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Abstract. In this paper we investigate the question of existence of a
jump inversion structure for a given structure A in the context of their
respective degree spectra and the sets definable in them by computable
infinitary formulae. More specifically, for a countable structure A and a
computable successor ordinal α, we show that we can apply the construc-
tion from [4] to build a structure Nα such that the sets definable in A
by Σ

c,∆0
α

1 formulae are exactly the sets definable in Nα by Σc
α formulae.

1 Introduction

We shall work with abstract structures of the form A = (A;R0, . . . , Rs−1), where
A is countable and infinite, Ri ⊆ Ani . We use the letters A, B to denote struc-
tures and the letters A, B to denote their respective universes.

We call f an enumeration of the set A if f is a partial one-to-one mapping
of N onto A. We say that f is an enumeration of the structure A if f is an
enumeration of its universe A.

If f is an enumeration of A and R ⊆ An, we denote f−1(R) = {〈x1, . . . , xn〉 |
x1, . . . , xn ∈ Dom(f) & (f(x1), . . . , f(xn)) ∈ R}. For A = (A;R0, . . . , Rs−1) we
define the total function f−1(A) in the following way:

– if u = 〈k, v〉 and k < s, then f−1(A)(u) = i iff f−1(Rk)(v) = i, for i ∈ {0, 1};
– if u = 〈k, v〉 and k ≥ s, then f−1(A)(u) = 0.

We call f−1(A) a copy of A.
Richter [5] initiates the study of the notion of the degree spectrum of a

countable structure.

Definition 1 The degree spectrum of the structure A is the set of Turing degrees

DS(A) = {a | a computes a copy of A}.

For a computable ordinal α, we define the α-th jump degree spectrum of A to be

DSα(A) = {a(α) | a ∈ DS(A)}.
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The notion of degree spectra gives us one way to compare structures. That is,
for structures A and B and computable ordinals α, β, we ask whether DSα(A) =
DSβ(B).

Now we give an informal definition of the set of infinitary Σα formulae in
the language of A, denoted by Σα. The Σ0 and Π0 formulae are the finitary
quantifier free formulae. For a computable ordinal α > 0, a Σα formula ϕ(x) is
an infinitary disjunction of a set of formulae of the form ∃yψ, where ψ is a Πβ

formula, for β < α, and y includes the variables of ψ which are not in x. The Πα

formulae are the negations of the Σα formulae. The computably infinitary Σα
formulae, denoted Σc

α, are those Σα formulae whose infinitary disjunctions are
over c.e. sets. By Σc,X

α we mean the computable relative to the set X infinitary
formulae. We refer the reader to [1, chap. 7] for more background information.

A set X ⊆ A is Σc
α definable in the structureA if there is a Σc

α formula ψ(x, y)
and a finite number of parameters a in A such that b ∈ X ↔ A |= ψ(b, a). We
denote by Σc

α(A) the family of all sets Σc
α definable in A.

The notion of definability gives us another way to compare structures. That
is, for structures A, B such that A ⊆ B and computable ordinals α, β, we ask
whether (∀X ⊆ A)[X ∈ Σc

α(A)↔ X ∈ Σc
β(B)].

For simplicity, in most of the constructions that follow we shall consider only
structures of the form A = (A;R). In the end it should be clear that these
constructions can be generalised to structures in any finite or effectively listed
relational language. The next definition gives us the scheme that we follow to
define our jump inversion structures.

Definition 2 ([4]) Given a structure A = (A;R), R ⊆ An, and a pair of struc-
tures B0, B1 for the same relational language, let N = (A ∪ U ;A,U,Q, . . . ),
where

1) A ∩ U = ∅;
2) Q is an (n+ 1)-ary relation which assigns to each n-tuple ā in A an infinite

set Uā, where x ∈ Uā iff N |= Q(ā, x). We also want ā 6= b̄↔ Uā ∩ Ub̄ = ∅;
3) The sets Uā form a partition of U ;
4) Each of the other relations of N (in . . . ) corresponds to some symbol in the

language of B0, B1, and is the union of its restrictions to the sets Uā;
5) For each n-tuple ā in A, if Uā = (Uā, . . . ), then

Uā ∼=
{
B1, if A |= R(ā)
B0, if A |= ¬R(ā)

For a set of natural numbers X and a computable ordinal α, we denote by
X(α) the α-th Turing jump of X. Moreover, we define

∆0
α+1(X) = X(α), if α < ω,

∆0
α+1(X) = X(α+1), if α ≥ ω,

∆0
α(X) =

⋃
p

{〈y, p〉 | y ∈ ∆0
α(p)(X)}, if α = limα(p).
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We write ∆0
a for ∆0

a(∅).
Although not explicitly stated as a theorem by Goncharov, Harizanov, Knight,

McCoy, Miller and Solomon [4], the following result is a form of a jump inversion
theorem for structures in the context of their respective degree spectra.

