

Scott-Continuous Embeddings and Learning Families of Algebraic Structures from Text

Alexandra Soskova ¹

Conference on Mathematical Logic
Gjuletziza, 2025

Joint work with:
N. Bazhenov, E. Fokina, D. Rosseger and S. Vatev

¹This study is financed by the European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria, project BG-RRP-2.004-0008-C01

HAPPY ANNIVERSARY TINKO!!!!

Istanbul 2011

Introduction

A common theme in the study of countable mathematical structures is that isomorphism invariant properties have syntactic characterizations.

Examples:

- the existence of Scott sentences for countable structures (Scott [1963]),
- the Lopez-Escobar theorem, which says that every invariant Borel subset in the space of countable structures is definable in the infinitary logic $L_{\omega_1\omega}$ (Lopez-Escobar [1965]; Vaught [1974]),
- a relation on a structure that is Σ^0_α in every copy is definable by a computable $\Sigma_\alpha L_{\omega_1\omega}$ -formula (Ash, Knight, Manasse, Slaman [1989]; Chisholm [1990]).

Cantor topology and Scott topology on $\text{Mod}(\tau)$

Fix a countable relational signature τ . Here we consider only τ -structures \mathcal{A} with domain ω .

We fix an encoding of (atomic diagrams of) τ -structures. This allows us to identify τ -structures with elements of the **Cantor space** 2^ω . More formally, we talk about the space of τ -models $\text{Mod}(\tau)$ which is homeomorphic to a closed subspace of 2^ω .

Consider a new topological space $\text{Mod}_p(\tau)$. Let τ contains $=$ and \neq . The elements of $\text{Mod}_p(\tau)$ are still τ -structures with domain ω , but the space is equipped with the **Scott topology**.

Cantor-continuous embeddings

The **Cantor space**, 2^ω is a collection of reals, equipped with the product topology of the discrete topology on $\{0, 1\}$. A basis for 2^ω is formed by the collection of $[\sigma] = \{f \in 2^\omega : \sigma \subset f\}$, for all finite binary strings σ .

Proposition (Folklore)

A function $\Psi : 2^\omega \rightarrow 2^\omega$ is **Cantor-continuous** if and only if there exists a Turing operator Φ_e and a set $A \in 2^\omega$ such that $\Psi(X) = \Phi_e(A \oplus X)$ for all $X \in 2^\omega$.

Definition

A mapping Ψ is a **Cantor-continuous embedding** of the class of structures \mathcal{K}_0 into the class of structures \mathcal{K}_1 , ($\Psi : \mathcal{K}_0 \leq_{\text{Cantor}} \mathcal{K}_1$), if Ψ is Cantor-continuous and:

- 1 For any $\mathcal{A} \in \mathcal{K}_0$, $\Psi(\mathcal{D}(\mathcal{A}))$ is the characteristic function of the atomic diagram of a structure from \mathcal{K}_1 .
- 2 For any $\mathcal{A}, \mathcal{B} \in \mathcal{K}_0$, we have $\mathcal{A} \cong \mathcal{B}$ if and only if $\Psi(\mathcal{A}) \cong \Psi(\mathcal{B})$.

The Lopez-Escobar theorem

In the classical setting the Lopez-Escobar theorem establishes a correspondence between subsets of $\text{Mod}(\tau)$ defined by sentences in the infinitary logic $L_{\omega_1\omega}$ and the Borel sets.

Theorem (Lopez-Escobar [1965], Vaught [1974])

Let \mathcal{K} be a subclass of $\text{Mod}(\tau)$ which is closed under isomorphisms. Let $\alpha > 0$ be a countable ordinal. Then \mathcal{K} is Σ_α^0 (in the Borel hierarchy) if and only if \mathcal{K} is axiomatizable by a Σ_α -sentence.

$L_{\omega_1\omega}$ formulas

Let I be a countable set.

- The Σ_0 formulas (Π_0 formulas) are quantifier free τ -formulas.
For $\alpha \geq 1$:
- $\varphi(\bar{u})$ is Σ_α formula if it has the form

$$\varphi(\bar{u}) = \bigvee_{i \in I} \exists \bar{x}_i (\phi_i(\bar{u}, \bar{x}_i) \wedge \psi_i(\bar{u}, \bar{x}_i)),$$

where $\phi_i(\bar{u}, \bar{x}_i)$ is a Σ_{β_i} and $\psi_i(\bar{u}, \bar{x}_i)$ is Π_{β_i} , for some $\beta_i < \alpha$.

