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Abstract. In the present paper we investigate a relation, called con-
servative extension, between abstract structures A and B, possibly with
different signatures and |A| ⊆ |B|. We give a characterisation of this
relation in terms of computable Σn formulae and we show that in some
sense it provides a finer complexity measure than the one given by degree
spectra of structures. As an application, we show that the n-th jump of
a structure and its Marker’s extension are conservative extensions of the
original structure.

1 Introduction

We shall work with abstract structures of the form A = (A;P1, . . . , Ps), where
A is countable and infinite, Pi ⊆ Ani and the equality is among P1, . . . , Ps. We
shall use the letters A, B to denote structures and the letters A, B to denote
their domains.

Our initial motivation was to investigate the common features between the
structures built in [8], namely the jump structure and the Marker’s extension of
a structure. It turns out that both structures relate to the initial structure in
a similar way. In our terminology, the jump structure of A is (1, 0)-conservative
extension of A and the Marker’s extension of A is (0, 1)-conservative extension
of A. Our main results are Theorem 2 and Theorem 3 which show that a con-
servative extension of a structure preserves some families of sets definable with
computable Σ formulae.

The main tool in our research is the enumeration of a structure. The pair α =
(fα, Rα) is called an enumeration of A if Rα is a subset of natural numbers, fα is
a partial one-to-one mapping of N onto A and f−1α (A) is computable in Rα, where
f−1α (Pi) = {〈x1, . . . , xni〉 | x1, . . . , xni ∈ Dom(fα) & (fα(x1), . . . , fα(xni)) ∈ Pi}
and f−1α (A) = f−1α (P1) ⊕ · · · ⊕ f−1α (Ps). For an enumeration α = (fα, Rα) of A

we denote α(n) = (fα, R
(n)
α ), where R

(n)
α is the n-th Turing jump of the set Rα.

Given a set X ⊆ A, by X ≤ α we shall denote that f−1α (X) is c.e. in Rα and by
A ≤ α we shall denote that α is an enumeration of A.
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We shall give an informal definition of the set of the computably infinitary
Σn formulae in the language of A, denoted by Σc

n. The Σc
0 and Πc

0 formulae are
the finitary quantifier free formulae. A Σc

n+1 formula ϕ(x) is a disjunction of a
c.e. set of formulae of the form ∃yψ, where ψ is a Πc

n formula and y includes the
variables of ψ which are not in x. The Πc

n+1 formulae are the negations of the
Σc
n+1 formulae. We refer the reader to [1] for more background information on

computably infinitary formulae.
A set X ⊆ A is Σc

n definable in the structure A if there is a Σc
n formula ψ(x, y)

and a finite number of parameters a in A such that b ∈ X ↔ A |= ψ(b, a). We
denote by Σc

n(A) the family of all sets Σc
n definable in A. A subset X of A is said

to be relatively intrinsically Σ0
n+1 in A if for every enumeration α of A, f−1α (X)

is Σ0
n+1 relative to f−1α (A) or equivalently, f−1α (X) is c.e. relative to f−1α (A)(n).

In [2] and [3], it is shown that the relatively intrinsically Σ0
n+1 in A sets are

exactly the Σc
n+1 definable sets in A. We shall use this result in the following

form.

Theorem 1 (Ash-Knight-Manasse-Slaman [2], Chisholm [3]) Let A be a
countable structure. For every set X ⊆ A,

X ∈ Σc
n+1(A) iff (∀α)[A ≤ α→ X ≤ α(n)].

2 Conservative Extensions

Let α = (fα, Rα) and β = (fβ , Rβ) be enumerations of the countable structures
A and B respectively. We write α ≤ β if

(i) Rα ≤T Rβ and
(ii) the set E(fα, fβ) = {(x, y) | x ∈ Dom(fα) & y ∈ Dom(fβ) & fα(x) =

fβ(y)} is c.e. in Rβ .

Definition 1 Let A and B be countable structures, possibly with different sig-
natures and A ⊆ B.

(i) A⇒k
n B if for every enumeration β of B there exists an enumeration α of

A such that α(k) ≤ β(n).
(ii) A⇐k

n B if for every enumeration α of A there exists an enumeration β of
B such that β(k) ≤ α(n).

