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Equilateral triangles on a hypercube

Let A, B, C be uniformly drawn vertices of the hypercube {0, 1}.
Denote by ps(d) the probability that AABC is equilateral. Find the
asymptotic of ps3(d) as d tends to infinity.
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B [2e]

B’H ......... 1\11 ......... 1\00 ......... o\oo ,,,,,,,,, o\
k I lo

C’ll ......... 1\00 ......... 0\11 ......... 1\00 ......... 0\
k B [2¢]

e By symmetry, w.l.o.g. A= (0,...,0),

o Pick k — the number of common ones of B and C.
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B’H ......... 1\11 ......... 1\00 ......... o\oo ,,,,,,,,, o\
k I lo

C’ll ......... 1\00 ......... 0\11 ......... 1\00 ......... 0\
k B [2¢]

e By symmetry, w.l.o.g. A= (0,...,0),
o Pick k — the number of common ones of B and C.

o Pick g — the number of ones of B that are not ones of C.
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B [2e]

B’H ......... 1\11 ......... 1\00 ......... o\oo ,,,,,,,,, o\
k I lo

C’ll ......... 1\00 ......... 0\11 ......... 1\00 ......... 0\
k B [2¢]

e By symmetry, w.l.o.g. A= (0,...,0),

Pick k — the number of common ones of B and C.

Pick g — the number of ones of B that are not ones of C.

Pick £¢ — the number of ones of C that are not ones of B.
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B [2e]

B’H ......... 1\11 ......... 1\00 ......... o\oo ,,,,,,,,, o\
k I lo

C’ll ......... 1\00 ......... 0\11 ......... 1\00 ......... 0\
k B [2¢]

e By symmetry, w.l.o.g. A= (0,...,0),

Pick k — the number of common ones of B and C.

Pick g — the number of ones of B that are not ones of C.

Pick £¢ — the number of ones of C that are not ones of B.

To meet the condition that AABC is equilateral:
k+/lg=k+/{lc="FVc+ g
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B [2e]

B’H ......... 1\11 ......... 1\00 ......... o\oo ,,,,,,,,, o\
k I lo

C’ll ......... 1\00 ......... 0\11 ......... 1\00 ......... 0\
k B [2¢]

e By symmetry, w.l.o.g. A= (0,...,0),

Pick k — the number of common ones of B and C.

Pick g — the number of ones of B that are not ones of C.

Pick £¢ — the number of ones of C that are not ones of B.
To meet the condition that AABC is equilateral:
k+/lg=k+/{lc="FVc+ g

Hence fg = (- = k.
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B [2e]

B’H ......... 1\11 ......... 1\00 ......... o\oo ,,,,,,,,, o\
k I lo

C’ll ......... 1\00 ......... 0\11 ......... 1\00 ......... 0\
k B [2¢]

e By symmetry, w.l.o.g. A= (0,...,0),

e Pick k — the number of common ones of B and C.

o Pick g — the number of ones of B that are not ones of C.

@ Pick /¢ — the number of ones of C that are not ones of B.

@ To meet the condition that AABC is equilateral:
k+{lg=k+Llc="Fc+lp.

o Hence lg =4V = k.

o py(d) = zzd Zd/3 (kkkd 35)-
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Transposing the problem helps (1)

X0 X

a=x, 0] 10
0

S/
|

&
—_

C=X3 i i

] X1:A,X2:B,X3:C.
d )4 )4
o Xi= (X" XD, d(x, %) = S (X = X9y = |1x - X2
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V=X - Xa|]” -

dQ(Xl,Xg) = 3
d2(X,, X3) =3
=4

d*(X3, X1)

= [ X1 = X3|? = | X1 — Xo?

X1 — Xaof?

wov, Gerdjikov

Transposing the problem helps (2)

X (2) X(3) X®
0

1

L]

v V(2) V(d) v#&
0 1

=1 |1
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Transposing the problem helps (2)
X (2) X(s) X@
0
1
L
v V(2) V(d) v#&
O I I I I
O

1
- (X -

B(X1,X2) =3  A=X,
d*(X9,X3) =3 B=X,
B(X3, X)) =4 C=X;
=X = X5 = [ X1 - X2|?
V= [1Xs = Xl — [ X1 - X?
o UM = (x1 — x{My2 _
o V() = (xz(’) — x{y2
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Transposing the problem helps (2)

