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The plan

I Review some results of Ash and Knight about how to
strongly code a set by a sequence of structures.

I Show some variants of their work - how to weakly code a set
by a sequence of structures.

I Some applications of these ideas - new proofs of old results.
I Connection with Alexandra’s talk.



Introduction

The idea of coding a set by a sequence of structures is an old one.
It is studied thoroughly by Ash and Knight (1990). Here I will give
a few applications connected by the theme of “jump inversion” of
structures.

Recall the following classical result - a jump inversion of Turing
degrees.

Theorem (Friedberg, 1957)
For every natural number n and Turing degree a, there exists a
Turing degree b such that

b(n) = a ∨ 0(n).

If a ≥ 0(n), then
b(n) = a.

Later generalized to any computable ordinal by MacIntyre (1977).
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Associate a Turing degree to a structure

I We consider countable structures whose domains are N or a
computable subset of N.

I We say that B is a copy of A if B ∼= A.
I Usually we identify the copy B by its atomic diagram, which is

a set of natural numbers (under some effective coding of
formulas).

I Associate the Turing degree b with the copy B of A if
degT (D(B)) ∈ b. We say that B is a computable structure if
D(B) is a computable set of natural numbers.



Spectra of structures

I The Turing degree spectrum of A is the set

Spec(A) = {dT (D(B)) | B is a copy of A}.

I The n-th jump Turing spectrum of A is the set
Specn(A) = {a(n) | a ∈ Spec(A)}.

I In all non-trivial cases, Spec(A) is closed upwards relative to
≤T .

I One way to compare the structures A and B is by comparing
their Turing degree spectra. For example, a question in the
style of “jump inversion” is:

(∀α < ω)(∀A)(∃B)[ Spec(A) = Specn(B) ]?



Computable infinitary formulas
The computable infinitary formulas are infinitary formulas, in which
the conjunctions and disjunctions are over c.e. sets.

1) the Σc
0 and Πc

0 formulas are the finitary quantifier-free
formulas.

2) for every computable ordinal α > 0,
a) ϕ(x̄) is a Σc

α formula if ϕ(x̄) =
∨

i∈We
∃ȳiψi (x̄ , ȳi ), where each

ψi (x̄ , ȳi ) is Πc
βi

for some βi < α.
b) ϕ(x̄) is a Πc

α formula if ϕ(x̄) =
∧

i∈We
∀ȳiψi (x̄ , ȳi ), where each

ψi (x̄ , ȳi ) is Σc
βi

for some βi < α.
We can code the compuable infinitary formulas into the natural
numbers.

Theorem (ÐŘsh)
If ϕ(x̄) is a Σc

α or Πc
α formula, then the relation

ϕA = {ā ∈ Ar | A |= ϕ(ā)} is Σ0
α(D(A)) or Π0

α(D(A)). We can
do this uniformly, i.e. for a fixed notation a for α, by the code of
ϕ(x̄) we can effectively find the code of ϕA.
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Relatively intrinsically Σ0
α relations

Definition
We say that the relation R over A is relatively intrinsically Σ0

α in
A, if for every isomorphism f of A, f −1(R) is Σ0

α(f −1(A)).
Similarly, we can define relatively intrinsically Π0

α relations.

Theorem (Ash-Knight-Manasse-Slaman, Chisholm)
For a given relation R over A. The following are equivalent:

1) R is relatively intrinsically Σ0
α;

2) there exists a Σc
α formula φ(x̄ , ȳ) and parameters b̄ ∈ A, for

which (∀ā ∈ A)[ā ∈ R ↔ A |= φ(ā, b̄)], usually denoted
R ∈ Σc

α(A).

For α < ωCK
1 , and any structure A, can we find a structure B with

the following “jump inversion” property:

(∀R ⊆ A)[R ∈ Σc
1(A)↔ R ∈ Σc

α(B)]?
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Jump structures

It is natural to ask what would be the jump A′ of the structure A.
We will define A′ so that we have the following property:

Spec1(A) = Spec(A′).