(iii) A ⇔k
n B if A ⇒k

n B and A ⇐n
k B. We shall say that B is a (k, n)-

conservative extension of A.

The reader should be aware that the relation ⇔k
n is not symmetric. The

following theorem motivates the use of the term conservative extension, i.e. if
B is a (k, n)-conservative extension of A then all Σc

k+1 definable sets in A are
preserved as Σc

n+1 definable sets in B.

Theorem 2 Let A and B be countable structures with A ⊆ B. For all k, n ∈ ω,

(i) if A⇒k
n B then (∀X ⊆ A)[X ∈ Σc

k+1(A)→ X ∈ Σc
n+1(B)];
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(ii) if A⇐n
k B then (∀X ⊆ A)[X ∈ Σc

n+1(B)→ X ∈ Σc
k+1(A)];

(iii) if A⇔k
n B then (∀X ⊆ A)[X ∈ Σc

k+1(A)↔ X ∈ Σc
n+1(B)].

Proof. (i) We have that for every enumeration β of B, there exists an enumera-
tion α of A such that α(k) ≤ β(n). Let X be a subset of A such that X ∈ Σc

k+1(A).

According to Theorem 1 it is equivalent to (∀α)[A ≤ α → X ≤ α(k)]. We wish
to show (∀β)[B ≤ β → X ≤ β(n)]. Let us take an arbitrary enumeration β of
B. Since A ⇒k

n B, for some enumeration α of A, α(k) ≤ β(n). It gives us that

R
(k)
α is computable in R

(n)
β and E(fα, fβ) is c.e. in R

(n)
β . Moreover, X ≤ α(k)

and then f−1α (X) is c.e. in R
(n)
β . From the equivalence

x ∈ f−1β (X)↔ (∃y)[(x, y) ∈ E(fα, fβ) & y ∈ f−1α (X)],

it follows that f−1β (X) is c.e. in R
(n)
β and then X ≤ β(n) which is what we wanted

to show. The proof of (ii) is similar to that of (i). ut

Remark 1. Notice that we do not have the other directions in Theorem 2. As-
sume A ⊆ B and if (∀X ⊆ A)[X ∈ Σc

n+1(A) → X ∈ Σc
k+1(B)] then A ⇒n

k B.
We can give a simple counterexample. Let OA = (A; =) and take A = B = OA.
It is easy to see that for every natural number n, X ⊆ A is Σc

n-definable in
OA iff X is a finite or co-finite subset of A. Therefore Σc

1(OA) = Σc
n(OA)

and then (∀n)(∀X ⊆ A)[X ∈ Σc
n+1(OA) → X ∈ Σc

1(OA)]. We conclude that
(∀n)[OA ⇒n

0 OA], which is evidently not true.

We shall proceed with the investigation of under what conditions we have
the other directions in Theorem 2. For this purpose we shall firstly introduce
some coding machinery and then the sets KA

n .

2.1 Moschovakis’ Extension

Following Moschovakis [6], we define the least acceptable extension A? of A. Let
0 be an object which does not belong to A and Π be a pairing operation chosen
so that neither 0 nor any element of A is an ordered pair. Let A? be the least
set containing all elements of A0 = A ∪ {0} and closed under Π.

We associate an element n? of A? with each n ∈ ω by induction. Let 0? = 0
and (n+ 1)? = Π(0, n?). We denote by N? the set of all elements n?. Let L and
R be the functions on A? satisfying the following conditions:

L(0) = R(0) = 0;

(∀t ∈ A)[L(t) = R(t) = 1?];

(∀s, t ∈ A?)[L(Π(s, t)) = s & R(Π(s, t)) = t].

The pairing function allows us to code finite sequences of elements. Let Π1(t1) =
t1 and Πn+1(t1, . . . , tn+1) = Π(t1, Πn(t2, . . . , tn+1)) for every t1, . . . , tn+1 ∈ A?.
For each predicate Pi of the structure A define the respective predicate P ?i on
A? by P ?i (t)↔ (∃a1, . . . , ani ∈ A)[t = Πni(a1, . . . , an)&Pi(a1, . . . , an)].
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Definition 2 Moschovakis’ extension of A is the structure

A? = (A?;A0, P
?
1 , . . . , P

?
s , GΠ , GL, RR,=),

where GΠ , GL and GR are the graphs of Π, L and R respectively.