X (2 <3> XM (5) X (6)
A=X |() 0
B=X, |1 1
c=x, 1]

vl v V(d) v#& V(5) Vv (6)

vl v
U=|X1—X3|]> - | X1 - Xa* |0
V=[X2 - Xl = [ X1 - Xof* |1
( I

dQ(Xl,Xg) = 3
d2(X,, X3) =3

d*(X3,X1) =4

) U(’) = (X_I(I)
(

o V(’) — (Xzi) _
i u@
o V) — <V(i)
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- X2 - (x{

Xy — (xW — x§")2

) for i < d are i.i.d. (5) 2-dimensional vector.
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Transposing the problem helps (2)

XM (2) X(3) X X(5) X (6)
P(X1,X2)=3 A=X; [() 0
(X2, X5)=3 B=X» |1 1
P(X3. X)) =4 C=X; |1
v V(2) V(d) v#& V(5) Vv (6)
U= X1 - X)° - | X1 - X2 |0
V=X - Xl - |1 X0 - Xa? -
( I

o UM = (X1 — x{0)2 _ (x
o VO = (x{? — x{y2 - (x{" - x§")2

[y

v()
pa(d) = (DL, VO = 0).

. (1)
v(i) = <U . ) for i < d are i.i.d. (5) 2-dimensional vector.
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Central Limit Theorems

Theorem (Central Limit Theorem)

If V& ~ V are independent identically distributed random vectors with
mean EV = p and covariance matrix Var(V) = K, then:

27:1(\/0) — )

NG —4 N(0, K).
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Local (Central) Limit Theorem (LLT)

Let V={vy,vs,...,vw} C R" be vectors with rank m. We denote by
Lat(V) the set of integer linear combinations of V:

N
Lat(V) ={>_ ki ki € Z for i < N}.

i=1

We say that Lat(V) is a lattice if it is discrete and in this case we
denote by |Lat(V)| the fundamental volume of Lat(V).
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Local (Central) Limit Theorem (LLT)

Let V={vy,vs,...,vw} C R" be vectors with rank m. We denote by
Lat(V) the set of integer linear combinations of V:

N
Lat(V) ={>_ ki ki € Z for i < N}.

i=1

We say that Lat(V) is a lattice if it is discrete and in this case we
denote by |Lat(V)| the fundamental volume of Lat(V).

Theorem (Local Limit Theorem)

Let V be centred (EV = 0) m-dimensional random vector with values on
an m-dimensional lattice Lat(V). If V() ~ii.d.V, then:

lim ]P’(zd: v — 0). (2d)™|Var(V)|
d—o0

|Lat(V
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Equilateral triangles become simple

In our case Xi, X2, X3 ~ U({0,1}) and

U=(X—X)2— (X —X)?, V=0X-X)—(X—X)
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Equilateral triangles become simple

Remark

In our case Xi, X2, X3 ~ U({0,1}) and

U=(X—X)2— (X —X)?, V=0X-X)—(X—X)

° 4
Remark

V= <‘\f> takes values {(0,0), (1, 1), (0, — 1), {—1,0)}. So m= 2 snd
|Lat(V)|=1.

\
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Equilateral triangles become simple

Remark
In our case Xi, X2, X3 ~ U({0,1}) and

U=(X—-X)2— (X —X)3 V=0X—X)2— (X —X)?

Remark

V= takes values {(0,0),(1,1),(0,—1),(—1,0)}. So m= 2 and
|Lat(V)|=1.

R
< C
~_—

A,

Remark

| \

Var(V) = G?i ;;g) and hence |Var(V)| = 3.27*. Now the LLT

implies: limy_ o dIP’(Z;’Z1 v() =) = %\/i'

Minchev, Savov, Gerdjikov
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Modelling n-equidistant points on a hypercube

Let Xi, ..., X, be uniformly and independently drawn vertices of the
hypercube {0, 1}9. Denote by p,(d) the probability that all the line

segments X;Xj, i # j, be of equal length. Find the asymptotic of pn(d) as
d tends to infinity.
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Modelling n-equidistant points on a hypercube

Let Xi, ..., X, be uniformly and independently drawn vertices of the
hypercube {0, 1}9. Denote by p,(d) the probability that all the line

segments X;Xj, i # j, be of equal length. Find the asymptotic of pn(d) as
d tends to infinity.

