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Abstract

In the present paper we characterize the minimal degrees in the structure of the ω-Turing degrees.

Namely, we show that all minimal degrees in DT,ω are inherited from the Turing degrees and bounded

by the first jump of the least ω-Turing degree.

1 The ω-Turing degrees

The ω-Turing reducibility ≤T,ω arises as a formal way to compare the information content of
sequences of sets of natural numbers. In this computational framework the information content
of a sequence is uniquely determined by the collection of the Turing degrees of the sets that
code the sequence. We say that a set codes a sequence iff uniformly in k, it can compute the
k-th element of the considered sequence in its k-th Turing jump:

X ⊆ ω codes {Ak}k<ω ⇐⇒ Ak ≤T X(k) uniformly in k.

Having this, we shall say that the sequence A is ω-Turing reducible to the sequence B iff each
set that codes B also codes A:

A ≤T,ω B ⇐⇒ (∀X ⊆ ω)[X codes B ⇒ X codes A].

This reducibility is introduced in [3], where its basic properties are explored. The relation
≤T,ω is a preorder on the set of the sequences of sets of natural numbers and in the standard
way induces a degree structure – the upper semi-lattice DT,ω of the ω-Turing degrees. The
least element of DT,ω is the degree 0T,ω of the sequence {∅}k<ω. The degree of the sequence
{Ak ⊕Bk}k<ω is the least upper bound of the degrees of the sequences {Ak}k<ω and {Bk}k<ω.

Although we refer to ≤T,ω as a reducibility relation between sequences, its definition does
not give us an immediate way for computing, say A from B, given that A ≤T,ω B. In order to
characterize the ω-Turing reducibility in more approachable way we need the following notion.
Given a sequence A = {Ak}k<ω we define its jump-sequence P(A) = {Pk(A)}k<ω as the
sequence:

P0(A) = A0 and for each k, Pk+1(A) = Pk(A)′⊕Ak+1.

Now, according to [3], the ω-Turing reducibility is characterized as:

A ≤T,ω B ⇐⇒ An ≤T Pn(B) uniformly in n. (1)

From here, one can show that each sequence is ω-Turing equivalent with its jump-sequence, i.e.
for all A, A ≡T,ω P(A).

Again in [3], is defined a jump operation on sequences, which induces a corresponding jump
operation in the degree structure. Namely the jump A′ of the sequence A is defined in such a
way that:

X codes A′ ⇐⇒ (∃Y )[X ≡T Y ′ & Y codes A]. (2)
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Although for each A there are exactly continuum many sequences satisfying (2), all of them
are ω-Turing equivalent. Following the lines of [3], as a canonical representative of the jump of
A = {Ak}k<ω we take the sequence:

A′ = (P1(A), A2, A3, . . . , Ak, . . .).

Note, that for each k, Pk(A′) = P1+k(A), so A′ ≡
T,ω
{Pk+1(A)}k<ω. The jump operator is

strictly expanding and monotone, i.e. A �T,ω A′ and A ≤T,ω B ⇒ A′ ≤T,ω B′. This allows to
define a jump operation on the ω-Turing degrees by setting a′ = degT,ω(A′), where A ∈ a is an
arbitrary. Clearly a < a′ and a ≤ b⇒ a′ ≤ b′. Let us note that:

A(n) = (Pn(A), An+1, An+2, . . .) ≡T,ω {Pn+k(A)}k<ω.

How DT,ω can be seen as an extension of the structure DT of the Turing degrees? By the
uniform properties of the Turing jump, it is well known that for all A,X ⊆ ω:

A ≤T X ⇐⇒ A(k) ≤T X(k) uniformly in k.

Thus, the information content of the set A, described in the Turing universe by the set of the
degrees of the sets that decides A, is the same as the content of the sequence {A(k)}k<ω in
the context of the ω-Turing reducibility. This observation allows us to define a very natural
embedding of the Turing degrees into the ω-Turing:

κ : degT (A) 7−→ deg
T,ω

({A(k)}k<ω).

This embedding preserves the order, the least upper bound operation and even the jump. In
this way we may assume the Turing degrees as a proper substructure of DT,ω. But there
are much more strong connections between the both structures. In [3] it is shown that DT

is definable in DT,ω by a first-order formula in the language of the structure order and the
jump operation. Also it is proved that the group Aut(DT ) of the automorphisms of the Turing
degrees is isomorphic to a subgroup of the automorphism group Aut(DT,ω) of DT,ω – namely
to the subgroup Aut(D′T,ω) of the jump preserving automorphisms of the ω-Turing degrees.