Moreover, we want the following: a relation R is r.i.c.e. on A′ iff R
is relatively intrinsically Σ0

2 on A. Probably the most
straightforward definition is the one given by Antonio Montalbán:

A′ = (A, {Ri}i<ω),

where Ri is an effective enumeration of all r.i.c.e. relations in A.
Actually, we use the effective listing of all Σc

1 formulas.
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It is easy to see that any copy of the structure A′ computes the
halting set.
Obviously, for any copy B′ of A′,

D(B′) ≤T D(B)′.

Thus, Spec(A′) ⊆ Spec1(A).
For any i , consider the Σc

1 sentence

φi ≡
∨

i∈Wi

∃x(x = x).

Clearly, i ∈ ∅′ iff A |= φi .



I B is a strong jump invert of A if

a′ ∈ Spec(B)↔ a ∈ Spec(A).

I B is a weak jump invert of A if

Spec(B) = Spec1(A).

I Strong jump inversion implies weak jump inversion.
I Why is this weaker? If a′ ∈ Spec(A′), then a′ ∈ Spec1(A),

then there is b such that b′ = a′ and b ∈ Spec(A). a and b
may be incomparable and we cannot be sure that a is in
Spec(A).



Recall that for any structure A, A′ is the weak jump invert of A.
This is not the case for strong jump inversion.
For any Boolean algebra B, B′ is a strong jump invert of B, i.e.

a′ ∈ Spec(B′)↔ a ∈ Spec(B).

I The direction → is obvious since Spec(B′) = Spec1(B).
I The direction ← is a Theorem by Downey-Jockusch (1994).

Not every linear ordering  L has the strong jump inversion property.
Example by Downey-Knight, There is a linear ordering  L such that
0 6∈ Spec( L), but 0′ ∈ Spec1( L).
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Let’s look at the Boolean algebra strong jump inversion more
closely. It say that if ∆0

2(X ) computes B′, then there is A ∼= B
such that X computes A. What is the complexity of f , where
A ∼=f B. By the original Downey-Jockusch theorem, f is ∆0

4. By
an unpublished result of Frolov, this is sharp.

Theorem
Our theorem where f is a ∆0

3 isomorphism.
We produce a computable Boolean algebra by a finite injury
priority construction effective relative to ∆0

2.
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I Given a structure A, is there a structure B such that A is a
strong jump invert of B, i.e.

a′ ∈ Spec(A) ↔ a ∈ Spec(B).

I Given a structure A, is there a structure B such that A is a
weak jump invert of B, i.e.

Spec(A) = Spec1(B).



Marker’s extensions
Soskova-Soskova, using Goncharov-Khoussainov,
the structure A is a strong jump inversion of M∃∀.



Strongly coding a set by a sequence of structures

Let S be a set of natural numbers and B0, B1 are structures in the
same language. We say that the sequence of structures
C = {Cn}n<ω code the set S if

Cn ∼=
{
B1, if n ∈ S
B0, if n 6∈ S.

The sequence C = {Cn}n<ω is uniformly computable, if it
consists of computable copies of B0,B1 and for each n we can
effectively find a computable index for Cn, although we do not
know whether this index corresponds to B0 or B1.
If C is a uniformly commputable sequence, then we say that C
strongly codes the set S.
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Strongly coding a set by a sequence of structures

Example
The following are equivalent:

1) C = {Cn} strongly codes the set S, where

Cn ∼=
{
ω, if n ∈ S
ω?, if n 6∈ S,

2) S is a ∆0
2 set.

The question what sets we can strongly coded by what kind of
structures was studied by Ash and Knight (1990).



Pairs of Structures (Ash & Knight)

Fix two structures A and B and a countable ordinal β ≥ 1. For all
tuples ā ∈ A and b̄ ∈ B with the same length, define ā ≤β b̄ iff the
infinitary Πβ formulas true of ā in A are true of b̄ in B. These are
called the standard back-and-forth relations. A pair of structures
{A,B} is called α-friendly if A,B are computable structures and
for all β < α the relations ≤β are c.e. uniformly in β.