Theorem 1 ([4]) Let A = (A;R) be a structure and for α > 1 a computable
successor ordinal, let B0,B1 be structures that satisfy the properties:

a) B0 and B1 are computable structures whose universes are the natural numbers
and defined in the same relational language L ,

b) {B0,B1} is α-friendly,

c) B0,B1 satisfy the same Σβ sentences (of Lω1ω, i.e. not only computable) for
all β < α,

d) each Bi satisfies some Σc
α sentence that is not true in the other.

Let N be the structure built as in Definition 2 for A, B0 and B1. Then for any
X ⊆ N, A has a ∆0

α(X)-computable copy iff N has an X-computable copy. It
follows that

DS(A) ⊆ {a | 0(β) ≤ a} implies DS(A) = DSβ(N ),

where β = α− 1, if α < ω and β = α, if α ≥ ω.

The proof of Theorem 1 relies on Ash’s α-systems, which is a framework for
priority constructions. The requirement that {B0,B1} is α-friendly is essential
for their proof.

For a set X ⊆ N, let us denote the structure AX = (N;X,GS), where GS
is the graph of the successor function on N. For a set X ⊆ N and a structure
A = (A;R0, . . . , Rs−1) with A∩N = ∅, let us denote by A⊕X the cardinal sum
of the structures A and AX , i.e. A⊕X = (A ∪ N;A,N, R0, . . . , Rs−1, X,GS).

Our goal in this paper is to prove the following theorem, which is similar to
Theorem 1, but without the requirement that {B0,B1} is α-friendly.

Theorem 2 Let A = (A;R) be a structure. Moreover, for α > 1 a computable
successor ordinal, let B0,B1 be structures that satisfy the following:

a) B0 and B1 are computable L -structures whose universes are the natural num-
bers, where L is a relational language, which includes equality,

b) B0,B1 satisfy the same Σc
β sentences, for all β < α,

c) each Bi satisfies some Σc
α sentence that is not true in the other.

Then for N , built as in Definition 2 for A, B0 and B1, we have the following:

1) DSβ(N ) = DS(A ⊕∆0
α), where β = α − 1, if α < ω and β = α, if α ≥ ω,

and

2) (∀X ⊆ A)[X ∈ Σc
α(N ) ↔ X ∈ Σc

1(A⊕∆0
α) ↔ X ∈ Σc,∆0

α
1 (A)],
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It is important to remark that the proof of Theorem 2 will not imply that if
A has a ∆0

α(X)-computable copy, then N has an X-computable copy. Our proof
is based on the notion of forcing and building a generic copy of the structure N .

For finite ordinals, our result can be obtained by applying a different con-
struction, the so-called Marker’s extension. It is used by A. Soskova, I. Soskov
[6] and by Stukachev [7] to prove a jump inversion theorem in the context of
Turing degree spectra and in the context of Σ-reducibility, respectively.

2 The notion of forcing

We define the finite parts into the set B as those finite mappings from N into
B, which are also one-to-one. Given a finite part τ and a relation R ⊆ Bn, we
define the finite function τ−1(R) as follows:

τ−1(R)(u) ↓= 1↔ (∃x1, . . . , xn ∈ Dom(τ))[u = 〈x1, . . . , xn〉 &

(τ(x1), . . . , τ(xn)) ∈ R],

τ−1(R)(u) ↓= 0↔ (∃x1, . . . , xn ∈ Dom(τ))[u = 〈x1, . . . , xn〉 &

(τ(x1), . . . , τ(xn)) 6∈ R].

For a structure A = (A;R0, . . . , Rs−1), we define the finite function τ−1(A) in
the following way:

1) if u = 〈k, v〉 and k < s, then τ−1(A)(u) ↓= i iff τ−1(Rk)(v) ↓= i, for
i ∈ {0, 1}.

2) if u = 〈k, v〉, k ≥ s, but u < max{x | x ∈ Dom(τ)}, then τ−1(A)(u) ↓= 0.

We remark that we need condition 2) so that we have the equality

f−1(A) =
⋃
τ⊆f

τ−1(A).