- $\varphi(\bar{u})$ is Π_α formula if it has the form

$$\varphi(\bar{u}) = \bigwedge_{i \in I} \forall \bar{x}_i (\phi_i(\bar{u}, \bar{x}_i) \vee \psi_i(\bar{u}, \bar{x}_i)),$$

where $\phi_i(\bar{u}, \bar{x}_i)$ is a Σ_{β_i} and $\psi_i(\bar{u}, \bar{x}_i)$ is a Π_{β_i} , for some $\beta_i < \alpha$.

Pullback theorem

When the embedding $\mathcal{K}_0 \leq_{\text{Cantor}} \mathcal{K}_1$ is given by a Turing operator Φ_e , then we say that \mathcal{K}_0 is **Turing computable embeddable** into \mathcal{K}_1 , and we denote this by $\Phi_e: \mathcal{K}_0 \leq_{\text{tc}} \mathcal{K}_1$.

Theorem (Pullback theorem Knight, Miller, Vanden Boom [2007])

If $\Phi_e: \mathcal{K} \leq_{\text{tc}} \mathcal{K}'$ then for any computable infinitary sentence φ' in the signature of \mathcal{K}' , we can **effectively** find a computable infinitary sentence φ in the signature of \mathcal{K} such that for all $\mathcal{A} \in \mathcal{K}$,

$$\mathcal{A} \models \varphi \text{ if and only if } \Phi_e(\mathcal{A}) \models \varphi'.$$

Moreover, for a nonzero $\alpha < \omega_1^{\text{CK}}$, if φ' is Σ_α^c (or Π_α^c), then so is φ .

Corollary (Relativization)

If $\Psi: \mathcal{K} \leq_{\text{Cantor}} \mathcal{K}'$ then for any infinitary sentence φ' in the signature of \mathcal{K}' , there exists an infinitary sentence φ in the signature of \mathcal{K} such that for all $\mathcal{A} \in \mathcal{K}$, $\mathcal{A} \models \varphi$ if and only if $\Psi(\mathcal{A}) \models \varphi'$.

Scott-Continuous Embeddings

The Scott topology, denoted by \mathcal{P}_w , can be characterized as the product topology of the Sierpiński space on $\{0, 1\}$. The Sierpiński space on $\{0, 1\}$ is the topological space with open sets $\{\emptyset, \{1\}, \{0, 1\}\}$. A basis for \mathcal{P}_w is formed by the collection $[D] = \{A \subseteq \omega : D \subseteq A\}$, for all finite sets D .

Definition (Case,71)

A set $A \in \mathcal{P}_w$ defines a generalized enumeration operator $\Gamma_A : \mathcal{P}_w \rightarrow \mathcal{P}_w$ if and only if for each set $B \in \mathcal{P}_w$,

$$\Gamma_A(B) = \{x : \exists v (\langle x, v \rangle \in A \ \& \ D_v \subseteq B)\}.$$

When $A = W_e$ for some c.e. set W_e , Γ_e is the usual enumeration operator.

Proposition (Folklore)

A mapping $\Gamma : \mathcal{P}_w \rightarrow \mathcal{P}_w$ is Scott-continuous if and only if Γ is a generalized enumeration operator.

Scott-Continuous Embeddings

Corollary

A mapping $\Psi : \mathcal{P}_w \rightarrow \mathcal{P}_w$ is Scott-continuous if and only if Ψ is

- ❶ monotone, i.e., $A \subseteq B$ implies $\Psi(A) \subseteq \Psi(B)$, and
- ❷ compact, i.e., $x \in \Psi(A)$ if and only if $x \in \Psi(D)$ for some finite $D \subseteq A$.

