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1 Introduction

This project seeks to provide means for translating from a subset of English into Overpass
queries using a Combinatory Categorial Grammar.

1.1 Motivation

The subject of this thesis came into being rather randomly. First, the following ingredients
were implanted into a cadaver:

• My affection towards maps and locations

• My contempt towards black boxes invented by aliens machine learning

• My desire to do something with λ-calculus / functional languages / compiling

• My having read thewiki page about Overpass several days before thinking about a thesis
subject

Then, said cadaver was strapped on a table in a1 tower and its limbs connected to the tower’s
lightning rod. The lightning that figuratively struck the lightning rod came as a sample subject
presented by my (as of now) supervisor for this thesis — something along the lines of “Trans-
lating a subset of a natural language into a formal language (SQL or Haskell) via Combinatory
Categorial Grammar”. After refracting the aforementioned ingredients through the plasmatic
halo of this sample subject, this thesis was implemented, with no regard for any usefulness or
state-of-the-art–ness. The assessment of such qualities is left as exercise to the reader.

1.2 Motivation

It is often the case that humans need to communicate a concrete question or order (a query)
to a computer. The most straightforward way for this to happen is to have the human write
out their query in a domain-specific language (DSL), specially crafted to handle the given
type of query. This approach, albeit very efficient when done correctly, requires substantial
upfront effort: the human needs to get familiar with the DSL andmust have access to a specific
intermediary (usually a keyboard and a screen). Thus, in some cases it is desirable to form an
expression in a natural language (or a language very similar to a subset of a natural language)
and have it translated to a query in the given DSL.

The point is not to translate any sentence in the source language that has semantics applicable
to the target DSL, but rather to define a subset of the source language, in which a human could
express a query reasonably easily.

Most DSLs have compositional semantics, which makes them great candidates for generation
using Combinatory Category Grammars (CCGs) [BB11, p. 181].

1The tower of The Faculty of Chemistry and Pharmacy of St. Kliment Ohridski University of Sofia, located at
42.67455,23.33225.
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One such DSL is the Overpass language, used by the open source project OpenStreetMap for
making queries to the map database. It has been chosen as a concrete target language for this
project in order to assess the usefulness of CCG for translating from a natural language subset
to a compositional DSL.

1.3 The waving of hands

This section will informally give a basic idea for all concepts used throughout the text with
the sole purpose to give some intuition about the project end-to-end.

Our goal is to have our user write a query like this:

pharmacies near parking spaces in Berlin

to get circles on a map as those shown in fig. 1.1.

Figure 1.1: Desired result for the query “pharmacies near parking spaces in Berlin”

To do this, we will first construct a Combinatory Categorial Grammar which parses such
queries. The central idea of CCG is that each word (or terminal) is assigned a set of cate-
gories, which work in the same way as types work in programming languages2. Semantically,
each word returns something as a result and may take other things as arguments.

Here, our central type will be represented by the type symbol GSet and will mean “a set of
geographic objects”. Each basic type is also a category.

So, we can immediately assign the category of pharmacies and of Berlin to be GSet
— they will have the semantics of “the set of all pharmacies” and “the singleton of the city of
Berlin” respectively:

pharmacies : GSet

Berlin : GSet

Now, we want parking spaces to be of the GSet category and have the semantics “the
set of all parking spaces”. One way to do this is to assign a special category Spaces to the

2Especially curried programming languages like Haskell
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word spaces, and make parking take Spaces as an argument on the right and return
GSet. We will denote this “argument on the right” construction by a forward slash:

parking : GSet/Spaces

spaces : Spaces

Similarly, arguments on the left will be denoted by a backward slash.

Now, we need to assign a category to the word in. We want to parse the construction “some-
thing in something”, thus we want to take one GSet on the left and one GSet on the right,
and return another GSet:

in : (GSetzGSet)/GSet

This means that inwill take aGSet on the right and produce something which takes another
GSet on the left and returns the final GSet. In our case, in Berlin takes some GSet on
the left and returns a GSet. An alternative category that would also work is the following:

in : (GSet/GSet)zGSet

In this case, in Berlin cannot be parsed while parking spaces in will return
something that will gladly take Berlin on the right and produce a GSet.

The syntax of “near” is similar to the syntax of “in”, so we will assign the same category.
Finally, we obtain this simple grammar:

pharmacies : GSet

Berlin : GSet

parking : GSet/Spaces

spaces : Spaces

in : (GSetzGSet)/GSet

near : (GSetzGSet)/GSet

This grammar will produce a valid parse for our query. The most convenient way to illustrate
such parses is by means of a derivation tree:
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GSet

GSetzGSet

GSet

Berlin

(GSetzGSet)/GSet

in

GSet

GSetzGSet

GSet

Spaces

spaces

GSet/Spaces

parking

(GSetzGSet)/GSet

near

GSet

pharmacies

Here, a thick line signifies the “function” while a thin line signifies the “argument”.

We can see that this derivation tree simply takes the building blocks produced by the words
and combines them in pairs until we get a single result. This means we have assumed that
the semantics of the language are compositional — larger sentences have semantics that can
be described by composing the semantics of its constituent subsentences.

Now, if we replace each word in the derivation tree by a building block of another target
language, and assume that we have chosen blocks with the same semantics, we will compose
a sentence in the other language that has the same meaning! Of course, those suppositions
(the compositional nature of the language and that we can chose terminals with the same
semantics) are utterly naïve, especially for natural languages. But, if we restrict ourselves to
a limited domain within the natural language and generate sentences in a formal language,
those assumptions might give us acceptable results. Ideally, we want to generate the following
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Overpass query:

( node["amenity" = "parking_space"]; ) -> .x1;
( area["name" = "Berlin"]; area["int_name" = "Berlin"]; area["name:en"

= "Berlin"]; ) -> .x2;
( node(area.x2)(around.x1:100.0)["amenity" = "pharmacy"]; ) -> .x3;
.x3 out;

Since the compositional nature in Overpass is hidden, instead of generating it directly we will
generate a query in a custom intermediate language we will call Minipass. In Minipass, the
same query will look like this:

and (and (amenity 'pharmacy') (near (amenity 'parking_space'))) (in
(name 'Berlin'))

We will now assign a Minipass term to each of the words in our example (specified after the
@ symbol):

pharmacies : GSet @ amenity 'pharmacy'

Berlin : GSet @ name 'Berlin'

parking : GSet/Spaces @ lambda x => amenity 'parking_space'

spaces : Spaces @ lambda x => x

in : (GSetzGSet)/GSet @ lambda x, y => and y (in x)

near : (GSetzGSet)/GSet @ lambda x, y => and y (near x)

We can now see how the tree will compose these terms:

and (and (amenity 'pharmacy') (near (amenity 'parking_space'))) (in (name 'Berlin'))

lambda y => and y (in (name 'Berlin'))

name 'Berlin'

Berlin

lambda x, y => and y (in x)

in

and (amenity 'pharmacy') (near (amenity 'parking_space'))

lambda y => and y (near (amenity 'parking_space'))

amenity 'parking_space'

lambda x => x

spaces

lambda x => amenity 'parking_space'

parking

lambda x, y => and y (near x)

near

amenity 'pharmacy'

pharmacies

Note that “lambda” expressions have been “reduced” in order to decrease clutter. We will later
formally explain their semantics and how to do that.

This produces the exact Minipass query we wanted. The grammar can now be extended to
cover many more types of queries.

The last thing we will do is create a translator from Minipass to Overpass to complete the
pipeline in fig. 1.2.
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Figure 1.2: General pipeline for a query

1.4 Overview of the Overpass language

The Overpass language [wik19a] has been created by the OpenStreetMap community in order
to be able to make more complex queries to map data.

Overpass has two different query fronteds, which means that the same AST may be built in
two different ways: a XML-based frontend and an Overpass QL–based frontend. The XML
Overpass QL frontend has been better maintained, has more features and is easier to generate
programmatically — thus, it was chosen as a target language for this project. Whenever we
talk about “the Overpass language”, we shall refer to Overpass QL.

This section will present a subset of Overpass QL that is relevant to this project: for a more
complete overview, refer to [wik19b].

1.4.1 Map data

Overpass lets us examine the universe of OpenStreetMap map data. It consists of objects,
where each object has a set of key-value tags (keys and values are strings but some values
may encode a more complex structure within a string).

An object may be of one of the following types:

• node — a point on the map, identified by latitude, longitude, and a node ID. Nodes rep-
resent point-like features like trees, fountains, businesses, mountain peaks, etc.

• relation—a grouping ofmultiple objects by some common feature. Examples of relations
are:

– all stops in a bus route

– all intersections of a highway

– poles of a power grid line

Relations may contain nodes, ways and other relations. Each member of a relation may
have an optional role, which is a text field that may be used to further group relation
elements.

• way — an ordered list of nodes which is used for defining continuous features. Ways
may be open or closed (closed ways have an identical first and last node). Open ways
are used for defining things like roads, rivers, and railways, while closed ways are used
for defining polygons (building boundaries, area borders, closed features).
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• area — not an actual OpenStreetMap object. Closed ways or relations which contain
closed ways may also be classified as an area by some criteria (one of which is the pres-
ence of an area=yes tag). Areas allow additional operations to the ones usable only
for ways taking advantage of a cached optimised representation of each polygon.

1.4.2 Basic language structure

The abstraction Overpass uses to represent map data is called a set, where a set can contain
any number of objects. Sets are heterogeneous and thus there is no limit on the variety of
objects that may reside in a single set.