0 Vi) =057 =%y - () - Xy

Minchev, Savov, Gerdjikov
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Modelling n-equidistant points on a hypercube

Let Xi, ..., X, be uniformly and independently drawn vertices of the
hypercube {0, 1}9. Denote by p,(d) the probability that all the line

segments X;Xj, i # j, be of equal length. Find the asymptotic of pn(d) as
d tends to infinity.

0 Vi) =057 =%y - () - Xy

@ Now V() is (m — 1)-dimensional vector where m = "("2_ D,
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Modelling n-equidistant points on a hypercube

Let Xi, ..., X, be uniformly and independently drawn vertices of the
hypercube {0, 1}9. Denote by p,(d) the probability that all the line

segments X;Xj, i # j, be of equal length. Find the asymptotic of pn(d) as
d tends to infinity.

0 = 07— Py (0 - X0
@ Now V() is (m — 1)-dimensional vector where m = %=1

@ pu(d)=E(XL, VO = 0).
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Modelling n-equidistant points on a hypercube

Let Xi, ..., X, be uniformly and independently drawn vertices of the
hypercube {0, 1}9. Denote by p,(d) the probability that all the line
segments X;Xj, i # j, be of equal length. Find the asymptotic of pn(d) as
d tends to infinity.

0 Vi) =057 =%y - () - Xy

@ Now V() is (m — 1)-dimensional vector where m = ”(”2_ N

@ pi(d) =B(XL, V) =0).
o Vj,k = (XJ - Xk)2 - (Xn - n72)2'
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Modelling n-equidistant points on a hypercube

Let Xi, ..., X, be uniformly and independently drawn vertices of the
hypercube {0, 1}9. Denote by p,(d) the probability that all the line
segments X;Xj, i # j, be of equal length. Find the asymptotic of pn(d) as
d tends to infinity.

0 Vi) =057 =%y - () - Xy

@ Now V() is (m — 1)-dimensional vector where m = "("2_ D,

© pu(d) = P(XL, VO = ).
o vj»k = (Xj - Xk)2 - (Xn - n72)2-
Q |Var(V)| = ma~™ " where m = @
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Modelling n-equidistant points on a hypercube

Let Xi, ..., X, be uniformly and independently drawn vertices of the
hypercube {0, 1}9. Denote by p,(d) the probability that all the line
segments X;Xj, i # j, be of equal length. Find the asymptotic of pn(d) as
d tends to infinity.

0 Vi) =057 =%y - () - Xy
n(n—1)

2

@ Now V() is (m — 1)-dimensional vector where m =
@ pu(d) =P(LL, VD =0).

0 V= (X— Xi)? — (X — Xp—2).

@ |Var(V)| = ma~™ 1 where m = "("2_1).

. wd)m=1|Var(V
@ By LLT: limy_a p,,(d)% —1
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The structure of the Lattice (1)

Lemma

Let m= (;’) and consider R™ with standard orthonormal basis e;; = e; ;
indexed over 1 < i< j<n. ForasetC{1,2,...,n}, let

H(I) = > ici D jese €ij and set [i] = {1,2,....i} for i < n.

Then lattice induced Lat(H) by {H(I) |1 C {1,2,...,n}} is generated by
the independent vectors:

{2ei;]i+1<j}U{H([i])|i<n—1}

Furthermore |Lat(H)| = 2™~ "1

Minchev, Savov, Gerdjikov Sur un probléeme mathématique ' December 2025 10 /31



12 J i+1 n

H{i})

H({i}) + H{5}) - H({i,j}) = 2e:;

hématique



12 J i+1 n

e HI\ )
3 J
‘ H ()
1 2 n
H({j}) j s
i i H([5])
1 2 Jj—-1 " n
H({i,j}) i
2% Sh<i Se>j 26k 0
Jj i - a

H({i}) + H{5}) - H({i,j}) = 2e:;




The structure of the Lattice (2)

Let m = (}) and consider R™ with standard orthonormal basis e;; = e;;
indexed over 1 < i< j<n. Foraset|C{1,2,...,n}, let

H(I) = ZiEIEjEIC eij and 0(1) = V(h-2mas=1-
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The structure of the Lattice (2)

Let m = (}) and consider R™ with standard orthonormal basis e;; = e;;

indexed over 1 < i< j<n. Foraset|C{1,2,...,n}, let
H(I) = >"ic1 2 jese €y and 6(1) = Tjgp_z nyan=1-

Lemma
The lattice induced Lat(V) by {H(I) — (1|1 C {1,2,...,n}} is
generated by the independent vectors:

@ 2¢jjfori<n—2andi+ 1<},

e H([i]) for i< n—2,

@ Hin—2]—1and Hln—1] — 1.
Furthermore |Lat(V)| = 2™ ".