Proposition 1 For every two structures A, B with A ⊆ B and n, k ∈ ω,
A⇔k

n B iff A? ⇔k
n B?. Moreover, A⇔n

n A?.

2.2 The set KA
n

Let α = (fα, Rα) be an enumeration of A. For every e, x ∈ ω and every n ∈ ω,
we define the modelling relations |=n in the following way:

fα |=0 Fe(x)↔ x ∈W f−1
α (A)
e

fα |=n+1 Fe(x)↔ x ∈W f−1(A)(n+1)

e

fα |=n ¬Fe(x)↔ fα 6|=n Fe(x)

Following the modelling relation, we shall define a forcing relation with con-
ditions all finite injective mappings from N into the domain A of A. We call them
finite parts and we shall use the letters τ, ρ, δ to denote them. Let ∆(A) be the
set of all finite parts and let Fin2 be the set of all finite functions on the natural
numbers taking values in {0, 1}. Given a finite part τ and a relation R ⊆ An, we
define the finite function τ−1(R) in Fin2 as follows:

τ−1(R)(u) ↓= 1↔ (∃x1, . . . , xn ∈ Dom(τ))[u = 〈x1, . . . , xn〉 &

(τ(x1), . . . , τ(xn)) ∈ R],

τ−1(R)(u) ↓= 0↔ (∃x1, . . . , xn ∈ Dom(τ))[u = 〈x1, . . . , xn〉 &

(τ(x1), . . . , τ(xn)) 6∈ R].

By τ−1(A) we shall denote the finite function τ−1(R1)⊕ · · · ⊕ τ−1(Rs).
If ϕ is a partial function and e ∈ ω, then by Wϕ

e we shall denote the set of
all x such that the computation {e}ϕ(x) halts successfully. We shall assume that
if during a computation the oracle ϕ is called with an argument outside of its
domain, then the computation halts unsuccessfully.

For every e, x, n ∈ ω and for every finite part τ , we define the forcing relations
in the following way:

τ 0 Fe(x)↔ x ∈W τ−1(A)
e ,

τ n+1 Fe(x)↔ (∃δ ∈ Fin2)[x ∈W δ
e & (∀z ∈ Dom(δ))[

(δ(z) = 1 & τ n Fz(z)) ∨ (δ(z) = 0 & τ n ¬Fz(z))]],
τ n ¬Fe(x)↔ (∀ρ ∈ ∆(A))[τ ⊆ ρ→ ρ 6n Fe(x)].

An enumeration α of A is called n-generic if for every e, x ∈ ω and every
j < n, (∃τ ⊆ fα)[τ j Fe(x) ∨ τ j ¬Fe(x)].
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Lemma 1 (Truth Lemma).

(i) For every n, e, x ∈ ω and every finite parts τ ⊆ ρ,

τ n (¬)Fe(x)→ ρ n (¬)Fe(x).

(ii) For every n-generic enumeration α of A and all e, x ∈ ω,

fα |=n Fe(x)↔ (∃τ ⊆ fα)[τ n Fe(x)].

(iii) For every (n+ 1)-generic enumeration α of A and all e, x ∈ ω,

fα |=n ¬Fe(x)↔ (∃τ ⊆ fα)[τ n ¬Fe(x)].

For each finite part τ 6= ∅ with Dom(τ) = {x1, . . . , xn} and τ(xi) = si, we
associate the element τ? = Πn(Π(x?1, s1), . . . ,Π(x?n, sn)) of A?. For τ = ∅, let
τ? = 0. We define for every n ∈ ω the set

KA
n = {Π3(δ?, e?, x?) | (∃τ ∈ ∆(A))[δ ⊆ τ & τ n Fe(x)] & e?, x? ∈ N?}.

Proposition 2 For every countable structure A and every n ∈ ω, we have KA
n ∈

Σc
n+1(A?) and A? \KA

n ∈ Σc
n+2(A?).

Theorem 3 Let A and B be countable structures with A? ⊆ B and k, n ∈ ω.
Suppose that (∀X ⊆ A?)[X ∈ Σc

k+1(A?)→ X ∈ Σc
n+1(B)]. Then A⇒k

n B.