Definition

A mapping Γ is a **Scott-continuous embedding** of \mathcal{K}_0 into \mathcal{K}_1 , denoted by $\Gamma : \mathcal{K}_0 \leq_{\text{Scott}} \mathcal{K}_1$, if Γ is Scott-continuous and satisfies the following:

- ❶ For any $\mathcal{A} \in \mathcal{K}_0$, $\Gamma(\mathcal{D}_+(\mathcal{A}))$ is the positive atomic diagram of a structure from \mathcal{K}_1 .
- ❷ For any $\mathcal{A}, \mathcal{B} \in \mathcal{K}_0$, we have $\mathcal{A} \cong \mathcal{B}$ if and only if $\Gamma(\mathcal{A}) \cong \Gamma(\mathcal{B})$.

If Γ_e is an enumeration operator, we say that Γ_e is a **positive computable embedding** of \mathcal{K}_0 into \mathcal{K}_1 , $\Gamma_e : \mathcal{K}_0 \leq_{\text{pc}} \mathcal{K}_1$.

A hierarchy of positive infinitary formulas

Let I be a countable set.

- Let $\alpha = 0$. Then:
 - the Σ_0^p formulas are the finite conjunctions of atomic τ -formulas.
 - the Π_0^p formulas are the finite disjunctions of negations of atomic τ -formulas.
- Let $\alpha = 1$. Then:
 - $\varphi(\bar{u})$ is a Σ_1^p formula if it has the form

$$\varphi(\bar{u}) = \bigvee_{i \in I} \exists \bar{x}_i \psi_i(\bar{u}, \bar{x}_i),$$

where for each $i \in I$, $\psi_i(\bar{u}, \bar{x}_i)$ is a Σ_0^p formula.

- $\varphi(\bar{u})$ is a Π_1^p formula if it has the form

$$\varphi(\bar{u}) = \bigwedge_{i \in I} \forall \bar{x}_i \psi_i(\bar{u}, \bar{x}_i),$$

where for each $i \in I$, $\psi_i(\bar{u}, \bar{x}_i)$ is a Π_0^p formula.

A hierarchy of positive infinitary formulas

- Let $\alpha \geq 2$. Then:

- $\varphi(\bar{u})$ is Σ_α^p formula if it has the form

$$\varphi(\bar{u}) = \bigvee_{i \in I} \exists \bar{x}_i (\phi_i(\bar{u}, \bar{x}_i) \wedge \psi_i(\bar{u}, \bar{x}_i)),$$

where $\phi_i(\bar{u}, \bar{x}_i)$ is a $\Sigma_{\beta_i}^p$ and $\psi_i(\bar{u}, \bar{x}_i)$ is $\Pi_{\beta_i}^p$, for some $\beta_i < \alpha$.

- $\varphi(\bar{u})$ is Π_α^p formula if it has the form

$$\varphi(\bar{u}) = \bigwedge_{i \in I} \forall \bar{x}_i (\phi_i(\bar{u}, \bar{x}_i) \vee \psi_i(\bar{u}, \bar{x}_i)),$$

where $\phi_i(\bar{u}, \bar{x}_i)$ is a $\Sigma_{\beta_i}^p$ and $\psi_i(\bar{u}, \bar{x}_i)$ is a $\Pi_{\beta_i}^p$, for some $\beta_i < \alpha$.

Effective version: computable Σ_α^p (Π_α^p) formulas.

The Lopez-Escobar theorem for Scott-contionious domains

Reminder: In the classical setting the Lopez-Escobar theorem establishes a correspondence between subsets of $\text{Mod}(\tau)$ defined by sentences in the infinitary logic $L_{\omega_1\omega}$ and the Borel sets.

Theorem (Bazhenov, Fokina, Rossegger, S., and Vatev [2024])

Let \mathcal{K} be a subclass of $\text{Mod}_p(\tau)$ which is closed under isomorphisms. Let $\alpha > 0$ be a countable ordinal. Then \mathcal{K} is Σ_α^0 in the space $\text{Mod}_p(\tau)$ if and only if \mathcal{K} is axiomatizable by a Σ_α^p -sentence.

We use a forcing relation used by **Soskov in 2004** in order to characterize the relatively intrinsic relations for the enumeration reducibility, but our presentation is closer to **Montalbán 2021**.