2 Almost zero degrees

In this section we shall introduce the special class of degrees, which differ from the least ω-
Turing degree 0T,ω only by the lack of uniformity. Namely, we call a degree almost zero (or
simply, a.z.) if it contains sequence A such that:

Pk(A) ≡T ∅(k) for every natural k, (3)

In particular, the least degree 0T,ω is a.z. Note that if the sequence A = {Ak}k<ω belongs
to the a.z. degree a, then for each k, Ak ≤T Pk({∅}n<ω) ≡T ∅(k). Since this reduction is
not necessarily uniform, it does not imply that a is equal to 0T,ω. It is easy to see that there
are continuum many sequences satisfying (3). For example a sequence consisting only of finite
sets, or more generally one consisting only of computable sets, satisfies (3). Thus there are
continuum many nonzero a.z. degrees.

We finish this section concluding that the a.z. degrees are downwards dense. This shall be
used later in the characterization of the minimal degrees.

Theorem 1. For every nonzero a.z. degree a there is a nonzero a.z. degree b < a.



Proof. Let a be a nonzero a.z. degree and let A ∈ a satisfy (3). We shall construct a sequence B,
such that {∅}t<ω �T,ω B �T,ω A. Let us fix a computable in ∅′′ enumeration f0, f1, . . . , fn, . . .
of all total computable functions. In order to build B as desired, it suffices to ensure that
B ≤T,ω A and to meet the following requirements1:

R2e : ∃k
(
Ak 6= ϕ

Pk(B)
fe(k)

)
,

R2e+1 : ∃k
(
Bk 6= ϕ∅

(k)

fe(k)

)
.

The construction of B = {Bk}k<ω shall use an induction on k. For every k we shall set either
Bk = ∅ or Bk = Ak. Note that this gives us automatically, that B satisfies (3).

The construction: During the construction we shall use a global variable ρ, which shall
indicate the least requirement that is (possibly) not yet satisfied. Set ρ = 0 and B0 = B1 = ∅.
Suppose that k ≥ 2 and that Bs is defined for s ≤ k. Note that our assumption yields that for
s ≤ k, Ps(B) is defined as well.

• Case 1: ρ = 2e. If Ak−2 6= ϕ
Pk−2(B)
fe(k−2) , set Bk = Ak and augment ρ by 1. Otherwise set

Bk = ∅ and keep ρ the same.

• Case 2: ρ = 2e + 1. If Bk−2 6= ϕ∅
(k−2)

fe(k−2), set Bk = ∅ and augment ρ by 1. Otherwise set

Bk = Ak and keep ρ the same.

End of construction.

First of all let us note that, according to the definition of the jump sequence P(A), ∅′′ is
uniformly computable in Pk(A) for k ≥ 2. Hence for k ≥ 2, Pk(A) can uniformly compute our
fixed enumeration f0, f1, f2, . . . of the total computable functions. Also, for k ≥ 2, Pk−2(A)′′ ≤T

Pk(A) uniformly in k. Using an induction on k ≥ 2, one can easily see that Pk(A) uniformly

compute Pk−2(B), as well as the outcomes of the questions Ak−2 6= ϕ
Pk−2(B)
fe(k−2) and Bk−2 6=

ϕ∅
(k−2)

fe(k−2). In particular Pk(A) can compute uniformly the value of ρ at stage k and hence it can

compute uniformly Bk. Therefore B ≤T,ω A.
Note that all the requirements are met. Towards a contradiction assume that n is the least

index of requirement which is not met. Note that the construction yields that at some stage s,
the global variable ρ has been set to be equal to n, and from then on ρ has never changed its

value. First let us suppose that n = 2e for some e ∈ ω. Then for every k > s, Ak−2 = ϕ
Pk−2(B)
fe(k−2) ,

so that Bk = ∅ for k ≥ s and Ak ≤T Pk(B) uniformly in k > s. On the other hand for 0 ≤ k ≤ s,

Bk ≤T Pk(A) ≤T ∅(k),

which together with our previous observation yields B ≤T,ω {∅}t<ω and A ≤T,ω B. Thus
A ≤T,ω {∅}t<ω, contradicting the choice of A.

In the case when n = 2e+ 1, we obtain in a similar way A ≤T,ω {∅}t<ω, contradicting once
again the choice of A. Therefore our assumption, that some of the requirements are not met,
is incorrect and hence {∅}t<ω �T,ω B �T,ω A.

1in this proof, the e-th partial recursive function with oracle X ⊆ ω is denoted by ϕX
e



3 Minimal degrees

Given a degree structure D = (D,≤,0), we shall call an element m ∈ D minimal if it is nonzero
and if it strictly bounds only the least element 0:

0 <m & (∀a)[a ≤m→ (a = m ∨ a = 0)].

In other words, a degree is minimal if it describes a specialized problem, i.e. a problem that
can solve (in the context of the reducibility ≤) exept the problems that are equivalent to it only
trivial ones (the trivial problems modulo ≤ are exactly the elements of 0).

