Definability of jump operator in the ω -enumeration degrees

Andrey Sariev (joint work with Hristo Ganchev¹)

Sofia University Sofia, Bulgaria

PLS 11, Delphi, 2017

Andrey Sariev (SU)

Definability of the jump in \mathcal{D}_{ω}

PLS 11, 2017 1 / 9

• For a given sequence $\mathcal{A} = \{A_k\}_{k < \omega}$ of sets of natural numbers, denote

$$J(\mathcal{A}) = \{ deg_{\mathcal{T}}(X) : A_k \leq_{c.e.} X_{\mathcal{T}}^{(k)} \text{ uniformly in } k \}.$$

$$\mathcal{A} \leq_{\omega} \mathcal{B} \iff J(\mathcal{B}) \subseteq J(\mathcal{A});$$
$$\mathcal{A} \equiv_{\omega} \mathcal{B} \iff J(\mathcal{B}) = J(\mathcal{A}).$$

- Given sequence of sets of natural numbers A, set deg_ω(A) = {B : B ≡_ω A};
- Denote by \mathcal{D}_{ω} the set of all ω -enumeration degrees.

• For a given sequence $\mathcal{A} = \{A_k\}_{k < \omega}$ of sets of natural numbers, denote

$$J(\mathcal{A}) = \{ deg_{\mathcal{T}}(X) : A_k \leq_{c.e.} X_{\mathcal{T}}^{(k)} ext{ uniformly in } k \}.$$

$$\mathcal{A} \leq_{\omega} \mathcal{B} \iff J(\mathcal{B}) \subseteq J(\mathcal{A});$$

 $\mathcal{A} \equiv_{\omega} \mathcal{B} \iff J(\mathcal{B}) = J(\mathcal{A}).$

 Given sequence of sets of natural numbers A, set deg_ω(A) = {B : B ≡_ω A};

• Denote by \mathcal{D}_{ω} the set of all ω -enumeration degrees.

< □ > < □ > < □ > < □ > < □ > < □ >

 $\bullet\,$ For a given sequence $\mathcal{A}=\{A_k\}_{k<\omega}$ of sets of natural numbers, denote

$$J(\mathcal{A}) = \{ deg_{\mathcal{T}}(X) : A_k \leq_{c.e.} X_{\mathcal{T}}^{(k)} \text{ uniformly in } k \}.$$

$$\mathcal{A} \leq_{\omega} \mathcal{B} \iff J(\mathcal{B}) \subseteq J(\mathcal{A});$$

 $\mathcal{A} \equiv_{\omega} \mathcal{B} \iff J(\mathcal{B}) = J(\mathcal{A}).$

- Given sequence of sets of natural numbers A, set deg_ω(A) = {B : B ≡_ω A};
- Denote by \mathcal{D}_{ω} the set of all ω -enumeration degrees.

\mathcal{D}_ω is an upper semi-lattice:

- partial order: $deg_{\omega}(\mathcal{A}) \leq deg_{\omega}(\mathcal{B}) \iff \mathcal{A} \leq_{\omega} \mathcal{B};$
- least element: $\mathbf{0}_{\omega} = deg_{\omega}(\{\emptyset\}_{k < \omega});$
- I.u.b.: $deg_{\omega}(\{A_k\}_{k<\omega}) \vee deg_{\omega}(\{B_k\}_{k<\omega}) = deg_{\omega}(\{A_k \oplus B_k\}_{k<\omega}).$

- \mathcal{D}_{ω} is an upper semi-lattice:
 - partial order: $deg_{\omega}(\mathcal{A}) \leq deg_{\omega}(\mathcal{B}) \iff \mathcal{A} \leq_{\omega} \mathcal{B};$
 - least element: $\mathbf{0}_{\omega} = deg_{\omega}(\{\emptyset\}_{k < \omega});$
 - I.u.b.: $deg_{\omega}(\{A_k\}_{k<\omega}) \vee deg_{\omega}(\{B_k\}_{k<\omega}) = deg_{\omega}(\{A_k \oplus B_k\}_{k<\omega}).$

