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Plan for the talk

1. introduce Skolem’s class of arithmetic functions;

2. consider the subclass of Levitz, in which unique normal forms
exist;

3. present an ad-hoc construction for punctual copies of (N,S)
and discuss its limitations;

4. introduce the islands and archipelago technique for
overcoming these limitations.
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Skolem’s class

Let N+ be the set of positive integers.

Definition
Skolem’s class A of arithmetic functions N+ → N+ is the least
class, which contains the constant λx .1 and the identity λx .x and
is closed under sum, product and exponentiation:

f , g ∈ A ⇒ λx .[f (x) + g(x)] ∈ A,

λx .[f (x) · g(x)] ∈ A,

λx .[f (x)g(x)] ∈ A.

The set N+[x ] is a proper subset of A.
Different terms may represent the same function, for example:

x · (x + x) = x · x + x · x = (1 + 1) · (x · x).
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Equality and domination

We say that g eventually dominates f , denoted f 4 g , if there
exists n0, such that

∀x ≥ n0 [f (x) ≤ g(x)].

The number n0 is called a (f , g)-domination witness.
If in addition

∀x ≥ n0 [f (x) < g(x)],

n0 is called a strict (f , g)-domination witness.

As usual, we denote f ≺ g if f 4 g & g 64 f .

Note that f 4 g & g 4 f iff f and g are almost equal (they differ
only on a finite set).
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Domination restricted to A

Theorem (Saks & Tarski, Richardson)

4 is a linear order on A.

Proof.
There exists an algorithm, which given two terms f and g
belonging to A, computes a bound k on the number of the
common roots of f and g .
In particular, there exists n0, such that f (x) 6= g(x) for all x ≥ n0.
By continuity, we have f (x) < g(x) for all x ≥ n0 (f ≺ g) or
f (x) > g(x) for all x ≥ n0 (g ≺ f ).

Note that the algorithm implies that f and g are almost equal iff
f = g , so that 4 is antisymmetric on A.

For an alternative proof, one can also use Wilkie’s theorem on
o-minimality of Th(Rexp).
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Computability of identity and domination

Note that the identity problem f = g ? is decidable, because given
the upper bound k on the number of common roots,
f = g if and only if f (i) = g(i) for all 1 ≤ i ≤ k + 1.

But the domination problem f 4 g ? is much more complex and it
is not known to be decidable.
We do not have an algorithm to compute the strict domination
witness n0.
This question is clearly connected with the decidability of
Th(Rexp), which is a major open problem.
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Order type of A,4

In fact, A is well-ordered by 4.

This was proved by Ehrenfeucht.
The proof involves an application of Kruskal’s tree theorem.

The ordinal of this well-ordering is not known.

As a simple example: the order type of N+[x ] is ωω.
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Levitz class

Definition
The Levitz class L of arithmetic functions N→ N is the least class,
which contains the constants λx .0 and λx .1 and is closed under
sum, product and exponentiation with base x and base n ≥ 2:

f , g ∈ L ⇒ λx .[f (x) + g(x)] ∈ L,

λx .[f (x) · g(x)] ∈ L,

λx .[x f (x)] ∈ L,

λx .[nf (x)] ∈ L.

It is immaterial that we extend the functions from N+ to N.
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Additive and multiplicative primes in L

A function f ∈ L, f 6= 0 is called an additive prime if f = g + h
implies g = 0 or h = 0.

A function f ∈ L, f 6= 0 is called a multiplicative prime if f = g · h
implies g = 1 or h = 1.

Every additive prime f 6= 1 has a unique mutiplicative normal form
f = uf11 u

f2
2 . . . u

fk
k , where:

1. each fi is additive prime;

2. each ui belongs to N \ {0, 1} ∪ {x};
3. if i 6= j and ui , uj ∈ N, then fi 6= fj ;

4. if ui ∈ N, then fi 6= 1;

5. ufkk 4 . . . 4 uf22 4 uf11 .
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Comparing two additive primes in L with respect to 4

In order to compare two additive primes f = uf11 u
f2
2 . . . u

fk
k and

g = vg1
1 vg2

2 . . . vg`` in multiplicative normal form:

1. if f is an initial segment of g , then f 4 g ;

2. if g is an initial segment of f , then g 4 f ;

3. otherwise, compute the least i , such that ufii 6= vgii ;

4. if fi ≺ gi , then f ≺ g ;

5. if gi ≺ fi , then g ≺ f ;

6. if fi = gi & ui ≺ vi , then f ≺ g ;

7. if fi = gi & vi ≺ ui , then g ≺ f .