Minchev, Savov, Gerdjikov Sur un probléeme mathématique 7% December 2025



The structure of the Lattice (2)

o Clearly, the named vectors are in Lat(V).

Minchev, Savov, Gerdjikov Sur un probléeme mathématique 7°% December 2025



The structure of the Lattice (2)

o Clearly, the named vectors are in Lat(V).

e Since 21 =)
substitute 2e,_5 , with 21 in the generating set for Lat(H).

i<j 2€i and all e;; are in the lattice H, we can
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The structure of the Lattice (2)

o Clearly, the named vectors are in Lat(V).

e Since 21 =)
substitute 2e,_5 , with 21 in the generating set for Lat(H).

e Then for / C [n]:

i<j 2€i and all e;; are in the lattice H, we can

H() =D aH(il)+ > 2bijeij+2c1.

i=1 i+1<j,i+1<n—2
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The structure of the Lattice (2)

o Clearly, the named vectors are in Lat(V).

e Since 21 =)
substitute 2e,_5 , with 21 in the generating set for Lat(H).

e Then for / C [n]:

i<j 2€i and all e;; are in the lattice H, we can

H(I) = aiH([i])+ Z 2b,'7je,"j+2C1.
=1 i+1<j,i+1<n—2

o Comparing the coefficients before e,_5 o: 6(1) = Y27~ aid([i]) + 2¢.
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The structure of the Lattice (2)

o Clearly, the named vectors are in Lat(V).

e Since 21 =)
substitute 2e,_5 , with 21 in the generating set for Lat(H).

e Then for / C [n]:

i<j 2€i and all e;; are in the lattice H, we can

H(I) = aiH([i])+ Z 2b,'7je,"j+2C1.
=1 i+1<j,i+1<n—2

o Comparing the coefficients before e,_5 o: 6(1) = Y27~ aid([i]) + 2¢.
o Summing up, (H(/) = 0(N1) = > ;1 1) i+ 1<n 2bijei, equals:

S aH([) + ar(H([n — 1) — 1) + ay-a(H([n —2]) ~ 1)
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Uniform d-equidistant points on a hypercube

Let Xi, ..., X, be uniformly and independently drawn vertices of the
hypercube {0, 1}9. Denote by p,(d) the probability that all the line

segments X;Xj, i # j, be of equal length. Find the asymptotic of p,(d) as
d tends to infinity.

Minchev, Savov, Gerdjikov
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Uniform d-equidistant points on a hypercube

Problem

Let Xi, ..., X, be uniformly and independently drawn vertices of the
hypercube {0, 1}9. Denote by p,(d) the probability that all the line

segments X;Xj, i # j, be of equal length. Find the asymptotic of p,(d) as
d tends to infinity.

Remark

Recall that m = ('2’)

o |Var(V)| = m4a—m1,

| \

o By LLT: limy_. pn(d)w —1.

Minchev, Savov, Gerdjikov
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Uniform d-equidistant points on a hypercube

Problem

Let Xi, ..., X, be uniformly and independently drawn vertices of the
hypercube {0,1}9. Denote by p,(d) the probability that all the line

segments X;Xj, i # j, be of equal length. Find the asymptotic of p,(d) as
d tends to infinity.

Remark

Recall that m = ('27)

o |Var(V)| = m4a—m1,

| \

o By LLT: limy_,o0 pn(d)w _

23m—n+1
lim po(d)dm=1/2 =/ =
d|—>n;op () mmm=1

Theorem

| A
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n-equidistant points with integer /rational coordinates.
The lattice.

Problem

Let X be a random, non-constant, variable taking values on a finite
subset of Z or on a finite subset of Q.

Let Xi, ..., X, be independently drawn d-dimensional vectors with
coordinates Xj; ~ i.i.dX. Denote by p,(d) the probability that all the
line segments X;Xj, i # j, be of equal length. Find the asymptotic of
pn(d) as d tends to infinity.
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n-equidistant points with integer /rational coordinates.
The lattice.

Problem

Let X be a random, non-constant, variable taking values on a finite
subset of Z or on a finite subset of Q.