- \mathcal{D}_{ω} is an upper semi-lattice:
 - partial order: $deg_{\omega}(\mathcal{A}) \leq deg_{\omega}(\mathcal{B}) \iff \mathcal{A} \leq_{\omega} \mathcal{B};$
 - least element: $\mathbf{0}_{\omega} = deg_{\omega}(\{\emptyset\}_{k < \omega});$
 - l.u.b.: $deg_{\omega}(\{A_k\}_{k<\omega}) \vee deg_{\omega}(\{B_k\}_{k<\omega}) = deg_{\omega}(\{A_k \oplus B_k\}_{k<\omega}).$

- \mathcal{D}_{ω} is an upper semi-lattice:
 - partial order: $deg_{\omega}(\mathcal{A}) \leq deg_{\omega}(\mathcal{B}) \iff \mathcal{A} \leq_{\omega} \mathcal{B};$
 - least element: $\mathbf{0}_{\omega} = deg_{\omega}(\{\emptyset\}_{k < \omega});$
 - I.u.b.: $deg_{\omega}(\{A_k\}_{k<\omega}) \vee deg_{\omega}(\{B_k\}_{k<\omega}) = deg_{\omega}(\{A_k \oplus B_k\}_{k<\omega}).$

• Define $(A_0, A_1, A_2, ..., A_n, ...)' = (A'_0 \oplus A_1, A_2, ..., A_n, ...);$

- $\mathcal{A} <_{\omega} \mathcal{A}'$ and $\mathcal{A} \leq_{\omega} \mathcal{B} \Rightarrow \mathcal{A}' \leq_{\omega} \mathcal{B}'$;
- $deg_{\omega}(\mathcal{A})' = deg_{\omega}(\mathcal{A}');$ $\{\emptyset^{(k+1)}\}_{k < \omega} \in \mathbf{0}'_{\omega}.$
- least jump inversion: For each $\mathbf{a} \in \mathcal{D}_{\omega}$ above $\mathbf{0}_{\omega}^{(n)}$ there exists a least solution to the equation

$$\mathbf{x}^{(n)} = \mathbf{a}.$$

- Define $(A_0, A_1, A_2, ..., A_n, ...)' = (A'_0 \oplus A_1, A_2, ..., A_n, ...);$
- $\mathcal{A} <_{\omega} \mathcal{A}'$ and $\mathcal{A} \leq_{\omega} \mathcal{B} \Rightarrow \mathcal{A}' \leq_{\omega} \mathcal{B}'$;
- $deg_{\omega}(\mathcal{A})' = deg_{\omega}(\mathcal{A}');$ $\{\emptyset^{(k+1)}\}_{k < \omega} \in \mathbf{0}'_{\omega}.$
- least jump inversion: For each $\mathbf{a} \in \mathcal{D}_{\omega}$ above $\mathbf{0}_{\omega}^{(n)}$ there exists a least solution to the equation

$$\mathbf{x}^{(n)} = \mathbf{a}.$$

• Define
$$(A_0, A_1, A_2, ..., A_n, ...)' = (A'_0 \oplus A_1, A_2, ..., A_n, ...);$$

•
$$\mathcal{A} <_{\omega} \mathcal{A}'$$
 and $\mathcal{A} \leq_{\omega} \mathcal{B} \Rightarrow \mathcal{A}' \leq_{\omega} \mathcal{B}';$

•
$$deg_{\omega}(\mathcal{A})' = deg_{\omega}(\mathcal{A}');$$

 $\{\emptyset^{(k+1)}\}_{k < \omega} \in \mathbf{0}'_{\omega}.$

• least jump inversion: For each $\mathbf{a} \in \mathcal{D}_{\omega}$ above $\mathbf{0}_{\omega}^{(n)}$ there exists a least solution to the equation

$$\mathbf{x}^{(n)} = \mathbf{a}.$$

• Define $(A_0, A_1, A_2, ..., A_n, ...)' = (A'_0 \oplus A_1, A_2, ..., A_n, ...);$

•
$$\mathcal{A} <_{\omega} \mathcal{A}'$$
 and $\mathcal{A} \leq_{\omega} \mathcal{B} \Rightarrow \mathcal{A}' \leq_{\omega} \mathcal{B}'$;