OverpassQL consists of a list of statements which retrieve, manipulate, or output such sets.
Sets may be stored in variables: the syntax for referring to a variable is a dot followed by
alphanumeric characters. Statements are terminated by semicolons. Each statement has an
output set and may have input sets. When unspecified, an input or output set is implicitly set
to the default set (._).

There is one special statement — the “out” statement, which outputs all objects from an input
set to the user in some form. The output format may be set via specific meta-statements or by
API options — this, however, is not within scope. In the Overpass Turbo web interface, results
may be visualised as dots and polygons on a map. The syntax of the “out” statement is:

out <input set>;

Example 1.1. The following statement saves all nodes with name Foo within the set vari-
able ._:

node[name="Foo"];
out;

It is equivalent to the following statement:

node[name="Foo"] -> ._;
out ._;

In order to use foo as an output set, we could do:

node[name="Foo"] -> .foo;
out .foo;

The most basic group of statements are retrieval statements. They may retrieve specific type
of objects depending on what object keyword was used. Object keywords are the following:
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node retrieves nodes
way retrieves ways

relation retrieves relations
area retrieves areas
nwr retrieves nodes, ways, and relations

To form a retrieval statement, an object keyword is followed by one or more filters:

<object keyword><filter><filter>...<filter>

Objects matching all filters are stored in the output set.

1.4.3 Tag filters

The most basic group of statements retrieve objects depending on whether a specific filter
matches its tags. All tag filters are specified within square braces.

These are the possible tag filters3:

Filter Negation Effect
["tag"] [!"tag"] Matches if the object has a

tag with key tag
["tag"="content"] ["tag"!="content"] Matches if the object has a

tag with key tag and value
content

["tag"~"regex"] ["tag"!~"regex"] Matches if the object has a
tag with key tag and value
that matches regex

["tag"~"regex",i] ["tag"!~"regex",i] Matches if the object has a
tag with key tag and value
that matches regex, ig-
noring case

[~"regex1"~"regex2"] [~"regex1"!~"regex2"] Matches if the object has a
tag with key that matches
regex1 and value that
matches regex2

3All double quotes within filters may be replaced by single quotes (in order to escape double quotes within
the value) or omitted (when the value contains only letters)
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Example 1.2. Get nodes with amenity “cafe”:

node[amenity="cafe"];
out;

Get nodes with amenity “cafe” and name “Moondeers”:

node[amenity="cafe"][name="Moondeers"];
out;

Get nodes with amenity “cafe” and name “moondeers”, case insensitive:

node[amenity="cafe"][name~"^moondeers$",i];
out;

Get areas with an “administrative” tag:

area["administrative"];
out;

1.4.4 Relative filters

Some filters can use an input set to influence the retrieval query.

• Set intersection: this filter only matches objects that are within the input set. The syntax
is a dot followed by the input set’s name.

Example 1.3. Get nodes with amenity “cafe”:

node[amenity="cafe"] -> .cafes;
node.cafes;

Get nodes with amenity “cafe” and name “Moondeers”:

node[amenity="cafe"] -> .cafes;
node.cafes[name="Moondeers"];

• Objects within an area: get objects that are physically inside of areas in the input set.
The syntax uses the area keyword within round braces:

13



(area.<input set>)

Example 1.4. Nodes in Frankfurt:

area[name="Frankfurt"] -> fr;
node(area.fr);
out;

• Physical distance: get objects within said distance from objects in the input set. The
syntax involves using the around keyword within round braces:

(around.<input set>:<radius in metres>)

Example 1.5. Cafes within 120m of a parking space:

node[amenity="parking_space"] -> pspaces;
node[amenity="cafe"](around.pspaces:120) -> x;
out x;

Cinemas within 100m of bus stops in Bonn:

area[name="Bonn"];
node(area)[highway=bus_stop];
node(around:100)[amenity=cinema];
out;

14



1.4.5 Set union

Several statements that produce an output set may be chained within round brackets. This is
a union statement and produces the union of all output sets. Bare input sets (preceded by a
dot) may also take part in a union.

Example 1.6. Nodes and areas with an “administrative” tag:

(node["administrative"]; area["administrative"];);
out;

Cafes in Frankfurt and Bonn:

node[amenity="cafe"] -> .cafes;
area[name="Bonn"] -> .bonn;
area[name="Frankfurt"] -> .frankfurt;
node.cafes(area.bonn) -> .cb;
node.cafes(area.frankfurt) -> .cf;
(.cf; .cb;) -> .cfb;
out .cfb;

Same query, but flattened:

area[name="Bonn"] -> .bonn;
area[name="Frankfurt"] -> .frankfurt;
( node[amenity="cafe"](area.bonn);

node[amenity="cafe"](area.frankfurt); );
out;

1.4.6 And everything else

There are more available statements within Overpass QL, including:

• Recurse up/down relations — get items that are within relations in the current set and
get relations the items in the input set are contained in

• “is in” — get areas the items in the input set are contained in

• Recurse along ways - get next, previous objects along way

• Fixed point — perform a block on an input set until it returns the same set

Since they have not been used in this reference implementation, they will not be discussed in
detail. For extra information, see [wik19b].
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2 Ingredients

2.1 Simply typed λ-calculus

For representing compositional terms, a version of the simply typed lambda calculus will be
used.

2.1.1 Types

Let T def
= tt1, t2, t3...u be a countable set of symbols that we will call type symbols4.

Definition 2.1. For a set of type symbols T , its type closure T (T ) Ď (T Y tÑ, ), ( u)˚ is
defined inductively:

• σ P T ùñ σ P T (T )

• σ, τ P T (T ) ùñ (σ Ñ τ) P T (T )

Convention 2.1. For clarity, braces shall be omitted in the notation for types by regarding
theÑ operation as right-associative:

σ Ñ τ Ñ η

will mean
(σ Ñ (τ Ñ η))

Definition 2.2. The function ts : T (T) Ñ 2T, which returns the set of type symbols used in
a complex type, is defined inductively:

• σ P T ùñ ts(σ) def
= σ

• σ = σ1 Ñ σ2 ùñ ts(σ) def
= ts(σ1)Y ts(σ2)

Definition 2.3. The types τ, σ P T (T ) have the same syntactic structure when either:

• τ P T & σ P T

• τ = τ 1 Ñ τ 2 & σ = σ1 Ñ σ2 where τ 1 and σ1, and τ 2 and σ2 respectively have the same
syntactic structure.

We will now introduce a notation for easily obtaining the types of items — }x} shall mean “the
type of x”:

Definition 2.4. We call a set X typed in T when there is a function

} ¨ } : X Ñ T (T )

that we call a typing function.
4See appendix A
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Definition 2.5. IfX,Y are sets of type symbols and φ : X Ñ T (Y ), then φ̂ : T (X)Ñ T (Y )

is defined inductively:

φ̂(σ) =

#

φ(σ), σ P X

φ̂(σ1)Ñ φ̂(σ2), σ = σ1 Ñ σ2 P T (X)

2.1.2 Terms

To define λ terms with the types introduced above, a system similar to Church’s λÑ [NG14,
chap. 2.4] shall be used. It extends the original system with constants.

Let Vλ = tα1, α2, α3...u be a countable set of symbols that we will call variables and Const =
tc1, c2, c3...u be a countable set of symbols that we will call constants.

We can now define the set of pre-typed λ-terms with constants C typed in T (ΛCT ).

Definition 2.6. Let C Ă Const be a set of constants, typed in T .

ΛCT is defined inductively:

• Constant:
c P C ùñ c P ΛCT

• Variable:
v P Vλ ùñ v P ΛCT

• Application:
A,B P ΛCT ùñ (AB) P ΛCT

• Abstraction:
v P Vλ, A P ΛCT , σ P T (T ) ùñ (λv : σ ñ A) P ΛCT

Convention 2.2. In this text, chained abstractions will be squashed, i.e. λx1 : T1, x2 :

T2, ..., yn : Tn ñM shall mean λx1 : T1 ñ (λx2 : T2 ñ (...(λxn : Tn ñM)...)).

We will differentiate between free variables and bound variables in a term. Intuitively, bound
variables are “bound” by abstraction, while free variables are not.

We will now formally define the function fv that gives us all free variables of a term.

Definition 2.7. Let fv : ΛCT Ñ 2V
λ be defined as:

fv(M) =

$

’

’

’

’

&

’

’

’

’

%

H, M = c P C

tvu, M = v P Vλ

fv(A)Y fv(B), M = (AB)

fv(A)ztvu, M = (λv : σ ñ A)

Definition 2.8. Statement, declaration, context, judgement [NG14, chap. 2.4]
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• If M P ΛCT , σ P T (T ), then M : σ is called a statement. M is called a subject and σ is
called a type.

• A statement with a variable as a subject is called a declaration.

• A set of declarations with different subjects is called a context.

• A judgement has the form Γ $M : σ, where Γ is a context andM : σ is a statement.

Furthermore, appending to contexts is defined as follows:

Γ ˝ x : σ = ty : τ P Γ | y ‰ xu Y tx : σu

The ˝ operation shall be regarded as left-associative throughout this text.

To define what it means for a termM P ΛCT to have a type, we will use derivation rules.