Theorem (Ash-Knight, 1990)
Let B0,B1 be structures, α be a computable successor ordinal and

1) B0 and B1 are computable structures in the same language L ,
2) {B0,B1} is α-friendly;
3) B0 and B1 satisfy the same Σinf

β sentences for all β < α.
Then for any ∆0

α set S there is a sequence C , consisting of copies
of B0,B1, which strongly codes S.
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Strong jit structure N
Let A = (A; R0,R1, . . . ,Rs−1) be a structure. Consider Ri in place
of the set S above. Suppose we have the sequences Ci , which code
the relations Ri . Then we can build a new structure N , which is,
roughly speaking, the join of all the structures in Ci , for i < s.
Theorem
(Goncharov-Harizanov-Knight-McCoy-Miller-Solomon)
Fix a computable succ. ordinal α ≥ 2 and a structure A. Let
B0,B1 be such that:

1) B0 and B1 are computable structures in the same language L ,
2) {B0,B1} is α-friendly,
3) B0,B1 satisfy the same Σinf

β sentences for all β < α,
4) each Bi satisfies some Σc

α sentence that is not true in
the other.

Let N be the structure built from the sequences Ci which strongly
encode Ri . Then A has a ∆0

α(X )-computable copy iff N has an
X -computable copy.



Coding {Cn} into a structure
Let us consider the structure A = (A,R), where R is unary, and a
pair of structures B0, B1 for the same relational language, let
N = (A ∪ U,A,U,Q, . . . ), where

1) A ∩ U = ∅;
2) Q assigns to each element a in A an infinite set Ua, where

x ∈ Ua iff N |= Q(a, x);
3) The sets Ua form a partition of U;
4) each of the other relations of N (in . . . ) correspond to some

symbol in the language of B0, B1, and is the union of its
restrictions to the sets Aa;

5) For each element a in A, if Ua = (Ua, . . . ), then

Ua ∼=
{
B0, if A |= R(a)
B1, if A |= ¬R(a)



Such pairs {B0,B1} exist

Denote ξβ =
∑
γ<β Zγ · ω. Then for ordinals α, where

I α = 2β + 1,

B0 ∼= ξβ ⊕ (ξβ + Zβ);
B1 ∼= (ξβ + Zβ)⊕ ξβ;

I α = 2β + 2,

B0 ∼= Zβ · ω;
B1 ∼= Zβ · ω?;

This is from the GHKMMS paper.



Weakly coding of a set

Question
Let α be a computable successor ordinal, B0, B1 are computable
structures in the same language. Determine conditions for B0, B1,
and a set S, for which there exists a (may not be computable)
sequence C of copies of B0 and B1, which codes S, and

∆0
α(

⊕
n
Cn) ≤T S.

In this case we say that C weakly codes the set S.

Theorem (Vatev, 2013)
Let B0,B1 be computable structures, α be a computable successor
ordinal and B0 and B1 satisfy the same Σc

β sentences for all β < α.
Then for any ∆0

α set S there is a sequence C , consisting of copies
of B0,B1, which weakly codes S.
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Weak JIT structure N
The requirement for α-friendliness is removed.

Theorem (Vatev 2013)
Fix a computable successor ordinal α ≥ 2. Let A be a countable
structure such that every copy of A is above ∆0

α. Let B0,B1,
satisfy the following properties:

a) B0 and B1 are computable structures in the same language L ;
b) B0,B1 satisfy the same Σc

β sentences for every β < α,
c) each Bi satisfies some Σc

α sentence, which is not true in the
other structure.

Let N be the structure built from the sequences Ci which weakly
code the relations Ri in A. Then:

1) Specα−(N ) = Spec(A), and
2) (∀X ⊆ A)[X ∈ Σc

α(N ) ↔ X ∈ Σc
1(A)].

Here α− = α− 1, if α < ω and α− = α, otherwise.



Some details

The proof is by forcing similar to [AKMS, C]. Here the forcing
conditions are finite sequences of finite mappings, called partial
conditions, and have the form C = (τ0, τ1, . . . , τk−1).
We define the diagram of C with respect to X ∈ 2ω as

DX (C ) =
⊕

j<len(C )
τ−1

j (BX(j)).