A pullback theorem for positive computable embeddings

Theorem (Pullback Theorem: Bazhenov, Fokina, Rossegger, S., and Vatev [2024])

Let $\mathcal{K} \subseteq \text{Mod}_p(\tau)$ and $\mathcal{K}' \subseteq \text{Mod}_p(\tau')$ be closed under isomorphism. Let $\Gamma_e : \mathcal{K} \leq_{pc} \mathcal{K}'$, then for any computable Σ_α^p (or Π_α^p) τ' -sentence φ we can **effectively** find a computable Σ_α^p (or Π_α^p) τ -sentence φ^* such that for all $\mathcal{A} \in \mathcal{K}$,

$$\mathcal{A} \models \varphi^* \text{ iff } \Gamma_e(\mathcal{A}) \models \varphi.$$

Theorem (Pullback Theorem relativized: Bazhenov, Fokina, Rossegger, S., and Vatev [2024])

Let $\mathcal{K} \subseteq \text{Mod}_p(\tau)$ and $\mathcal{K}' \subseteq \text{Mod}_p(\tau')$ be closed under isomorphism and $\alpha > 0$ be a countable ordinal. Let Γ be a Scott-continuous embedding from \mathcal{K} into \mathcal{K}' ($\mathcal{K} \leq_{\text{Scott}} \mathcal{K}'$). Then for any Σ_α^p (or Π_α^p) τ' -sentence φ we can find a Σ_α^p (or Π_α^p) τ -sentence φ^* such that for all $\mathcal{A} \in \mathcal{K}$,

$$\mathcal{A} \models \varphi^* \text{ iff } \Gamma(\mathcal{A}) \models \varphi.$$

Algorithmic learning theory

- The classical algorithmic learning theory goes back to the works of Putnam [1965], Gold [1967], Glymour [1991] mainly focused on learning for formal languages and for recursive functions.
- Within the framework of computable structure theory, the work of Stephan and Ventsov [2001] initiated investigations of learnability for classes of substructures of a given computable structure.
- Fokina, Kötzing, and San Mauro [2019] considered various classes \mathcal{K} of computable equivalence relations.
- Bazhenov, Fokina, and San Mauro [2020] extended the notion of learnability from Informant to arbitrary countable families of computable structures.

Learning for families of algebraic structures

- Fix a computable signature τ . Let \mathcal{K} be a countable family of countable τ -structures.
- Step-by-step, we obtain larger and larger finite pieces of a τ -structure \mathcal{A} . In addition, we assume that this \mathcal{A} is isomorphic to some structure from the class \mathcal{K} .

Problem: Is it possible to identify (in the limit) the isomorphism type of \mathcal{A} .

The problem combines the approaches of **algorithmic learning theory** and **computable structure theory**:

We want to learn the family \mathcal{K} up to isomorphism.

Learning structures from informant

Consider a family of τ -structures $\mathcal{K} = \{\mathcal{A}_i\}_{i \in \omega}$. We assume that the structures \mathcal{A}_i are pairwise not isomorphic.

- The learning domain:

$$\text{LD}(\mathcal{K}) = \{\mathcal{B} \mid \mathcal{B} \cong \mathcal{A}_i \text{ for some } i \in \omega; \text{ and } \text{dom}(\mathcal{B}) = \omega\}$$

The learning domain can be treated as a set of reals (i.e., $\text{LD}(\mathcal{K}) \subseteq 2^\omega$).

- A learner M sees (stage by stage) finite pieces of data about a given structure from $\text{LD}(\mathcal{K})$, and M outputs conjectures. More formally,

M is a function from $2^{<\omega}$ to ω .

If $M(\sigma) = i$, then this means: “the finite string σ looks like an isomorphic copy of \mathcal{A}_i ”.

Learning structures from informant

- For a τ -structure \mathcal{A} , an **informant** \mathbb{I} for \mathcal{A} is an arbitrary sequence $(\psi_0, \psi_1, \psi_2, \dots)$ containing elements from $D(\mathcal{A})$.
- The learning is **successful** if for every $\mathcal{B} \in LD(\mathcal{K})$ and any informant $\mathbb{I}_{\mathcal{B}}$ for \mathcal{B} , the learner eventually stabilizes to a correct conjecture about the isomorphism type of \mathcal{B} . More formally, there exists a limit

$$\lim_{n \rightarrow \omega} M(\mathbb{I}_{\mathcal{B}} \upharpoonright n) = i$$

belonging to ω , and \mathcal{A}_i is isomorphic to \mathcal{B} .

