
Multilanguage Dynamic Wordnet: Timeflow
Hydra

2025

Outline

Wordnet
A point of view
Wordnet for many languages
Static model
As a Kripke frame

Hydra

Dynamic model

Query language

Dynamic language for wordnet

Implementation and Future work

Wordnet

▶ Relational model of the language

▶ language concepts – synonymous sets
▶ 20 semantic and lexical binary relations

■ super-subordinate relation hyperonymy (AKA is-a)

Wordnet

▶ Relational model of the language

▶ language concepts – synonymous sets
▶ 20 semantic and lexical binary relations

■ super-subordinate relation hyperonymy (AKA is-a)

Wordnet

▶ Relational model of the language

▶ language concepts – synonymous sets
▶ 20 semantic and lexical binary relations

■ super-subordinate relation hyperonymy (AKA is-a)

Wordnet

▶ Relational model of the language

▶ language concepts – synonymous sets
▶ 20 semantic and lexical binary relations

■ super-subordinate relation hyperonymy (AKA is-a)

Wordnet for many languages
▶ English in Princeton

▶ > 40 languages

▶ Developed or are still in development using the so called
synchronous model - hyperonymy structure follows this of
the Princeton WordNet

▶ ILI - Common identifier to align synsets (en - bg)

Problems:

▶ Developed by different teams using different software
platforms, file formats, databases, etc.

▶ Stored and maintened separately

▶ The alignment (ILI manintanace) is made periodically usually
for particular language pairs and particular version of these
wordnet databases

▶ Collaborative Interlingual index (CILI) was developed to help
reduce the sparse ILI mapping problem, but it did not succeed
much

Wordnet for many languages
▶ English in Princeton

▶ > 40 languages

▶ Developed or are still in development using the so called
synchronous model - hyperonymy structure follows this of
the Princeton WordNet

▶ ILI - Common identifier to align synsets (en - bg)

Problems:

▶ Developed by different teams using different software
platforms, file formats, databases, etc.

▶ Stored and maintened separately

▶ The alignment (ILI manintanace) is made periodically usually
for particular language pairs and particular version of these
wordnet databases

▶ Collaborative Interlingual index (CILI) was developed to help
reduce the sparse ILI mapping problem, but it did not succeed
much

Wordnet for many languages
▶ English in Princeton

▶ > 40 languages

▶ Developed or are still in development using the so called
synchronous model - hyperonymy structure follows this of
the Princeton WordNet

▶ ILI - Common identifier to align synsets (en - bg)

Problems:

▶ Developed by different teams using different software
platforms, file formats, databases, etc.

▶ Stored and maintened separately

▶ The alignment (ILI manintanace) is made periodically usually
for particular language pairs and particular version of these
wordnet databases

▶ Collaborative Interlingual index (CILI) was developed to help
reduce the sparse ILI mapping problem, but it did not succeed
much

Wordnet for many languages
▶ English in Princeton

▶ > 40 languages

▶ Developed or are still in development using the so called
synchronous model - hyperonymy structure follows this of
the Princeton WordNet

▶ ILI - Common identifier to align synsets (en - bg)

Problems:

▶ Developed by different teams using different software
platforms, file formats, databases, etc.

▶ Stored and maintened separately

▶ The alignment (ILI manintanace) is made periodically usually
for particular language pairs and particular version of these
wordnet databases

▶ Collaborative Interlingual index (CILI) was developed to help
reduce the sparse ILI mapping problem, but it did not succeed
much

Wordnet for many languages
▶ English in Princeton

▶ > 40 languages

▶ Developed or are still in development using the so called
synchronous model - hyperonymy structure follows this of
the Princeton WordNet

▶ ILI - Common identifier to align synsets (en - bg)

Problems:

▶ Developed by different teams using different software
platforms, file formats, databases, etc.

▶ Stored and maintened separately

▶ The alignment (ILI manintanace) is made periodically usually
for particular language pairs and particular version of these
wordnet databases

▶ Collaborative Interlingual index (CILI) was developed to help
reduce the sparse ILI mapping problem, but it did not succeed
much

Wordnet for many languages
▶ English in Princeton

▶ > 40 languages

▶ Developed or are still in development using the so called
synchronous model - hyperonymy structure follows this of
the Princeton WordNet

▶ ILI - Common identifier to align synsets (en - bg)

Problems:

▶ Developed by different teams using different software
platforms, file formats, databases, etc.

▶ Stored and maintened separately

▶ The alignment (ILI manintanace) is made periodically usually
for particular language pairs and particular version of these
wordnet databases

▶ Collaborative Interlingual index (CILI) was developed to help
reduce the sparse ILI mapping problem, but it did not succeed
much

Wordnet for many languages
▶ English in Princeton

▶ > 40 languages

▶ Developed or are still in development using the so called
synchronous model - hyperonymy structure follows this of
the Princeton WordNet

▶ ILI - Common identifier to align synsets (en - bg)

Problems:

▶ Developed by different teams using different software
platforms, file formats, databases, etc.

▶ Stored and maintened separately

▶ The alignment (ILI manintanace) is made periodically usually
for particular language pairs and particular version of these
wordnet databases

▶ Collaborative Interlingual index (CILI) was developed to help
reduce the sparse ILI mapping problem, but it did not succeed
much

Wordnet for many languages
▶ English in Princeton

▶ > 40 languages

▶ Developed or are still in development using the so called
synchronous model - hyperonymy structure follows this of
the Princeton WordNet

▶ ILI - Common identifier to align synsets (en - bg)

Problems:

▶ Developed by different teams using different software
platforms, file formats, databases, etc.

▶ Stored and maintened separately

▶ The alignment (ILI manintanace) is made periodically usually
for particular language pairs and particular version of these
wordnet databases

▶ Collaborative Interlingual index (CILI) was developed to help
reduce the sparse ILI mapping problem, but it did not succeed
much

Wordnet for many languages
▶ English in Princeton

▶ > 40 languages

▶ Developed or are still in development using the so called
synchronous model - hyperonymy structure follows this of
the Princeton WordNet

▶ ILI - Common identifier to align synsets (en - bg)

Problems:

▶ Developed by different teams using different software
platforms, file formats, databases, etc.

▶ Stored and maintened separately

▶ The alignment (ILI manintanace) is made periodically usually
for particular language pairs and particular version of these
wordnet databases

▶ Collaborative Interlingual index (CILI) was developed to help
reduce the sparse ILI mapping problem, but it did not succeed
much

Wordnet for many languages
▶ English in Princeton

▶ > 40 languages

▶ Developed or are still in development using the so called
synchronous model - hyperonymy structure follows this of
the Princeton WordNet

▶ ILI - Common identifier to align synsets (en - bg)

Problems:

▶ Developed by different teams using different software
platforms, file formats, databases, etc.