Proof. Let us fix an enumeration β = (fβ , Rβ) of B. We shall show that there
exists an enumeration γ = (fγ , f

−1
γ (A)) of A such that γ(k) ≤ β(n).

Firstly, let k = 0. Since A ∈ Σc
1(A?), A ∈ Σc

n+1(B) and then by Theorem 1,

f−1β (A) is c.e. in R
(n)
β . We can take a total enumeration fγ of A defined as

fγ = fβ ◦ µ, where µ : N → f−1β (A) is a computable in R
(n)
β bijection. Such µ

exists because f−1β (A) is c.e. in R
(n)
β . Clearly the set E(fγ , fβ) is c.e. in R

(n)
β . We

have for all PA
i of A, PA

i ∈ Σc
n+1(B) and Ani \ PA

i ∈ Σc
n+1(B). Thus f−1β (PA

i )

and f−1β (Ani \PA
i ) are c.e. in R

(n)
β . f−1γ (PA

i ) is c.e. in R
(n)
β and since fγ is total,

N \ f−1γ (PA
i ) is c.e. in R

(n)
β . Therefore, f−1γ (A) ≤T R(n)

β and hence γ ≤ β(n).

Let k > 0. We shall build a k-generic enumeration γ = (fγ , f
−1
γ (A)) of A

such that f−1γ (A)(k) ≤T R
(n)
β and E(fγ , fβ) is c.e. in R

(n)
β . Before proceeding

with its construction, we shall describe a way to encode finite parts τ ∈ ∆(A)
as natural numbers. We define a coding scheme for finite sequences of natural
numbers belonging to f−1β (A?) in the following way:

J(x, y) = f−1β (Π(fβ(x), fβ(y)));

J1(x) = x, Jn+1(x1, . . . , xn+1) = J(x1, Jn(x2, . . . , xn, xn+1)).

For every natural number n, we denote n] = f−1β (n?) and N] = f−1β (N?). For

finite parts τ ∈ ∆(A), we associate with τ? the natural number τ ] = f−1β (τ?).
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That is, if τ? = Πn(Π(x?1, y1), . . . ,Π(x?n, yn)) then τ ] = Jn(J(x]1, f
−1
β (y1)), . . . ,

J(x]n, f
−1
β (yn))). Therefore, the set ∆](A) = {τ ] | τ ∈ ∆(A)} is c.e. in R

(n)
β . Let

Dom(τ ]) = {x]1, . . . , x]n} and τ ](x]i) = f−1β (yi). We shall assume that Dom(τ ]) =

∅ if τ ] = 0. Notice that Dom(τ ]) = {x] | x ∈ Dom(τ)} and fβ(τ ](x])) = τ(x)

for all x ∈ Dom(τ). There exists a partial computable in R
(n)
β predicate P such

that for τ, δ ∈ ∆(A), P (τ ], δ]) ↓= 1 iff τ ⊆ δ. We shall write τ ] ⊆ δ] instead
of P (τ ], δ]) ↓= 1. From Proposition 2 we know that KA

k−1 and A? \ KA
k−1 are

Σc
k+1 definable in A?. This means that KA

k−1 and A? \KA
k−1 are Σc

n+1 definable

in B. Thus f−1β (KA
k−1) and f−1β (A? \KA

k−1) are both c.e. in R
(n)
β . It is not hard

to see that there exists a computable function χ such that for every τ ∈ ∆(A),

τ k−1 Fe(x)↔ x ∈W
R

(n)
β

χ(τ],e)
.

Claim. There exists a k-generic enumeration γ of A such that f ]γ is partial com-

putable in R
(n)
β , where f ]γ : N] → f−1β (A) is defined as f ]γ(x]) = f−1β (fγ(x)).