Definition 2.9. Derivation rules for typed λ-terms:

• Constant

c P C

Γ $ c : }c}

• Variable

x : σ P Γ

Γ $ x : σ

• Application

Γ $ A : σ1 Ñ σ2 Γ $ B : σ1

Γ $ (AB) : σ2

• Abstraction

Γ ˝ x : τ $ A : σ

Γ $ (λx : τ ñ A) : τ Ñ σ

Lemma 2.1. Inversion lemma:

• If Γ $ c : σ for c P C , then σ = }c}

• If Γ $ x : σ for x P Vλ, then x : σ P Γ

• If Γ $ (AB) : σ2, then for some σ1:

– Γ $ A : σ1 Ñ σ2

– Γ $ B : σ1

• If Γ $ (λx : τ ñ A) : ν, then ν = τ Ñ σ and Γ ˝ x : τ $ A : σ.
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Proof. It follows immediately from the definition 2.9, since the cases are non-overlapping.

Now, we will prove that every well-typed term has a unique type:

Proposition 2.1.
Γ $M : σ1 & Γ $M : σ2 ùñ σ1 = σ2.

Proof. We will assume that Γ $ M : σ1 and Γ $ M : σ2 and prove σ1 = σ2 by induction
over the construction of M . In every case, we will make use of lemma 2.1 to decompose the
right-hand side of $.

• M = c P C :

σ1 = }c} = σ2

• M = x for some x : σ1 P Γ and x : σ2 P Γ:

Since Γ is a context (e.g. each subject appears only once), there is only one declaration
with subject x, thus σ1 = σ2.

• M = (AB):

We have Γ $ (AB) : σ1 and Γ $ (AB) : σ2. This means that

Γ $A : η1 Ñ σ1

Γ $B : η1

and

Γ $A : η2 Ñ σ2

Γ $B : η2

But inductively A has a unique type, thus η1 Ñ σ1 = η2 Ñ σ2, therefore σ1 = σ2.

• M = (λx : τ ñ A), σ1 = τ Ñ η1 and σ2 = τ Ñ η2.

This means that Γ˝x : τ $ A : η1 and Γ˝x : τ $ A : η2. Inductively, η1 = η2: therefore,
σ1 = (τ Ñ η1) = (τ Ñ η2) = σ2.

Since we proved that types for terms are unique, we can now define a typing function (which
will work on well-typed closed terms):

Definition 2.10. Now, }M} forM P ΛCT is defined as follows:

}M} =

#

σ, ifH $M : σ,
␣!, otherwise.
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2.2 Pure CCG

The CCG formalism is used in a multitude of variants. The form presented here will be most
basic and of little practical use: it will only allow composition rules and the only restriction
will be a global upper bound on the arity.

The presentation of CCG in this section is based on the Vijay-Shanker CCG formalism [VW90].

This formalism is enough for understanding the parsing algorithms, and can be further ex-
tended to include features such as type-raising, arbitrary rule restrictions, slash modalities,
category features, category variables, and feature variables in order to make it more practical.

Let Cat = tC 1, C2, C3, ...u be a countable set of symbols that we will call atomic categories.

Definition 2.11. For a set of atomic categories τ , its categorial closure C(τ) is defined as fol-
lows:

1. A P τ ùñ A P C(τ)

2. X,Y P C(τ) ùñ (X/Y ) P C(τ)

3. X,Y P C(τ) ùñ (XzY ) P C(τ)

Letters like A,B,C will be used to denote atomic categories, while letters likeX,Y, Z will be
used to denote complex categories (produced by rules 2 and 3).

Such expressions are called categories. The symbol | will be used to denote any slash (i.e.,
when the distinction between z and / does not matter). Categories will also be considered
left-associative. Thus we can write X1|X2|X3|X4 to denote (((X1|X2)|X3)|X4). It is useful
to note thatX1 may be decomposed into its constituents until it becomes an atomic category:
this means that every category can be written in the form A|X1|X2|...|Xn, where A is atomic.
We say that n is the category’s arity. A is called its target or return type, while X1...Xn are
called its arguments or argument types.

Definition 2.12. Concatenating categories: If X P C(τ) and Y = A|1Y1|2Y2...|mYm P C(τ),
then we define

X ˝/ Y = X/A|1Y1|2Y2...|mYm

X ˝z Y = XzA|1Y1|2Y2...|mYm

Definition 2.13. Breadth of category: for X = A|X1|X2|...|Xn P C(τ), |X| = n.

Definition 2.14. G = xΣ, N, S, f, ny is a Combinatory Categorial Grammar, where

• Σ is the (finite) set of terminals

• N is the (finite) set of non-terminals (atomic categories)

• S P N is the target category

• f : ΣÑ N̂ , where N̂ is the set of finite subsets of C(N), is the function for interpreting
the terminals

• n P N is the maximum composition arity
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2.2.1 Derivations

We will now formalise the way in which CCGs generate strings of terminals. There are two
approaches to do this: iterative derivation and derivation trees. Since they are both useful for
different things, we will also show the equivalence between them.

We will now define the set of symbols that participate in the derivation process:

Definition 2.15. For a set of atomic categories τ , S(τ) is defined as the set of strings which
contain:

• Complex categories enclosed in []-brackets

• Terminals

It is defined formally as such:
S(τ)

def
= ([C(τ)]Y Σ)˚

Let τ be a set of atomic categories. For iterative derivation, we will use strings in S(τ),
i.e., strings of terminals intermixed with categories. To make our derivations equivalent to
context-free grammar derivations, we use the square brackets ([, ]) to delimit categories from
the rest of the string.

Definition 2.16. For any string α P S(τ), where Σ is a finite alphabet of terminals, we define
Cats(α) to be the set of all categories that can be found in α, namely:

• Cats(ε) =H

• for a P Σ, Cats(aβ) = Cats(β)

• for X P Cats(τ), Cats([X]β) = X Y Cats(β)

Definition 2.17. For a CCGG, we can construct a setR Ă ([C(N)])ˆS(N) of rule instances.
Instead of (α, β) P R we will write αÑG β.

• If a P Σ, X P f(a), then
[X]ÑG a

• If X/Y P C(N), Y |1Z1|2Z2...|mZm P C(N), 0 ď m ď n then

[X|1Z1|2Z2...|mZm]ÑG [X/Y ][Y |1Z1|2Z2...|mZm]

Furthermore, we call X/Y the primary category of the rule instance, while
Y |1Z1|2Z2...|mZm is its secondary category. We also call X/Y the left category of
the rule instance, and Y |1Z1|2Z2...|mZm its right category.

• If XzY P C(N), Y |1Z1|2Z2...|mZm P C(N), 0 ď m ď n then

[X|1Z1|2Z2...|mZm]ÑG [Y |1Z1|2Z2...|mZm][XzY ]

Here, XzY is the primary and right category, while Y |1Z1|2Z2...|mZm is the secondary
and left category.
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We will now define the notations ñG for a derivation step and ñ˚
G for multiple derivation

steps.

Definition 2.18. Derivation process

• If β Ñ β1, then αβγ ñG αβ
1γ

• Letñ˚
G be the reflexive and transitive closure ofñG.

• If αñ˚
G β, we can write

µ : α = α1 ñG ...ñG αr = β

and call µ a derivation for G. Then Cats(µ) def
=

r
Ť

i=1

Cats(αi) is the set of all categories

used in µ.

• L(G) := tα P Σ˚ | [S]ñ˚
G αu

Convention 2.3. Whenever the grammar in use is clear from the context, we will write “Ñ,
ñ,ñ˚” instead of respectively “ÑG,ñG,ñ˚

G.

Proposition 2.2. A CCG G = xΣ, N, S, f, ny is equivalent to an (albeit infinite) context-free
grammar GC = xΣ, [C(N)], R, [S]y.

Furthermore, let µ : α1 ñ ... ñ αr be a derivation for G. We can construct a finite context-
free grammar GC

µ = xΣ, [Cats(µ)], R
ˇ

ˇ

[Cats(µ)]
, [S]y that produces µ, and whose derivations are

also derivations in G.

Proof. This follows because our definition ofñ forG and the context-free definition ofñ for
GC are the same.

As per the given construction, there is no way for a CCG to generate the empty string.

Property 2.1. For any CCG G, ε R L(G)

Proposition 2.3. Concatenativity of CCG derivation:

For α ‰ ε, β ‰ ε, the following two are equivalent:

• Dα1 ‰ ε, β1 ‰ ε such that γ = α1β1, αñ˚ α1, β ñ˚ β1

• αβ ñ˚ γ

Proof. We can use proposition 2.2:

• if αñ˚ α1 and β ñ˚ β1, then αβ ñ˚ α1β ñ˚ α1β1 = γ.

• if αβ ñ˚ γ, α ‰ ε, β ‰ ε, we can fix µ : αβ ñ γ1 ñ γ2... ñ γt = γ. Then µ is a valid
derivation in the context-free grammar GC

µ , which means α and β generate separate
derivation subtrees, thus Dα1β1 = γ such that α ñ˚ α1 and β ñ˚ β1, which also holds
for G.
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Example 2.1. We will construct a simple grammarG = xΣ, N, S, f, ny that can generate
the string cities in Germany.