- $deg_{\omega}(\mathcal{A})' = deg_{\omega}(\mathcal{A}');$ $\{\emptyset^{(k+1)}\}_{k < \omega} \in \mathbf{0}'_{\omega}.$
- least jump inversion: For each $\mathbf{a} \in \mathcal{D}_{\omega}$ above $\mathbf{0}_{\omega}^{(n)}$ there exists a least solution to the equation

$$\mathbf{x}^{(n)} = \mathbf{a}.$$

• $\kappa: \mathcal{D}_e \rightarrow \mathcal{D}_\omega$ defined by

$$\kappa(deg_e(A)) = deg_\omega(A, \emptyset, \dots, \emptyset, \dots)$$

is an embedding which preserves:

- the order: $\mathbf{x} \leq \mathbf{y} \Longrightarrow \kappa(\mathbf{x}) \leq \kappa(\mathbf{y})$,
- the l.u.b. operation: $\kappa(\mathbf{x} \vee \mathbf{y}) = \kappa(\mathbf{x}) \vee \kappa(\mathbf{y})$,
- and the jump: $\kappa(\mathbf{x}') = \kappa(\mathbf{x})'$;

• the range of κ is denoted by D_1 , $D_1 = \kappa[\mathcal{D}_e]$;

- (Soskov, Ganchev) D₁ is definable in D_ω by a first-order formula in the language L(≤,');
- (Soskov, Ganchev) $Aut(\mathcal{D}_e) \cong Aut(\mathcal{D}'_{\omega});$

・ 戸 ト ・ ヨ ト ・ ヨ ト

• $\kappa: \mathcal{D}_e \rightarrow \mathcal{D}_\omega$ defined by

$$\kappa(\mathit{deg}_e(A)) = \mathit{deg}_\omega(A, \emptyset, \dots, \emptyset, \dots)$$

is an embedding which preserves:

- the order: $\mathbf{x} \leq \mathbf{y} \Longrightarrow \kappa(\mathbf{x}) \leq \kappa(\mathbf{y})$,
- the l.u.b. operation: $\kappa(\mathbf{x} \vee \mathbf{y}) = \kappa(\mathbf{x}) \vee \kappa(\mathbf{y})$,
- and the jump: $\kappa(\mathbf{x}') = \kappa(\mathbf{x})'$;
- the range of κ is denoted by \mathbf{D}_1 , $\mathbf{D}_1 = \kappa[\mathcal{D}_e]$;
- (Soskov, Ganchev) D₁ is definable in D_ω by a first-order formula in the language L(≤,');
- (Soskov, Ganchev) $Aut(\mathcal{D}_e) \cong Aut(\mathcal{D}'_{\omega});$

• • = • • = •

• $\kappa: \mathcal{D}_e \rightarrow \mathcal{D}_\omega$ defined by

$$\kappa(deg_e(A)) = deg_\omega(A, \emptyset, \dots, \emptyset, \dots)$$

is an embedding which preserves:

- the order: $\mathbf{x} \leq \mathbf{y} \Longrightarrow \kappa(\mathbf{x}) \leq \kappa(\mathbf{y})$,
- the l.u.b. operation: $\kappa(\mathbf{x} \vee \mathbf{y}) = \kappa(\mathbf{x}) \vee \kappa(\mathbf{y})$,
- and the jump: $\kappa(\mathbf{x}') = \kappa(\mathbf{x})'$;
- the range of κ is denoted by D_1 , $D_1 = \kappa[\mathcal{D}_e]$;
- (Soskov, Ganchev) D₁ is definable in D_ω by a first-order formula in the language L(≤,');
- (Soskov, Ganchev) $Aut(\mathcal{D}_e) \cong Aut(\mathcal{D}'_{\omega});$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• $\kappa: \mathcal{D}_e \rightarrow \mathcal{D}_\omega$ defined by

$$\kappa(deg_e(A)) = deg_\omega(A, \emptyset, \dots, \emptyset, \dots)$$

is an embedding which preserves:

- the order: $\mathbf{x} \leq \mathbf{y} \Longrightarrow \kappa(\mathbf{x}) \leq \kappa(\mathbf{y})$,
- the l.u.b. operation: $\kappa(\mathbf{x} \vee \mathbf{y}) = \kappa(\mathbf{x}) \vee \kappa(\mathbf{y})$,
- and the jump: $\kappa(\mathbf{x}') = \kappa(\mathbf{x})'$;
- the range of κ is denoted by D_1 , $D_1 = \kappa[\mathcal{D}_e]$;
- (Soskov, Ganchev) D_1 is definable in \mathcal{D}_{ω} by a first-order formula in the language $\mathcal{L}(\leq,')$;
- (Soskov, Ganchev) $Aut(\mathcal{D}_e) \cong Aut(\mathcal{D}'_{\omega});$

A property of the least enumeration degree

• **0**_e is the only enumeration degree **x**, such that:

 $(\forall \mathbf{y})[\mathbf{x} \lor \mathbf{y} \geq \mathbf{0_e}' \to \mathbf{y} \geq \mathbf{0_e}'].$

• (Ganchev, M. Soskova) for every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_e$, \mathbf{u}' is the greatest among the all least upper bounds $\mathbf{a} \vee \mathbf{b}$ of nontrivial \mathcal{K} -pairs $\{\mathbf{a}, \mathbf{b}\}$, such that $\mathbf{a} \leq_e \mathbf{u}$. A property of the least enumeration degree

• **0**_e is the only enumeration degree **x**, such that:

$$(\forall \mathbf{y})[\mathbf{x} \lor \mathbf{y} \ge \mathbf{0}_{e}' \to \mathbf{y} \ge \mathbf{0}_{e}'].$$

• (Ganchev, M. Soskova) for every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_e$, \mathbf{u}' is the greatest among the all least upper bounds $\mathbf{a} \lor \mathbf{b}$ of nontrivial \mathcal{K} -pairs $\{\mathbf{a}, \mathbf{b}\}$, such that $\mathbf{a} \leq_e \mathbf{u}$.

• What is the class of $\omega\text{-enumeration}$ degrees, defined by the above formula?

- $\widetilde{\mathsf{D}}_1 = \{\mathsf{x} \in \mathsf{D}_\omega \mid (\exists \{X_k\}_{k < \omega} \in \mathsf{x}) [X_0 = \emptyset];$
- (Ganchev, S.): $\mathbf{0}'_{\omega}$ is first-order definable in \mathcal{D}_{ω} ;
- $\widetilde{\mathbf{D}_1}$ is first-order definable in \mathcal{D}_{ω} ;
- μ(a) is the least (ω-enumeration) degree x, for which exists degree y ∈ D₁ s. t. x ∨ y = a.;
- $\{A_k\}_{k<\omega} \in \mathbf{a} \Longrightarrow (A_0, \emptyset, \dots, \emptyset, \dots) \in \mu(\mathbf{a});$
- $D_1 = \{\mu(a) \mid a \in \mathcal{D}_{\omega}\}$ is first-order definable;

- $\bullet\,$ What is the class of $\omega\text{-enumeration}$ degrees, defined by the above formula?
- $\widetilde{\mathsf{D}_1} = \{\mathsf{x} \in \mathsf{D}_\omega \mid (\exists \{X_k\}_{k < \omega} \in \mathsf{x}) [X_0 = \emptyset];$
- (Ganchev, S.): $\mathbf{0}'_{\omega}$ is first-order definable in \mathcal{D}_{ω} ;
- $\widetilde{\mathbf{D}_1}$ is first-order definable in \mathcal{D}_{ω} ;
- μ(a) is the least (ω-enumeration) degree x, for which exists degree y ∈ D₁ s. t. x ∨ y = a.;
- $\{A_k\}_{k<\omega} \in \mathbf{a} \Longrightarrow (A_0, \emptyset, \dots, \emptyset, \dots) \in \mu(\mathbf{a});$
- $D_1 = \{\mu(a) \mid a \in \mathcal{D}_{\omega}\}$ is first-order definable;

- $\bullet\,$ What is the class of $\omega\text{-enumeration}$ degrees, defined by the above formula?
- $\widetilde{\mathsf{D}_1} = \{\mathsf{x} \in \mathsf{D}_\omega \mid (\exists \{X_k\}_{k < \omega} \in \mathsf{x}) [X_0 = \emptyset];$
- (Ganchev, S.): $\mathbf{0}'_{\omega}$ is first-order definable in \mathcal{D}_{ω} ;
- \mathbf{D}_1 is first-order definable in \mathcal{D}_{ω} ;
- $\mu(a)$ is the least (ω -enumeration) degree x, for which exists degree $y \in \widetilde{D_1}$ s. t. $x \lor y = a$.;
- $\{A_k\}_{k<\omega} \in \mathbf{a} \Longrightarrow (A_0, \emptyset, \dots, \emptyset, \dots) \in \mu(\mathbf{a});$
- $D_1 = \{\mu(a) \mid a \in \mathcal{D}_{\omega}\}$ is first-order definable;