Proof. Since the set A is Σc
k+1 definable in A, f−1β (A) is c.e. in R

(n)
β . Let us fix a

computable in R
(n)
β bijection µ : N→ f−1β (A). We shall describe a construction

in which at each stage s we shall define a finite part τs ⊆ τs+1. In the end, the
k-generic enumeration of A will be defined as fγ =

⋃
s τs and Rγ = f−1γ (A). Let

τ0 = ∅ and suppose we have already defined τs.

a) Case s = 2r. We make sure that fγ is one-to-one and onto A. Let x] be
the least natural number not in Dom(τ ]s). Find the least p such that µ(p) 6∈
Ran(τ ]s). Set τs+1(x) = fβ(µ(p)) and τs+1(z) = τs(z) for every z 6= x and
z ∈ Dom(τs). Leave τs+1(z) undefined for any other z.

b) Case s = 2〈e, x〉+ 1. We satisfy the requirement that fγ is k-generic. Check
whether there exists an extension δ of τs such that δ k−1 Fe(x). This is
equivalent to asking whether J3(τ ]s , e

], x]) ∈ f−1β (KA
k−1) or J3(τ ]s , e

], x]) ∈
f−1β (A? \KA

k−1). We can do this effectively using the oracle R
(n)
β .

If J3(τ ]s , e
], x]) ∈ f−1β (A? \KA

k−1), then τs k−1 ¬Fe(x) and we set τs+1 = τs.

If J3(τ ]s , e
], x]) ∈ f−1β (KA

k−1), we search for δ] ∈ ∆](A) such that τ ]s ⊆ δ] and

x ∈ W
R

(n)
β

χ(δ],e)
. Since J3(τ ]s , e

], x]) ∈ f−1β (KA
k−1) we know that such δ] exists

and we can find it effectively in R
(n)
β . Set τs+1 = δ.

End of construction

It follows from the construction that f ]γ is partial computable in R
(n)
β . ut

The equivalence fγ(x) = fβ(y) ↔ f ]γ(x]) = y and the fact that the graph of f ]γ

is c.e. in R
(n)
β implies that the set E(fγ , fβ) is c.e. in R

(n)
β . Since fγ is k-generic,

we have the equivalences

x ∈ f−1γ (A)(k) ↔ fγ |=k−1 Fx(x)↔ (∃τ ⊆ fγ)[τ k−1 Fx(x)]
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↔ (∃τ ] ⊆ f ]γ)[x ∈W
R

(n)
β

χ(τ],x)
].

x 6∈ f−1γ (A)(k) ↔ fγ |=k−1 ¬Fx(x)↔ (∃τ ⊆ fγ)[τ k−1 ¬Fx(x)]

↔ (∃τ ] ⊆ f ]γ)[J3(τ ], x], x]) ∈ f−1β (A? \KA
k−1)].

Since fβ(τ ](x])) = τ(x), we have the equivalence:

τ ] ⊆ f ]γ ↔ (∀x] ∈ Dom(τ ]))(∃y)[(x, y) ∈ E(fγ , fβ)& 〈τ ](x]), y〉 ∈ f−1β (=A?)].

It means that the relation τ ] ⊆ f ]γ is c.e. in R
(n)
β . It follows that f−1γ (A)(k) is

computable in R
(n)
β . We conclude that for the enumeration γ = (fγ , f

−1
γ (A)) of

A, γ(k) ≤ β(n) and hence A⇒k
n B. ut

Corollary 1. For any two countable structures A, B with A ⊆ B and n, k ∈ ω,

A⇒k
n B↔ (∀X ⊆ A?)[X ∈ Σc

k+1(A?)→ X ∈ Σc
n+1(B?)].

3 Applications

3.1 Degree Spectra of Structures

In [7], Richter initiates the study of the notion of the degree spectrum of a
countable structure. Here we define the degree spectrum following [9].

Definition 3 The Turing degree spectrum of A is the set DS(A) = {dT (Rα) |
A ≤ α}. The k-th jump Turing degree spectrum of A is the set DSk(A) =

{dT (R
(k)
α ) | A ≤ α}.

Here by dT (X) we denote the Turing degree of the set X. A set of Turing degrees
A is closed upwards if for all Turing degrees a and b, a ∈ A & a ≤ b → b ∈
A . It is clear that for every structure A, its degree spectrum DS(A) is closed
upwards.

Remark 2. Richter’s definition of degree spectrum is slightly different. She de-
fines the degree spectrum as the set of all Turing degrees dT (f−1(A)), where f
is a total enumeration of the domain of A. Both definitions produce the same
sets of Turing degrees for automorphically non-trivial structures.

Proposition 3 Let A and B be countable structures with A ⊆ B.

