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Notations

An angle α ∈ (0, π) is fixed. We will work in the following two languages
L1 = {R,=} and L2 = {R,=}.

Our structure will be PLEu(α) - the line-based fragment of the Euclidean
plane in the language L(=,R) when the given angle α is undirected.

In this structure R will have the following interpretation:
⟨a, b⟩ ∈ R if and only if the angle between the two lines a and b is α
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Introduction to the main problem

Based on the type of the fixed angle α and the symmetry of the relation
”angle between two lines is α” we explore four theories. We provide
suitable axiomatization and prove results concerning expressiveness,
completeness, categoricity and complexity.
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Our current case - ELu(∞)

Now we take into account the case when α is undirected irrational
multiple of π.

ℓ1

ℓ2

α

O
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Axiomatization

Axiom for parallel lines δ1 :
∀x∀y(P(x , y) ⇐⇒ ∀z(R(x , z) ⇐⇒ R(y , z)))

Axiom scheme for infinite parallel lines: δ2,n :
∀x1 . . . ∀xn∃y(P(x1, x2) ∧ · · · ∧ P(xn−1, xn) =⇒
P ′(x1, y) ∧ · · · ∧ P ′(xn, y))

Axiom for rotation in two directions δ3 :
∀x∃y∃z(R(x , y) ∧ R(x , z) ∧ ¬P(y , z))
Axiom equivalent with anti-reflexivity of R δ4 :
∀x∀y(P(x , y) =⇒ ¬R(x , y))
Axiom for R-symmetricity δ5 :
∀x∀y(R(x , y) =⇒ R(y , x))

Axiom for limiting the directions for rotation δ6 :
∀x∀y∀z(R(x , y) ∧ R(x , z) ∧ ¬P(y , z) =⇒ ∀u(R(x , u) =⇒
P(y , u) ∨ P(z , u)))
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The distinctive axiom scheme

Axiom scheme for extensibility:

δ′7,k : ∀y0∀y1 . . . ∃yk(R(y0, y1) ∧ · · · ∧ R(yk−1, yk) ∧
∧

0≤i<j≤k−1

¬P(yi , yj))

=⇒
∧

0≤i<k

¬P(yi , yk))
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Paths

To understand the structures validating the mentioned axioms and
schemes, we need the following two definitions:

Definition

Let M be a model of ELu(∞) and a0 ∈ M. An infinite path with start a0
will be called any infinite sequence of elements (a0, a1, a2 . . . , an, . . . ) from
M such that R(ai , ai+1) for all i ∈ N. Furthermore, no two elements in an
infinite path should be parallel.

Definition

Two infinite paths with start a, say (a, a1, . . . , an, . . . , ) and
(a, b1, . . . , bn, . . . ) will be called coinciding if for each natural i holds that
P(ai , bi ). They will be called different if for no i holds P(ai , bi ).
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Paths

Proposition

Let M |= ELu(∞). The following claims hold as a direct consequences of
the axioms:

1 Any two infinite paths with the same start are either coinciding or
different.

2 For each element a there are exactly two different infinite paths with
start a and any other infinite path coincides with one of the two.
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Categoricity

Theorem

ELu(∞) is not α-categorical for any cardinal number α ≥ ω.

Proof relies on dividing the structure into equivalence classes and taking
into consideration two models with different cardinal number for the
classes and different cardinality for each class.
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Ehrenfeucht-Fräıssé games on the models of ELu(∞)

Definition

Again, a countable model of ELu(∞) that consists of the orbit of only one
element will be called star model. This model is unique up to isomorphism.

The game is played on the star model and another random one.

Proposition

Let M |= ELu(∞). For all integers n Abelard has a winning strategy for
the Ehrenfeucht-Fräıssé game with length n played on S and M.
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Completeness

Theorem

Any two models of ELu(∞) are elementary equivalent.

Theorem

ELu(∞) is complete. Furthermore, ELu(∞) = Th(PLEu(α)) when α is
not co-measurable with π.
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Complexity

Using the following translation:

PLEu(α) |= R(x , y)Ja, bK if and only if PLEd(α) |= R(x , y)∨R(y , x)Ja, bK

we can easily find for each L2−formula a L1−formula and thus the
complexity will be inherited. We have proven that ELd(∞) is
PSPACE-complete, so should ELu(∞) be.
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A special greeting for prof. Tinchev - the ∀∃ puzzle

Rules: You are given a board 4× 4 that should be colored in three
colors- 1,2,3. In some cells are written special formulas. Your task is to
colour all cells (including those with quantifiers) according to the formulas.
One cell validates the formula ∃ if and only if there is another cell in the
same column or the same row that contains the same number. Similarly,
one cell validates the formula ∀ if and only if all other cells in its row and
column contain the same number. Inductively, one cell can validate
formulas of higher rank such as ∀∃,∃∀.
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The puzzle itself

∃∀ 1 2 3

∃∀ ∀

∃∀ 1 ∀∀∃

3 ∀¬∀ 1
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