▶ Stored and maintened separately

▶ The alignment (ILI manintanace) is made periodically usually
for particular language pairs and particular version of these
wordnet databases

▶ Collaborative Interlingual index (CILI) was developed to help
reduce the sparse ILI mapping problem, but it did not succeed
much

Static model for wordnet

In a fixed moment of time:

▶ Family of synonymous sets (synsets)

▶ Semantic relations (hyperonymy, meronymy)

▶ Associated to them we have data like POS

▶ A word in a synset - Literal - ⟨synset,word/compound⟩
▶ Lexical relations

▶ Text data - notes - usage examples, synset or literal features
like verb type, etc.

Static model for wordnet

In a fixed moment of time:

▶ Family of synonymous sets (synsets)

▶ Semantic relations (hyperonymy, meronymy)

▶ Associated to them we have data like POS

▶ A word in a synset - Literal - ⟨synset,word/compound⟩
▶ Lexical relations

▶ Text data - notes - usage examples, synset or literal features
like verb type, etc.

Static model for wordnet

In a fixed moment of time:

▶ Family of synonymous sets (synsets)

▶ Semantic relations (hyperonymy, meronymy)

▶ Associated to them we have data like POS

▶ A word in a synset - Literal - ⟨synset,word/compound⟩
▶ Lexical relations

▶ Text data - notes - usage examples, synset or literal features
like verb type, etc.

Static model for wordnet

In a fixed moment of time:

▶ Family of synonymous sets (synsets)

▶ Semantic relations (hyperonymy, meronymy)

▶ Associated to them we have data like POS

▶ A word in a synset - Literal - ⟨synset,word/compound⟩
▶ Lexical relations

▶ Text data - notes - usage examples, synset or literal features
like verb type, etc.

Static model for wordnet

In a fixed moment of time:

▶ Family of synonymous sets (synsets)

▶ Semantic relations (hyperonymy, meronymy)

▶ Associated to them we have data like POS

▶ A word in a synset - Literal - ⟨synset,word/compound⟩
▶ Lexical relations

▶ Text data - notes - usage examples, synset or literal features
like verb type, etc.

Static model for wordnet

In a fixed moment of time:

▶ Family of synonymous sets (synsets)

▶ Semantic relations (hyperonymy, meronymy)

▶ Associated to them we have data like POS

▶ A word in a synset - Literal - ⟨synset,word/compound⟩
▶ Lexical relations

▶ Text data - notes - usage examples, synset or literal features
like verb type, etc.

Static model for wordnet

In a fixed moment of time:

▶ Family of synonymous sets (synsets)

▶ Semantic relations (hyperonymy, meronymy)

▶ Associated to them we have data like POS

▶ A word in a synset - Literal - ⟨synset,word/compound⟩
▶ Lexical relations

▶ Text data - notes - usage examples, synset or literal features
like verb type, etc.

Wordnet as a Kripke frame

3 types of objects - Synset, Literal, Note
We define special binary relations to encode the relationships
between them.

▶ Literal relation connects a particular literal to its parent
synset

▶ Usage relation connects a Usage example (Note object) with
its parent synset

▶ ILI relates Synset in different languages representing the same
notion.

▶ etc.

⟨W ,R⟩
W - Synset, Literal and Note objects
R - A set of binary relations

Wordnet as a Kripke frame

3 types of objects - Synset, Literal, Note
We define special binary relations to encode the relationships
between them.

▶ Literal relation connects a particular literal to its parent
synset

▶ Usage relation connects a Usage example (Note object) with
its parent synset

▶ ILI relates Synset in different languages representing the same
notion.

▶ etc.

⟨W ,R⟩
W - Synset, Literal and Note objects
R - A set of binary relations

Wordnet as a Kripke frame

3 types of objects - Synset, Literal, Note
We define special binary relations to encode the relationships
between them.

▶ Literal relation connects a particular literal to its parent
synset

▶ Usage relation connects a Usage example (Note object) with
its parent synset

▶ ILI relates Synset in different languages representing the same
notion.

▶ etc.

⟨W ,R⟩
W - Synset, Literal and Note objects
R - A set of binary relations

Wordnet as a Kripke frame

3 types of objects - Synset, Literal, Note
We define special binary relations to encode the relationships
between them.

▶ Literal relation connects a particular literal to its parent
synset

▶ Usage relation connects a Usage example (Note object) with
its parent synset

▶ ILI relates Synset in different languages representing the same
notion.

▶ etc.

⟨W ,R⟩
W - Synset, Literal and Note objects
R - A set of binary relations

Wordnet as a Kripke frame

3 types of objects - Synset, Literal, Note
We define special binary relations to encode the relationships
between them.

▶ Literal relation connects a particular literal to its parent
synset

▶ Usage relation connects a Usage example (Note object) with
its parent synset

▶ ILI relates Synset in different languages representing the same
notion.

▶ etc.

⟨W ,R⟩
W - Synset, Literal and Note objects
R - A set of binary relations

Wordnet as a Kripke frame

3 types of objects - Synset, Literal, Note
We define special binary relations to encode the relationships
between them.

▶ Literal relation connects a particular literal to its parent
synset

▶ Usage relation connects a Usage example (Note object) with
its parent synset

▶ ILI relates Synset in different languages representing the same
notion.

▶ etc.

⟨W ,R⟩
W - Synset, Literal and Note objects
R - A set of binary relations

Wordnet as a Kripke frame

3 types of objects - Synset, Literal, Note
We define special binary relations to encode the relationships
between them.

▶ Literal relation connects a particular literal to its parent
synset

▶ Usage relation connects a Usage example (Note object) with
its parent synset

▶ ILI relates Synset in different languages representing the same
notion.

▶ etc.

⟨W ,R⟩
W - Synset, Literal and Note objects
R - A set of binary relations

Wordnet as a Kripke frame

3 types of objects - Synset, Literal, Note
We define special binary relations to encode the relationships
between them.

▶ Literal relation connects a particular literal to its parent
synset

▶ Usage relation connects a Usage example (Note object) with
its parent synset

▶ ILI relates Synset in different languages representing the same
notion.

▶ etc.

⟨W ,R⟩
W - Synset, Literal and Note objects
R - A set of binary relations

Wordnet as a Kripke frame

3 types of objects - Synset, Literal, Note
We define special binary relations to encode the relationships
between them.