Partial conditions

Let us fix two structures B0 and B1 with the same universe B and in the same
language L . Partial conditions are finite sequences of the form

C = (τC
0 , τ

C
1 , . . . , τ

C
k−1),

where every τC
i is a finite part. We denote the partial conditions by the letters

C , D and E . Let us denote the length of C by |C |. For n < |C |, we denote

C � n = (τC
0 , . . . , τ

C
n−1).

We say that D extends C , denoted C ⊆ D , if

|C | ≤ |D | & (∀i)[i < |C | → τC
i ⊆ τD

i ].
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We say that D partially extends C , denoted C ⊆p D , if

|C | ≤ |D | & (∀i)[i < |C | → τC
i = τD

i ].

For a sequence of sets of natural numbers {Bi}i<κ, with κ ≤ ω, we denote⊕
i<κBi = {〈i, x〉 | i < κ & x ∈ Bi}. We define the diagram of the partial

condition C with respect to X ∈ 2ω as

DX(C ) =
⊕
j<|C |

(τC
j )−1(BX(j)).

The forcing relation

If ϕ is a partial function and e ∈ ω, then by Wϕ
e we denote the set of all x such

that the computation {e}ϕ(x) halts successfully. We assume that if during a
computation the oracle ϕ is called with an argument outside of its domain, then
the computation halts unsuccessfully. Let Fin2 be the set of all finite functions
from the natural numbers taking values into {0, 1}.

The definition of the forcing relation will follow the definition of the α-th
Turing jump. For all natural numbers e, x, computable ordinal α ≥ 1 and partial
condition C , we define the forcing relations Xα in the following way:

(i) C X1 Fe(x) ↔ x ∈WDX(C )
e .

(ii) Let α = β + 1. Then

C Xβ+1 Fe(x) ↔ (∃δ ∈ Fin2)[x ∈W δ
e & (∀z ∈ Dom(δ))[

(δ(z) = 1 & C Xβ Fz(z)) ∨
(δ(z) = 0 & C Xβ ¬Fz(z))]].

(iii) Let α = limα(p). Then

C Xα Fe(x) ↔ (∃δ ∈ Fin2)[x ∈W δ
e & (∀z ∈ Dom(δ))[z = 〈xz, pz〉 &

((δ(z) = 1 & C Xα(pz) Fxz (xz)) ∨

(δ(z) = 0 & C Xα(pz) ¬Fxz (xz)))]].

(iv) C Xα ¬Fe(x) ↔ (∀D)[C ⊆ D → D 6Xα Fe(x)].

Lemma 1. For computable ordinals α ≥ 1 we have the following:

1) If C Xα Fe(x) and C ⊆ D , then D Xα Fe(x).
2) If C Xα ¬Fe(x) and C ⊆ D , then D Xα ¬Fe(x).

Let δ be a finite part and Dom(δ) = {d0 < d1 < · · · < dk}. We write δ̄ for
the tuple (δ(d0), δ(d1), . . . , δ(dk)). Furthermore, let us denote

C ≈l D ↔
∧
i6=l

(τC
i = τD

i ),
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i.e. the partial conditions C and D are allowed to differ only in their l-th coor-
dinates.

Note that when we say that X ∈ 2ω is finite, we mean that there is i0 such
that X(i) = 0 for all i > i0. Also, for a condition C , we let XC ∈ 2ω be such
that XC (i) = X(i) for i < |C | and XC (i) = 0 for i ≥ |C |.

Lemma 2. Let B0 and B1 be computable structures in the language L =
{P0, . . . , Pk−1}, which includes equality. Let X be finite, C be a partial con-
dition, l be a number such that l < |C |, and let D = {x0 < · · · < xd}.

Then for all natural numbers e, x, and a computable ordinal α ≥ 1, there is
a Σc

α formula ΦαC ,D,e,x in L with free variables X0, . . . , Xd such that for every
finite part ρ with Dom(ρ) = D, we have

D ≈l C & τD
l = ρ & D Xα Fe(x) ↔ BX(l) |= ΦαC ,D,e,x(ρ̄).

We remark that if X is not computable, then ΦαC ,D,e,x will be a Σc,X
α formula.

Corollary 1. Under the conditions of Lemma 2, for a computable ordinal α ≥ 1,
there is a Σc

α sentence ΦαC ,e,x in the language L such that

(∃D)[D ≈l C & D Xα Fe(x)] ↔ BX(l) |= ΦαC ,e,x.