Let Xi, ..., X, be independently drawn d-dimensional vectors with
coordinates Xj; ~ i.i.dX. Denote by p,(d) the probability that all the
line segments X;Xj, i # j, be of equal length. Find the asymptotic of
pn(d) as d tends to infinity.

| \

Remark
Let X € X = {xy,...,x}. Since |Lat(V)|/+/|Var(V)] is scaling and

translation invariant, we can centre and normalise the values x; by an
appropriate factor s, s.t. sx; € N and {sx;|i < k} have greatest common
divisor 1.

This reduces the problem to the {0, 1}-case and |Lat(V)| = 2""".

.

Minchev, Savov, Gerdjikov Sur un probleme mathématique 7°% December 2025 15 /31



n-equidistant points with integer /rational coordinates.
The volume.

Let m= (), C = (Var(X))? and C; = Var((X — EX)?). Then

|Var(V)| = 4™ "C™"(4C + (n— 2)C;)" .

Furthermore:
]
lim d(™"/2p (d) = .
d—o0 pu(d) \/(271')’”_1C’"_”(4C + (n—2)Cy)" !
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Proof Idea (Step 1).

o Recall V;; = (Xi — X;)? — (Xo — Xp—2)?. Set
C() = Var((X1 — Xz)z) =2C — 2C1
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Proof Idea (Step 1).

o Recall V;; = (Xi — X;)? — (Xo — Xp—2)?. Set
C() = Var((X1 — Xz)z) =2C — 2C1
o Write a = {i,j} and 8 = {k, ¢}, Ax = Aij := (Xi — X;)%, v ={1,2}

Cov(Va, Vg) = Cov(Aa, Ag)—Cov(A,, Ay)—Cov(Ay, Ag)+Cov(A,, Ay).
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Proof Idea (Step 1).

o Recall V;; = (Xi — X;)? — (Xo — Xp—2)?. Set
C() = Var((X1 — Xz)z) =2C — 2C1
o Write a = {i,j} and 8 = {k, ¢}, Ax = Aij := (Xi — X;)%, v ={1,2}

Cov(Va, Vg) = Cov(Aa, Ag)—Cov(A,, Ay)—Cov(Ay, Ag)+Cov(A,, Ay).

Oforanp=>0
o Cov(An,Ag) = < G, for a =,
C; for lan gl =1
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Proof Idea (Step 1).

o Recall V;; = (Xi — X;)? — (Xo — Xp—2)?. Set
C() = Var((X1 — Xz)z) =2C — 2C1
o Write a = {i,j} and 8 = {k, ¢}, Ax = Aij := (Xi — X;)%, v ={1,2}

Cov(Va, Vg) = Cov(Aa, Ag)—Cov(A,, Ay)—Cov(Ay, Ag)+Cov(A,, Ay).

Oforanp=>0
o Cov(An,Ag) = < G, for a =,
C; for lan gl =1
1if lang| =1

0, otherwise

e So with h, g = { . Then:

COV( Vas Vﬁ) = C0(1 F 1o¢:ﬁ) = C1(ha7{172}) I hﬁv{172})'
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Proof Idea (Step 2).

1if lan Bl =1

0, otherwise
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Proof Idea (Step 2).

1if lan Bl =1

0, otherwise

® hoyp=

@ The structure of h encodes the adjacency matrix of the line graph
of the complete graph on n vertices.
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Proof Idea (Step 2).

1if lan Bl =1
o =
0, otherwise

@ The structure of h encodes the adjacency matrix of the line graph
of the complete graph on n vertices.

e To study it, one can start with the m x n incidence matrix (edge by
vertex) and multiply by its transposed.
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Proof Idea (Step 2).

1if lan Bl =1
o =
0, otherwise

@ The structure of h encodes the adjacency matrix of the line graph
of the complete graph on n vertices.

e To study it, one can start with the m x n incidence matrix (edge by
vertex) and multiply by its transposed.

e This approach reveals useful eigenvectors and eigenvalues, e.g.
m — n of the eigenvalues are 0, n — 1 are n — 2 and one is 2n — 2.
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Proof Idea (Step 2).

1if lan Bl =1
o =
0, otherwise

@ The structure of h encodes the adjacency matrix of the line graph
of the complete graph on n vertices.

e To study it, one can start with the m x n incidence matrix (edge by
vertex) and multiply by its transposed.

e This approach reveals useful eigenvectors and eigenvalues, e.g.
m — n of the eigenvalues are 0, n — 1 are n — 2 and one is 2n — 2.

o In our case the matrix Var(V) is skewed and represents a
(m — 1)-projection.
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Proof Idea (Step 3).