Σ
def
=tcities, in,Germanyu

N
def
=tGSetu

S
def
=GSet

f(x)
def
=

$

’

&

’

%

tGSetu, x = cities
tGSetu, x = Germany
tGSetzGSet/GSetu, x = in

n
def
=1

Here is a possible derivation process (categories to which we apply derivation rules on the
next step are underlined):

[GSet]

ñ

[GSet][GSetzGSet]

ñ

[GSet][GSetzGSet/GSet][GSet]

ñ

cities [GSetzGSet/GSet][GSet]

ñ

cities in [GSet]

ñ

cities in Germany

Example 2.2. And now an even dumber grammar G = xΣ, N, S, f, ny that can generate
strings like

count to two, count to twice two, count to twice twice two
and so on.
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Σ
def
=tcount, to, twice, twou

N
def
=tAction,Numu

S
def
=Action

f(x)
def
=

$

’

’

’

’

&

’

’

’

’

%

tNumu, x = two,
tActionu, x = count,
tNum/Numu, x = twice,
tActionzAction/Numu, x = to.

n
def
=2

Here is one possible derivation process:

[Action]

ñ

[Action][ActionzAction]

ñ

[Action][ActionzAction/Num][Num]

ñ

[Action][ActionzAction/Num][Num/Num][Num]

ñ

[Action][ActionzAction/Num][Num/Num][Num/Num][Num]

ñ˚

count to twice twice two

Derivation trees for CCG are ordered binary trees with categories labelling their internal nodes
and terminals labelling their leaves.

We shall also consider the concept of primary edges in the context of derivation trees, in cor-
respondence to the concept of primary categories in the context of derivations. Primary edges
will be drawn with a thick line.

We will construct the set TG of all derivation trees for a CCG G, as well as the functions
crown : TG Ñ S(N), root : TG Ñ C(N).

If there exists τ P TG such that root(τ) = X P C(N), crown(τ) = α, we will denote [X] ⇛ α.

Derivation trees are constructed as follows:

Definition 2.19. Derivation tree

• If X P C(N) then X P TG, crown(X) = [X], root(X) = X

• If a P Σ, X P f(a), then
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X

a ( π )

π P TG, crown(π) = a, root(π) = X

• If

X/Y

α (π1) and

Y |1Z1|2Z2...|mZm

β (π2)

are derivation trees such that root(π1) = X/Y , root(π2) = Y |1Z1|2Z2...|mZm,
crown(π1) = α, crown(π2) = β wherem ď n, then

X|1Z1|2Z2...|mZm

Y |1Z1|2Z2...|mZm

β

X/Y

α (τ )

τ P TG, root(τ) = X|1Z1|2Z2...|mZm, crown(τ) = αβ.

• If

Y |1Z1|2Z2...|mZm

β (π1) and

XzY

α (π2)

are derivation trees such that root(π1) = Y |1Z1|2Z2...|mZm, root(π2) = XzY ,
crown(π1) = α, crown(π2) = β wherem ď n, then

X|1Z1|2Z2...|mZm

X/Y

β

Y |1Z1|2Z2...|mZm

α (τ )

τ P TG, root(τ) = X|1Z1|2Z2...|mZm, crown(τ) = αβ.

Example 2.3. Here are the derivation trees for the derivations shown in example 2.1 and
example 2.2 respectively:
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GSet

GSetzGSet

GSet

Germany

GSetzGSet/GSet

in

GSet

cities

Action

ActionzAction

Num

two

ActionzAction/Num

Num/Num

Num/Num

twice

Num/Num

twice

ActionzAction/Num

to

Action

count

Proposition 2.4. Equivalence of derivation trees and derivations

[X]ñ˚ α ðñ [X] ⇛ α

Proof. First, let there exist a derivation tree for [X] ⇛ α. [X]ñ˚ α can be proven by induction
over constructing the tree.

• For the trivial cases, the derivation has 0 steps.

• For a tree

X

a

and X P f(a), we have α = a, [X]Ñ a.

• For a tree

X|1Z1|2Z2...|mZm

Y |1Z1|2Z2...|mZm

γ

X/Y

β

we have α = βγ, and inductively [Y |1Z1|2Z2...|mZm] ñ
˚ β and [X/Y ] ñ˚ α. Thus,

[X|1Z1|2Z2...|mZm]ñ
˚ [XzY ][Y |1Z1|2Z2...|mZm]ñ

˚ βγ = α.
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• For a tree

X|1Z1|2Z2...|mZm

XzY

γ

Y |1Z1|2Z2...|mZm

β

we have α = βγ, and inductively [Y |1Z1|2Z2...|mZm] ñ
˚ β and [XzY ] ñ˚ α. Thus,

[X|1Z1|2Z2...|mZm]ñ
˚ [Y |1Z1|2Z2...|mZm][XzY ]ñ˚ βγ = α.

Second, we can prove the inverse implication (given a derivation, construct the derivation
tree) by induction over derivation length. Let µ : [X]ñ β ñ˚ α be a derivation for G.

• β = [X]. Then this is the trivial reflexive case and X is a valid derivation tree in itself.

• β = a P Σ, X P f(a). Then α = β and

X

a

is a derivation tree for [X] ⇛ a = α

• X = W |1Z1|2Z2...|mZm and β = [W/Y ][Y |1Z1|2Z2...|mZm]. According to proposi-
tion 2.3, there exist η, ξ such that:

– α = ηξ

– [W/Y ]ñ˚ η

– [Y |1Z1|2Z2...|mZm]ñ
˚ ξ

However, according to the inductive hypothesis, this means that we have the derivation
trees

W/Y

η and

Y |1Z1|2Z2...|mZm

ξ

Thus, by definition, we can construct the derivation tree

X = W |1Z1|2Z2...|mZm

Y |1Z1|2Z2...|mZm

ξ

W/Y

η
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for [X] ⇛ α.

• X = W |1Z1|2Z2...|mZm and β = [Y |1Z1|2Z2...|mZm][W zY ]. According to proposi-
tion 2.3, there exist η, ξ such that:

– α = ηξ

– [Y |1Z1|2Z2...|mZm]ñ
˚ η

– [W zY ]ñ˚ ξ

However, according to the inductive hypothesis, this means that we have the derivation
trees

Y |1Z1|2Z2...|mZm

η and

W zY

ξ

Thus, by definition, we can construct the derivation tree

X = W |1Z1|2Z2...|mZm

W zY

ξ

Y |1Z1|2Z2...|mZm

η

for [X] ⇛ α.

2.2.2 The Categorial CYK algorithm

This is the most straightforward algorithm for parsing a string with the help of CCG. It is easy
to understand, but has exponential runtime with respect to the input word length.

It follows the same logic as the original CYK algorithm for context-free grammars, with the
difference that it uses the asymmetric combinator rules from CCG to produce items.

Let G = xΣ, N, S, f, ny be a CCG and w = w1...wk be a word.

The algorithm recursively builds a set P of items in the form (X, i, j),X P C(N), 1 ď i ď j ď

k and aims to produce the item (S, 1, k).

1. If X P f(wi), then (X, i, i) P P .

2. If (X/Y, i, p) P P, (Y |1Z1|2Z2...|mZm, p+ 1, j) P P , then (X|1Z1|2Z2...|mZm, i, j) P P .

3. If (XzY, p+ 1, j) P P, (Y |1Z1|2Z2...|mZm, i, p) P P , then (X|1Z1|2Z2...|mZm, i, j) P P .
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To reason about the algorithm, we will use the following invariant:

[X]ñ˚ wi...wj ðñ (X, i, j) P P (2.1)

Proposition 2.5. The algorithm is correct: if (S, 1, k) P P , then w P L(G).

Proof. We have to prove the right-to-left direction of the invariant:

(X, i, j) P P ùñ [X]ñ˚ wi...wj (2.2)

From which would follow (S, 1, k) P P ùñ [S] ñ˚ w1...wk, which is what we need to
prove.

So, let (X, i, j) P P and inductively suppose that (2.2) is true for any shorter substrings of w.
There are 3 rules by which this item has appeared:

1. i = j,X P f(wi): This means [X]Ñ wi ùñ [X]ñ˚ wi = wi...wj

2. i ă j and

• X = W |1Z1|2Z2...|mZm

• (W/Y, i, p) P P

• (Y |1Z1|2Z2...|mZm, p+ 1, j) P P

for some i ď p ă j,m ď n. By inductive hypothesis, [W/Y ] ñ˚ wi...wp and
[Y |1Z1|2Z2...|mZm]ñ

˚ wp+1...wj . Then, by the definition ofÑ and by concatenativity
ofñ, we have:

[X] = [W |1Z1|2Z2...|mZm]Ñ [W/Y ][Y |1Z1|2Z2...|mZm]ñ
˚ wi...wpwp+1...wj = w

3. i ă j and (analogous to 2)

• X = W |1Z1|2Z2...|mZm

• (W zY, p+ 1, j) P P

• (Y |1Z1|2Z2...|mZm, i, p) P P

for some i ď p ă j,m ď n. By inductive hypothesis, [W zY ] ñ˚ wp+1...wj and
[Y |1Z1|2Z2...|mZm]ñ

˚ wi...wp. Then, by the definition ofÑ and by concatenativity of
ñ, we have:

[X] = [W |1Z1|2Z2...|mZm]Ñ [Y |1Z1|2Z2...|mZm][W zY ]ñ˚ wi...wpwp+1...wj = w

Proposition 2.6. The algorithm is complete: if w P L(G), then (S, 1, k) P P .
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Proof. We have to prove the left-to-right direction of the invariant:

[X]ñ˚ wi...wj ùñ (X, i, j) P P (2.3)

From which would follow [S] ñ˚ w1...wk ùñ (S, 1, k) P P , which is what we need to
prove.

Let µ : [X] ñ α ñ˚ wi...wj be a derivation for G. We will prove (2.3) by induction over µ
from right to left.

