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Equilateral triangles on a hypercube

Problem
Let A,B,C be uniformly drawn vertices of the hypercube {0, 1}d .
Denote by p3(d) the probability that 4ABC is equilateral. Find the
asymptotic of p3(d) as d tends to infinity.
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By symmetry, w.l.o.g. A = (0, . . . , 0),

Pick k – the number of common ones of B and C.
Pick `B – the number of ones of B that are not ones of C.
Pick `C – the number of ones of C that are not ones of B.
To meet the condition that 4ABC is equilateral:
k + `B = k + `C = `C + `B.
Hence `B = `C = k.
p3(d) = 1

22d
∑d/3

k=0

( d
k,k,k,d−3k

)
.
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Transposing the problem helps (1)
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i ), d2(Xi,Xj) =
∑d

`=1(X
(`)
i − X (`)

j )2 = ‖Xi − Xj‖2.
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Transposing the problem helps (2)
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2-dimensional vector.

p3(d) = P(
∑d

i=1 V
(i) = 0).
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Transposing the problem helps (2)

0

1

1

0

0

1

0

0

1

0

0

0

0

1

1

0

1

0

A = X1

B = X2

C = X3

X(1) X(2) X(3) X(4) X(5) X(6)X(6)

U = ‖X1 −X3‖2 − ‖X1 −X2‖2

V = ‖X2 −X3‖2 − ‖X1 −X2‖2

0

−1

V(1)

1

1

V(2)

1

1

V(3)

0

0

V(4)

0

−1

V(5)

−1

0

V(6)

d2(X1, X2) = 3

d2(X2, X3) = 3

d2(X3, X1) = 4

U(i) = (X (i)
1 − X (i)

3 )2 − (X (i)
1 − X (i)

2 )2

V (i) = (X (i)
2 − X (i)

3 )2 − (X (i)
1 − X (i)

2 )2

V(i) =

(
U(i)

V (i)

)
for i ≤ d are i.i.d.

(
U
V

)
2-dimensional vector.

p3(d) = P(
∑d

i=1 V
(i) = 0).

Minchev, Savov, Gerdjikov Sur un problème mathématique 7th December 2025 5 / 31



Central Limit Theorems

Theorem (Central Limit Theorem)

If V(i) ∼ V are independent identically distributed random vectors with
mean EV = µ and covariance matrix Var(V ) = K , then:∑n

i=1(V
(i) − µ)√
n

→d N (0,K).
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Local (Central) Limit Theorem (LLT)

Definition
Let V = {v1, v2, . . . , vN} ⊆ Rm be vectors with rank m. We denote by
Lat(V ) the set of integer linear combinations of V :

Lat(V ) = {
N∑
i=1

kivi | ki ∈ Z for i ≤ N}.

We say that Lat(V ) is a lattice if it is discrete and in this case we
denote by |Lat(V )| the fundamental volume of Lat(V ).

Theorem (Local Limit Theorem)
Let V be centred (EV = 0) m-dimensional random vector with values on
an m-dimensional lattice Lat(V ). If V (i) ∼ i.i.d.V , then:

lim
d→∞

P(
d∑

i=1

V (i) = 0).

√
(2πd)m|Var(V )|
|Lat(V )|

= 1
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Local (Central) Limit Theorem (LLT)

Definition
Let V = {v1, v2, . . . , vN} ⊆ Rm be vectors with rank m. We denote by
Lat(V ) the set of integer linear combinations of V :

Lat(V ) = {
N∑
i=1

kivi | ki ∈ Z for i ≤ N}.

We say that Lat(V ) is a lattice if it is discrete and in this case we
denote by |Lat(V )| the fundamental volume of Lat(V ).

Theorem (Local Limit Theorem)
Let V be centred (EV = 0) m-dimensional random vector with values on
an m-dimensional lattice Lat(V ). If V (i) ∼ i.i.d.V , then:

lim
d→∞

P(
d∑

i=1

V (i) = 0).

√
(2πd)m|Var(V )|
|Lat(V )|

= 1

Minchev, Savov, Gerdjikov Sur un problème mathématique 7th December 2025 7 / 31



Equilateral triangles become simple

Remark
In our case X1,X2,X3 ∼ U({0, 1}) and

U = (X1 − X3)2 − (X1 − X2)2, V = (X2 − X3)2 − (X1 − X2)2

.