(G | G
o [ var(V))’
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Proof Idea (Step 3).

oA [Co | G
A= 0o T war(v)

o B={1,Hyp, Hy,...,H,} are linearly independent where:

H; = Z ejj and Hy, = Hy + H, — 2ey,.
J#i
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Proof Idea (Step 3).

oA [Co | G
A= 0o T war(v)

o B={1,Hyp, Hy,...,H,} are linearly independent where:

H; = Z ejj and Hy, = Hy + H, — 2ey,.
J#i

e For v L B, Av = (Cy — 2Cy)v.
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Proof Idea (Step 3).

oA [Co | G
A= 0o T war(v)

o B={1,Hyp, Hy,...,H,} are linearly independent where:

H; = Z ejj and Hy, = Hy + H, — 2ey,.
J#i

e For v L B, Av = (Cy — 2Cy)v.

@ Ajp has an almost diagonal form:

Com Co(2n — 4) Co(n —2) — C1(n— 4) Co(n— 1) o Co(n— 1)
—Cim  Cp — (2n — 2)Cy —Ci(n—1) —Ci(n—1) —Cn—1)
0 0 Co+ Ci(n — 4) 0
0 —Ci(n—4) 0 Co+ Ci(n—14) ... 0
o —ci(n—4) 0 0 D))
[]
y
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n-equidistant points with real coordinates. Model

Problem

Let X be a random, non-constant, variable taking values on a finite
subset of R.

Let Xj, ..., X, be independently drawn d-dimensional vectors with
coordinates Xj; ~ i.i.dX. Denote by p,(d) the probability that all the
line segments X;X;, i # j, be of equal length. Find the asymptotic of
pn(d) as d tends to infinity.
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n-equidistant points with real coordinates. Model

Problem

Let X be a random, non-constant, variable taking values on a finite
subset of R.

Let Xj, ..., X, be independently drawn d-dimensional vectors with
coordinates X;; ~ i.i.dX. Denote by p,(d) the probability that all the
line segments X;X;, i # j, be of equal length. Find the asymptotic of
pn(d) as d tends to infinity.

| A\

Remark
W.lo.g. X takes values on X = {xp = 0, x1,. .., xx}. Consider:

X ={2xx[1<i<j<k}and &, = {x|i< k}U X,

and their spans £ = spang(X7). Note £ = spang(X,). So if £ = dim(L)
we can identify £ ~ QY, fix a referent basis B for £ and obtain bases By
and B, for Lat(X;) and Lat(A3).
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n-equidistant points with real coordinates. Hamel and the
Lattice

Recall m = (3) and {e;;|1<i<j< n}is a standard basis of R™.
Further H(I) = 3, > €i)» where [i] = {1,2,...,i}.

Minchev, Savov, Gerdjikov
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n-equidistant points with real coordinates. Hamel and the
Lattice

Recall m = ('21) and {e;;|1 < i< j< n}is astandard basis of R".
Further H(I) = 3, > €i)» where [i] = {1,2,...,i}.

Lemma
Let Hy : X" — R™ be the function Hx(x) =3, ;(xi — x;j)2e; ;.
Then the vectors:

e u® H([i]) for u € B, and i < n together with

o v®ejforve B, i+1<j<n

form a basis for Lat(Hx) := Lat Im(Hx) considered as a lattice on
LQm.

Minchev, Savov, Gerdjikov Sur un probléeme mathématique 7°% December 2025 21 /31



Hamel and the Lat

i+1 n

Hx({i}) = s #hers _ 7 (X = Xo)* =2}

(Xj = X,)? = af

Hx({i,53) = o (@Reis +aiejs) + (wn = 20)%ei

Hx({i}) + Hx({j}) — Hx({i,j}) = 2xpxseq

jikov



Hamel and the Lattice (2)

Xi={2x|1<i<j<k}and X, ={x7|i< k}UX,
Bi and B, are bases for Lat(X;) and Lat(X,).
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Hamel and the Lattice (2)

X ={2xx[1<i<j<k}and &, = {x|i< k}U X,
Bi and B, are bases for Lat(X;) and Lat(X,).