- $\bullet\,$ What is the class of $\omega\text{-enumeration}$ degrees, defined by the above formula?
- $\widetilde{\mathsf{D}_1} = \{\mathsf{x} \in \mathsf{D}_\omega \mid (\exists \{X_k\}_{k < \omega} \in \mathsf{x}) [X_0 = \emptyset];$
- (Ganchev, S.): $\mathbf{0}'_{\omega}$ is first-order definable in \mathcal{D}_{ω} ;
- $\widetilde{\mathbf{D}_1}$ is first-order definable in \mathcal{D}_{ω} ;
- μ(a) is the least (ω-enumeration) degree x, for which exists degree y ∈ D₁ s. t. x ∨ y = a.;
- $\{A_k\}_{k<\omega} \in \mathbf{a} \Longrightarrow (A_0, \emptyset, \dots, \emptyset, \dots) \in \mu(\mathbf{a});$
- $D_1 = \{\mu(a) \mid a \in \mathcal{D}_{\omega}\}$ is first-order definable;

PLS 11, 2017 7 / 9

- $\bullet\,$ What is the class of $\omega\text{-enumeration}$ degrees, defined by the above formula?
- $\widetilde{\mathsf{D}_1} = \{\mathsf{x} \in \mathsf{D}_\omega \mid (\exists \{X_k\}_{k < \omega} \in \mathsf{x}) [X_0 = \emptyset];$
- (Ganchev, S.): $\mathbf{0}'_{\omega}$ is first-order definable in \mathcal{D}_{ω} ;
- $\widetilde{\mathbf{D}_1}$ is first-order definable in \mathcal{D}_{ω} ;
- $\mu(\mathbf{a})$ is the least (ω -enumeration) degree x, for which exists degree $\mathbf{y} \in \widetilde{\mathbf{D}_1}$ s. t. $\mathbf{x} \lor \mathbf{y} = \mathbf{a}$.;
- $\{A_k\}_{k<\omega} \in \mathbf{a} \Longrightarrow (A_0, \emptyset, \dots, \emptyset, \dots) \in \mu(\mathbf{a});$
- $D_1 = \{\mu(a) \mid a \in \mathcal{D}_{\omega}\}$ is first-order definable;

PLS 11, 2017 7 / 9

- $\bullet\,$ What is the class of $\omega\text{-enumeration}$ degrees, defined by the above formula?
- $\widetilde{\mathsf{D}_1} = \{\mathsf{x} \in \mathsf{D}_\omega \mid (\exists \{X_k\}_{k < \omega} \in \mathsf{x}) [X_0 = \emptyset];$
- (Ganchev, S.): $\mathbf{0}'_{\omega}$ is first-order definable in \mathcal{D}_{ω} ;
- $\widetilde{\mathbf{D}_1}$ is first-order definable in \mathcal{D}_{ω} ;
- $\mu(\mathbf{a})$ is the least (ω -enumeration) degree x, for which exists degree $\mathbf{y} \in \widetilde{\mathbf{D}_1}$ s. t. $\mathbf{x} \lor \mathbf{y} = \mathbf{a}$.;
- $\{A_k\}_{k<\omega}\in \mathbf{a}\Longrightarrow (A_0,\emptyset,\ldots,\emptyset,\ldots)\in \mu(\mathbf{a});$
- $D_1 = \{\mu(a) \mid a \in \mathcal{D}_{\omega}\}$ is first-order definable;