The only way for [X] to appear to the left of a production is [X] Ñ α — we can now look at
all ways for this to happen.

1. α = a P Σ, X P f(a). Thenw = α, i = j, wi = a, which means (X, i, i) = (X, i, j) P P .

2. X = W |1Z1|2Z2...|mZm and α = [W/Y ][Y |1Z1|2Z2...|mZm]. According to proposi-
tion 2.3, there exists p such that

• [W/Y ]ñ˚ wi...wp

• [Y |1Z1|2Z2...|mZm]ñ
˚ wp+1...wj

However, according to the inductive hypothesis, this means that (W/Y, i, p) P P

and (Y |1Z1|2Z2...|mZm, p + 1, j) P P . Thus, by the algorithm definition,
(X = W |1Z1|2Z2...|mZm, i, j) P P .

3. X = W |1Z1|2Z2...|mZm and α = [Y |1Z1|2Z2...|mZm][W zY ] (analogous to 2.3). Ac-
cording to proposition 2.3, there exists p such that

• [Y |1Z1|2Z2...|mZm]ñ
˚ wi...wp

• [W zY ]ñ˚ wp+1...wj

However, according to the inductive hypothesis, this means that (W zY, p + 1, j) P P

and (Y |1Z1|2Z2...|mZm, i, p) P P . Thus, by the algorithm definition, (X =

W |1Z1|2Z2...|mZm, i, j) P P .

2.2.3 The Vijay-Shanker algorithm

This algorithm behaves like the categorial CYK algorithm for derivations that use only short
categories. In order to pack longer categories in a way that would not result in exponential
complexity, it uses some clever tricks.

A detailed explanation and proof can be found in the original paper [VW90].

Let G = xΣ, N, S, f, ny be a CCG and w = w1...wk be a word.

Let c1 = maxt|X| | X P f(a), a P Σu and c = maxtc1, nu.

The algorithm uses two types of items:

30



1. (X, i, j), X P C(N), 1 ď i ď j ď k

2. (A, ξ,X, T, i, j, p, q), A P N, T P tz, /uN, ξ P tz, /u, X P C(N), 1 ď i ď p ď q ď j ď k

As with the categorial CYK algorithm, we build a set P of items and aims to produce the item
(S, 1, k).

1. If X P f(wi), then (X, i, i) P P .

2. If (X/B, i, t) P P, (B|1Z1|2Z2...|mZm, t + 1, j) P P , |X|1Z1|2Z2...|mZm| ď c then
(X|1Z1|2Z2...|mZm, i, j) P P .

3. If (A|˚X/B, i, t) P P, (B|1Z1|2Z2...|mZm, t + 1, j) P P , |A|˚X|1Z1|2Z2...|mZm| ą c

then (A, |1, Z1|2Z2...|mZm, /B, i, j, i, t) P P .

4. If (A, ξ,X/B, T, i, t, p, q) P P , (B|1Z1|2Z2...|mZm, t + 1, j) P P , m ą 1, then
(A, ξ, Z1|2Z2...|mZm, /B, i, j, i, t) P P .

5. If (A, /, B, T, i, t, p, q) P P , (B|1Z1|2Z2...|mZm, t + 1, j) P P , m ą 1, then
(A, |1, Z1|2Z2...|mZm, T, i, j, p, q) P P .

6. If (A, ξ,X/B, T, i, t, p, q) P P , (B|˚Z, t+ 1, j) P P , then (A, ξ,X|˚Z, T, i, j, p, q) P P .

7. If (A, ξ,X/B, T, i, t, p, q) P P , (B, t+ 1, j) P P , then (A, ξ,X, T, i, j, p, q) P P .

8. If (A, /, B, T, i, t, p, q) P P , (B, t + 1, j) P P , (A|1X1|2X2...|mXmT, i, j) P P , then
(A|1X1|2X2...|mXm, i, j) P P .

9. If (A, /, B, T, i, t, p, q) P P , (B, t + 1, j) P P , (A, |1X1|2X2...|mXmT, T
1, i, j, r, s) P P ,

then (A, |1, X1|2X2...|mXm, T
1, i, j, r, s) P P .

The other 8 rules regarding backward composition (21 through 91) are analogous to their for-
ward counterparts, but with flipped indices.

The invariant here is composed of two parts:

• (X, i, j) P P ðñ |X| ď c & [X]ñ˚ wi...wj

• (A, ξ,X, |˚B, i, j, p, q) P P exactly when there exists ν P tz, /u, Y P C(N) such that

– 1 ď |Y | ď c1

– [AνY ξX]ñ˚ wi...wp´1[AνY |˚B]wq+1...wj

– [AνY |˚B]ñ˚ wp...wq

For smaller grammars, which rarely generate very long categories during parsing, this algo-
rithm is in fact slower than simple CYK-based alternatives. The strength of this algorithm
comes when parsing automatically-generated grammars from treebanks.

For this reason, this algorithm will not be used. For a more in-depth overview, see [VW90].
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2.3 Semantics within CCG

2.3.1 Extracting λ-terms from CCG derivations

A great strength of CCG comes from the ability to directly construct λ-terms fromCCG deriva-
tions. This relies on the assumption that the target language has a compositional nature,
namely that the semantics of any construction can be determined by composing the semantics
of its constituents.

So, we shall to provide the semantics for the basic blocks (in our case the elements of Σ) in the
form of λ-terms, and then define rules for composing those terms in accordance with a CCG
derivation tree.

Definition 2.20. For a set of atomic categoriesN typed in Θ, we can extend the definition of
the typing function } ¨ } over their categorial closure } ¨ } : C(N) Ñ T (Θ) in the following
way: }(X|Y )}

def
= }Y } Ñ }X}.

This gives meaning to categories in the context of λ-calculus: (XzY ) refers to a function that
returns a value of type X and takes an argument of type Y on the right side, while (XzY )

refers to a function that returns a value of typeX and takes an argument of type Y on the left
side.

Now that we have assigned types to categories, we can attach λ-terms to each terminal in
addition to the categories we have attached via the function f . This will give us λ-terms in the
leaves of each derivation tree, which can be composed naturally into λ-terms for all subtrees
including the whole tree, giving us the semantic information for this parse.

To do this, we will use a function that maps each terminal/category pair to a λ-term. In order
for the terms constructed on derivation trees to be correct and consistent, we will also want
the terms of each node to be of the same type as its category.

Definition 2.21. Let Θ be a set of type symbols, G = xΣ, N, S, f, ny be a CCG, N be a set of
atomic categories typed in Θ and C be a set of constants typed in Θ. A function

ψ : t(a,X) | a P Σ, X P f(a)u Ñ 2Λ
C
Θ

is called a semantic function for G.

While here we differentiate between categories and their types, it is often suf-
ficient for types and categories to be the same set: when that is the case, the
typing function is simply identity.

For simplicity, in most examples from here onward, the types of atomic cate-
gories will be the atomic categories themselves.

Now that we have our semantic function that can yield the possible terms for each leaf in a
derivation tree, we will build the semantic function for the entire tree:

32



Definition 2.22. Let G be a CCG, ψ be a semantic function for G and T be a derivation tree
for G.

We will inductively define semψ(T ) Ă ΛCΘ with respect to T :

1. If T is

X

a

T

and X P f(a), then
semψ(T ) = ψ(a,X).

2. If T is

X|1Z1|2Z2...|mZm

Y |1Z1|2Z2...|mZm

β

X/Y

α

T1 T2
T

where root(T1) = X/Y and root(T2) = Y |1Z1|2Z2...|mZm then

semψ(T ) =tλzm:}Zm}, zm´1:}Zm´1}, ..., z1:}Z1} ñM(Nzmzm´1...z1)

|M P semψ(T1), N P semψ(T2)u

for freshly-picked z1...zm P Vλz
(
fv(semψ(T1))Y fv(semψ(T2))

)
.

3. If T is

X|1Z1|2Z2...|mZm

XzY

β

Y |1Z1|2Z2...|mZm

α

T1 T2
T

where root(T1) = Y |1Z1|2Z2...|mZm and root(T2) = XzY then

semψ(T ) =tλzm:}Zm}, zm´1:}Zm´1}, ..., z1:}Z1} ñ N(Mzmzm´1...z1)

|M P semψ(T1), N P semψ(T2)u

for freshly-picked z1...zm P Vλz
(
fv(semψ(T1))Y fv(semψ(T2))

)
.
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Observe that since ψ returns valid λ-terms and everything returned by semψ is constructed
via basic λ-calculus operations, semψ returns only valid λ-terms.

While it is easier to only compose closed terms, there are cases when free variables are useful.
We will not restrict ourselves to closed terms and will therefore take some extra care to make
this construction support free variables.

One way to do this is to have a global context for all terms that are given by the semantic func-
tion: this way we have a universal way for finding the type of each subterm, even if it contains
free variables. Then, consistency between the terms returned by ψ and their categories can be
defined cleanly:

Definition 2.23. A semantic function ψ is called consistent in a context Γ when

@a,X :M P ψ(a,X) ùñ Γ $M : }X}.

Another observation is that the construction for semψ includes no additional free variables
other than the ones already present in the terms returned by ψ.

Proposition 2.7. If G = xΣ, N, S, f, ny is a CCG and ψ is a semantic function for G that is
consistent in Γ, then for every valid derivation tree T :

M P semψ(T ) ùñ Γ $M : }root(T )}

Proof. This can be proven by induction over the definition of semψ.

