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Probabilistic Models

L’essentiel est invis-
ible pour les yeux

French sentence S

The essential is in-
visible to the eyes

English translation

PS

Utterance U

There’s no smoke
without fire

Transcription

PU

A delicate and precise
watercolor illustration ...

Text description D
Image

PD
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Recurrent Probabilistic Models

h0 ∈ Rd δ : Rd × Σ → Rd λ : Rd → ∆|Σ|
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P(• | α≤0) P(• | α≤1) P(• | α≤2) P(• | α≤n)
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Sequential Transducers
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Sequential transducers −→ sequential functions
Arbitrary transducers −→ rational relations
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Expressive Power of Sequential Transducers

Definition
For α, β, γ ∈ Σ∗ such that β ∧ γ = ε, the prefix distance between αβ
and αγ is defined as

dp(αβ, αγ) = |β|+ |γ|. α
β

γ

Theorem (Mohri [3])
A rational probability distribution P over Σ∗ is sequential if and only if{

P(α)
P(β)

∣∣∣∣ α, β ∈ Supp(P) & dp(α, β) ≤ n
}

is finite for all n ∈ N.
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Limitations of Sequential Transducers
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Limitations of Recurrent Probabilistic Models

Dx exp | log x|(P,Q) = Eα∼P

[
exp

∣∣∣∣ log P(α)
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]
= Eα∼P
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}
min
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} ]
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Bisequential Decompositions
Definition
A bisequential decomposition of a probability distribution P over Σ∗

is a tuple (Γ, η, g), where
• Γ is a latent alphabet;
• η : Σ∗ → (Σ× Γ)∗ is a co-sequential function s.t. η ◦ πΣ∗ = idΣ∗ ;
• g : (Σ× Γ)∗ → [0, 1] is a sequential probability distribution;
• P = η ◦ g .

rσσ· · ·σσσ
σ | (σ, σ)a | (a, σ)a | (a, σ)a | (a, σ) Tη

` ` ` · · · ` ` `

(a, σ) | pσ(a) (a, σ) | pσ(a) (a, σ) | pσ(a) (σ, σ) | pσ(σ)Tg

a a · · · a σ

P(anσ)
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Expressive Power of Bisequential Decompositions

Theorem (Elgot and Mezei [1])
A probability distribution is rational if and only if it admits a
bisequential decomposition.

Theorem (Shopov and Gerdjikov [5])
A probability distribution P over Σ∗ is rational if and only if there exists
a finite partition {Li}n

i=1 of Σ∗ such that, for 1 ≤ i ≤ n, Li is regular
and

{
P( • α | Liα)

}
α∈Σ∗ is finite. In this case,

α ∼i β ⇐⇒ P( • α | Liα) = P( • β | Liβ)

is a left congruence and the latent alphabet can be chosen to be

Γ =
{(

P( • α | Liα)
)n

i=1
∣∣ α ∈ Σ∗

}
.
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Latent Variable Models

• A latent variable model specifies a joint distribution

pθ(x , z)

over observed variables (data) x ∈ X and latent variables z ∈ Z.
• The latent variables explain the hidden structure used to

generate the data.
• However, the marginal distribution over the data

pθ(x) =
∫

z∈Z
pθ(x , z)dz

is often intractable.
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Evidence Lower Bound
log pθ(x) = Eqφ(z|x)

[
log pθ(x)

]
= Eqφ(z|x)

[
log

pθ(x , z)qφ(z | x)
pθ(z | x)qφ(z | x)

]
= Eqφ(z|x)

[
log

pθ(x , z)
qφ(z | x)

]
+ Eqφ(z|x)

[
log

qφ(z | x)
pθ(z | x)

]
= Eqφ(z|x)

[
log

pθ(x , z)
qφ(z | x)

]
︸ ︷︷ ︸

Evidence Lower Bound

+DKL

(
qφ(z | x), pθ(z | x)

)︸ ︷︷ ︸
≥0

qϕ(z ∣ x)

pθ(z ∣ x)

ϕ(0)

ϕ*

DKL(qϕ*(z ∣ x), pθ(z ∣ x))
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Variational Autoencoders

Definition (Kingma and Welling [2], Rezende et al. [4])
A variational autoencoder is a pair (φ, θ) of parameters defining

• a variational encoder qφ(z | x), and
• a generative model pθ(x , z) = pθ(x | z)pθ(z)

that are optimised by maximising the evidence lower bound

Eqφ(z|x)

[
log

pθ(x , z)
qφ(z | x)

]
= Eqφ(z|x)

[
log

pθ(x | z)pθ(z)
qφ(z | x)

]
= Eqφ(z|x)

[
log pθ(x | z)

]
+ Eqφ(z|x)

[
log

pθ(z)
qφ(z | x)

]
= Eqφ(z|x)

[
log pθ(x | z)

]︸ ︷︷ ︸
Reconstruction term

−DKL

(
qφ(z | x), pθ(z)

)︸ ︷︷ ︸
Regularisation term

.
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Bisequential Variational Autoencoders

Definition
A variational autoencoder is called bisequential if

• qφ(z | x) =
∏n

i=1 qφ(zi | x≥i), and
• pθ(x , z) =

∏n
i=1 pθ(zi | x<i , z<i)pθ(xi | x<i , z≤i).

Theorem
The evidence lower bound of a bisequential variational autoencoder
(φ, θ) can be expressed as

Eqφ(z|x)

[ n∑
i=1

log pθ(xi | x<i , z≤i)︸ ︷︷ ︸
Reconstruction term

−DKL

(
qφ(zi | x≥i), pθ(zi | x<i , z<i)

)︸ ︷︷ ︸
Regularisation term

]
.

Furthermore, when approximating a rational probability distribution,
this lower bound will be tight.
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Expressive Power of Bisequential VAEs
Theorem
Every rational probability distribution can be represented by a
bisequential variational autoencoder.
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Conclusion

We demonstrated how automata theory can be used to:

• Characterise the expressive power of recurrent models.

• Identify key limitations – in particular, their inability to
represent non-sequential rational probability distributions.

• Motivate more expressive architectures, such as Bisequential
VAEs, which overcome these limitations and can model the full
class of rational probability distributions.
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