Remark

V =

(
U
V

)
takes values {(0, 0), (1, 1), (0,−1), (−1, 0)}. So m = 2 and

|Lat(V)|=1.

Remark

Var(V ) =
(
1/2 1/4
1/4 1/2

)
and hence |Var(V )| = 3.2−4. Now the LLT

implies: limd→∞ dP(
∑d

i=1 V
(i) = 0) = 4

π
√
3
.

Minchev, Savov, Gerdjikov Sur un problème mathématique 7th December 2025 8 / 31
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Modelling n-equidistant points on a hypercube

Problem
Let X1, . . . ,Xn be uniformly and independently drawn vertices of the
hypercube {0, 1}d . Denote by pn(d) the probability that all the line
segments XiXj, i 6= j, be of equal length. Find the asymptotic of pn(d) as
d tends to infinity.

1 V (i)
j,k = (X (i)

j − X (i)
k )2 − (X (i)

n − X (i)
n−2)

2.

2 Now V (i) is (m− 1)-dimensional vector where m = n(n−1)
2 .

3 pn(d) = P(
∑d

i=1 V
(i) = 0).

4 Vj,k = (Xj − Xk)2 − (Xn − Xn−2)2.

5 |Var(V )| = m4−m−1 where m = n(n−1)
2 .

6 By LLT: limd→∞ pn(d)
√

(2πd)m−1|Var(V)|
|Lat(V)| = 1.
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The structure of the Lattice (1)

Lemma
Let m =

(n
2

)
and consider Rm with standard orthonormal basis ei,j = ej,i

indexed over 1 ≤ i < j ≤ n. For a set I ⊆ {1, 2, . . . , n}, let
H(I) =

∑
i∈I
∑

j∈Ic ei,j and set [i] = {1, 2, . . . , i} for i ≤ n.
Then lattice induced Lat(H) by {H(I) | I ⊆ {1, 2, . . . , n}} is generated by
the independent vectors:

{2ei,j | i + 1 < j} ∪ {H([i]) | i ≤ n− 1}.

Furthermore |Lat(H)| = 2m−n+1.
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The structure of the Lattice (2)

Remark
Let m =

(n
2

)
and consider Rm with standard orthonormal basis ei,j = ej,i

indexed over 1 ≤ i < j ≤ n. For a set I ⊆ {1, 2, . . . , n}, let
H(I) =

∑
i∈I
∑

j∈Ic ei,j and δ(I) = 1|{n−2,n}4I|=1.

Lemma
The lattice induced Lat(V ) by {H(I)− δ(I)1 | I ⊆ {1, 2, . . . , n}} is
generated by the independent vectors:

2ei,j for i < n− 2 and i + 1 < j,
H([i]) for i < n− 2,
H[n− 2]− 1 and H[n− 1]− 1.

Furthermore |Lat(V )| = 2m−n.
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The structure of the Lattice (2)

Sketch.
Clearly, the named vectors are in Lat(V ).

Since 21 =
∑

i<j 2ei,j and all ei,j are in the lattice H, we can
substitute 2en−2,n with 21 in the generating set for Lat(H).
Then for I ⊆ [n]:

H(I) =
n−1∑
i=1

aiH([i]) +
∑

i+1<j,i+1<n−2
2bi,jei,j + 2c1.

Comparing the coefficients before en−2,n: δ(I) =
∑n−1

i=1 aiδ([i]) + 2c.
Summing up, (H(I)− δ(I)1)−

∑
i+1<j,i+1<n−2 2bi,jei,j equals:

n−3∑
i=1

aiH([i]) + an−1(H([n− 1])− 1) + an−2(H([n− 2])− 1).
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Uniform d-equidistant points on a hypercube

Problem
Let X1, . . . ,Xn be uniformly and independently drawn vertices of the
hypercube {0, 1}d . Denote by pn(d) the probability that all the line
segments XiXj, i 6= j, be of equal length. Find the asymptotic of pn(d) as
d tends to infinity.

Remark
Recall that m =

(n
2

)
:

|Var(V )| = m4−m−1.

