Minimal ω-Turing degrees

Andrey Sariev ${ }^{1}$)

Sofia University
Sofia, Bulgaria

PLS, 2019

${ }^{1}$ The author was partially supported by BNSF MON, project DN02 $\not 16$. $\bar{\equiv}$

Degree structures

- set of objects Ω;
- Turing and enumeration degrees: sets of natural numbers;
- Muchnik and Medvedev degrees: sets of total functions;
- ω-Turing degrees: sequences of sets of natural numbers;
- reflexive and transitive reducibility \leq that compares the information content of the objects from Ω;
- $A \leq_{T} B \Longleftrightarrow$ there is an algorithm s.t. on any input n, in finitely many steps and using finitely many membership queries to B, determines the membership of n in A;
- $A \in \Omega$, degree of $A: \operatorname{deg}(A)=\{B \in \Omega \mid A \leq B$ and $B \leq A\}$;
- the set of all degrees: $\mathbf{D}=\{\operatorname{deg}(A) \mid A \in \Omega\}$;
- induced order in $\mathbf{D}: \operatorname{deg}(A) \leq \operatorname{deg}(B) \Longleftrightarrow A \leq B$;
- $\mathcal{D}=(\mathbf{D}, \vee, \mathbf{0}, \leq)$ upper semi-lattice with least element $\mathbf{0}$;

The least degree and Minimal degrees

- 0: the degree of the trivial with respect to \leq objects,

$$
A \in \mathbf{0} \Longleftrightarrow(\forall B \in \Omega)[A \leq B]
$$

- $\mathbf{m} \in \mathbf{D}$ is minimal iff there is no a s.t. $\mathbf{0}<\mathbf{a}<\mathbf{m}$;
- there are continuum many minimal Turing degrees;
- there are no minimal enumeration degrees;
- there are countably many minimal ω-Turing degrees;

ω-Turing reducibility

- objects: sequences of sets of natural numbers;
- the informational content of sequence is uniquely determined by the set of the Turing degrees of all sets that code the sequence;
- $X \subseteq \omega$ codes $\left\{A_{k}\right\}_{k<\omega}$ iff $A_{k} \leq_{T} X^{(k)}$ uniformly in k.
- ω-Turing reducibility:

$$
\mathcal{A} \leq_{\omega} \mathcal{B} \Longleftrightarrow(\forall X \subseteq \omega)[X \text { codes } \mathcal{B} \Rightarrow X \text { codes } \mathcal{A}] ;
$$

- $\mathcal{A} \equiv_{\omega} \mathcal{B} \Longleftrightarrow \mathcal{A} \leq_{\omega} \mathcal{B}$ and $\mathcal{B} \leq{ }_{\omega} \mathcal{A}$.

ω-Turing degrees

- ω-Turing degree of the sequence of sets of natural numbers \mathcal{A} :

$$
\operatorname{deg}_{\omega}(\mathcal{A})=\left\{\mathcal{B}: \mathcal{B} \equiv_{\omega} \mathcal{A}\right\} ;
$$

- partial order:

$$
\operatorname{deg}_{\omega}(\mathcal{A}) \leq \operatorname{deg}_{\omega}(\mathcal{B}) \Longleftrightarrow \mathcal{A} \leq_{\omega} \mathcal{B}
$$

- Denote by \mathcal{D}_{ω} the partial ordering of the ω-Turing degrees.
- \mathcal{D}_{ω} is an upper semi-lattice:
- least element: $\mathbf{0}_{\omega}=\operatorname{deg}_{\omega}\left(\{\emptyset\}_{k<\omega}\right)$;
- I.u.b.: $\operatorname{deg}_{\omega}\left(\left\{A_{k}\right\}_{k<\omega}\right) \vee \operatorname{deg}_{\omega}\left(\left\{B_{k}\right\}_{k<\omega}\right)=\operatorname{deg}_{\omega}\left(\left\{A_{k} \oplus B_{k}\right\}_{k<\omega}\right)$.