Let L P semψ(T ) be a term produced by semψ for an arbitrary derivation tree T . It has been
constructed in one of the following ways:

• L was produced by case 1. Then L P ψ(a,X) for some X P f(a). ψ is consistent in Γ,
so Γ $ L : }X}. Also, since root(T ) = X , }root(T )} = }X}. Thus, Γ $ L : }root(T )}

• L was produced by case 2. Then, inductively we have:

Γ $M : }X/Y } = }Y } Ñ }X} (2.4)

and
Γ $ N : }Y |1Z1|2Z2...|mZm} = }Zm} Ñ ...Ñ }Z1} Ñ }Y } (2.5)

Aside from that,

L = λzm:}Zm}, zm´1:}Zm´1}, ..., z1:}Z1} ñM(Nzmzm´1...z1)
loooooooooomoooooooooon

K

(2.6)

Let Γ1 = Γ˝zm : }Zm}˝ ...˝z2 : }Z2}˝z1 : }Z1}. Since z1...zm R fv(M)Y fv(N) because
we pick them as fresh variables, eq. (2.4) holds for Γ1 in the same way it does for Γ.
So, Γ1 $ Nzmzm´1...z1 : }Y } and then Γ1 $M(Nzmzm´1...z1)

loooooooooomoooooooooon

K

: }X}.

By the definition of $ for the case of abstraction,

Γ $ (λzm:}Zm}, zm´1:}Zm´1}, ..., z1:}Z1} ñ K)
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

L

: }Zm} Ñ ...Ñ }Z1} Ñ }X} (2.7)
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But }root(T )} = }X|1Z1|2Z2...|mZm} = }Zm} Ñ ...Ñ }Z1} Ñ }X}, therefore Γ $ L :

}root(T )} which is exactly what we sought to prove.

• L was produced by case 3. Since it is completely analogous to case 2, the proof will be
omitted.

Given proposition 2.7, we know that all terms generated from CCG derivation trees will be
consistent.

2.3.2 Composing phrases

TheCCG formalismwe have established allows a fixed set of terminals, which is usually chosen
to be the set of all tokens, or words, in the target natural language. This works fairly well,
because it is convenient to write rules at word level.

Sometimes, however, we come across fixed phrases, which come as several adjacent terminals
but we want to regard as a single terminal.

Note: here we will use a modal forward slash (/‹) which is defined in sec-
tion 2.4.1. Its usage is not important for understanding the idea of this con-
struction, so it may be regarded as a regular slash (/).

Example 2.4. Suppose we have a λ-term parkinglot with type Amenity.

For example, we might want to assign the category Amenity with term parkinglot to the
query parking lot that is composed of two terminals.

One way to do this is to set dummy categories to all but one of the terminals and have the
main terminal accept the dummy categories as arguments:

• Add a new type/category Dummy.

• Choose a closed termM of type Dummy.

• Set

Amenity/‹Dummy P f(parking)

Dummy P f(lot)

λd : Dummy ñ parkinglot P ψ(parking, Amenity/‹Dummy)

M P ψ(lot,Dummy)
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This approach yields a derivation subtree for parking lot that has the correct cate-
gory and semantics:

Amenity

Dummy

lot

Amenity/‹Dummy

parking

Convention 2.4. While defining a CCG G = xΣ, N, S, f, ny such that N is typed in T , the
following assertions:

X P f [α1α2...αk]

M P ψ[α1α2...αk, X]

where X P C(N) andM is a λ-term typed in T , have the following semantics:

• σ2, σ3...σk P T , where σi is a new “dummy” type whose choice5 depends on α1, ...αk
and i.

• X2, X3, ..., Xk P N , where Xi is a new “dummy” category such that }Xi} = σi and
whose choice depends on σi.

• M2,M3, ...,Mk are arbitrary “dummy” λ-terms whose types are respectively
σ2, σ3, ..., σk

• New added categories to f :

– X/‹X2/‹X3/‹.../‹Xk P f(α1)

– For each i P t2...ku, Xi P f(αi)

• New added terms to ψ:

– (λx2 : σ2, x3 : σ3, ..., xk : σk ñM) P ψ(α1, X/‹X2/‹X3/‹.../‹Xk)

– For each i P t2...ku,Mi P ψ(αi, Xi)

2.3.3 Shorthand for grammar specification

Whenmanually defining grammars, it is tedious towrite definitions for f andψ using standard
mathematical notation.

Thus, we will adopt a special syntax, assuming a CCG G = xΣ, N, S, f, ny with an arbitrarily
large n.

5When using λ-terms that allow subtypes and a wildcard type, such as the type system used in Minipass, it
is convenient to create new types by subtyping the identity type ˚ Ñ ˚ and using (λx : ˚ ñ x) as a dummy
term.
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The following assertion:

α : X1 @ M1

X2 @ M2

...

Xm @ Mm

shall mean that:

tX1, X2...Xmu Ď f [α]

M1 P ψ[α,X1]

M2 P ψ[α,X2]

...

Mm P ψ[α,Xm]

Here, the square brackets denote possible phrase matching (convention 2.4). It can be ignored
or swept under the rug, which makes square brackets behave like round brackets.

Example 2.5. This meta-example shows a couple of rules to illustrate the syntax:

near : GSetzGSet/GSet @ λfrom : GSet, things : GSetñ

and things (within nearDistance from)

german city : GSet @ and inGermany city

GSet/Name @ λn:Nameñ and (named n) (and inGermany city)

The grammar it specifies is the following:

f [german city] = tGSet,GSet/Nameu

f(near) = tGSetzGSet/GSetu

ψ(near,GSetzGSet/GSet) = λfrom : GSet, things : GSetñ

and things (within nearDistance from)

ψ[german city,GSet] = and inGermany city

ψ[german city,GSet/GSet] = λn:Nameñ and (named n) (and inGermany city)

Here we assign two different categories with their respective semantics to the phrase
german city — one that can be seen in the query
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"fountains in a german city"

and another in the query

"the german city Frankfurt"

Also, most examples from here on will assume that grammars have a starting category GSet,
to conform as close as possible to the implementation in section 3.2.

2.3.4 Ambiguity, spurious ambiguity and the Eisner normal form

One of the great problems of grammar systems such as CCG is ambiguity. By ambiguity we
mean the phenomenon that a single sentence may be generated by many different derivation
trees.

The simplest type of ambiguity is lexical ambiguity, where the given sentence actually has
several meanings.

Example 2.6. For example, take the query

memorials near cities in Belgium

With the following simple grammar:

memorials : GSet

cities : GSet

near : GSetzGSet/GSet

in : GSetzGSet/GSet

There are two possible derivation trees:

GSet

GSetzGSet

GSet

GSetzGSet

GSet

Belgium

GSetzGSet/GSet

In

GSet

cities

GSetzGSet/GSet

near

GSet

memorials
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This parse means “memorials which are near cities, said cities being in Belgium”.

GSet

GSetzGSet

GSet

Belgium

GSetzGSet/GSet

In

GSet

GSetzGSet

GSet

cities

GSetzGSet/GSet

near

GSet

memorials

While this parse means “memorials which are near cities, said memorials being in Bel-
gium”.

Both interpretations of the query are valid: a human would also interpret the query dif-
ferently depending on their context and state of mind. Nevertheless, the set of objects
returned for the two interpretations may be different (imagine a memorial just outside
the border of Belgium that is near a city just inside the border).

The term spurious ambiguity within the context of CCG refers to generating different deriva-
tion trees with the same meaning for the same sentence. There is seldom any use in keeping
such different trees in memory, so we would like to be able to leave only one tree for each
distinct meaning.

The question is, what is “meaning”? Unlike Aristotle, we can choose an arbitrary definition to
theword “meaning” by defining an equivalence relation between derivation trees — a predicate
that tells us whether two trees mean the same thing.

Whenever using derivation trees to generate λ-terms, it would be most convenient to test
whether they generate βη-equivalent terms. This might not guarantee the elimination of all
semantically equivalent parses (two terms might be different but “do” the same thing depend-
ing on the interpretation) but will prune a significant part of them.

Since CCG derivations mimic function composition, one of the most common causes for spu-
rious ambiguity arises from the associativity of composition: different trees may construct an
equivalent λ-term by performing the same function compositions but in a different order.

Example 2.7. Let’s look at the query

small capital cities
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With the following simple grammar:

small : GSet/GSet @ small

capital : GSet/GSet @ capital

cities : GSet @ cities

where }small} = GSetÑ GSet, }capital} = GSetÑ GSet and }cities} = GSet.

Please take note that small (the token) is different from small (the λ-constant with type
GSetÑ GSet) and similarly for capital and cities.

There are two possible derivation trees:

GSet

GSet

cities

GSetzGSet

GSet/GSet

capital

GSet/GSet

small

T1

GSet

GSet

GSet

cities

GSet/GSet

capital

GSet/GSet

small
T2

Where by the definition of semψ:

(λx:GSetñ capital (small x)) cities P semψ(T1)

small capital cities P semψ(T2)

However, semψ(T1) can also be β-reduced to small (capital cities), so these two trees
can be said to be a result of spurious ambiguity.

Most works that try to mitigate “spurious ambiguity” refer to this particular kind of spurious
ambiguity — the kind arising from composition order.

A construction that completely eliminates compositional spurious ambiguity within pure CCG
is Eisner Normal form [Eis96], which has been further refined by Hockenmaier et al. [HB10]
to support most extensions shown in section 2.4 to various extents.