Comparing two additive primes in L with respect to 4

In order to compare two additive primes f = uf11 u
f2
2 . . . u

fk
k and

g = vg1
1 vg2

2 . . . vg`` in multiplicative normal form:

1. if f is an initial segment of g , then f 4 g ;

2. if g is an initial segment of f , then g 4 f ;

3. otherwise, compute the least i , such that ufii 6= vgii ;

4. if fi ≺ gi , then f ≺ g ;

5. if gi ≺ fi , then g ≺ f ;

6. if fi = gi & ui ≺ vi , then f ≺ g ;

7. if fi = gi & vi ≺ ui , then g ≺ f .



Comparing two additive primes in L with respect to 4

In order to compare two additive primes f = uf11 u
f2
2 . . . u

fk
k and

g = vg1
1 vg2

2 . . . vg`` in multiplicative normal form:

1. if f is an initial segment of g , then f 4 g ;

2. if g is an initial segment of f , then g 4 f ;

3. otherwise, compute the least i , such that ufii 6= vgii ;

4. if fi ≺ gi , then f ≺ g ;

5. if gi ≺ fi , then g ≺ f ;

6. if fi = gi & ui ≺ vi , then f ≺ g ;

7. if fi = gi & vi ≺ ui , then g ≺ f .



Comparing two additive primes in L with respect to 4

In order to compare two additive primes f = uf11 u
f2
2 . . . u

fk
k and

g = vg1
1 vg2

2 . . . vg`` in multiplicative normal form:

1. if f is an initial segment of g , then f 4 g ;

2. if g is an initial segment of f , then g 4 f ;

3. otherwise, compute the least i , such that ufii 6= vgii ;

4. if fi ≺ gi , then f ≺ g ;

5. if gi ≺ fi , then g ≺ f ;

6. if fi = gi & ui ≺ vi , then f ≺ g ;

7. if fi = gi & vi ≺ ui , then g ≺ f .



Comparing two additive primes in L with respect to 4

In order to compare two additive primes f = uf11 u
f2
2 . . . u

fk
k and

g = vg1
1 vg2

2 . . . vg`` in multiplicative normal form:

1. if f is an initial segment of g , then f 4 g ;

2. if g is an initial segment of f , then g 4 f ;

3. otherwise, compute the least i , such that ufii 6= vgii ;

4. if fi ≺ gi , then f ≺ g ;

5. if gi ≺ fi , then g ≺ f ;

6. if fi = gi & ui ≺ vi , then f ≺ g ;

7. if fi = gi & vi ≺ ui , then g ≺ f .



Comparing two additive primes in L with respect to 4

In order to compare two additive primes f = uf11 u
f2
2 . . . u

fk
k and

g = vg1
1 vg2

2 . . . vg`` in multiplicative normal form:

1. if f is an initial segment of g , then f 4 g ;

2. if g is an initial segment of f , then g 4 f ;

3. otherwise, compute the least i , such that ufii 6= vgii ;

4. if fi ≺ gi , then f ≺ g ;

5. if gi ≺ fi , then g ≺ f ;

6. if fi = gi & ui ≺ vi , then f ≺ g ;

7. if fi = gi & vi ≺ ui , then g ≺ f .



Comparing two additive primes in L with respect to 4

In order to compare two additive primes f = uf11 u
f2
2 . . . u

fk
k and

g = vg1
1 vg2

2 . . . vg`` in multiplicative normal form:

1. if f is an initial segment of g , then f 4 g ;

2. if g is an initial segment of f , then g 4 f ;

3. otherwise, compute the least i , such that ufii 6= vgii ;

4. if fi ≺ gi , then f ≺ g ;

5. if gi ≺ fi , then g ≺ f ;

6. if fi = gi & ui ≺ vi , then f ≺ g ;

7. if fi = gi & vi ≺ ui , then g ≺ f .



Comparing two additive primes in L with respect to 4

In order to compare two additive primes f = uf11 u
f2
2 . . . u

fk
k and

g = vg1
1 vg2

2 . . . vg`` in multiplicative normal form:

1. if f is an initial segment of g , then f 4 g ;

2. if g is an initial segment of f , then g 4 f ;

3. otherwise, compute the least i , such that ufii 6= vgii ;

4. if fi ≺ gi , then f ≺ g ;

5. if gi ≺ fi , then g ≺ f ;

6. if fi = gi & ui ≺ vi , then f ≺ g ;

7. if fi = gi & vi ≺ ui , then g ≺ f .



Comparing two additive primes in L with respect to 4

In order to compare two additive primes f = uf11 u
f2
2 . . . u

fk
k and

g = vg1
1 vg2

2 . . . vg`` in multiplicative normal form:

1. if f is an initial segment of g , then f 4 g ;

2. if g is an initial segment of f , then g 4 f ;

3. otherwise, compute the least i , such that ufii 6= vgii ;

4. if fi ≺ gi , then f ≺ g ;

5. if gi ≺ fi , then g ≺ f ;

6. if fi = gi & ui ≺ vi , then f ≺ g ;

7. if fi = gi & vi ≺ ui , then g ≺ f .