- What is the class of ω -enumeration degrees, defined by the above formula?
- $\widetilde{\mathsf{D}_1} = \{\mathsf{x} \in \mathsf{D}_\omega \mid (\exists \{X_k\}_{k < \omega} \in \mathsf{x}) [X_0 = \emptyset];$
- (Ganchev, S.): $\mathbf{0}'_{\omega}$ is first-order definable in \mathcal{D}_{ω} ;
- $\widetilde{\mathbf{D}_1}$ is first-order definable in \mathcal{D}_{ω} ;
- $\mu(\mathbf{a})$ is the least (ω -enumeration) degree x, for which exists degree $\mathbf{y} \in \widetilde{\mathbf{D}_1}$ s. t. $\mathbf{x} \lor \mathbf{y} = \mathbf{a}$.;
- $\{A_k\}_{k<\omega}\in \mathbf{a}\Longrightarrow (A_0,\emptyset,\ldots,\emptyset,\ldots)\in \mu(\mathbf{a});$
- $\mathbf{D}_1 = \{\mu(\mathbf{a}) \mid \mathbf{a} \in \mathcal{D}_\omega\}$ is first-order definable;

- $\bullet\,$ Definability of the jump operation is equivalent to the definability of D_1
- (Kalimullin) The jump is definable in the substructure (D₁, ≤);
 (Ganchev) for each a ∈ D_ω, there are x, y ∈ D₁, s. t.

$$\mathbf{a} = \mathbf{x} \wedge \mathbf{y};$$

③ (Ganchev) the jump preserves the g.l.b. operation:

$$\mathbf{a} = \mathbf{x} \land \mathbf{y} \Longrightarrow \mathbf{a}' = \mathbf{x}' \land \mathbf{y}'$$

• The jump operation is definable in the structure of the ω -enumeration degrees.

• • = • • = •

- $\bullet\,$ Definability of the jump operation is equivalent to the definability of D_1
- (Kalimullin) The jump is definable in the substructure (D₁, ≤);
 (Ganchev) for each a ∈ D_ω, there are x, y ∈ D₁, s. t.

 $\mathbf{a} = \mathbf{x} \wedge \mathbf{y};$

③ (Ganchev) the jump preserves the g.l.b. operation:

$$\mathbf{a} = \mathbf{x} \land \mathbf{y} \Longrightarrow \mathbf{a}' = \mathbf{x}' \land \mathbf{y}'$$

• The jump operation is definable in the structure of the ω -enumeration degrees.

・ 何 ト ・ ヨ ト ・ ヨ ト

- $\bullet\,$ Definability of the jump operation is equivalent to the definability of D_1
- (Kalimullin) The jump is definable in the substructure (D₁, ≤);
 (Ganchev) for each a ∈ D_ω, there are x, y ∈ D₁, s. t.

$$\mathbf{a} = \mathbf{x} \wedge \mathbf{y};$$

③ (Ganchev) the jump preserves the g.l.b. operation:

$$\mathbf{a} = \mathbf{x} \land \mathbf{y} \Longrightarrow \mathbf{a}' = \mathbf{x}' \land \mathbf{y}'$$

• The jump operation is definable in the structure of the ω -enumeration degrees.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- $\bullet\,$ Definability of the jump operation is equivalent to the definability of D_1
- (Kalimullin) The jump is definable in the substructure (D₁, ≤);
 (Ganchev) for each a ∈ D_ω, there are x, y ∈ D₁, s. t.

$$\mathbf{a} = \mathbf{x} \wedge \mathbf{y};$$

(Ganchev) the jump preserves the g.l.b. operation:

$$\mathbf{a} = \mathbf{x} \wedge \mathbf{y} \Longrightarrow \mathbf{a}' = \mathbf{x}' \wedge \mathbf{y}'$$

• The jump operation is definable in the structure of the ω -enumeration degrees.

- $\bullet\,$ Definability of the jump operation is equivalent to the definability of D_1
- (Kalimullin) The jump is definable in the substructure (D₁, ≤);
 (Ganchev) for each a ∈ D_ω, there are x, y ∈ D₁, s. t.

$$\mathbf{a} = \mathbf{x} \wedge \mathbf{y};$$

(Ganchev) the jump preserves the g.l.b. operation:

$$\mathbf{a} = \mathbf{x} \wedge \mathbf{y} \Longrightarrow \mathbf{a}' = \mathbf{x}' \wedge \mathbf{y}'$$

 The jump operation is definable in the structure of the ω-enumeration degrees.

Thank You!

・ロト ・聞き ・ モン・ キヨン