Definition

The family \mathcal{K} is **Inf-learnable** (up to isomorphism) if there exists a learner M that successfully learns the family \mathcal{K} .

Remark. More formally, the family \mathcal{K} is $InfEx_{\cong}$ -learnable:

- Inf means learning from informant;
- Ex means “explanatory”.

A syntactic characterization of Inf-learnability

Theorem (Bazhenov, Fokina, and San Mauro [2020])

The following conditions are equivalent:

- The family \mathcal{K} is Inf-learnable.
- There are Σ_2 -sentences ψ_i , $i \in \omega$ such that

$$\mathcal{A}_i \models \psi_j \text{ if and only if } i = j.$$

If ω denotes the standard ordering of natural numbers, and ω^* denotes the standard ordering of negative integers then:

Example

The pair of linear orders $\{\omega, \omega^*\}$ is learnable from informant.

Key observation:

These orders are “separated” by Σ_2 -sentences: (ω has a least element) vs. (ω^* has a greatest element).

A descriptive set-theoretic characterization of Inf-learning

One of the benchmark Borel equivalence relations on the Cantor space 2^ω is the relation E_0 (almost equality).

$$\alpha E_0 \beta \leftrightarrow (\exists n)(\forall m \geq n)(\alpha(m) = \beta(m)).$$

Theorem (Bazhenov, Cipriani, and San Mauro [2023])

The following conditions are equivalent:

- The family \mathcal{K} is Inf-learnable.
- There is a continuous function $\Gamma : 2^\omega \rightarrow 2^\omega$ such that for all $\mathcal{A}, \mathcal{B} \in \text{LD}(\mathcal{K})$ we have:

$$\mathcal{A} \cong \mathcal{B} \leftrightarrow \Gamma(\mathcal{A}) E_0 \Gamma(\mathcal{B}).$$

Learning structures from text

We assume that the relational signature τ contains both $=$ (equality) and \neq (inequality).

[Notice that then the empty set is definable in \mathcal{A} by an atomic formula $(x \neq x)$.]

We want to learn a countable family $\mathcal{K} = \{\mathcal{A}_i\}_{i \in \omega}$. Now we learn from text, i.e., from the positive information about an input structure \mathcal{A} .

Definition

Let \mathcal{A} be a τ -structure with domain ω . A text t for the structure \mathcal{A} is an arbitrary sequence $\{t(i)\}_{i \in \omega}$ such that:

- for each $i \in \omega$, $t(i)$ is an atomic formula, i.e., a formula of the form $R(a_1, \dots, a_n)$, where $R \in \tau$ and $a_1, \dots, a_n \in \omega$;
- the set $\{t(i) \mid i \in \omega\}$ contains precisely all atomic formulas which are true in the structure \mathcal{A} .

Using an encoding, texts are elements of the Baire space ω^ω .

Learning structures from text

A learner M is a function from $\omega^{<\omega}$ to ω .

Definition

Txt-learning is **successful** if every \mathcal{A} with $\text{dom}(\mathcal{A}) = \omega$ satisfies the following: if \mathcal{A} is an isomorphic copy of \mathcal{A}_i , then for any text t for the structure \mathcal{A} , we have

$$\lim_{k \rightarrow \infty} M(t \upharpoonright k) = i.$$

Definition

The family \mathcal{K} is **Txt-learnable** (up to isomorphism) if there exists a Txt-learner M that successfully learns the family \mathcal{K} .

Simple observations

Proposition

If \mathcal{K} is Txt-learnable, then \mathcal{K} is Inf-learnable.

Example

Consider the following pair of equivalence structures:

- The structure \mathcal{A} has one infinite class and nothing else.
- The structure \mathcal{B} has two infinite classes and nothing else.

Then the family $\mathcal{K} = \{\mathcal{A}; \mathcal{B}\}$ is Inf-learnable, but not Txt-learnable.