Total conditions are infinite sequences of bijections

C = (f0, f1, f2, . . . , fi , . . . ).

We define the diagram of the total condition C with respect to
X ∈ 2ω as

DX (C) =
⊕
j<ω

f −1
j (BX(j)).
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The forcing relation
It models the definition of the Turing jump.

(i) C 
X
1 Fe(x) ↔ x ∈W DX (C )

e .
(ii) Let α = β + 1. Then

C 
X
β+1 Fe(x) ↔ (∃δ ∈ 2<ω)[x ∈W δ

e & (∀z ∈ Dom(δ))[
(δ(z) = 1 & C 
X

β Fz(z)) ∨
(δ(z) = 0 & C 
X

β ¬Fz(z))]].

(iii) Let α = limα(p). Then

C 
X
α Fe(x) ↔ (∃δ ∈ 2<ω)[x ∈W δ

e & (∀z ∈ Dom(δ))[z = 〈xz , pz〉 &
((δ(z) = 1 & C 
X

α(pz ) Fxz (xz)) ∨

(δ(z) = 0 & C 
X
α(pz ) ¬Fxz (xz)))]].

(iv) C 
X
α ¬Fe(x) ↔ (∀D)[C ⊆ D → D 6
X

α Fe(x)].



Properties of the forcing relation

Let us denote
C ≈k D ↔

∧
i 6=k

(τC
i = τD

i ),

i.e. the partial conditions C and D might differ only in the k-th
coordinate.

Lemma
Let B0 and B1 be computable structures, X ∈ 2ω is computable,
C be a partial condition. Then for all natural numbers e, z, there
is a Σc

α sentence Φα
C ,e,z such that

(∃D)[D ≈k C & D 
X
α Fe(z)] ↔ BX(k) |= Φα

C ,e,x .

If B0 and B1 satisfy the same Σc
α sentences, then we can change

the k-th bit in X and continue to force the same requirement
Fe(x).



Properties of the forcing relation

For a condition C , we let XC ∈ 2ω be such that XC (i) = X (i) for
i < len(C ) and XC (i) = 0 for i ≥ len(C ).

Lemma
Let us fix a computable ordinal α ≥ 1. Let B0 and B1 be
computable structures in the language L with equality and both
structures satisfy the same Σc

α sentences in L . Then for every
partial condition C , X ∈ 2ω and natural numbers e, z:

1) C 
X
α Fe(z) ↔ C 
XC

α Fe(z),
2) C 
X

α ¬Fe(z) ↔ C 
XC
α ¬Fe(z).



For finite ordinals, this can also be done by the method of Marker’s
extensions (Soskov and A. Soskova).

Remark
We do not need α-friendliness here and hence N may not have a
computable copy. From b) and c) we see that this construction
does not work for limit ordinals. Soskov has an example of a
structure without ω-jump invert for spectra.
I will talk about the limit case later.

In the GHKMMS paper, the structures B0 and B1 are also
uniformly relatively ∆0

α-categorical, i.e. given an X -computable
index for C ∼= Bi , we can find a ∆0

α(X ) computable index for an
isomorphism from Bi onto C. What is this property useful for ?
I For GHKMMS, it is needed to show that there are ∆0

α

categorical structures, which are not relatively ∆0
α categorical,

α - succ. ordinal.
I Another application - in the study of categorocity spectrum of

structures.
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Definitions

Definition
The computable structure A is d-categorical if for every
computable copy B of A, there exists an isomorphism f : B ∼= A
such that f ≤T d.

Example
The structure A = (Q, <) is computably categorical, whereas
B = (ω,<) is not computably categorical.

Definition (Fokina, Kalimullin, Miller)
Let A be a computable structure. The categoricity spectrum of A
is the set CatSpec(A) = {d | A is d-categorical}. We say that d is
the degree of categoricity of A if d is the least degree in
CatSpec(A).
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There is also a relativised version.