▶ Literal relation connects a particular literal to its parent
synset

▶ Usage relation connects a Usage example (Note object) with
its parent synset

▶ ILI relates Synset in different languages representing the same
notion.

▶ etc.

⟨W ,R⟩
W - Synset, Literal and Note objects
R - A set of binary relations

Wordnet as a Kripke frame

3 types of objects - Synset, Literal, Note
We define special binary relations to encode the relationships
between them.

▶ Literal relation connects a particular literal to its parent
synset

▶ Usage relation connects a Usage example (Note object) with
its parent synset

▶ ILI relates Synset in different languages representing the same
notion.

▶ etc.

⟨W ,R⟩
W - Synset, Literal and Note objects
R - A set of binary relations

Hydra

Wordnet database management system

▶ First version - 2006

▶ Wordnet as a Kripke frame

▶ Many languages in a single database

▶ Second verion - Web SPA (Hydra for Web)
Previous, still in production, system
http://dcl.bas.bg/bulnet with 22 languages

▶ Searching with Modal logic query language

http://dcl.bas.bg/bulnet

Hydra

Wordnet database management system

▶ First version - 2006

▶ Wordnet as a Kripke frame

▶ Many languages in a single database

▶ Second verion - Web SPA (Hydra for Web)
Previous, still in production, system
http://dcl.bas.bg/bulnet with 22 languages

▶ Searching with Modal logic query language

http://dcl.bas.bg/bulnet

Hydra

Wordnet database management system

▶ First version - 2006

▶ Wordnet as a Kripke frame

▶ Many languages in a single database

▶ Second verion - Web SPA (Hydra for Web)
Previous, still in production, system
http://dcl.bas.bg/bulnet with 22 languages

▶ Searching with Modal logic query language

http://dcl.bas.bg/bulnet

Hydra

Wordnet database management system

▶ First version - 2006

▶ Wordnet as a Kripke frame

▶ Many languages in a single database

▶ Second verion - Web SPA (Hydra for Web)
Previous, still in production, system
http://dcl.bas.bg/bulnet with 22 languages

▶ Searching with Modal logic query language

http://dcl.bas.bg/bulnet

Hydra

Wordnet database management system

▶ First version - 2006

▶ Wordnet as a Kripke frame

▶ Many languages in a single database

▶ Second verion - Web SPA (Hydra for Web)
Previous, still in production, system
http://dcl.bas.bg/bulnet with 22 languages

▶ Searching with Modal logic query language

http://dcl.bas.bg/bulnet

Hydra

Wordnet database management system

▶ First version - 2006

▶ Wordnet as a Kripke frame

▶ Many languages in a single database

▶ Second verion - Web SPA (Hydra for Web)
Previous, still in production, system
http://dcl.bas.bg/bulnet with 22 languages

▶ Searching with Modal logic query language

http://dcl.bas.bg/bulnet

Hydra

Wordnet database management system

▶ First version - 2006

▶ Wordnet as a Kripke frame

▶ Many languages in a single database

▶ Second verion - Web SPA (Hydra for Web)
Previous, still in production, system
http://dcl.bas.bg/bulnet with 22 languages

▶ Searching with Modal logic query language

http://dcl.bas.bg/bulnet

Hydra

Wordnet database management system

▶ First version - 2006

▶ Wordnet as a Kripke frame

▶ Many languages in a single database

▶ Second verion - Web SPA (Hydra for Web)
Previous, still in production, system
http://dcl.bas.bg/bulnet with 22 languages

▶ Searching with Modal logic query language

http://dcl.bas.bg/bulnet

The Vision

▶ Support multiple languages

▶ Concurrent user access with fine-grained permissions

▶ Store every version of every object in the database

▶ Powerful query language

▶ Intuitive GUI

▶ Robust model resistant to misuse

The Vision

▶ Support multiple languages

▶ Concurrent user access with fine-grained permissions

▶ Store every version of every object in the database

▶ Powerful query language

▶ Intuitive GUI

▶ Robust model resistant to misuse

The Vision

▶ Support multiple languages

▶ Concurrent user access with fine-grained permissions

▶ Store every version of every object in the database

▶ Powerful query language

▶ Intuitive GUI

▶ Robust model resistant to misuse

The Vision

▶ Support multiple languages

▶ Concurrent user access with fine-grained permissions

▶ Store every version of every object in the database

▶ Powerful query language

▶ Intuitive GUI

▶ Robust model resistant to misuse

The Vision

▶ Support multiple languages

▶ Concurrent user access with fine-grained permissions

▶ Store every version of every object in the database

▶ Powerful query language

▶ Intuitive GUI

▶ Robust model resistant to misuse

The Vision

▶ Support multiple languages

▶ Concurrent user access with fine-grained permissions

▶ Store every version of every object in the database

▶ Powerful query language

▶ Intuitive GUI

▶ Robust model resistant to misuse

Dynamic model for wordnet
A static wordnet database is an incomplete instantaneous
description of the language. Over time, both the language and its
wordnet representation change and evolve. If we take the snapshots
of wordnet in the static model, we get a set of Kripke frames.
Let’s take the union of the resulting set of disjoint frames.

{⟨Wt ,Rt⟩}t∈T

Dynamic wordnet model:

▶ Discrete time model

▶ Only one instance of object or relation can be changed in a
single time moment

▶ For a moment we have an instance of the static model - with
the most recent verion of the objects and relations (nearest
previous version).

▶ The collection of all the static Kripke frames we call Dynamic
model

Dynamic model for wordnet
A static wordnet database is an incomplete instantaneous
description of the language. Over time, both the language and its
wordnet representation change and evolve. If we take the snapshots
of wordnet in the static model, we get a set of Kripke frames.
Let’s take the union of the resulting set of disjoint frames.

{⟨Wt ,Rt⟩}t∈T

Dynamic wordnet model:

▶ Discrete time model

▶ Only one instance of object or relation can be changed in a
single time moment

▶ For a moment we have an instance of the static model - with
the most recent verion of the objects and relations (nearest
previous version).

▶ The collection of all the static Kripke frames we call Dynamic
model

Dynamic model for wordnet
A static wordnet database is an incomplete instantaneous
description of the language. Over time, both the language and its
wordnet representation change and evolve. If we take the snapshots
of wordnet in the static model, we get a set of Kripke frames.
Let’s take the union of the resulting set of disjoint frames.