A syntactic characterization of Txt-learnability

Theorem (Bazhenov, Fokina, Rossegger, S., and Vatev [2024])

The following conditions are equivalent:

- The family \mathcal{K} is Txt-learnable.
- $\mathcal{K} \leq_{\text{Scott}} \mathcal{K}_{\text{univ}}$.
- There are Σ_2^p -sentences ψ_i , $i \in \omega$ such that

$$\mathcal{A}_i \models \psi_j \text{ if and only if } i = j.$$

Idea of the proof of the theorem

Given a learner M , one can build a Scott-continuous embedding from our class \mathcal{K} into some “universal learnable” class $\mathcal{K}_{\text{univ}} = \{\mathcal{B}_i \mid i \in \omega\}$, where $\mathcal{B}_i = (\omega; E)$ is an equivalence structure which has infinitely many infinite classes, infinitely many classes of size $i + 1$, and nothing else. Note that each \mathcal{B}_i has its own distinguishing Σ_2^p -sentence:

$$\begin{aligned}\psi_i = \exists x_0 \dots \exists x_i [\bigwedge_{j \neq k, j, k \leq i} (x_j \neq x_k \ \& \ x_j E x_k) \\ \& \ \& \ \forall y (\neg(y E x_0) \vee \bigvee_{l \leq i} \neg(y \neq x_l)].\end{aligned}$$

So, $\mathcal{K} \leq_{\text{Scott}} \mathcal{K}_{\text{univ}}$.

Applying the Pullback theorem, we get the desired sequence of distinguishing Σ_2^p -sentences for our family \mathcal{K} .

Idea of the proof of the theorem

Suppose that there exist Σ_2^p sentences φ_i such that $\mathcal{A}_i \models \varphi_j$ if and only if $i = j$. Then \mathcal{K} is TxtEx-learnable:

Without loss of generality, suppose that the Σ_2^p sentence φ_i has the form

$$\exists \bar{x}_i \left(\alpha_i(\bar{x}_i) \wedge \bigwedge_{j \in J_i} \forall \bar{y}_j \neg (\beta_{i,j}(\bar{x}_i, \bar{y}_j)) \right)$$

For any sequence σ of positive atomic formulas we must determine the value of $M(\sigma)$.

Find the least $\langle i, \bar{a} \rangle$ $\alpha_i(\bar{a})$ is in σ and no sentence of the form $\beta_{i,j}(\bar{a}, \bar{b}_j)$ is in σ . Then we let $M(\sigma) = i$.

Suppose $\mathcal{A} \cong \mathcal{A}_i$ and consider some text $\mathbb{T}_{\mathcal{A}}$ for \mathcal{A} . Since $\mathcal{A} \models \varphi_i$, find the least tuple \bar{a} such that $\mathcal{A} \models \alpha_i(\bar{a})$ and $\mathcal{A} \models \bigwedge_{j \in J_i} \forall \bar{y}_j \neg (\beta_{i,j}(\bar{a}, \bar{y}_j))$. It follows that the code of $\alpha_i(\bar{a})$ will appear in some initial segment of $\mathbb{T}_{\mathcal{A}}$ and none of the positive atomic sentences $\beta_{i,j}(\bar{a}, \bar{b}_j)$ will appear in $\mathbb{T}_{\mathcal{A}}$ for any \bar{b}_j and any $j \in J_i$. It follows that $\lim_{n \rightarrow \infty} M(\mathbb{T}_{\mathcal{A}} \upharpoonright n) = i$.

TxtEx-Complete Classes

Definition

A countably infinite class \mathcal{K}_0 is **TxtEx-complete** if

- \mathcal{K}_0 is TxtEx-learnable, and
- for any countable TxtEx-learnable class \mathcal{K} , $\mathcal{K} \leq_{\text{Scott}} \mathcal{K}_0$.

Corollary

The class $\mathcal{K}_{\text{univ}}$ is TxtEx-complete.

Consider a signature $L_{st} = \{<, =, \neq\} \cup \{P_i(x) : i \in \omega\}$, \mathcal{A}_i – a structure with $P_j^{\mathcal{A}_i}$ – disjoint infinite sets. For $x \in P_j$ and $y \in P_k$, $j \neq k$, x and y are incomparable under $<$. Let η denote the order type of the rationals, and, $\mathcal{A}_{i,j}$ is the restriction of \mathcal{A}_i to the elements in P_j .

$$\mathcal{A}_{i,j} \cong \begin{cases} \eta, & \text{if } i \neq j \\ 1 + \eta, & \text{if } i = j. \end{cases}$$

Let us denote $\mathcal{K}_{st} = \{\mathcal{A}_i : i \in \omega\}$.

