega}^{\prime}$ is first-order definable in \mathcal{D}_{ω};
- D_{1} is first-order definable in \mathcal{D}_{ω};
- $\mu(a)$ is the least (ω-enumeration) degree x , for which exists degree
- $\left\{A_{k}\right\}_{k<\omega} \in \mathbf{a} \Longrightarrow\left(A_{0}, \emptyset, \ldots, \emptyset, \ldots\right) \in \mu(\mathbf{a})$;
- $D_{1}=\left\{\mu(a) \mid a \in \mathcal{D}_{\omega}\right\}$ is first-order definable;

Definability of the enumeration degrees

- What is the class of ω-enumeration degrees, defined by the above formula?
- $\widetilde{\mathbf{D}_{1}}=\left\{\mathbf{x} \in \mathbf{D}_{\omega} \mid\left(\exists\left\{X_{k}\right\}_{k<\omega} \in \mathbf{x}\right)\left[X_{0}=\emptyset\right] ;\right.$
- (Ganchev, S.): $\mathbf{0}_{\omega}^{\prime}$ is first-order definable in \mathcal{D}_{ω};
- $\widetilde{\mathrm{D}}_{1}$ is first-order definable in \mathcal{D}_{ω};
- $\mu(\mathbf{a})$ is the least (ω-enumeration) degree \mathbf{x}, for which exists degree $y \in \widetilde{D_{1}}$ s.t. $\quad x \vee y=a$.;
- $D_{1}=\left\{\mu(a) \mid a \in \mathcal{D}_{\omega}\right\}$ is first-order definable;

Definability of the enumeration degrees

- What is the class of ω-enumeration degrees, defined by the above formula?
- $\widetilde{\mathbf{D}_{1}}=\left\{\mathbf{x} \in \mathbf{D}_{\omega} \mid\left(\exists\left\{X_{k}\right\}_{k<\omega} \in \mathbf{x}\right)\left[X_{0}=\emptyset\right] ;\right.$
- (Ganchev, S.): $\mathbf{0}_{\omega}^{\prime}$ is first-order definable in \mathcal{D}_{ω};
- $\widetilde{\mathrm{D}_{1}}$ is first-order definable in \mathcal{D}_{ω};
- $\mu(\mathbf{a})$ is the least (ω-enumeration) degree \mathbf{x}, for which exists degree $\mathbf{y} \in \widetilde{\mathbf{D}_{1}}$ s.t. $\quad \mathbf{x} \vee \mathbf{y}=\mathbf{a}$.;
- $\left\{A_{k}\right\}_{k<\omega} \in \mathbf{a} \Longrightarrow\left(A_{0}, \emptyset, \ldots, \emptyset, \ldots\right) \in \mu(\mathbf{a})$;
- $D_{1}=\left\{\mu(a) \mid a \in \mathcal{D}_{\omega}\right\}$ is first-order definable;

Definability of the enumeration degrees

- What is the class of ω-enumeration degrees, defined by the above formula?
- $\widetilde{\mathbf{D}_{1}}=\left\{\mathbf{x} \in \mathbf{D}_{\omega} \mid\left(\exists\left\{X_{k}\right\}_{k<\omega} \in \mathbf{x}\right)\left[X_{0}=\emptyset\right] ;\right.$
- (Ganchev, S.): $\mathbf{0}_{\omega}^{\prime}$ is first-order definable in \mathcal{D}_{ω};
- $\widetilde{\mathrm{D}_{1}}$ is first-order definable in \mathcal{D}_{ω};
- $\mu(\mathbf{a})$ is the least (ω-enumeration) degree \mathbf{x}, for which exists degree $\mathbf{y} \in \widetilde{\mathbf{D}_{1}}$ s.t. $\quad \mathbf{x} \vee \mathbf{y}=\mathbf{a}$.;
- $\left\{A_{k}\right\}_{k<\omega} \in \mathbf{a} \Longrightarrow\left(A_{0}, \emptyset, \ldots, \emptyset, \ldots\right) \in \mu(\mathbf{a})$;
- $\mathbf{D}_{1}=\left\{\mu(\mathbf{a}) \mid \mathbf{a} \in \mathcal{D}_{\omega}\right\}$ is first-order definable;

Definability of the jump

- Definability of the jump operation is equivalent to the definability of D_{1}
- (Kalimullin) The jump is definable in the substructure $\left(\mathrm{D}_{1}, \leq\right)$;
(2) (Ganchev) for each $\mathrm{a} \in \mathcal{D}_{w}$, there are $\mathrm{x}, \mathrm{y} \in \mathrm{D}_{1}$, s. t.

$$
a=x \wedge y
$$

(3) (Ganchev) the jump preserves the g.l.b. operation:

- The jump operation is definable in the structure of the ω-enumeration degrees.

Definability of the jump

- Definability of the jump operation is equivalent to the definability of D_{1}
- (1) (Kalimullin) The jump is definable in the substructure $\left(\mathbf{D}_{1}, \leq\right)$;
(3) (Ganchev) the jump preserves the g.l.b. operation:
- The jump operation is definable in the structure of the ω-enumeration degrees.

Definability of the jump

- Definability of the jump operation is equivalent to the definability of D_{1}
- (1) (Kalimullin) The jump is definable in the substructure $\left(\mathbf{D}_{1}, \leq\right)$;
(2) (Ganchev) for each $\mathbf{a} \in \mathcal{D}_{\omega}$, there are $\mathbf{x}, \mathbf{y} \in \mathbf{D}_{1}$, s. t.

$$
\mathbf{a}=\mathbf{x} \wedge \mathbf{y}
$$

(3) (Ganchev) the jump preserves the g.l.b. operation:

- The jump operation is definable in the structure of the ω-enumeration degrees.

Definability of the jump

- Definability of the jump operation is equivalent to the definability of D_{1}
- (1) (Kalimullin) The jump is definable in the substructure $\left(\mathbf{D}_{1}, \leq\right)$;
(2) (Ganchev) for each $\mathbf{a} \in \mathcal{D}_{\omega}$, there are $\mathbf{x}, \mathbf{y} \in \mathbf{D}_{1}$, s. t.

$$
\mathbf{a}=\mathbf{x} \wedge \mathbf{y}
$$

(3) (Ganchev) the jump preserves the g.I.b. operation:

$$
\mathbf{a}=\mathbf{x} \wedge \mathbf{y} \Longrightarrow \mathbf{a}^{\prime}=\mathbf{x}^{\prime} \wedge \mathbf{y}^{\prime}
$$

- The jump operation is definable in the structure of the ω-enumeration degrees.

Definability of the jump

- Definability of the jump operation is equivalent to the definability of D_{1}
- (1) (Kalimullin) The jump is definable in the substructure $\left(\mathbf{D}_{1}, \leq\right)$;
(2) (Ganchev) for each $\mathbf{a} \in \mathcal{D}_{\omega}$, there are $\mathbf{x}, \mathbf{y} \in \mathbf{D}_{1}$, s. t.

$$
\mathbf{a}=\mathbf{x} \wedge \mathbf{y}
$$

(3) (Ganchev) the jump preserves the g.I.b. operation:

$$
\mathbf{a}=\mathbf{x} \wedge \mathbf{y} \Longrightarrow \mathbf{a}^{\prime}=\mathbf{x}^{\prime} \wedge \mathbf{y}^{\prime}
$$

- The jump operation is definable in the structure of the ω-enumeration degrees.

Thank You!

[^0]: ${ }^{1}$ The authors were partially supported by an BNSF MON Grant No. DN02/16 and by Sofia University Science Fund, project 80-10-147/21.04.2017