{⟨Wt ,Rt⟩}t∈T

Dynamic wordnet model:

▶ Discrete time model

▶ Only one instance of object or relation can be changed in a
single time moment

▶ For a moment we have an instance of the static model - with
the most recent verion of the objects and relations (nearest
previous version).

▶ The collection of all the static Kripke frames we call Dynamic
model

Dynamic model for wordnet
A static wordnet database is an incomplete instantaneous
description of the language. Over time, both the language and its
wordnet representation change and evolve. If we take the snapshots
of wordnet in the static model, we get a set of Kripke frames.
Let’s take the union of the resulting set of disjoint frames.

{⟨Wt ,Rt⟩}t∈T

Dynamic wordnet model:

▶ Discrete time model

▶ Only one instance of object or relation can be changed in a
single time moment

▶ For a moment we have an instance of the static model - with
the most recent verion of the objects and relations (nearest
previous version).

▶ The collection of all the static Kripke frames we call Dynamic
model

Dynamic model for wordnet
A static wordnet database is an incomplete instantaneous
description of the language. Over time, both the language and its
wordnet representation change and evolve. If we take the snapshots
of wordnet in the static model, we get a set of Kripke frames.
Let’s take the union of the resulting set of disjoint frames.

{⟨Wt ,Rt⟩}t∈T

Dynamic wordnet model:

▶ Discrete time model

▶ Only one instance of object or relation can be changed in a
single time moment

▶ For a moment we have an instance of the static model - with
the most recent verion of the objects and relations (nearest
previous version).

▶ The collection of all the static Kripke frames we call Dynamic
model

Dynamic model for wordnet
A static wordnet database is an incomplete instantaneous
description of the language. Over time, both the language and its
wordnet representation change and evolve. If we take the snapshots
of wordnet in the static model, we get a set of Kripke frames.
Let’s take the union of the resulting set of disjoint frames.

{⟨Wt ,Rt⟩}t∈T

Dynamic wordnet model:

▶ Discrete time model

▶ Only one instance of object or relation can be changed in a
single time moment

▶ For a moment we have an instance of the static model - with
the most recent verion of the objects and relations (nearest
previous version).

▶ The collection of all the static Kripke frames we call Dynamic
model

Dynamic model for wordnet
A static wordnet database is an incomplete instantaneous
description of the language. Over time, both the language and its
wordnet representation change and evolve. If we take the snapshots
of wordnet in the static model, we get a set of Kripke frames.
Let’s take the union of the resulting set of disjoint frames.

{⟨Wt ,Rt⟩}t∈T

Dynamic wordnet model:

▶ Discrete time model

▶ Only one instance of object or relation can be changed in a
single time moment

▶ For a moment we have an instance of the static model - with
the most recent verion of the objects and relations (nearest
previous version).

▶ The collection of all the static Kripke frames we call Dynamic
model

Dynamic model for wordnet
A static wordnet database is an incomplete instantaneous
description of the language. Over time, both the language and its
wordnet representation change and evolve. If we take the snapshots
of wordnet in the static model, we get a set of Kripke frames.
Let’s take the union of the resulting set of disjoint frames.

{⟨Wt ,Rt⟩}t∈T

Dynamic wordnet model:

▶ Discrete time model

▶ Only one instance of object or relation can be changed in a
single time moment

▶ For a moment we have an instance of the static model - with
the most recent verion of the objects and relations (nearest
previous version).

▶ The collection of all the static Kripke frames we call Dynamic
model

Dynamic model for wordnet
A static wordnet database is an incomplete instantaneous
description of the language. Over time, both the language and its
wordnet representation change and evolve. If we take the snapshots
of wordnet in the static model, we get a set of Kripke frames.
Let’s take the union of the resulting set of disjoint frames.

{⟨Wt ,Rt⟩}t∈T

Dynamic wordnet model:

▶ Discrete time model

▶ Only one instance of object or relation can be changed in a
single time moment

▶ For a moment we have an instance of the static model - with
the most recent verion of the objects and relations (nearest
previous version).

▶ The collection of all the static Kripke frames we call Dynamic
model

Dynamic model for wordnet
A static wordnet database is an incomplete instantaneous
description of the language. Over time, both the language and its
wordnet representation change and evolve. If we take the snapshots
of wordnet in the static model, we get a set of Kripke frames.
Let’s take the union of the resulting set of disjoint frames.

{⟨Wt ,Rt⟩}t∈T

Dynamic wordnet model:

▶ Discrete time model

▶ Only one instance of object or relation can be changed in a
single time moment

▶ For a moment we have an instance of the static model - with
the most recent verion of the objects and relations (nearest
previous version).

▶ The collection of all the static Kripke frames we call Dynamic
model

Query language

The construction of wordnet and its editing opens questions about
the evolution of the data and the structure over time. We would
like to easily detect a problem, when it occured and who did it.
We want it without reverting the data to previous state.
We accomplish this and much more.
We use model checking for searching.

Query language

The construction of wordnet and its editing opens questions about
the evolution of the data and the structure over time. We would
like to easily detect a problem, when it occured and who did it.
We want it without reverting the data to previous state.
We accomplish this and much more.
We use model checking for searching.

Query language

The construction of wordnet and its editing opens questions about
the evolution of the data and the structure over time. We would
like to easily detect a problem, when it occured and who did it.
We want it without reverting the data to previous state.
We accomplish this and much more.
We use model checking for searching.

Query language

The construction of wordnet and its editing opens questions about
the evolution of the data and the structure over time. We would
like to easily detect a problem, when it occured and who did it.
We want it without reverting the data to previous state.
We accomplish this and much more.
We use model checking for searching.

Dynamic language for wordnet

▶ N Individual constants (nominals) - in the system we use
decimal numbers for them.

▶ O A set of constants for the features in the objects and their
values. They use the schema type(′value ′). For instance
pos(’n’) is such constant.

▶ A set of relation symbols (hypernym, literal)
▶ We have 4 types of temporal modifiers - for a fixed timestamp

(real time moment), fixed operation moment (model time
moment), relative future and relative past like this:
▶ t159737980000;
▶ o1235;
▶ f5;
▶ p3;

Dynamic language for wordnet

▶ N Individual constants (nominals) - in the system we use
decimal numbers for them.

▶ O A set of constants for the features in the objects and their
values. They use the schema type(′value ′). For instance
pos(’n’) is such constant.

▶ A set of relation symbols (hypernym, literal)
▶ We have 4 types of temporal modifiers - for a fixed timestamp

(real time moment), fixed operation moment (model time
moment), relative future and relative past like this:
▶ t159737980000;
▶ o1235;
▶ f5;
▶ p3;

Dynamic language for wordnet

▶ N Individual constants (nominals) - in the system we use
decimal numbers for them.