By LLT: limd→∞ pn(d)
√

(2πd)m−1|Var(V)|
|Lat(V)| = 1.

Theorem

lim
d→∞

pn(d)d(m−1)/2 =

√
23m−n+1

mπm−1
.
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n-equidistant points with integer/rational coordinates.
The lattice.

Problem
Let X be a random, non-constant, variable taking values on a finite
subset of Z or on a finite subset of Q.
Let X1, . . . ,Xn be independently drawn d-dimensional vectors with
coordinates Xi,j ∼ i.i.dX . Denote by pn(d) the probability that all the
line segments XiXj, i 6= j, be of equal length. Find the asymptotic of
pn(d) as d tends to infinity.

Remark
Let X ∈ X = {x1, . . . , xk}. Since |Lat(V )|/

√
|Var(V )| is scaling and

translation invariant, we can centre and normalise the values xi by an
appropriate factor s, s.t. sxi ∈ N and {sxi | i ≤ k} have greatest common
divisor 1.
This reduces the problem to the {0, 1}-case and |Lat(V )| = 2m−n.
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n-equidistant points with integer/rational coordinates.
The lattice.

Problem
Let X be a random, non-constant, variable taking values on a finite
subset of Z or on a finite subset of Q.
Let X1, . . . ,Xn be independently drawn d-dimensional vectors with
coordinates Xi,j ∼ i.i.dX . Denote by pn(d) the probability that all the
line segments XiXj, i 6= j, be of equal length. Find the asymptotic of
pn(d) as d tends to infinity.

Remark
Let X ∈ X = {x1, . . . , xk}. Since |Lat(V )|/

√
|Var(V )| is scaling and

translation invariant, we can centre and normalise the values xi by an
appropriate factor s, s.t. sxi ∈ N and {sxi | i ≤ k} have greatest common
divisor 1.
This reduces the problem to the {0, 1}-case and |Lat(V )| = 2m−n.

Minchev, Savov, Gerdjikov Sur un problème mathématique 7th December 2025 15 / 31



n-equidistant points with integer/rational coordinates.
The volume.

Theorem
Let m =

(n
2

)
, C = (Var(X))2 and C1 = Var((X − EX)2). Then

|Var(V )| = 4m−nCm−n(4C + (n− 2)C1)
n−1.

Furthermore:

lim
d→∞

d(m−1)/2pn(d) =
1√

(2π)m−1Cm−n(4C + (n− 2)C1)n−1
.
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Proof Idea (Step 1).
Recall Vi,j = (Xi − Xj)2 − (Xn − Xn−2)2. Set
C0 = Var((X1 − X2)2) = 2C − 2C1.

Write α = {i, j} and β = {k, `}, Aα = Ai,j := (Xi − Xj)2, γ = {1, 2}

Cov(Vα,Vβ) = Cov(Aα,Aβ)−Cov(Aγ ,Aα)−Cov(Aγ ,Aβ)+Cov(Aγ ,Aγ).

Cov(Aα,Aβ) =


0 for α ∩ β = ∅
C0 for α = β,

C1 for |α ∩ β| = 1

So with hα,β =

{
1 if |α ∩ β| = 1

0, otherwise
. Then:

Cov(Vα,Vβ) = C0(1+ 1α=β)− C1(hα,{1,2}) + hβ,{1,2}).
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Proof Idea (Step 2).

hα,β =

{
1 if |α ∩ β| = 1

0, otherwise
.

The structure of h encodes the adjacency matrix of the line graph
of the complete graph on n vertices.
To study it, one can start with the m× n incidence matrix (edge by
vertex) and multiply by its transposed.
This approach reveals useful eigenvectors and eigenvalues, e.g.
m− n of the eigenvalues are 0, n− 1 are n− 2 and one is 2n− 2.
In our case the matrix Var(V ) is skewed and represents a
(m− 1)-projection.
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Proof Idea (Step 3).

A =

(
C0 | C01
0 | Var(V )

)
.

B = {1,H1,2,H2, . . . ,Hn} are linearly independent where:

Hi =
∑
j 6=i

ei,j and H1,2 = H1 + H2 − 2e1,2.