Definition (F. K. M.)
Let c be the Turing degree of the structure A. We define the
categoricity spectrum of A relative to c to be the set
CatSpecc(A) =

{d | (∀B ∼= A)[deg(B) ≤T c → (∃f : B ∼= A)[f ≤T d]}.

For computable A, we have

CatSpec(A) = CatSpec0(A).

A question of type “jump inversion” is the following:

Question
Under what conditions for a d-computable structure A can we
claim the existence of a computable structure B such that

CatSpec(B) = CatSpecd(A)?
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A question of type “jump inversion” is the following:

Question
Under what conditions for a d-computable structure A can we
claim the existence of a computable structure B such that

CatSpec(B) = CatSpecd(A)?



This notion is relatively new and not well-studied. One interesting
question is which degrees can be degrees of categoricity.

Theorem (Fokina, Kalimullin, Miller)
For every κ ≤ ω, 0(κ) is the degree of categoricity.

In short, they build 0(n)-computable graph A, for which
CatSpec0(n)(A) is the cone above 0(n). By applying the (n + 1)-th
Marker’s extension of A, they obtain the structure M, for which

CatSpec0(n)(A) = CatSpec(M).

This is a result of the type “jump inversion”. Csima, Franklin and
Shore generalise this result to any computable ordinal α. They use
the 0(α)-computable graph A of F. K. M. and then they attach to
some nodes of the graph certain “back-and-forth trees” of
Hirschfeldt and White to obtain a computable sturcture A such
that

CatSpec0(α)(A) = CatSpec(M).



This notion is relatively new and not well-studied. One interesting
question is which degrees can be degrees of categoricity.

Theorem (Fokina, Kalimullin, Miller)
For every κ ≤ ω, 0(κ) is the degree of categoricity.
In short, they build 0(n)-computable graph A, for which
CatSpec0(n)(A) is the cone above 0(n). By applying the (n + 1)-th
Marker’s extension of A, they obtain the structure M, for which

CatSpec0(n)(A) = CatSpec(M).

This is a result of the type “jump inversion”. Csima, Franklin and
Shore generalise this result to any computable ordinal α. They use
the 0(α)-computable graph A of F. K. M. and then they attach to
some nodes of the graph certain “back-and-forth trees” of
Hirschfeldt and White to obtain a computable sturcture A such
that

CatSpec0(α)(A) = CatSpec(M).



This notion is relatively new and not well-studied. One interesting
question is which degrees can be degrees of categoricity.

Theorem (Fokina, Kalimullin, Miller)
For every κ ≤ ω, 0(κ) is the degree of categoricity.
In short, they build 0(n)-computable graph A, for which
CatSpec0(n)(A) is the cone above 0(n). By applying the (n + 1)-th
Marker’s extension of A, they obtain the structure M, for which

CatSpec0(n)(A) = CatSpec(M).

This is a result of the type “jump inversion”. Csima, Franklin and
Shore generalise this result to any computable ordinal α. They use
the 0(α)-computable graph A of F. K. M. and then they attach to
some nodes of the graph certain “back-and-forth trees” of
Hirschfeldt and White to obtain a computable sturcture A such
that

CatSpec0(α)(A) = CatSpec(M).



An application of the strong coding construction

Lemma
Let α be a computable successor ordinal and A is 0(α)-computable
structure, such that CatSpec0(α)(A) is the cone above 0(α). Then
there exists a computable structure N , obtained from A by the
strong coding construction, for which

CatSpec(Nα) = CatSpec0(α)(A).

This lemma allows us to give a new proof to the following theorem.

Theorem (F. K. M. for α ≤ ω, C. F. S. for α < ωCK
1 )

Let α is an arbitrary computable ordinal. There exists a
computable structure B with degree of categoricity 0(α).
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About the structures B0,B1 in the lemma

The first four conditions are the old ones - those for building a
strong jit structure.
I B0 and B1 are computable structures with domains in the

same language L ;
I B0,B1 satisfy the same Σinf

β sentences for every β < α,
I each Bi satisfy some Σc

α sentence, which is not true in the
other structuer B1−i .