(i) If A⇒k
n B then DSn(B) ⊆ DSk(A);

(ii) If A⇐n
k B then DSk(A) ⊆ DSn(B);

(iii) If A⇔k
n B then DSk(A) = DSn(B);
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Proof. We shall prove only (i) since the others are similar. Let A ⇒k
n B and

b ∈ DSn(B). We wish to show that b ∈ DSk(A). Since DSk(A) is closed
upwards, it is enough to prove that there exists a Turing degree a ∈ DSk(A)

and a ≤ b. Let β be an enumeration of B and dT (R
(n)
β ) = b. A ⇒k

n B gives

us an enumeration α of A such that α(k) ≤ β(n). For a = dT (R
(k)
α ) we have

a ∈ DSk(A) and a ≤ b. ut

Remark 3. We should note that we do not have the other directions in Proposi-
tion 3. Let us define the structures ON = (N; =) and S = (N;GSucc,=), where
GSucc is the graph of the successor function. It is easy to see that DS(ON) =
DS(S ) whereas it follows easily from Theorem 2 that S 6⇒0

0 ON.

3.2 Jumps of Structures

In [8], the jump of the structure A is defined as A′ = (A?,KA
0 ). It is natural to

ask whether we can extend it for n > 0.

Definition 4 Let A be a countable structure. For every natural number n, we
define the n-th jump of A in the following way.

A(0) = A and A(n+1) = (A?,KA
n ).

Actually, the results in [8] are enough to produce a definition of the n-th
jump of A, just let A(n+1) = (A(n))′. The difficulty with it is that we add a new
relation symbol and a new layer of coding to the structure for each jump.

Using the enumeration built in Lemma 7 of [8], we can easily obtain the
following useful result.

Proposition 4 Let A be a countable structure.

(i) For every enumeration α of A there exists an enumeration α0 of A(n) such
that α0 ≤ α(n).

(ii) For every n-generic enumeration γ of A there exists an enumeration γ? =
(fγ? , f

−1
γ? (A?)) of A? such that f−1γ (A)(n) ≡T f−1γ? (A?)(n) ≡T f−1γ? (A(n)).

Proposition 5 For any countable structure A, we have

(i) For every n ∈ ω, KA
n 6∈ Σc

n(A?).
(ii) For every n, k ∈ ω with k > 0, KA

k+n ∈ Σc
n+1(A(k)) and KA

k+n 6∈ Σc
n(A(k)).

Proof. (i) Assume KA
n ∈ Σc

n(A?). If n = 0 then KA
0 is definable in A? by a

finitary open formula. This means that for every enumeration α of A?, f−1α (KA
0 )

is computable in f−1α (A?) and then f−1α (A′) is computable in f−1α (A?). Take a
1-generic enumeration γ of A. Then γ?, as in (ii) of Proposition 4, is an enumer-
ation of A? and f−1γ (A)′ ≡T f−1γ? (A′) ≤T f−1γ (A). This is clearly a contradiction.

Let n > 0. Theorem 1 tells us that for every enumeration α of A?, f−1α (KA
n )

is c.e. in R
(n−1)
α and therefore f−1α (A(n+1)) is computable in R

(n)
α . Let γ be an
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(n+ 1)-generic enumeration of A and γ? be as in (ii) of Proposition 4. Since γ?

is an enumeration of A?, f−1γ? (A(n+1)) is computable in f−1γ? (A?)(n). But we also

have f−1γ? (A?)(n+1) ≤T f−1γ? (A(n+1)). Thus we reach a contradiction.
The proof of the first part of (ii) uses Theorem 1 and follows by induction

on k. For the second part, if we assume KA
k+n ∈ Σc

n(A(k)) then by taking an
(n+ k)-generic enumeration of A, we argue as above to reach a contradiction.

ut

Proposition 6 For every countable structure A and natural number n,

(i) A⇔n
0 A(n);

(ii) A(n) ⇒0
0 A(n+1) and A(n) 6⇔0

0 A(n+1).

Proof. (i) Let n > 0 since it is obvious for n = 0. A ⇒n
0 A(n) is a direct

application of Theorem 3. Now we wish to show A ⇐0
n A(n). Let us take an

enumeration α of A. From (i) of Proposition 4, there is an enumeration α0 of
A(n) such that α0 ≤ α(n).