▶ O A set of constants for the features in the objects and their
values. They use the schema type(′value ′). For instance
pos(’n’) is such constant.

▶ A set of relation symbols (hypernym, literal)
▶ We have 4 types of temporal modifiers - for a fixed timestamp

(real time moment), fixed operation moment (model time
moment), relative future and relative past like this:
▶ t159737980000;
▶ o1235;
▶ f5;
▶ p3;

Dynamic language for wordnet

▶ N Individual constants (nominals) - in the system we use
decimal numbers for them.

▶ O A set of constants for the features in the objects and their
values. They use the schema type(′value ′). For instance
pos(’n’) is such constant.

▶ A set of relation symbols (hypernym, literal)
▶ We have 4 types of temporal modifiers - for a fixed timestamp

(real time moment), fixed operation moment (model time
moment), relative future and relative past like this:
▶ t159737980000;
▶ o1235;
▶ f5;
▶ p3;

Dynamic language for wordnet

▶ N Individual constants (nominals) - in the system we use
decimal numbers for them.

▶ O A set of constants for the features in the objects and their
values. They use the schema type(′value ′). For instance
pos(’n’) is such constant.

▶ A set of relation symbols (hypernym, literal)
▶ We have 4 types of temporal modifiers - for a fixed timestamp

(real time moment), fixed operation moment (model time
moment), relative future and relative past like this:
▶ t159737980000;
▶ o1235;
▶ f5;
▶ p3;

Dynamic language for wordnet

▶ N Individual constants (nominals) - in the system we use
decimal numbers for them.

▶ O A set of constants for the features in the objects and their
values. They use the schema type(′value ′). For instance
pos(’n’) is such constant.

▶ A set of relation symbols (hypernym, literal)
▶ We have 4 types of temporal modifiers - for a fixed timestamp

(real time moment), fixed operation moment (model time
moment), relative future and relative past like this:
▶ t159737980000;
▶ o1235;
▶ f5;
▶ p3;

Dynamic language for wordnet

▶ N Individual constants (nominals) - in the system we use
decimal numbers for them.

▶ O A set of constants for the features in the objects and their
values. They use the schema type(′value ′). For instance
pos(’n’) is such constant.

▶ A set of relation symbols (hypernym, literal)
▶ We have 4 types of temporal modifiers - for a fixed timestamp

(real time moment), fixed operation moment (model time
moment), relative future and relative past like this:
▶ t159737980000;
▶ o1235;
▶ f5;
▶ p3;

Dynamic language for wordnet

▶ N Individual constants (nominals) - in the system we use
decimal numbers for them.

▶ O A set of constants for the features in the objects and their
values. They use the schema type(′value ′). For instance
pos(’n’) is such constant.

▶ A set of relation symbols (hypernym, literal)
▶ We have 4 types of temporal modifiers - for a fixed timestamp

(real time moment), fixed operation moment (model time
moment), relative future and relative past like this:
▶ t159737980000;
▶ o1235;
▶ f5;
▶ p3;

Dynamic language for wordnet

▶ N Individual constants (nominals) - in the system we use
decimal numbers for them.

▶ O A set of constants for the features in the objects and their
values. They use the schema type(′value ′). For instance
pos(’n’) is such constant.

▶ A set of relation symbols (hypernym, literal)
▶ We have 4 types of temporal modifiers - for a fixed timestamp

(real time moment), fixed operation moment (model time
moment), relative future and relative past like this:
▶ t159737980000;
▶ o1235;
▶ f5;
▶ p3;

Atomic formulae

▶ ⊥
▶ ⊤
▶ N ⊆ AtomicFor

▶ O ⊆ AtomicFor

Atomic formulae

▶ ⊥
▶ ⊤
▶ N ⊆ AtomicFor

▶ O ⊆ AtomicFor

Atomic formulae

▶ ⊥
▶ ⊤
▶ N ⊆ AtomicFor

▶ O ⊆ AtomicFor

Atomic formulae

▶ ⊥
▶ ⊤
▶ N ⊆ AtomicFor

▶ O ⊆ AtomicFor

Formulae

▶ AtomicFor ⊆ For.

Let q and r be fomulae (queries), R ∈ R, t ∈ TM, then the
following are formulae:

▶ !q

▶ q & r

▶ q | r
▶ q => r

▶ q <=> r

▶ <R>q

▶ [R]q

▶ ≪ t ≫q

Formulae

▶ AtomicFor ⊆ For.

Let q and r be fomulae (queries), R ∈ R, t ∈ TM, then the
following are formulae:

▶ !q

▶ q & r

▶ q | r
▶ q => r

▶ q <=> r

▶ <R>q

▶ [R]q

▶ ≪ t ≫q

Formulae

▶ AtomicFor ⊆ For.

Let q and r be fomulae (queries), R ∈ R, t ∈ TM, then the
following are formulae:

▶ !q

▶ q & r

▶ q | r
▶ q => r

▶ q <=> r

▶ <R>q

▶ [R]q

▶ ≪ t ≫q

Formulae

▶ AtomicFor ⊆ For.

Let q and r be fomulae (queries), R ∈ R, t ∈ TM, then the
following are formulae:

▶ !q

▶ q & r

▶ q | r
▶ q => r

▶ q <=> r

▶ <R>q

▶ [R]q

▶ ≪ t ≫q

Formulae

▶ AtomicFor ⊆ For.

Let q and r be fomulae (queries), R ∈ R, t ∈ TM, then the
following are formulae:

▶ !q

▶ q & r

▶ q | r
▶ q => r

▶ q <=> r

▶ <R>q

▶ [R]q

▶ ≪ t ≫q

Formulae

▶ AtomicFor ⊆ For.

Let q and r be fomulae (queries), R ∈ R, t ∈ TM, then the
following are formulae:

▶ !q

▶ q & r

▶ q | r
▶ q => r

▶ q <=> r

▶ <R>q

▶ [R]q

▶ ≪ t ≫q

Formulae

▶ AtomicFor ⊆ For.

Let q and r be fomulae (queries), R ∈ R, t ∈ TM, then the
following are formulae:

▶ !q

▶ q & r

▶ q | r
▶ q => r

▶ q <=> r

▶ <R>q

▶ [R]q

▶ ≪ t ≫q

Formulae

▶ AtomicFor ⊆ For.