Since spurious ambiguity has not posed a significant problem for the grammars used in this
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thesis, this construction, while easy to implement, will not be discussed further.

2.4 Hacks Extensions of the CCG formalism

The CCG formalism described in section 2.2 is too weak to represent most phenomena in
natural languages [Ste00]. Thus, several extensions have been developed to deal with them.

2.4.1 Rule restrictions or modalities

The only restriction on rules within the pure CCG formalism is the limit to the number of
arguments (n). However, additional rule restrictions are often added in practice, which makes
the grammar more expressive [KKS10].

The simplest method to implement this is to allow arbitrary rule restrictions, essentially cre-
ating a new formalism for each new target language. Another method is the so called slash
modalities, which have been shown [BK03] to be equivalent to rule restrictions in terms of
expressive power, and will be used here.

Definition 2.24. The elements of the set M = t‹,♢,ˆ, .u are called slash modalities.

Slash modalities make up the following lattice:

‹

♢ ˆ

.

For clarity, slash indices will be denoted with latin letters (|i denotes the i’th respective slash,
including its direction and modality) while slash modalities will be denoted by Greek letters
(zµ and /µ denote the respective slash with modality µ).

Definition 2.25. We extend the definition of categorial closure to use modalities:

1. A P τ ùñ A P C(τ)

2. X,Y P C(τ), µ PM ùñ (X/µY ) P C(τ)

3. X,Y P C(τ), µ PM ùñ (XzµY ) P C(τ)

Now, we restrict derivations according to modalities (in all cases,m ď n):

• “Application”
[X]Ñ [X/µY ][Y ]

[X]Ñ [Y ][XzµY ]

where µ ď ‹ (effectively for any µ).
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• “Harmonic composition”

[X/ηZ1|2Z2...|mZm]Ñ [X/µY ][Y /νZ1|2Z2...|mZm]

[XzηZ1|2Z2...|mZm]Ñ [Y zµZ1|2Z2...|mZm][XzνY ]

where µ ď ♢, ν ď ♢, η = µ^ ν.

• “Crossing composition”

[XzηZ1|2Z2...|mZm]Ñ [X/µY ][Y zνZ1|2Z2...|mZm]

[X/ηZ1|2Z2...|mZm]Ñ [Y /µZ1|2Z2...|mZm][XzνY ]

where µ ď ˆ, ν ď ˆ, η = µ^ ν.

In the above templates, modalities on the right-hand side stand for any modality that is less-
than or equal (according to the modality lattice) to the one specified. The modalities on the
left-hand side are produced by unifying (lowest common ancestor) the modalities on the right.

Example 2.8. For example, here are a few valid derivations:

[X]Ñ [X/♢Y ][Y ]

[X]Ñ [X/ˆY ][Y ]

[X]Ñ [X/.Y ][Y ]

[X/.Z1|2Z2...|mZm]Ñ [X/♢Y ][Y /.Z1|2Z2...|mZm]

[X/.Z1|2Z2...|mZm]Ñ [Y /ˆZ1|2Z2...|mZm][Xz.Y ]

This way, one can restrict the ways in which a category would combine by choosing appro-
priate slash modalities.

When using slash modalities, the bare slashes (z and /) will actually mean z. and /., being the
most generic (they can combine with any other type of slash).

Example 2.9. Consider the following simple grammar:

small : GSet/GSet

cities : GSet

in : GSetzGSet/GSet

Russia : GSet

It generates the following query, which looks well:
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GSet

GSetzGSet

GSet

Russia

GSetzGSet/GSet

in

GSet

GSet

cities

GSet/GSet

small

However, it also generates this query, which is undesirable:

GSet

GSetzGSet

GSetzGSet

GSet

Russia

GSetzGSet/GSet

in

GSet/GSet

small

GSet

cities

It appears that adjectives such as small should not be allowed to combine in this way.
This can be remedied by setting small : GSet/♢GSet in order to disallow crossing com-
position.

2.4.2 Categorial variables

This is a very powerful extension that adds simple unification based on variables to categorial
derivation. To define it formally, let VC = tκ1, κ2, κ3...u be a countable set of symbols that we
will call categorial variables.

Definition 2.26. We extend the definition of categorial closure to include variables:

1. A P τ ùñ A P C(τ)

2. X,Y P C(τ) ùñ (X/Y ) P C(τ)

3. X,Y P C(τ) ùñ (XzY ) P C(τ)

4. α P VC ùñ α P C(τ)

For convenience, we will use the same notation as the function returning the free variables of
λ-terms, for categories:

Definition 2.27. Let fv : C(τ)Ñ 2V
C be defined as:

fv(Z) =

$

’

&

’

%

H, Z P τ

fv(X)Y fv(Y ), Z = (X|Y )

tαu, Z = α P VC
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We now need to define variable substitution over categories in order to be able to easily ma-
nipulate variables.

Definition 2.28. Variable substitution over categories is defined as

Z[α := W ] =

$

’

’

’

’

&

’

’

’

’

%

Z, Z P τ

(X[α := W ]|Y [α := W ]), Z = (X|Y )

β, Z = β P VC , β ‰ α

W, Z = α

for Z P C(τ),W P C(τ), α P VC

Convention 2.5. If we have

X 1 = X[α1 := Y1][α2 := Y2]...[αn := Yn],

then we will use
ξ = [α1 := Y1][α2 := Y2]...[αn := Yn]

to denote that “ξ is the sequence of substitutions [α1 := Y1][α2 := Y2]...[αn := Yn]”.

The application of ξ on X will be denoted as

X 1 = ξ(X).

Having extended the notion of categorial closure to include categorial variables, we also add
a family of derivation rules to deal with variables, namely:

X[α := Y ]

X

for any X P C(τ), Y P C(τ), α P VC .

To define semantics for derivations with categorial variables, we need to extend our λ-calculus
to include type-variables and type-variable substitution. For a more detailed explanation, see
appendix B. Also, } ¨ } for categories must be extended to injectively map categorial variables
(VC) into type variables (VT ) for variable substitution to work (and for category types that
contain variables to match the types of their assigned terms).

Then, the semantics for the following derivation tree produced by variable substitution can be
defined:

X[a := Y ]

X

α
T 1

T
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semψ(T ) = tM [}a} := Y ] |M P semψ(T
1)u

root(T ) = X[a := Y ]

crown(T ) = crown(T 1) = α

This essentially allows us to generate any category and substitute it in place of variables at
any time during derivation.

When parsing, we can observe that after processing all leaf nodes, there is no way to gener-
ate new variables while building the parse tree bottom-up. Thus, it is sufficient to eliminate
variables by unification:

Definition 2.29. Two categories X and Y with categorial variables unify when-
ever we can find two sequences of substitutions (a1, X1), (a2, X2), ..., (an, Xn) and
(b1, Y1), (b2, Y2), ..., (bn, Yn) such that

X[a1 := X1][a2 := X2][an := Xn] = Y [b1 := Y1][b2 := Y2][bn := Yn]

In order to implement parsing of CCGs with variables, we will modify the categorial CYK
algorithm by replacing the rules (section 2.2.2) by the following:

1. If X P f(wi), then (X, i, i) P P .

2. If (X/Y 1, i, p) P P, (Y 2|1Z1|2Z2...|mZm, p+ 1, j) P P and Y 1 and Y 2 unify with substi-
tutions Y 1 [a1 := Y 1

1][a2 := Y 1
2][an := Y 1

n]
loooooooooooooooooooomoooooooooooooooooooon

ξ1

= Y 2 [b1 := Y 2
1][b2 := Y 2

2][bn := Y 2
n]

loooooooooooooooooooomoooooooooooooooooooon

ξ2

,

then (ξ1(X)|1ξ
2(Z1)|2ξ

2(Z2)...|mξ
2(Zm)), i, j) P P .

3. If (XzY 1, p+ 1, j) P P, (Y 2|1Z1|2Z2...|mZm, i, p) P P and Y 1 and Y 2 unify with substi-
tutions Y 1 [a1 := Y 1

1][a2 := Y 1
2][an := Y 1

n]
loooooooooooooooooooomoooooooooooooooooooon

ξ1

= Y 2 [b1 := Y 2
1][b2 := Y 2

2][bn := Y 2
n]

loooooooooooooooooooomoooooooooooooooooooon

ξ2

,

then (ξ1(X)|1ξ
2(Z1)|2ξ

2(Z2)...|mξ
2(Zm)), i, j) P P .

2.4.3 Coordination

Coordination refers to a technique that allows conjunctions (such as and, or etc.) to combine
identical categories on both sides.

This can be emulated completely by using categorial variables and setting and : αzα/α6 and
similar.

6In practice, one would need to set and : XzX/X, (X|α)z(X|α)/(X|α), ... in order to properly define se-
mantics.
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2.4.4 Type-raising

This extension adds a family of unary rules for constructing derivations [BB11, sec. 5.3.1],
parametrised for any slash modality i:

α/i(αziX)

X ( Forward type-raising )

αzi(α/iX)

X ( Backward type-raising )

The semantics are defined as follows:

α/i(αziX)

X

α
T 1

T

αzi(α/iX)

X

α
T 1

T

semψ(T ) = tλf :(X Ñ α)ñ fM |M P semψ(T
1)u

Since considering type-raising at any level would make parsing much slower, it is usually only
considered on categories that appear in leaves.