Additive normal forms in L

Every f 6= 0 has a unique additive normal form
f = p1 + p2 + . . .+ pk , where each pi is additive prime and
pk 4 . . . 4 p2 4 p1.

In order to compare f = p1 + p2 + . . .+ pk and
g = q1 + q2 + . . .+ q` in additive normal form:

1. if f is an initial segment of g , then f 4 g ;

2. if g is an initial segment of f , then g 4 f ;

3. otherwise, compute the least i , such that pi 6= qi ;

4. if pi ≺ qi , then f ≺ g ;

5. if qi ≺ pi , then g ≺ f .

The existence and uniqueness of normal forms implies that the
order type of L,4 is ε0.
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Our contribution

Let us code the terms in L in a primitive recursive way.

There exists a primitive recursive algorithm, such that:

1. for an additive prime p, it produces its multiplicative normal
form;

2. given two additive primes p, q, it resolves p ≺ q, p = q, q ≺ p;

3. for any f ∈ L, it produces its additive normal form;

4. given two f , g ∈ L, it resolves f ≺ g , f = g , g ≺ f ;

5. for additive primes p, q with p ≺ q, it produces a strict
(p, q)-domination witness;

6. given two f , g ∈ L with f ≺ g , it produces a strict
(f , g)-domination witness.
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Punctual copies of (N, S)

We consider structures A = (N, SA) of the following kind:

I their domain is the set N of all natural numbers

I they are computably isomorphic with (N,S)

I they are punctual (SA is primitive recursive)

We call them punctual copies of (N,S).

0A −→ SA(0A) −→ SA(SA(0A)) −→ . . .
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Image of a function in A

Let A be a punctual copy of (N,S).

We denote by cA the unique isomorphism from (N,S) to A, which
acts as cA(n) = (SA)n(0A).
Clearly, cA is primitive recursive and c−1

A is computable, but in
general c−1

A is not primitive recursive.

For a function f : N→ N we will use the standard denotation f A

for the image of f in the model A, more precisely
f A = cA ◦ f ◦ c−1

A .
It is clear that

f is computable if and only if f A is computable.

But the complexity of f and f A can be very different.
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Main question

For a punctual copy A we are interested in the class of primitive
recursive functions, relative to A:

Pr(A) = {f A | f ∈ Pr},

where Pr = Pr((N, S)) is the class of standard primitive recursive
functions.

In general, we would like to explore how Pr(A) and Pr are related.

For example, we know that Pr(A) and Pr are incomparable with
respect to inclusion, unless c−1

A is primitive recursive (so that A is
primitive recursively isomorphic to (N,S)).

Our first line of work was to build specific A, in which some
concrete functions in Pr(A) are not primitive recursive.
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First Model
First goal: build a punctual copy A, in which predA is not
primitive recursive.

Let a : N→ N be a computable function with primitive recursive
graph, which grows faster than any primitive recursive function.
We would like to include arrows of the form an −→ f (n) in our
model, where f is primitive recursive.
Let h be the primitive recursive increasing enumeration of
N \ Ran(a).
Our model A will be constructed using the following chains:

an −→ h(〈n, 0〉) −→ h(〈n, 1〉) . . . −→ h(〈n, an+1〉) −→ an+1

The remaining elements are in the set {h(〈n, i〉) | i > an+1} whose
strictly increasing enumeration free is primitive recursive.
We complete the model A in the following way:

an −→ free(n) −→ h(〈n, 0〉)
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Images of functions in the model A

Proposition

Let f : N→ N be primitive recursive and f (x) ≥ 2x. Then f A is
not primitive recursive.

an −→ free(n) −→ h(〈n, 0〉) −→ h(〈n, 1〉) . . . −→ h(〈n, an+1〉) −→ an+1

f A
6

Indeed, f A(free(n)) = h(〈n, i〉) and i is greater than the position
of free(n).
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Enforcing primitive recursive sum

Let A = (N,SA) be a punctual copy.

Let c be the unique isomorphism from (N,S) to A.

We construct a new punctual copy B in the following way:

c̃(0) = 0, c̃(2ik + 2ik−1 + . . .+ 2i0) = 2c(ik ) + 2c(ik−1) + . . .+ 2c(i0),

so that the individuals of B have the form c̃(n) and
SB(c̃(n)) = c̃(n + 1).

Proposition

The functions SB and +B are primitive recursive.

Idea: we can simulate binary addition by looking ahead with the
successor SA in the original model A.
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Enforcing primitive recursive product

Let again A be a punctual copy and let us build B in the same way.

Proposition

If the function +A is primitive recursive, then the function .B is
primitive recursive.

Idea: binary multiplication is reduced to sum in the exponents.