Let Hy : X" — R"™ be: Hx(x) = Zi<j((x,~ — x7)* — (X0 — Xa—2)?)ei ).
Then the vectors:
e u® H([i]) for u € B, and i < n— 2, together with
o u® (H([n—2]) —1) and u® (H([n—1]) — 1) for u € B, and
ov®ejforve By, i+1<jandi<n—2

form a basis for Lat(H% ) := Lat Im(H?,) considered as a lattice on
L ® Q™. Furthermore the fundamental volume of this lattice is:

|Lat(HY)| = |detBq|™"|detBy|" " = |Lat(X;)|™ "|Lat(X,)|"".
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n-equidistant points with real coordinates. General case

Recall X = {xp =0, x1,...,x;} and

Xy ={2xix; | 1<i<j<k}and X, = {x'|i < k} U ;.
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n-equidistant points with real coordinates. General case

Remark
Recall X = {xp =0, x1,...,x;} and

Xy ={2xix; | 1<i<j<k}and X, = {x'|i < k} U ;.

| A

Remark
Let Xi, Xz, X3 be three independent copies of X taking values on X. Let
Y: >~ (X; — X2)? and Y, >~ (X; — X3)? considered as Qf-random vectors in
L = span(X;). Set C = Var(Y;) and C; = Cov(Y1, Y2).

v

Minchev, Savov, Gerdjikov Sur un probleme mathématique 7" December 2025 24 /31



n-equidistant points with real coordinates. General case

Remark
Recall X = {xp =0, x1,...,x;} and

Xy ={2xix; | 1<i<j<k}and X, = {x'|i < k} U ;.

Remark

| A

Let Xi, Xz, X3 be three independent copies of X taking values on X. Let
Y: >~ (X; — X2)? and Y, >~ (X; — X3)? considered as Qf-random vectors in
L = span(X;). Set C = Var(Y;) and C; = Cov(Y1, Y2).

Theorem

- ((m—1)/2 _ [£(X) | L( )"
limg oo Pn(d)'d am=n/mf (270) Em =) C|m=n| (4C+(n—2) Cy) |~ T

| A

A,
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n-equidistant points with real coordinates. Galois and the
Lattice

Recall X = {x) =0, xy,...,x} and

Xy ={2xix |1 <i<j<k}and X, = {x'|i < k}UX,.
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n-equidistant points with real coordinates. Galois and the
Lattice

Remark
Recall X = {x) =0, xy,...,x} and

Xy ={2xix |1 <i<j<k}and X, = {x'|i < k}UX,.

Remark

| A\

Let Xi, Xz, X3 be three independent copies of X taking values on X. Let
Y: =~ (X; — X2)? and Y, >~ (X; — X3)? considered as Q*-random vectors in
L = span(X;). Set C = Var(Y;) and C; = Cov(Yi, Y2).

A,
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n-equidistant points with real coordinates. Galois and the
Lattice

Remark
Recall X = {x) =0, xy,...,x} and

Xy ={2xix |1 <i<j<k}and X, = {x'|i < k}UX,.

Remark

| \

Let Xi, Xz, X3 be three independent copies of X taking values on X. Let
Y; ~ (X; — X;)? and Y, ~ (X; — X3)? considered as Qf-random vectors in
L = span(X;). Set C = Var(Y;) and C; = Cov(Yi, Y2).

Lemma
If x; = \/qi for i < k, where q; € QT, then:
0 ][,at./l’1| = 2\EatX2|.

: e(m—1)/2 _ |L(X)|"!
Q limy_,o0 pa(d).d e T

| A
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Galois and the Lattice

@ Since the problem is invariant w.r.t. scaling with positive rational
numbers, we can assume that g; € N.
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Galois and the Lattice

@ Since the problem is invariant w.r.t. scaling with positive rational
numbers, we can assume that g; € N.

O If x;x; € N, then ged(x7, x7, xix;) = ged(x7, x7), therefore:

1

ged({2x¢ |7 < k} U {2xix5 | xixg € N}) = 2ged({x} |i < k})

Minchev, Savov, Gerdjikov Sur un probléeme mathématique 7°% December 2025 26 /31



Galois and the Lattice

@ Since the problem is invariant w.r.t. scaling with positive rational
numbers, we can assume that g; € N.

1

O If x;x; € N, then ged(x7, x7, xix;) = ged(x7, x7), therefore:
ged({2x7 |1 < k} U {2xix; | xix; € N}) = 2ged({x} | i < k})
@ To conclude the proof, it suffices to prove that if t; are distinct
square-free natural numbers then:

k
D sVt eQ < si=0foralli< k.

i=1
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@ This follows by a well-known result from Galois Theory. Let
{pil| i < n} be distinct prime numbers and p be square-free

co-prime with every p;. Then p & K, = Q[\/p1,...,/Pd]. In
particular [K, : Q] = 2".
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@ This follows by a well-known result from Galois Theory. Let
{pil| i < n} be distinct prime numbers and p be square-free

co-prime with every p;. Then p & K, = Q[\/p1,...,/Pd]. In
particular [K, : Q] = 2".