Lemma 3. Let us fix a computable ordinal α ≥ 1. Let B0 and B1 be computable
structures in the same language L with equality and both structures satisfy the
same Σc

α sentences in L . Moreover, let us fix a condition C and finite X,Y
such that XC = YC , X 6= Y and they differ only at points < m. Then we have
the equivalence:

(∃D ⊇p C )[D Xα Fe(x) & |D | = m] ↔ (∃D ⊇p C )[D Yα Fe(x) & |D | = m].

Proof. For (→), let us fix D ⊇p C such that D Xα Fe(x), |D | = m and let
l = |C |. For i = l, l+ 1, . . . ,m, let the finite Xi ∈ 2ω be such that Xi(j) = X(j)
for j 6∈ [l, i) and Xi(j) = Y (j) for j ∈ [l, i). We remark that Xl = X and
Xm = Y . We shall define by induction on i the partial conditions Di such that
Di ⊇p C , |Di| = m and Di Xiα Fe(x). For i = l, let Di = D , which satisfies
our requirements. Now suppose we have defined Di. Then Di Xiα Fe(x) trivially
implies (∃D ′)[D ′ ≈i Di & D ′ Xiα Fe(x)]. By Corollary 1, there is a Σc

α sentence
ΦαDi,e,x such that (∃D ′)[D ′ ≈i Di & D ′ Xiα Fe(x)] ↔ BXi(i) |= ΦαDi,e,x. We
have that B0 and B1 satisfy the same Σc

α sentences. Thus, BXi(i) |= ΦαDi,e,x
iff BY (i) |= ΦαDi,e,x. Since Xi+1(i) = Y (i) and Xi(j) = Xi+1(j) for j 6= i,

by Corollary 1, (∃D ′)[D ′ ≈i Di & D ′ Xi+1
α Fe(x)] ↔ BY (i) |= ΦαDi,e,x. By

combining the above equivalences, we obtain

(∃D ′)[D ′ ≈i Di & D ′ Xiα Fe(x)] ↔ (∃D ′)[D ′ ≈i Di & D ′ Xi+1
α Fe(x)].

We set Di+1 to be this D ′ ≈i Di such that D ′ Xi+1
α Fe(x). Since i ≥ |C | = l and

Di ⊇p C , we have Di+1 ⊇p C . Eventually, we obtain Dm such that |Dm| = m,
Dm ⊇p C and Dm Yα Fe(x). The direction (←) is symmetric. ut
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Lemma 4. Let us fix a computable ordinal α ≥ 1. Let B0 and B1 be computable
structures in the language L with equality and both structures satisfy the same
Σc
α sentences in L . Then for every partial condition C , X ∈ 2ω and natural

numbers e, x:

1) C Xα Fe(x) ↔ C XC
α Fe(x),

2) C Xα ¬Fe(x) ↔ C XC
α ¬Fe(x).

Proof. We prove 1) and 2) simultaneously by transfinite induction on α.
Let α = 1. For 1), it is clear, by the definition of X1 , that for every e and x,

C X1 Fe(x) ↔ C XC
1 Fe(x).

For 2), we have two cases to consider.

i) Let C X1 ¬Fe(x) and assume C 6XC
1 ¬Fe(x). Fix D0 ⊇ C such that

D0 XC
1 Fe(x) and let m = |D0|, D ′ = D0 � |C |. Since XC = XD′ , we

have (∃D ⊇p D ′)[D XD′
1 Fe(x) & |D | = m]. Since the finite XD0 , XD′

differ only at positions < m and (XD0)D′ = XD′ , by Lemma 3, (∃D ⊇p
D ′)[D 

XD0
1 Fe(x) & |D | = m]. We conclude that there is D ⊇p D ′ ⊇ C

such that D XD
1 Fe(x) and by 1), D X1 Fe(x). We reach a contradiction

with C X1 ¬Fe(x).
ii) Let C XC

1 ¬Fe(x) and assume C 6X1 ¬Fe(x). In a similar way as in i)
we show that we can apply Lemma 3 to reach a contradiction with C XC

1

¬Fe(x).

For α > 1, case 1) follows easily by the definition of the forcing relation Xα
and the induction hypothesis for cases 1) and 2). Since we can apply Lemma 3
for every β ≤ α, the proof of 2) for α > 1 is essentially the same as for α = 1. ut

Total conditions

Let us again fix structures B0 and B1 with the same universe B. The total
conditions are infinite sequences C = (f0, f1, f2, . . . , fi, . . . ), where for all i, fi
is an enumeration of the set B. We denote the total conditions by the letters C
and G. We define the diagram of C with respect to X ∈ 2ω to be

DX(C) =
⊕
j<ω

f−1
j (BX(j)).