We apply this construction twice to the first constructed model A.
We obtain a model C, such that +C and .C are primitive recursive,
but for any primitive recursive f with f (x) ≥ x log2 x ,
f C is not primitive recursive.



Enforcing primitive recursive product

Let again A be a punctual copy and let us build B in the same way.

Proposition

If the function +A is primitive recursive, then the function .B is
primitive recursive.

Idea: binary multiplication is reduced to sum in the exponents.

We apply this construction twice to the first constructed model A.
We obtain a model C, such that +C and .C are primitive recursive,
but for any primitive recursive f with f (x) ≥ x log2 x ,
f C is not primitive recursive.



Enforcing primitive recursive product

Let again A be a punctual copy and let us build B in the same way.

Proposition

If the function +A is primitive recursive, then the function .B is
primitive recursive.

Idea: binary multiplication is reduced to sum in the exponents.

We apply this construction twice to the first constructed model A.
We obtain a model C, such that +C and .C are primitive recursive,
but for any primitive recursive f with f (x) ≥ x log2 x ,
f C is not primitive recursive.



Enforcing primitive recursive product

Let again A be a punctual copy and let us build B in the same way.

Proposition

If the function +A is primitive recursive, then the function .B is
primitive recursive.

Idea: binary multiplication is reduced to sum in the exponents.

We apply this construction twice to the first constructed model A.

We obtain a model C, such that +C and .C are primitive recursive,
but for any primitive recursive f with f (x) ≥ x log2 x ,
f C is not primitive recursive.



Enforcing primitive recursive product

Let again A be a punctual copy and let us build B in the same way.

Proposition

If the function +A is primitive recursive, then the function .B is
primitive recursive.

Idea: binary multiplication is reduced to sum in the exponents.

We apply this construction twice to the first constructed model A.
We obtain a model C, such that +C and .C are primitive recursive,

but for any primitive recursive f with f (x) ≥ x log2 x ,
f C is not primitive recursive.



Enforcing primitive recursive product

Let again A be a punctual copy and let us build B in the same way.

Proposition

If the function +A is primitive recursive, then the function .B is
primitive recursive.

Idea: binary multiplication is reduced to sum in the exponents.

We apply this construction twice to the first constructed model A.
We obtain a model C, such that +C and .C are primitive recursive,
but for any primitive recursive f with f (x) ≥ x log2 x ,
f C is not primitive recursive.



Triple iteration

Unfortunately this idea cannot be lifted to preserve the exponential
function.

Let again B be the copy produced from A with the powers of 2
construction.

Proposition

Let +A be primitive recursive in the model A. Let p(x) = 2x .
Then pB is primitive recursive if and only if pA is primitive
recursive.
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Method of islands and archipelago

Our goal again is to build a punctual copy A, such that predA is
not primitive recursive.

Let p0, p1, . . . , pe , . . . be an effective enumeration of the unary
primitive recursive functions.
At stage e we have the following picture:

mainland 0→ a1 → a2 → a3 → . . .→ ak

and
archipelago w x bτ1

1 bτ2
2 . . .

Each bi is associated with a term τi (x) over a signature F of
functions that we want to make primitive recursive in A.
The element w is associated with x .
In this stage we wait for pe(w) to give value v for s steps.
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Method of islands and archipelago (2)

While waiting we must keep extending the mainland with new
elements and also the archipelago with new islands.

mainland 0→ a1 → a2 → a3 → . . .→ ak

→ ak+1 → ak+2

archipelago w x bτ1
1 bτ2

2 . . .

b
f (τ1)
m b

g(τ2)
m+1 b

f (τ2)
m+2

When we obtain the result pe(w) = v we must connect the
mainland with the archipelago.
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How to connect?

We must choose carefully a position q for w , because this choice
will fix the positions of all islands.

The island bi associated with τi (x) must obtain position, which
coincides with the value of τi at q.
This guarantees that for any f ∈ F , we have f A(bi ) = bk , where
the label of bi if τ and the label of bk is f (τ).

A suitable choice for q must give different positions for all islands
(otherwise we lose injectivity).
Therefore, given the terms τ1, . . . , τm of all islands we want q to
be a strict domination witness for all pairs (τi (q), τj(q)).

We know how to compute these for terms in the Levitz class.
But since the terms over F should be closed under substitution, we
omit the base-x case from the definition.
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How to connect? (2)

After choosing q, every island bi obtains the corresponding
position, which is its label τi evaluated at q.

We also add other auxiliary elements, so that the mainland and the
islands become one successor chain:

0→ a1 → . . .→ as → . . .→ w → . . .→ b1 . . .→ . . .→ bt

And finally, if it happens that SA(v) = w we must insert a new
element a between them, because we want to ensure that
predA(w) 6= v (so that pe 6= predA).

We pick a new element w ′, which is the start of a new archipelago
and we proceed to stage e + 1.
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