For v ⊥ B, Av = (C0 − 2C1)v.
A|B has an almost diagonal form:

C0m C0(2n − 4) C0(n − 2) − C1(n − 4) C0(n − 1) . . . C0(n − 1)
−C1m C0 − (2n − 2)C1 −C1(n − 1) −C1(n − 1) . . . −C(n − 1)

0 0 C0 + C1(n − 4) 0 . . . 0
0 −C1(n − 4) 0 C0 + C1(n − 4) . . . 0

. . . . . . . . . . . . . . . . . .
0 −C1(n − 4) 0 0 . . . C0 + C1(n − 4)


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Proof Idea (Step 3).

A =

(
C0 | C01
0 | Var(V )

)
.

B = {1,H1,2,H2, . . . ,Hn} are linearly independent where:

Hi =
∑
j 6=i

ei,j and H1,2 = H1 + H2 − 2e1,2.

For v ⊥ B, Av = (C0 − 2C1)v.
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n-equidistant points with real coordinates. Model

Problem
Let X be a random, non-constant, variable taking values on a finite
subset of R.
Let X1, . . . ,Xn be independently drawn d-dimensional vectors with
coordinates Xi,j ∼ i.i.dX . Denote by pn(d) the probability that all the
line segments XiXj, i 6= j, be of equal length. Find the asymptotic of
pn(d) as d tends to infinity.

Remark
W.l.o.g. X takes values on X = {x0 = 0, x1, . . . , xk}. Consider:

X1 = {2xixj | 1 ≤ i ≤ j ≤ k} and X2 = {x2i | i ≤ k} ∪ X1

and their spans L = spanQ(X1). Note L = spanQ(X2). So if ` = dim(L)
we can identify L ' Q`, fix a referent basis B for L and obtain bases B1
and B2 for Lat(X1) and Lat(X2).
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n-equidistant points with real coordinates. Hamel and the
Lattice

Remark
Recall m =

(n
2

)
and {ei,j | 1 ≤ i < j ≤ n} is a standard basis of Rm.

Further H(I) =
∑

i∈I
∑

j 6∈I ei,j, where [i] = {1, 2, . . . , i}.

Lemma
Let HX : X n → Rm be the function HX (x) =

∑
i<j(xi − xj)2ei,j.

Then the vectors:
u ⊗ H([i]) for u ∈ B2 and i < n together with
v ⊗ ei,j for v ∈ B1, i + 1 < j ≤ n

form a basis for Lat(HX ) := Lat Im(HX ) considered as a lattice on
L ⊗Qm.
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Hamel and the Lattice
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Hamel and the Lattice (2)

Remark

X1 = {2xixj | 1 ≤ i ≤ j ≤ k} and X2 = {x2i | i ≤ k} ∪ X1

B1 and B2 are bases for Lat(X1) and Lat(X2).

Lemma
Let H∗X : X n → Rm be: H∗X (x) =

∑
i<j((xi − xj)2 − (xn − xn−2)2)ei,j.

Then the vectors:
u ⊗ H([i]) for u ∈ B2 and i < n− 2, together with
u ⊗ (H([n− 2])− 1) and u ⊗ (H([n− 1])− 1) for u ∈ B2 and
v ⊗ ei,j for v ∈ B1, i + 1 < j and i < n− 2

form a basis for Lat(H∗X ) := Lat Im(H∗X ) considered as a lattice on
L ⊗Qm−1. Furthermore the fundamental volume of this lattice is:

|Lat(H∗X )| = |detB1|m−n|detB2|n−1 = |Lat(X1)|m−n|Lat(X2)|n−1.
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n-equidistant points with real coordinates. General case

Remark
Recall X = {x0 = 0, x1, . . . , xk} and

X1 = {2xixj | 1 ≤ i ≤ j ≤ k} and X2 = {x2i | i ≤ k} ∪ X1.

Remark
Let X1,X2,X3 be three independent copies of X taking values on X . Let
Y1 ' (X1 − X2)2 and Y2 ' (X1 − X3)2 considered as Q`-random vectors in
L = span(X1). Set C = Var(Y1) and C1 = Cov(Y1,Y2).