We shall use a generalization of the notion of minimal degree. Namely, we shall call an
element m ∈ D minimal cover of the element x ∈ D if m strictly bounds x and between them
there are no other degrees:

x <m & D(x,m) = ∅.
The minimal degrees in the Turing degree structure are well studied. Spector first prove

the existence of a minimal Turing degree. Later Sacks [2] prove the existence of a minimal
degree below the degree of the halting problem 0′T . Cooper [1] improve this result by showing
that there is a low minimal degree, i.e. such minimal degree m < 0′T that m′ = 0′T . The

relativization of the Cooper’s result over 0
(n)
T gives us for each n a degree m that is low over

0
(n)
T minimal cover of 0

(n)
T :

0
(n)
T <T m <T 0

(n+1)
T , m′ = 0

(n+1)
T and DT (0

(n)
T ,m) = ∅.

Note that if M has a degree that is a low over 0
(n)
T (i.e. ∅(n) <T M <T M ′ ≡T ∅(n+1))

minimal cover of 0
(n)
T (i.e. there are no A such that ∅(n) <T A <T M), then the sequence

M = (∅, ∅, . . . , ∅︸ ︷︷ ︸
n

,M, ∅, . . . , ∅, . . .), (4)

is a minimal ω-Turing degree.
Indeed M 6≤T ∅(n) ≡T Pn({∅}t<ω), so that M 6≤T,ω {∅}t<ω. In particular the ω-Turing

degree, m, of M is nonzero.
Now let us suppose that A ≤T,ω M. Note that M ′ ≡T ∅(n+1) implies that Pk(M) ≡T ∅(k)

uniformly in k 6= n and hence for k 6= n, Ak ≤T ∅(k) uniformly in k. On the other hand
An ≤T Pn(M) yields An ≤T M , so that either An ≤T ∅(n), or An ≡T M . In the first case we
obtain A ≤T,ω {∅}t<ω and in the second A ≡T,ω M. Hence m is minimal.

In the rest of this paper we shall show that the possessing of a sequence such that (4) is also
a necessary condition to be a degree minimal. For the purpose, suppose that m is a minimal
and choose aM∈m. By Theorem 1, m is not a.z. degree, so for a least one n, Pn(M) 6≡T ∅(n).
Note that there must be a unique such n. Indeed, assume that there are at least two natural
numbers, say n < m, such that Pn(M) 6≡T ∅(n) and Pm(M) 6≡T ∅(m). But then

{∅}t<ω �T,ω (∅, ∅, . . . , ∅︸ ︷︷ ︸
m

, Pm(M), ∅, . . . , ∅, . . .) �T,ω M,

and hence m is not minimal. A contradiction.
Hence there is a unique n such that Pn(M) 6≡T ∅(n). Note that the Turing degree of Pn(M)

must be a minimal cover of ∅(n), for otherwise (i.e. if there is a set ∅(n) �T A �T Pn(M))

{∅}t<ω �T,ω (∅, ∅, . . . , ∅︸ ︷︷ ︸
n

, A, ∅, . . .) �T,ω M,



which contradicts with the minimality of m.
Further, Pn(M)′ is equivalent to ∅(n+1), since clearly ∅(n) ≤T Pn(M) and Pn+1(M) =

Pn(M)′ ⊕Mn+1 ≡T ∅(n+1).
Finally let us consider the sequence M− obtained from P(M) by replacing its first n + 1

elements by the empty set, i.e.

M− = (∅, . . . , ∅︸ ︷︷ ︸
n+1

, Pn+1(M), Pn+2(M), . . .).

Clearly M− �T,ω M and hence M− ≡T,ω {∅}t<ω. In particular Pk(M) ≤T ∅(k) uniformly in
k > n.

Therefore
M≡T,ω (∅, ∅, . . . , ∅︸ ︷︷ ︸

n

,M, ∅, . . . , ∅, . . .),

where M is such that, M ′ ≡T ∅n+1 and the Turing degree of M is a minimal cover of 0
(n)
T .

Thus we have proven the following theorem

Theorem 2. An ω-Turing degree m is minimal, if and only if it contains a sequence of the
form

(∅, ∅, . . . , ∅︸ ︷︷ ︸
n

,M, ∅, . . . , ∅, . . .),

where the Turing degree of M is a low over 0
(n)
T minimal cover of 0

(n)
T .

Note that if m is a minimal degree with witness the sequence

M = (∅, ∅, . . . , ∅︸ ︷︷ ︸
n

,M, ∅, . . . , ∅, . . .),

then Pk(M) ≤T ∅(k) uniformly in k, soM≤T,ω {∅(t+1)}t<ω ≡T,ω {∅}′t<ω. Thus m ≤T,ω 0T,ω
′.

Hence the first jump 0T,ω
′ of the least ω-Turing degree bounds all minimal ω-Turing degrees.

Still remains unsolved the problem if 0T,ω
′ is the least degree which bounds every minimal

degree.
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