For total conditions, we define the modelling relation |=X
α for every com-

putable ordinal α ≥ 1 in a way that mirrors the definition of the forcing relation:

(i) C |=X
1 Fe(x) ↔ x ∈WDX(C)

e

(ii) Let α = β + 1. Then

C |=X
β+1 Fe(x) ↔ (∃δ ∈ Fin2)[x ∈W δ

e & (∀z ∈ Dom(δ))[

(δ(z) = 1 & C |=X
β Fz(z)) ∨

(δ(z) = 0 & C |=X
β ¬Fz(z))]].
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(iii) Let α = limα(p). Then

C |=X
α Fe(x) ↔ (∃δ ∈ Fin2)[x ∈W δ

e & (∀z ∈ Dom(δ))[z = 〈xz, pz〉 &

((δ(z) = 1 & C |=X
α(pz) Fxz (xz)) ∨

(δ(z) = 0 & C |=X
α(pz) ¬Fxz (xz)))]].

(iv) C |=X
α ¬Fe(x) ↔ C 6|=X

α Fe(x).

Lemma 5. Let C be a total condition and α ≥ 1 be a computable ordinal. Then

x ∈W∆0
α(DX(C))

e ↔ C |=X
α Fe(x).

For a computable ordinal α ≥ 1, we say that C is α-generic with respect to
X if for every e, x and 1 ≤ β < α, (∃C ⊂ C)[C Xβ Fe(x) ∨ C Xβ ¬Fe(x)].

Lemma 6. For every computable ordinal α ≥ 1 we have the following:

1) Let C be α-generic with respect to X. Then

C |=X
α Fe(x) ↔ (∃C ⊂ C)[C Xα Fe(x)].

2) Let C be (α+ 1)-generic with respect to X. Then

C |=X
α ¬Fe(x) ↔ (∃C ⊂ C)[C Xα ¬Fe(x)].

3 Construction of a generic copy of N

For two functions f and h, let us denote E(f, h) = {〈x, y〉 | f(x) = h(y)}.

Proposition 1 Let A = (A;R), R ⊆ An, and N be defined as in Definition 2.
For every total condition C = (q0, q1, . . . ) and total enumeration f of A, there
is an enumeration hC of N such that h−1

C (N ) ≤T Df−1(R)(C) and E(hC, f) is
computable.

Proposition 2 For every enumeration f of A⊕X, there is a total enumeration
h of A such that

1) E(f, h) ≤T f−1(A⊕X), and
2) h−1(A)⊕X ≤T f−1(A⊕X).

Lemma 7. Let A = (A;R), α be a computable successor ordinal, and B0 and
B1 be computable structures such that:

a) B0,B1 are defined in the same language L , which includes equality,
b) B0,B1 satisfy the same Σc

β sentences in L for all β < α.

Then for every enumeration f of A⊕∆0
α, there is an enumeration g of N such

that
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1) E(f, g) ≤T f−1(A⊕∆0
α),

2) ∆0
α(g−1(N )) ≤T f−1(A⊕∆0

α).

Proof. Let α = β + 1. By Proposition 2, let us fix, for the given enumeration f
of A⊕∆0

α, a total enumeration h of A such that h−1(A)⊕∆0
α ≤ f−1(A⊕∆0

α)
and E(f, h) is computable. Our goal is to build a total α-generic condition G
in stages, such that G =

⋃
Ck. The desired enumeration g will be hG, defined

as in Proposition 1. At each stage k, we define a partial condition Ck+1 and a
finite Xk+1 ∈ 2ω such that Xk+1 = h−1(R) � |Ck+1|. Let C0 = ∅ and X0 = ∅. At
step k = 〈e, x〉+ 1, we ask whether (∃D ⊇ Ck)[D Xkβ Fe(x)]. Since Xk is finite
and B0,B1 are computable, this question can be expressed by a Σc

β sentence and

thus we can decide whether such D exists effectively relative to ∆0
α.

If such D does not exists, then, by definition, Ck Xkβ ¬Fe(x). We set Ck+1 =
Ck, Xk+1 = Xk and go to the next step.

If such D exists, let E = D � |Ck| and X ′ = h−1(R) � |D |. Since Xk =
h−1(R) � |Ck|, we have (X ′)E = Xk. Then according to Lemma 3, (∃D ′ ⊇p
E )[D ′ X

′

α Fe(x) & |D ′| = |D |]. We can find the pair (D ′, X ′) such that D ′ X
′

α

Fe(x) effectively relative to h−1(A) ⊕∆0
α. Then, if necessary, we enlarge D ′ so

that for every i < |Ck|, τD′

i is defined on an initial segment of N and τD′

i ) τCk
i .