Theorem

limd→∞ pn(d).d`(m−1)/2 =
|L(X1)|m−n|L(X2)|n−1

2m−n
√

m`(2π)`(m−1)|C|m−n|(4C+(n−2)C1)|n−1
.
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n-equidistant points with real coordinates. Galois and the
Lattice

Remark
Recall X = {x0 = 0, x1, . . . , xk} and

X1 = {2xixj | 1 ≤ i ≤ j ≤ k} and X2 = {x2i | i ≤ k} ∪ X1.

Remark
Let X1,X2,X3 be three independent copies of X taking values on X . Let
Y1 ' (X1 − X2)2 and Y2 ' (X1 − X3)2 considered as Q`-random vectors in
L = span(X1). Set C = Var(Y1) and C1 = Cov(Y1,Y2).

Lemma
If xi =

√
qi for i ≤ k, where qi ∈ Q+, then:

1 |LatX1| = 2|LatX2|.
2 limd→∞ pn(d).d`(m−1)/2 =

|L(X2)|m−1√
m`(2π)`(m−1)|C|m−n|(4C+(n−2)C1)|n−1

.
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Galois and the Lattice

Sketch.
1 Since the problem is invariant w.r.t. scaling with positive rational

numbers, we can assume that qi ∈ N.

2 If xixj ∈ N, then gcd(x2i , x
2
j , xixj) = gcd(x2i , x

2
j ), therefore:

gcd({2x2i | i ≤ k} ∪ {2xixj | xixj ∈ N}) = 2gcd({x2i | i ≤ k})

3 To conclude the proof, it suffices to prove that if ti are distinct
square-free natural numbers then:

k∑
i=1

si
√
ti ∈ Q ⇐⇒ si = 0 for all i ≤ k.
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1 This follows by a well-known result from Galois Theory. Let
{pi| | i ≤ n} be distinct prime numbers and p be square-free
co-prime with every pi. Then p 6∈ Kn = Q[

√
p1, . . . ,

√
pn]. In

particular [Kn : Q] = 2n.

2 This implies that {
√∏

j∈I pj | I ⊆ [n]} is a basis of Kn as a linear
space over Q.

3 If {ti | i ≤ k} are distinct square-free natural numbers then taking
their different prime factors p1, . . . , pn, we see that ti are distinct
elements of {

∏
j⊆I pj | I ⊆ [n]} so the claim follows.
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n-equidistant points with real coordinates. Smith’s
Normal Form and the Lattice

Remark
Again Recall X = {x0 = 0, x1, . . . , xk} and

X1 = {2xixj | 1 ≤ i ≤ j ≤ k} and X2 = {x2i | i ≤ k} ∪ X1.

Let x2i ∈ L correspond to the vector ui ∈ Q` and 2xixj ∈ L be mapped
to vi,j ∈ Q`.

Then we introduce the matrix A =



u1
u2
. . .
uk
v1,2
. . .

vk−1,k


=

(
U
V

)
.
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n-equidistant points with real coordinates. Smith’s
Normal Form and the Lattice (2)

Remark
W.l.o.g we may and we do assume that A is integer-valued and that one
of the entries of A is odd.

Lemma
Assume that A (mod 2) has full rank ` over Z2 and V (mod 2) has rank
r over Z2. Then:

1 |Lat(X1)| = 2`−r |Lat(X2)|.
2 |Lat(H∗X )| = 2(m−n)(`−r)|Lat(X2)|m−1.
3 limd→∞ pn(d).d`(m−1)/2 is equal to:

2(m−n)(`−r)|L(X2)|m−1

2m−1
√
m`(2π)`(m−1)|C|m−n|(4C + (n− 2)C1)|n−1

.
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Smith and the Lattice

Idea.
1 The Smith’s algorithm determines a fundamental volume of a

lattice as follows:

2 Consider a matrix A ∈ Mk,`(Z).
3 Set A(0) = A.
4 Given A(j) find the greatest common divisor g(j) of the elements of

A(j).
5 Using elementary operations additions and subtractions of

rows/columns reduce A(j) to:

A(j) =
(
g(j) 0
0 A(j + 1)

)
.

6 The product of the non-zero g(j) is the desired quantity.
7 Comparing how this procedure transforms X1 and X2, the result

follows.
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