Theorem (Bazhenov, Fokina, and San Mauro [2020])

For a class $\mathcal{K} = \{\mathcal{B}_i : i \in \omega\}$, the following are equivalent:

- ① The class \mathcal{K} is InfEx-learnable.
- ② $\mathcal{K} \leq_{\text{Cantor}} \mathcal{K}_{st}$.
- ③ There is a sequence of $L_{\omega_1\omega} \Sigma_2$ sentences $\{\psi_i : i \in \omega\}$ such that for all i and j , $\mathcal{B}_j \models \psi_i$ if and only if $i = j$.

TxtEx-Complete Classes

Let \mathcal{E} be a class of all equivalence structures \mathcal{A}_n with one class of infinitely many elements and one class of n elements, $n \geq 1$. We prove the following:

- $\mathcal{K}_{\text{univ}} \leq_{\text{pc}} \mathcal{K}_{\text{st}}$.
- $\mathcal{K}_{\text{st}} \leq_{\text{pc}} \mathcal{E}$.
- $\mathcal{E} \leq_{\text{pc}} \mathcal{K}_{\text{univ}}$.

Proposition

The classes \mathcal{E} , $\mathcal{K}_{\text{univ}}$, and \mathcal{K}_{st} are TxtEx-complete.

Descriptive set-theoretic characterization for Txt-learnability

Consider the space \mathcal{P}_w of all subsets of ω , with the Scott topology.
For $X \in \mathcal{P}_w$ and $m \in \omega$, denote the m -th column of X by:

$$X^{[m]} = \{y \mid \langle m, y \rangle \in X\}.$$

The equivalence relation E_{set} is defined as follows:

$$X E_{\text{set}} Y \leftrightarrow \{X^{[m]} \mid m \in \omega\} = \{Y^{[m]} \mid m \in \omega\}.$$

Theorem (Bazhenov, Fokina, Rossegger, S., and Vatev [2024])

Let $\mathcal{K} = \{\mathcal{A}_i \mid i \in \omega\}$ be a family of countable τ -structures. Equivalent:

- The family \mathcal{K} is Txt-learnable.
- There is a continuous function $\Gamma : \text{Mod}_p(\tau) \rightarrow \mathcal{P}_w$ such that for all $\mathcal{A}, \mathcal{B} \in \text{LD}(\mathcal{K})$:
 - $\mathcal{A} \cong \mathcal{B} \leftrightarrow \Gamma(\mathcal{A}) E_{\text{set}} \Gamma(\mathcal{B})$;
 - for each $i \in \omega$ we have $\{\Gamma(\mathcal{A}_i)^{[m]} \mid m \in \omega\} = \{\omega, \{i\}\}$.

References

- N. Bazhenov, H. Ganchev, S. Vatev : “Computable embeddings for pairs of linear orders”. *Algebra and Logic* 60(3), 163–187 (2021).
- N. Bazhenov, E. Fokina, and L. San Mauro : “Learning families of algebraic structures from informant”, *Information and Computation*, 275 (2020), article 104590.
- N. Bazhenov, V. Cipriani, and L. San Mauro : “Learning algebraic structures with the help of Borel equivalence relations”, *Theoretical Computer Science*, 951 (2023), article 113762.
- N. Bazhenov, E. Fokina, D. Rossegger, A. Soskova, and S. Vatev : “A Lopez-Escobar theorem for continuous domains”, *Journal of Symbolic Logic*, 90, (2) (2025): 854–871.
- N. Bazhenov, E. Fokina, D. Rossegger, A. Soskova, S. Vatev, “Learning Families of Algebraic Structures from Text”, In: Levy Patey, L., Pimentel, E., Galeotti, L., Manea, F. (eds) Twenty Years of Theoretical and Practical Synergies. CiE 2024. *Lecture Notes in Computer Science*, 14773, 166–178 (2024) Springer, Cham.

I wish you all the best!

Gjuletchica 2014

Health, joy and many more conferences!

Patra 2009