By the monotonicity property of the forcing relation, that is Lemma 1, we know
that we can do this safely. We set Ck+1 to be this enlarged D ′ and set Xk+1 = X ′.
Then we go to the next step.

In the end, we set G =
⋃
i Ci, where gk =

⋃
i τ

Ci
k and G = (g0, g1, . . . ). By

Proposition 1, for G we define the enumeration hG of N . Then

x ∈ ∆0
α(h−1

G (N ))↔ G |=h−1(R)
β Fµ(x,β)(x)

↔ (∃k)[Ck ⊆ G & Ck h
−1(R)
β Fµ(x,β)(x)]

↔ (∃k)[Ck ⊆ G & Ck Xkβ Fµ(x,β)(x)].

By the construction above, we know that at step k = 〈µ(x, β), x〉 + 1 we have
answered the question whether Ck Xkβ Fµ(x,β)(x) or Ck Xkβ ¬Fµ(x,β)(x). Since

the sequence {〈Ck, Xk〉}k∈ω is computable in h−1(A) ⊕ ∆0
α, we conclude that

∆0
α(h−1

G (N )) ≤T h−1(A) ⊕ ∆0
α ≤T f−1(A ⊕ ∆0

α). Moreover, by Proposition
1, E(hG, h) is computable and since E(h, f) ≤T f−1(A ⊕ ∆0

α) it follows that
E(hG, f) ≤T f−1(A⊕∆0

α). ut

Corollary 2. Under the conditions of Lemma 7, we have the following:

1) DS(A⊕∆0
α) ⊆ DSβ(N ), where β = α− 1, if α < ω and β = α, if α ≥ ω;

2) (∀X ⊆ A)[X ∈ Σc
α(N ) → X ∈ Σc

1(A⊕∆0
α)].

Proof. We proved in Lemma 7 that for every enumeration f of the structure
A⊕∆0

α, there is an enumeration h of N such that ∆0
α(h−1(N )) ≤T f−1(A⊕∆0

α).
Then Property 1) follows from the fact that the degree spectra of A ⊕∆0

α and
N are closed upwards.
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Property 2) follows easily from the theorem by Ash-Knight-Manasse-Slaman
[2] and Chisholm [3] that the relatively intrinsically Σ0

α relations in a structure
A are exactly the Σc

α definable relations in A. ut
Lemma 8. Let A = (A;R), α be a computable successor ordinal and B0,B1 be
computable structures such that:

a) B0,B1 are defined in the same language L , which includes equality,
b) each Bi satisfies some Σc

α sentence in L that is not true in the other.

Then for every enumeration f of N , there is an enumeration h of A⊕∆0
α such

that:

1) E(f, h) ≤T f−1(N ), and
2) h−1(A⊕∆0

α) ≤T ∆0
α(f−1(N )).

Proof. Let f be the given enumeration of N . We define h, an enumeration of
A ∪ N, as h(2n) = f(n) for all n ∈ f−1(A) and h(2n + 1) = n, for all n ∈ N. It
is clear that E(f, h) is computable in f−1(N ).

For any x1, . . . , xn, let i = 〈x1, . . . , xn〉 and āi = (f(x1), . . . , f(xn)). To check
if 2i ∈ h−1(R), we need to determine k in Uāi ∼= Bk. Since we have Σc

α sentences
Φ and Ψ such that B0 |= (Φ & ¬Ψ) and B1 |= (¬Φ & Ψ), we can do that
effectively relative to ∆0

α(f−1(N )). Thus, h−1(R) ≤T ∆0
α(f−1(N )).

The sets h−1(GS) and h−1(N) are computable and since h−1(∆0
α) ≡T ∆0

α,
we conclude that h−1(A⊕∆0

α) ≤T ∆0
α(f−1(N )). ut

We conclude by stating the following corollary, which is symmetric to Corol-
lary 2.

Corollary 3. Under the conditions of Lemma 8, we have the following:

1) DSβ(N ) ⊆ DS(A⊕∆0
α), where β = α− 1, if α < ω and β = α, if α ≥ ω;

2) (∀X ⊆ A)[X ∈ Σc
1(A⊕∆0

α) → X ∈ Σc
α(N )].

Now Corollary 2 and Corollary 3 gives us exactly Theorem 2.
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