Polynomial sequence

- Let $\mathcal{A}=\left\{A_{k}\right\}_{k<\omega}$ be a sequence of sets of natural numbers. Define its polynomial sequence $\mathcal{P}(\mathcal{A})=\left\{P_{k}(\mathcal{A})\right\}_{k<\omega}$ by induction:
- $P_{0}(\mathcal{A})=A_{0} ;$
- $P_{k+1}(\mathcal{A})=\left(P_{k}(\mathcal{A})\right)^{\prime} \oplus A_{k+1}$.
- example: $P_{k}\left(\{\emptyset\}_{t<\omega}\right) \equiv{ }_{T} \emptyset^{(k)}$ uniformly in k; $P_{k}(A, \emptyset, \ldots, \emptyset, \ldots) \equiv_{T} A^{(k)}$ uniformly in k;
- canonical representative:

$$
\mathcal{A} \equiv_{\omega} \mathcal{P}(\mathcal{A})
$$

- characterization of \leq_{ω} :

$$
\mathcal{A} \leq_{\omega} \mathcal{B} \Longleftrightarrow A_{k} \leq_{T} P_{k}(\mathcal{B}) \text { uniformly in } k
$$

- each lower cone $\left[\mathbf{0}_{\omega}, \mathrm{a}\right]$ is at most countable;

jump operation

- X codes $\mathcal{A}^{\prime} \Longleftrightarrow(\exists Y)\left[X \equiv{ }_{T} Y^{\prime}\right.$ and Y codes $\left.\mathcal{A}\right]$
- jump of a sequence: $\mathcal{A}^{\prime}=\left\{P_{k+1}(\mathcal{A})\right\}_{k<\omega}$.
- strictly expansive: $\mathcal{A}<_{\omega} \mathcal{A}^{\prime}$;
- monotone: $\mathcal{A} \leq_{\omega} \mathcal{B} \Rightarrow \mathcal{A}^{\prime} \leq_{\omega} \mathcal{B}^{\prime}$;
- jump operation in the degrees: $\operatorname{deg}_{\omega}(\mathcal{A})^{\prime}=\operatorname{deg}_{\omega}\left(\mathcal{A}^{\prime}\right)$;
- example: $\left\{\emptyset^{(k+1)}\right\}_{k<\omega} \in \mathbf{0}_{\omega}^{\prime}$.
- $\mathbf{0}_{\omega}^{\prime}$ is first-order definable if and only if the jump operation is first-order definable;

Embedding of the Turing degrees

- $A \leq_{T} X \Longleftrightarrow A^{(k)} \leq_{T} X^{(k)}$ uniformly in $k \Longleftrightarrow$
$\Longleftrightarrow X \operatorname{codes}\left\{A^{(k)}\right\}_{k<\omega} \Longleftrightarrow X \operatorname{codes}(A, \emptyset, \ldots, \emptyset, \ldots)$;
- $\kappa: \mathcal{D}_{T} \rightarrow \mathcal{D}_{\omega}$ defined by

$$
\operatorname{deg}_{T}(A) \stackrel{\kappa}{\longmapsto} \operatorname{deg}_{\omega}(A, \emptyset, \ldots, \emptyset, \ldots)
$$

is an embedding which preserves the order, l.u.b. operation and the jump;

- $\kappa\left[\mathcal{D}_{T}\right]$ is definable in \mathcal{D}_{ω} by a first-order formula in the language $\mathcal{L}(\leq, ')$;
- $\operatorname{Aut}\left(\mathcal{D}_{T}\right) \cong \operatorname{Aut}\left(\mathcal{D}_{\omega}^{\prime}\right)$;

Minimal degrees in \mathcal{D}_{ω}

- Characterisation of the minimal degrees: The degree \mathbf{m} is minimal iff there exist $M \subseteq \omega$ and $n<\omega$ such that:
- $\emptyset^{(n)}<_{T} M \leq_{T} \emptyset^{(n+1)}$ and $M^{\prime} \equiv_{T} \emptyset^{(n+1)}$;
- $\operatorname{deg}_{T}(M)$ is a minimal cover of $\mathbf{0}_{T}^{(n)}$;
- $(\underbrace{\emptyset, \emptyset, \ldots, \emptyset}_{n}, M, \emptyset, \ldots, \emptyset, \ldots) \in \mathbf{m}$.
- all minimal ω-Turing degrees are bounded by $\mathbf{0}_{\omega}^{\prime}$;
- at most countably many minimal degrees;

Minimal degrees in \mathcal{D}_{ω}

- if M has a minimal Turing degree and it is low $\left(M^{\prime} \equiv_{T} \emptyset^{\prime}\right)$ then:

$$
(M, \emptyset, \ldots, \emptyset, \ldots)
$$

has a minimal ω-Turing degree;

- Since there are countably many low minimal Turing degrees, then there are countably many minimal ω-Turing degrees;
- Open question: Can $\mathbf{0}_{\omega}^{\prime}$ be defined as the least degree, which bounds all the minimal degrees?

Thank You!