@ This implies that {/[[;c,pj| ! C [n]} is a basis of K, as a linear

space over Q.
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@ This follows by a well-known result from Galois Theory. Let
{pil| i < n} be distinct prime numbers and p be square-free

co-prime with every p;. Then p & K, = Q[\/p1,...,/Pd]. In
particular [K, : Q] = 2".

@ This implies that {/[[;c,pj| ! C [n]} is a basis of K, as a linear

space over Q.

@ If {t;/|i < k} are distinct square-free natural numbers then taking
their different prime factors py, ..., p,, we see that t; are distinct
elements of {[[;c,;p;| 1 C [n]} so the claim follows.
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n-equidistant points with real coordinates. Smith’s
Normal Form and the Lattice

Again Recall X = {xp = 0, x1,...,x¢} and

Xy ={2xix | 1<i<j<k}and X, = {x'|i < k} U X;.

Let x? € L correspond to the vector u; € Q* and 2x;x; € L be mapped
to v;; € Qf
,7_I :

U
us
. . ... U
Then we introduce the matrix A = uy = v
V1,2
Vk—1,k
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n-equidistant points with real coordinates. Smith’s
Normal Form and the Lattice (2)

W.l.o.g we may and we do assume that A is integer-valued and that one
of the entries of A is odd.

Minchev, Savov, Gerdjikov
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n-equidistant points with real coordinates. Smith’s
Normal Form and the Lattice (2)

Remark

W.l.o.g we may and we do assume that A is integer-valued and that one
of the entries of A is odd.

Lemma

| A

Assume that A (mod 2) has full rank ¢ over Z, and V (mod 2) has rank
r over Z,. Then:

Q |Lat(Xy)| = 27| Lat(Xy)].
Q |Lat(HY)| = 20m=mUE=D)| Lat(A,) |1
Q limy_o0 pa(d).dm1/2 is equal to:

2(m—n)(£—r)|£(X2)‘m—1
2m=13/mf (2 )ém=1)|C|m=n|(4C + (n — 2)Cy)|"~"

\
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Smith and the Lattice

© The Smith’s algorithm determines a fundamental volume of a
lattice as follows:
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Smith and the Lattice

© The Smith’s algorithm determines a fundamental volume of a
lattice as follows:

@ Consider a matrix A € My ¢(Z).
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Smith and the Lattice

© The Smith’s algorithm determines a fundamental volume of a
lattice as follows:

@ Consider a matrix A € My ¢(Z).
@ Set A(0) = A.
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Smith and the Lattice

© The Smith’s algorithm determines a fundamental volume of a
lattice as follows:

@ Consider a matrix A € My ¢(Z).

@ Set A(0) = A.
© Given A(j) find the greatest common divisor g(j) of the elements of
A()-
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Smith and the Lattice

© The Smith’s algorithm determines a fundamental volume of a
lattice as follows:

@ Consider a matrix A € My ¢(Z).

@ Set A(0) = A.
© Given A(j) find the greatest common divisor g(j) of the elements of
A()-

@ Using elementary operations additions and subtractions of
rows/columns reduce A(j) to:

= <g§)j) A+ 1)) |
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Smith and the Lattice

© The Smith’s algorithm determines a fundamental volume of a
lattice as follows:

@ Consider a matrix A € My ¢(Z).

@ Set A(0) = A.
© Given A(j) find the greatest common divisor g(j) of the elements of
A()-

@ Using elementary operations additions and subtractions of
rows/columns reduce A(j) to:

= <ggj) A+ 1)) |

@ The product of the non-zero g(j) is the desired quantity.
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Smith and the Lattice

o

© 0

The Smith’s algorithm determines a fundamental volume of a
lattice as follows:

Consider a matrix A € My ((Z).

Set A(0) = A.

Given A(j) find the greatest common divisor g(j) of the elements of
A()-

Using elementary operations additions and subtractions of
rows/columns reduce A(j) to:

N (&80) 0
A(J) = .
The product of the non-zero g(j) is the desired quantity.

Comparing how this procedure transforms X; and A5, the result
follows.
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