Let q and r be fomulae (queries), R ∈ R, t ∈ TM, then the
following are formulae:

▶ !q

▶ q & r

▶ q | r
▶ q => r

▶ q <=> r

▶ <R>q

▶ [R]q

▶ ≪ t ≫q

Formulae

▶ AtomicFor ⊆ For.

Let q and r be fomulae (queries), R ∈ R, t ∈ TM, then the
following are formulae:

▶ !q

▶ q & r

▶ q | r
▶ q => r

▶ q <=> r

▶ <R>q

▶ [R]q

▶ ≪ t ≫q

Relation modifiers

▶ ˜R - the reverse relation of R

▶ R+ - the transitive closure of R

▶ R* - the reflexive and transitive closure of R

Relation modifiers

▶ ˜R - the reverse relation of R

▶ R+ - the transitive closure of R

▶ R* - the reflexive and transitive closure of R

Relation modifiers

▶ ˜R - the reverse relation of R

▶ R+ - the transitive closure of R

▶ R* - the reflexive and transitive closure of R

Semantics

We define the truth of a formula in a object x in the Dynamic
model D by induction on the formula construction:

▶ D, t, x ⊩ $s iff x is a Synset

▶ D, t, x ⊩ $l iff x is a Literal

▶ D, t, x ⊩ $n iff x is a Note

▶ D, t, x ⊩ type(’value’) iff x.type = value (for instance
x.pos=n, so x is a noun synset)

▶ D, t, x ⊩ !q iff D, t, x ⊮ q

▶ D, t, x ⊩ q & r iff D, t, x ⊩ q and D, t, x ⊩ r

▶ D, t, x ⊩ <R>q iff
∃y(xRt(R)y&D, t, y ⊩ q)

▶ D, t, x ⊩≪ t ≫ q iff D,m(t, t), x ⊩ q

▶ We say that a formula is true in dynamic model at point x ,
denoted D, x |= q iff D, tc , x ⊩ q

Semantics

We define the truth of a formula in a object x in the Dynamic
model D by induction on the formula construction:

▶ D, t, x ⊩ $s iff x is a Synset

▶ D, t, x ⊩ $l iff x is a Literal

▶ D, t, x ⊩ $n iff x is a Note

▶ D, t, x ⊩ type(’value’) iff x.type = value (for instance
x.pos=n, so x is a noun synset)

▶ D, t, x ⊩ !q iff D, t, x ⊮ q

▶ D, t, x ⊩ q & r iff D, t, x ⊩ q and D, t, x ⊩ r

▶ D, t, x ⊩ <R>q iff
∃y(xRt(R)y&D, t, y ⊩ q)

▶ D, t, x ⊩≪ t ≫ q iff D,m(t, t), x ⊩ q

▶ We say that a formula is true in dynamic model at point x ,
denoted D, x |= q iff D, tc , x ⊩ q

Semantics

We define the truth of a formula in a object x in the Dynamic
model D by induction on the formula construction:

▶ D, t, x ⊩ $s iff x is a Synset

▶ D, t, x ⊩ $l iff x is a Literal

▶ D, t, x ⊩ $n iff x is a Note

▶ D, t, x ⊩ type(’value’) iff x.type = value (for instance
x.pos=n, so x is a noun synset)

▶ D, t, x ⊩ !q iff D, t, x ⊮ q

▶ D, t, x ⊩ q & r iff D, t, x ⊩ q and D, t, x ⊩ r

▶ D, t, x ⊩ <R>q iff
∃y(xRt(R)y&D, t, y ⊩ q)

▶ D, t, x ⊩≪ t ≫ q iff D,m(t, t), x ⊩ q

▶ We say that a formula is true in dynamic model at point x ,
denoted D, x |= q iff D, tc , x ⊩ q

Semantics

We define the truth of a formula in a object x in the Dynamic
model D by induction on the formula construction:

▶ D, t, x ⊩ $s iff x is a Synset

▶ D, t, x ⊩ $l iff x is a Literal

▶ D, t, x ⊩ $n iff x is a Note

▶ D, t, x ⊩ type(’value’) iff x.type = value (for instance
x.pos=n, so x is a noun synset)

▶ D, t, x ⊩ !q iff D, t, x ⊮ q

▶ D, t, x ⊩ q & r iff D, t, x ⊩ q and D, t, x ⊩ r

▶ D, t, x ⊩ <R>q iff
∃y(xRt(R)y&D, t, y ⊩ q)

▶ D, t, x ⊩≪ t ≫ q iff D,m(t, t), x ⊩ q

▶ We say that a formula is true in dynamic model at point x ,
denoted D, x |= q iff D, tc , x ⊩ q

Semantics

We define the truth of a formula in a object x in the Dynamic
model D by induction on the formula construction:

▶ D, t, x ⊩ $s iff x is a Synset

▶ D, t, x ⊩ $l iff x is a Literal

▶ D, t, x ⊩ $n iff x is a Note

▶ D, t, x ⊩ type(’value’) iff x.type = value (for instance
x.pos=n, so x is a noun synset)

▶ D, t, x ⊩ !q iff D, t, x ⊮ q

▶ D, t, x ⊩ q & r iff D, t, x ⊩ q and D, t, x ⊩ r

▶ D, t, x ⊩ <R>q iff
∃y(xRt(R)y&D, t, y ⊩ q)

▶ D, t, x ⊩≪ t ≫ q iff D,m(t, t), x ⊩ q

▶ We say that a formula is true in dynamic model at point x ,
denoted D, x |= q iff D, tc , x ⊩ q

Semantics

We define the truth of a formula in a object x in the Dynamic
model D by induction on the formula construction:

▶ D, t, x ⊩ $s iff x is a Synset

▶ D, t, x ⊩ $l iff x is a Literal

▶ D, t, x ⊩ $n iff x is a Note

▶ D, t, x ⊩ type(’value’) iff x.type = value (for instance
x.pos=n, so x is a noun synset)

▶ D, t, x ⊩ !q iff D, t, x ⊮ q

▶ D, t, x ⊩ q & r iff D, t, x ⊩ q and D, t, x ⊩ r

▶ D, t, x ⊩ <R>q iff
∃y(xRt(R)y&D, t, y ⊩ q)

▶ D, t, x ⊩≪ t ≫ q iff D,m(t, t), x ⊩ q

▶ We say that a formula is true in dynamic model at point x ,
denoted D, x |= q iff D, tc , x ⊩ q

Semantics

We define the truth of a formula in a object x in the Dynamic
model D by induction on the formula construction:

▶ D, t, x ⊩ $s iff x is a Synset

▶ D, t, x ⊩ $l iff x is a Literal

▶ D, t, x ⊩ $n iff x is a Note

▶ D, t, x ⊩ type(’value’) iff x.type = value (for instance
x.pos=n, so x is a noun synset)

▶ D, t, x ⊩ !q iff D, t, x ⊮ q

▶ D, t, x ⊩ q & r iff D, t, x ⊩ q and D, t, x ⊩ r

▶ D, t, x ⊩ <R>q iff
∃y(xRt(R)y&D, t, y ⊩ q)

▶ D, t, x ⊩≪ t ≫ q iff D,m(t, t), x ⊩ q

▶ We say that a formula is true in dynamic model at point x ,
denoted D, x |= q iff D, tc , x ⊩ q

Semantics

We define the truth of a formula in a object x in the Dynamic
model D by induction on the formula construction:

▶ D, t, x ⊩ $s iff x is a Synset

▶ D, t, x ⊩ $l iff x is a Literal

▶ D, t, x ⊩ $n iff x is a Note

▶ D, t, x ⊩ type(’value’) iff x.type = value (for instance
x.pos=n, so x is a noun synset)

▶ D, t, x ⊩ !q iff D, t, x ⊮ q

▶ D, t, x ⊩ q & r iff D, t, x ⊩ q and D, t, x ⊩ r

▶ D, t, x ⊩ <R>q iff
∃y(xRt(R)y&D, t, y ⊩ q)

▶ D, t, x ⊩≪ t ≫ q iff D,m(t, t), x ⊩ q

▶ We say that a formula is true in dynamic model at point x ,
denoted D, x |= q iff D, tc , x ⊩ q

Semantics

We define the truth of a formula in a object x in the Dynamic
model D by induction on the formula construction:

▶ D, t, x ⊩ $s iff x is a Synset

▶ D, t, x ⊩ $l iff x is a Literal

▶ D, t, x ⊩ $n iff x is a Note

▶ D, t, x ⊩ type(’value’) iff x.type = value (for instance
x.pos=n, so x is a noun synset)

▶ D, t, x ⊩ !q iff D, t, x ⊮ q

▶ D, t, x ⊩ q & r iff D, t, x ⊩ q and D, t, x ⊩ r

▶ D, t, x ⊩ <R>q iff
∃y(xRt(R)y&D, t, y ⊩ q)

▶ D, t, x ⊩≪ t ≫ q iff D,m(t, t), x ⊩ q

▶ We say that a formula is true in dynamic model at point x ,
denoted D, x |= q iff D, tc , x ⊩ q

Temporal queries

▶ D, t, x ⊩ ≪t159737980000≫q iff D, t0, x ⊩ q where t0 is the
nearest previous model moment to this timestamp

▶ D, t, x ⊩ ≪p3≫q

▶ D, t, x ⊩ ≪f5≫q

Temporal queries

▶ D, t, x ⊩ ≪t159737980000≫q iff D, t0, x ⊩ q where t0 is the
nearest previous model moment to this timestamp

▶ D, t, x ⊩ ≪p3≫q

▶ D, t, x ⊩ ≪f5≫q

Temporal queries

▶ D, t, x ⊩ ≪t159737980000≫q iff D, t0, x ⊩ q where t0 is the
nearest previous model moment to this timestamp

▶ D, t, x ⊩ ≪p3≫q

▶ D, t, x ⊩ ≪f5≫q

Example queries

▶ Find the noun synsets that are on top of hyperonymy
hierarchy in English:
pos(’n’) & [hypernym]⊥ & lang(’en’)

▶ Find the synsets that are exactly two levels below the top in
the hyperonymy hierarchy:
[hypernym][hypernym][hypernym] ⊥ &

<hypernym><hypernym>⊤
▶ Find inconsistency between Bulgarian and English:

<ili>(lang(’en’) & pos(’n’) & [hypernym][hypernym]⊥ &

<hypernym>⊤)
& lang(’bg’) & [hypernym]⊥

▶ Find the literals that before 3 days were presenting the word
’test’ and 2 days later are not:
<p3>(word(’test’) & !<f2>word(’test’))

Example queries

▶ Find the noun synsets that are on top of hyperonymy
hierarchy in English:
pos(’n’) & [hypernym]⊥ & lang(’en’)

▶ Find the synsets that are exactly two levels below the top in
the hyperonymy hierarchy:
[hypernym][hypernym][hypernym] ⊥ &

<hypernym><hypernym>⊤
▶ Find inconsistency between Bulgarian and English:

<ili>(lang(’en’) & pos(’n’) & [hypernym][hypernym]⊥ &

<hypernym>⊤)
& lang(’bg’) & [hypernym]⊥

▶ Find the literals that before 3 days were presenting the word
’test’ and 2 days later are not:
<p3>(word(’test’) & !<f2>word(’test’))

Example queries

▶ Find the noun synsets that are on top of hyperonymy
hierarchy in English:
pos(’n’) & [hypernym]⊥ & lang(’en’)

▶ Find the synsets that are exactly two levels below the top in
the hyperonymy hierarchy:
[hypernym][hypernym][hypernym] ⊥ &

<hypernym><hypernym>⊤
▶ Find inconsistency between Bulgarian and English:

<ili>(lang(’en’) & pos(’n’) & [hypernym][hypernym]⊥ &

<hypernym>⊤)
& lang(’bg’) & [hypernym]⊥

▶ Find the literals that before 3 days were presenting the word
’test’ and 2 days later are not:
<p3>(word(’test’) & !<f2>word(’test’))

Example queries

▶ Find the noun synsets that are on top of hyperonymy
hierarchy in English:
pos(’n’) & [hypernym]⊥ & lang(’en’)

▶ Find the synsets that are exactly two levels below the top in
the hyperonymy hierarchy:
[hypernym][hypernym][hypernym] ⊥ &

<hypernym><hypernym>⊤
▶ Find inconsistency between Bulgarian and English:

<ili>(lang(’en’) & pos(’n’) & [hypernym][hypernym]⊥ &

<hypernym>⊤)
& lang(’bg’) & [hypernym]⊥

▶ Find the literals that before 3 days were presenting the word
’test’ and 2 days later are not:
<p3>(word(’test’) & !<f2>word(’test’))