(ii) Let n = 0. Clearly A ⇒0
0 A′. Assume A ⇐0

0 A′. Let γ = (fγ , f
−1
γ (A))

be a 1-generic enumeration of A and β = (fβ , Rβ) be an enumeration of A′

such that β ≤ γ. As in the proof of Theorem 3, we use β to define a coding
scheme Jn and prove that the relation τ ] ⊆ f ]γ is c.e. in f−1γ (A). From the

equivalences x ∈ f−1γ (A)′ ↔ (∃τ ] ⊆ f ]γ)[x ∈ W
f−1
γ (A)

χ(τ],x)
] and x 6∈ f−1γ (A)′ ↔

(∃τ ] ⊆ f ]γ)[J3(τ ], x], x]) ∈ f−1β (A? \KA
0 )], it follows that f−1γ (A)′ is computable

in f−1γ (A). Thus we reach a contradiction.

Let n > 0. It is clear that A(n) ⇒0
0 A(n+1). Assume A(n) ⇔0

0 A(n+1). Theo-
rem 2 gives us KA

n+1 ∈ Σc
1(A(n+1)) iff KA

n+1 ∈ Σc
1(A(n)). On the other hand, (ii)

of Proposition 5 tells us that KA
n+1 ∈ Σc

1(A(n+1)) and KA
n+1 6∈ Σc

1(A(n)). Thus

our assumption is absurd and hence A(n) 6⇐0
0 A(n+1). ut

Since A⇔k
n B implies DSk(A) = DSn(B), we get the following.

Corollary 2. For every countable structure A, DS(A(n)) = DSn(A).

Proposition 7 For all countable structures A, B with A ⊆ B and n, k ∈ ω,

A⇔k
n B iff A(k) ⇔0

0 B(n).

Proposition 8 Let A be a countable structure, n, k ∈ ω and k > 0.

(i) (∀X ⊆ A?)[X ∈ Σc
n+2(A?)↔ X ∈ Σc

n+1(A′)];
(ii) (∀X ⊆ A?)[X ∈ Σc

n+2(A(k))↔ X ∈ Σc
n+1(A(k+1))];

3.3 Marker’s Extensions

In [4], Goncharov and Khoussainov adapted Marker’s construction from [5] to
prove that for any natural number n ≥ 1, there exists an ℵ1-categorical the-
ory T with a computable model of a finite language whose theories are Turing
equivalent to ∅(n). Building on their results, A. Soskova and I. Soskov proved
a theorem for the degree spectrum of structures resembling a jump inversion
theorem, namely the following theorem.
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Theorem 4 (A. Soskova - I. Soskov [8]) Let A and C be countable struc-
tures and DS(A) ⊆ DS1(C). There exists a structure B such that DS(A) =
DS1(B) and DS(B) ⊆ DS(C).

In [10], Stukachev proves an analogue of this theorem for the semilattices of
Σ-degrees of structures with arbitrary cardinalities.

Theorem 5 (Stukachev [10]) Let A be a structure such that 0′ ≤Σ A. There
exists a structure B such that A ≡Σ B′.

We can prove a result similar to Stukachev’s.

Proposition 9 Let A be a countable structure and OA ⇒k
0 A for some k ∈ ω.

There exists a countable structure B such that A⇔0
0 B(k).

Proof. We give a brief sketch of the proof for the case k = 1. The proof is easily
generalized for k > 1. Following [4], let A∃ and A∀ be the respective Marker’s ∃
and ∀ extensions of the structure A and define B = (A∃)∀. With almost trivial
modifications of the proof of Theorem 4 from above, we can show that A⇔0

1 B.
From Proposition 7 it follows that A⇔0

0 B′. ut

Proposition 10 Let A be a countable structure and OA ⇒k
0 A for some k ∈ ω.

There exists a countable structure B such that for every n ∈ ω, A⇔n
k B(n).

Combining Proposition 10 with Theorem 2, we get the following corollary.

Corollary 3. Let A be a countable structure and OA ⇒k
0 A for some k ∈ ω.

There exists a countable structure B such that

(∀n ∈ ω)(∀X ⊆ A)[X ∈ Σc
n+1(A)↔ X ∈ Σc

k+1(B(n))].
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