I the pair {B0,B1} is α-friendly;
Moreover, we want the following:

I B0 and B1 are uniformly relatively ∆0
α-categorical, i.e.

Given an X -computable index for C ∼= Bi , we can find a
∆0
α(X ) computable index for an isomorphism from Bi onto C.
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The limit case

Let us have a uniformly computable sequence of pairs of structures
{(Bn

0 ,Bn
1)}n. We say that the sequence {Cn}n codes the set S if

Cn ∼=
{
Bn

1 , if n ∈ S
Bn

0 , if n 6∈ S.

Let α = limαn be a computable limit ordinal and αn are succ.
ordinals. If we choose Bn

0 and Bn
1 to satisfy the conditions for

αn-weak jit, then we can build a sequence {Cn}n such that

∆0
α(

⊕
n
Cn) ≤T S.

When does this work for jump inversion of spectra of structures?
We know that in the general case it does not for limit ordinals.
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The limit case
I The spectrum of A has a least degree d ≥ 0(α). Fix a copy
B such that D(B) belongs to d.

I If N is the weak jit structure built for B, we obtain
Spec(A) ⊆ Spec(N ).

I Let {(Φn
0,Φn

1)} be the Σc
αn sentences that help us distinguish

between Bn
0 and Bn

1 . Consider an element C of the sequence
of structures C . We need to be able to find n and i such that
C ∼= Bn

i , effectively relative to oracle ∆0
α.

I To do that we require the pairs (Bn
0 ,Bn

1) to be such that for
i = 0, 1:

Bn
i |= Φn

i &
∧

k 6=n
¬Φk

i &
∧
n
¬Φn

1−i .

I We have this property. If αn = 2βn + 2, Bn
0 can be Zβn · ω and

Φn
0 says that there is a least Zβn block. Then Bn

1 will be
Zβn · ω? and Φn

1 will say that there is a greatest Zβn block.
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The limit case for weak jit

In this way we obtain a new proof of an old result.

Theorem
Let α be a computable limit ordinal and let A be a structure
whose spectrum has a least degree d ≥ ∆0

α. Then there exists a
weak jit structure N such that

1) Specα(N ) = Spec(A), and
2) (∀X ⊆ A)[X ∈ Σc

α(N ) ↔ X ∈ Σc
1(A)].



Yet another application

Definition
For a countable sequence of sets R = {Rn}n∈ω and a set B,
R ≤c.e. B if Rn ≤c.e. B(n) uniformly in n;

Definition
For two sequences of sets R Ðÿ U , we define:
R ≤ω U ↔ (∀X ⊆ N)[U ≤c.e. X → R ≤c.e. X ];
The equivalence classes under ≤ω are called ω-enumeration
degrees. Introduced by Soskov and studied by him and his students
in Sofia in the past decade.

This is a generalization of the enumeration reducibility.

Theorem (Selman)
A ≤e B ↔ (∀X ⊆ N)[B ≤c.e. X ⇒ A ≤c.e. X ].
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Embedding ω-degrees into Muchnick degrees

Theorem (Soskov 2013)
For every sequence R, we can build a structures NR such that:

Spec(NR) = {dT (B) | R ≤c.e. B}.

Then we have the following characterization:

R ≤ω U ↔ Spec(NU ) ⊆ Spec(NR).

Soskov uses the technique of Marker’s extension in his proof. The
structure NR is defined in an computable infinite language,
because for every Rn he builds its n-th Marker’s extensionÐšÐ" R ′n,
which is a (n + 1)-ary relation. The structure NR can also be built
by coding the sequence R by pairs of structures. We apply the
strong jit theorem for each Rn and take the join of the produced
structures.



Concluding remarks

I It would be nice if we can choose NR to be something nice
such us a linear ordering.

I The Marker’s extension construction has nice model-theoretic
properties, but from the point of view of computable structure
theory, it seems that we can replace it by the pairs of
structures construction.

I When is it true that N is Medvedev equivalent to M, where
N is the strong jit for A, M is the Marker’s extension for A ?



The end

Thank you for your attention!