GUI

▶ SPA

▶ Search panel - word, regex, formula

▶ 2 modes - Single, Aligned

▶ Recursive view

▶ Editing

▶ Relation wizard

GUI

▶ SPA

▶ Search panel - word, regex, formula

▶ 2 modes - Single, Aligned

▶ Recursive view

▶ Editing

▶ Relation wizard

GUI

▶ SPA

▶ Search panel - word, regex, formula

▶ 2 modes - Single, Aligned

▶ Recursive view

▶ Editing

▶ Relation wizard

GUI

▶ SPA

▶ Search panel - word, regex, formula

▶ 2 modes - Single, Aligned

▶ Recursive view

▶ Editing

▶ Relation wizard

GUI

▶ SPA

▶ Search panel - word, regex, formula

▶ 2 modes - Single, Aligned

▶ Recursive view

▶ Editing

▶ Relation wizard

GUI

▶ SPA

▶ Search panel - word, regex, formula

▶ 2 modes - Single, Aligned

▶ Recursive view

▶ Editing

▶ Relation wizard

Figure: Hydra

Tracking and Real-time Updates

▶ Tracking User Edits
▶ Automatic history of all editing operations
▶ Previous versions always available (no checkout needed)

▶ Real-time Updates
▶ Instant propagation via notifications
▶ Conflict detection allows data consistency preservation

Tracking and Real-time Updates

▶ Tracking User Edits
▶ Automatic history of all editing operations
▶ Previous versions always available (no checkout needed)

▶ Real-time Updates
▶ Instant propagation via notifications
▶ Conflict detection allows data consistency preservation

Tracking and Real-time Updates

▶ Tracking User Edits
▶ Automatic history of all editing operations
▶ Previous versions always available (no checkout needed)

▶ Real-time Updates
▶ Instant propagation via notifications
▶ Conflict detection allows data consistency preservation

Tracking and Real-time Updates

▶ Tracking User Edits
▶ Automatic history of all editing operations
▶ Previous versions always available (no checkout needed)

▶ Real-time Updates
▶ Instant propagation via notifications
▶ Conflict detection allows data consistency preservation

Tracking and Real-time Updates

▶ Tracking User Edits
▶ Automatic history of all editing operations
▶ Previous versions always available (no checkout needed)

▶ Real-time Updates
▶ Instant propagation via notifications
▶ Conflict detection allows data consistency preservation

Tracking and Real-time Updates

▶ Tracking User Edits
▶ Automatic history of all editing operations
▶ Previous versions always available (no checkout needed)

▶ Real-time Updates
▶ Instant propagation via notifications
▶ Conflict detection allows data consistency preservation

Implementation

▶ JS

▶ Query → SQL (PostgreSQL)

▶ Every operation generates new record

▶ Permissions

▶ REST API

▶ KnockoutJS

▶ Bootstrap

Implementation

▶ JS

▶ Query → SQL (PostgreSQL)

▶ Every operation generates new record

▶ Permissions

▶ REST API

▶ KnockoutJS

▶ Bootstrap

Implementation

▶ JS

▶ Query → SQL (PostgreSQL)

▶ Every operation generates new record

▶ Permissions

▶ REST API

▶ KnockoutJS

▶ Bootstrap

Implementation

▶ JS

▶ Query → SQL (PostgreSQL)

▶ Every operation generates new record

▶ Permissions

▶ REST API

▶ KnockoutJS

▶ Bootstrap

Implementation

▶ JS

▶ Query → SQL (PostgreSQL)

▶ Every operation generates new record

▶ Permissions

▶ REST API

▶ KnockoutJS

▶ Bootstrap

Implementation

▶ JS

▶ Query → SQL (PostgreSQL)

▶ Every operation generates new record

▶ Permissions

▶ REST API

▶ KnockoutJS

▶ Bootstrap

Implementation

▶ JS

▶ Query → SQL (PostgreSQL)

▶ Every operation generates new record

▶ Permissions

▶ REST API

▶ KnockoutJS

▶ Bootstrap

Modernization

▶ Current implementation is outdated (KnockoutJS)

▶ Modernization plan: rewrite using AI
▶ Tech Stack:

▶ React
▶ Next.js

Modernization

▶ Current implementation is outdated (KnockoutJS)

▶ Modernization plan: rewrite using AI
▶ Tech Stack:

▶ React
▶ Next.js

Modernization

▶ Current implementation is outdated (KnockoutJS)

▶ Modernization plan: rewrite using AI
▶ Tech Stack:

▶ React
▶ Next.js

Modernization

▶ Current implementation is outdated (KnockoutJS)

▶ Modernization plan: rewrite using AI
▶ Tech Stack:

▶ React
▶ Next.js

Modernization

▶ Current implementation is outdated (KnockoutJS)

▶ Modernization plan: rewrite using AI
▶ Tech Stack:

▶ React
▶ Next.js

Deployment and Access

The Time Flow Hydra system is deployed and accessible:

https://hydra.fmi.uni-sofia.bg/

https://hydra.fmi.uni-sofia.bg/

Conclusion and Future work

▶ Every touch is stored in the database

▶ Concurrent access

▶ Safely cleaning

▶ More modal operators like Since and Until (Sometime in the
past, Sometime in the future)

▶ Separation

▶ GUI Assistant for linguists (Predefined queries)

Conclusion and Future work

▶ Every touch is stored in the database

▶ Concurrent access

▶ Safely cleaning

▶ More modal operators like Since and Until (Sometime in the
past, Sometime in the future)

▶ Separation

▶ GUI Assistant for linguists (Predefined queries)

Conclusion and Future work

▶ Every touch is stored in the database

▶ Concurrent access

▶ Safely cleaning

▶ More modal operators like Since and Until (Sometime in the
past, Sometime in the future)

▶ Separation

▶ GUI Assistant for linguists (Predefined queries)

Conclusion and Future work

▶ Every touch is stored in the database

▶ Concurrent access

▶ Safely cleaning

▶ More modal operators like Since and Until (Sometime in the
past, Sometime in the future)

▶ Separation

▶ GUI Assistant for linguists (Predefined queries)

Conclusion and Future work

▶ Every touch is stored in the database

▶ Concurrent access

▶ Safely cleaning

▶ More modal operators like Since and Until (Sometime in the
past, Sometime in the future)

▶ Separation

▶ GUI Assistant for linguists (Predefined queries)

Conclusion and Future work

▶ Every touch is stored in the database

▶ Concurrent access

▶ Safely cleaning

▶ More modal operators like Since and Until (Sometime in the
past, Sometime in the future)

▶ Separation

▶ GUI Assistant for linguists (Predefined queries)

	Wordnet
	A point of view
	Wordnet for many languages
	Static model
	As a Kripke frame

	Hydra
	Dynamic model
	Query language
	Dynamic language for wordnet
	Implementation and Future work