Example 2.10. Consider the following simple grammar:

cities : GSet

villages : GSet

F inland : GSet

and : αzα/α

in : GSetzGSet/GSet

near : GSetzGSet/GSet

It permits derivations as such:
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GSet

GSetzGSet

GSet

F inland

GSetzGSet/GSet

in

GSet

GSetzGSet

GSet

villages

GSetzGSet/GSet

αzα/α

and

GSet

cities

If we would like to be able to accept queries like “cities in and villages near Finland”, we
could permit type-raising:

GSet

GSet

F inland

GSet/GSet

(GSet/GSet)z(GSet/GSet)

GSet/GSet

GSetzGSet/GSet

near

GSet/(GSetzGSet)

α/(αzGSet)

GSet

villages

(GSet/GSet)z(GSet/GSet)/(GSet/GSet)

αzα/α

and

GSet/GSet

GSetzGSet/GSet

in

GSet/(GSetzGSet)

α/(αzGSet)

GSet

cities

2.4.5 Equification of categories

To reduce the size and of grammars and make them less complicated, it is convenient to regard
not only identical categories as equal, but rather use an equification relation that can judge
whether two categories must be regarded as equal.

One method is to explicitly state the equification rules in the grammar. It is also useful to make
categories complex objects and infer the relation based on their structure, as will be done in
the next two sections.

Definition 2.30. A relation U Ď N ˆN is called an equification relation for the set N if it is
transitive and reflexive.

To make use of this relation for parsing, we must extend it over complex categories. One way
to define such an extension is by uniformly propagating membership into U over complex
categories:

Definition 2.31. If U Ď N ˆN is an equification relation for the set of atomic categories N ,
its extension over complex categories Û Ď C(N)ˆ C(N) is defined inductively as follows:

• X P N & Y P N & U(X,Y ) ùñ Û(X,Y )
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• X = (W 1|Z 1) & Y = (W 2|Z2) & Û(W 1,W 2) & Û(Z 1, Z2) ùñ Û(X,Y )

Property 2.2. If U Ď N ˆN is an equification relation for the set of N , its extension Û is an
equification relation for C(U)

Proof. The arguments for transitivity and reflexivity are both trivial.

Another way to extend an equification relation is presented in section 2.4.7.

Now, we will modify the derivation rules from definition 2.17 to incorporate equification:

• If a P Σ, X P f(a), then
[X]Ñ a

• If X/Y 1 P C(N), Y 2|1Z1|2Z2...|mZm P C(N), 0 ď m ď n and Û(Y 1, Y 2),
then

[X|1Z1|2Z2...|mZm]Ñ [X/Y ][Y |1Z1|2Z2...|mZm]

• If XzY 1 P C(N), Y 2|1Z1|2Z2...|mZm P C(N), 0 ď m ď n and Û(Y 1, Y 2),
then

[X|1Z1|2Z2...|mZm]Ñ [Y |1Z1|2Z2...|mZm][XzY ]

To implement parsing, we can replace the rules in the categorial CYK algorithm (section 2.2.2)
by the following:

1. If X P f(wi), then (X, i, i) P P

2. If (X/Y 1, i, p) P P, (Y 2|1Z1|2Z2...|mZm, p+ 1, j) P P and Û(Y 1, Y 2),
then (X|1Z1|2Z2...|mZm, i, j) P P

3. If (XzY 1, p+ 1, j) P P, (Y 2|1Z1|2Z2...|mZm, i, p) P P and Û(Y 1, Y 2),
then (X|1Z1|2Z2...|mZm, i, j) P P

Note that the equification relation may be asymmetric and take advantage of the fact that its
first argument is the tail of the primary category.

2.4.6 Equification by category features

Some models allow each atomic category to be extended with a set of features that refine its
scope, and then define rules for unification of said features.

For example, we could assume a global set of features Feat to be the set of finite func-
tions f : [a ´ zA ´ Z_]˚ Ñ [a ´ zA ´ Z_]˚ and instead of using C(τ) directly, we use
C(τ ˆ Feat). For brevity, categories like (V, t(tense, past), (person, first)u) are written as
V [tense = past, person = first].

A common equification scheme is to check whether a union of the two feature functions, is
also a function — this determines whether the categories actually equify.
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This can be further extended by concepts such as feature variables (which allows the use of
variables within feature expressions and performs variable substitution during unification)
and embedding regular expressions.

2.4.7 Equification by subtyping

If the grammar will be used for generating typed λ-terms that use a subtyping system like the
one described in section 2.5, the subtyping relation can be used as an equification relation.

If the desired semantics is to allow functions to only accept subtypes of their argument, some
extra care needs to be taken, namely:

[X|1Z1|2Z2...|mZm]Ñ [X/Y1][Y2|1Z1|2Z2...|mZm]

[X|1Z1|2Z2...|mZm]Ñ [Y2|1Z1|2Z2...|mZm][XzY1]

if and only if
}Y2} ď }Y1} (2.8)

If we use an equification relation U(X,Y )
def
ðñ }Y } ď }X}, it is not sufficient to use the uni-

form extension to complex categories (definition 2.31) because that would violate contravari-
ance. Thus, we will use the following extension:

Definition 2.32. If U Ď N ˆN is an equification relation for the set of atomic categories N ,
its contravariant extension over complex categories U Ď C(N)ˆ C(N) is defined inductively
as follows:

• X P N & Y P N & U(X,Y ) ùñ U(X,Y )

• X = (W 1|Z 1) & Y = (W 2|Z2) & U(W 2,W 1) & U(Z 1, Z2) ùñ U(X,Y )

It can be easily seen that using U is equivalent to the condition in eq. (2.8) (given that
U(X,Y )

def
ðñ }Y } ď }X}).

The modification to the “derivation tree” construction and the semantic function is trivial. The
proof for proposition 2.7 also holds (λ-terms with subtypes allow the argument to be a subtype
of its required type).

Example 2.11. Imagine we want to be able to parse the following queries:

• German cities less than 20km from Cologne

• German cities less than 20km north of Cologne

For the sake of the example, subtrees for phrases likeGerman citieswill be squashed and
constants like germanCity, within etc will be used without implementationsa.
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The grammar uses the following subtype definitions:

DistCheck ă: ((DistÑ GSetÑ GSet)Ñ GSet)

NorthCheck ă: ((DistÑ GSetÑ GSet)Ñ GSet)

and looks like this:

German cities : GSet @ germanCity

Cologne : GSet @ cologne

20km : Dist @ twentykm

less than : GSetzGSet/DistCheck @ λb:DistCheck, s:GSetñ

b (λd:Dist, c:GSetñ

and s (within d c)

)

GSetzGSet/NorthCheck @ λb:NorthCheck, s:GSetñ

b (λd:Dist, c:GSetñ

and s (withinNorth d c)

)

from : DistCheckzDist/GSet @ λc:GSet, d:Distñ DistCheck[

λf :(DistÑ GSetÑ GSet)ñ f d c

]

north of : NorthCheckzDist/GSet @ λc:GSet, d:Distñ NorthCheck[

λf :(DistÑ GSetÑ GSet)ñ f d c

]

Here is a derivation tree for one of the aforementioned queries:

GSet

GSetzGSet

DistCheck

DistCheckzDist

GSet

Cologne

DistCheckzDist/GSet

from

Dist

20km

GSetzGSet/DistCheck

less than

GSet

German cities
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The semantics of this tree is exactly the desired λ-term (after reduction):

and germanCity (within twentykm cologne)

And for the other query respectively:

and germanCity (withinNorth twentykm cologne)

Without subtyping, it would be difficult to discern the two categories NorthCheck and
DistCheck without resorting to things like passing a dummy argument whose type en-
codes whether we are in one of the cases or in the other. Note that this cannot be done by
simply using a type variable in the place of DistCheck and NorthCheck because of the
different semantics (the categories DistCheck and NorthCheck combine with different
contexts).

This example may seem strange to some (why would we want less than to know about
within and withinNorth? Perhaps it would be better to pair them with from?) but
in reality the other way round is also strange — these semantics come from less than

and from combined. This violation of compositionality arises from the natural language
itself, and subtyping is a useful “hack” to deal with it: we tag our type with additional
information to denote that we are looking for something specific, and when we find it we
can unwrap the type.

aThis example uses minipass-like semantics for λ-terms to better illustrate the application. See sec-
tion 3.2.

2.5 Simply typed λ-calculus with subtyping

In order to be able to represent the notion of generic and specific concepts, it is well-suited to
use some sort of ordering relation over our types.

One such ordering relation is the subtype relation, as presented in [Pie02, chap. 15], and will
be used here.

Example 2.12. The subtyping construction is particularly useful for domains like geo-
graphical queries — it lets us express relations such as the following:

Capital ď City ď GSet

Name ď String

Distance ď Number

2.5.1 Type lattices

Definition 2.33. Meet and join:
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We say that z is a meet of x and y, if:

z ď x, z ď y, @t P X(t ď x, t ď y ùñ t ď z) (2.9)

We say that z is a join of x and y, if:

x ď z, y ď z, @t P X(x ď t, y ď t ùñ z ď t) (2.10)

Definition 2.34. A partial lattice is a pair xX,ďy where:

• ď is a partial-order relation

• for any x, y P X , there is at most one meet and at most one join. They will be denoted
as x^ y (the meet of x and y) and x_ y (the join of x and y).

Definition 2.35. A partial lattice xT,ďy where T Ď T is called a type lattice.

Whenever the relation is unambiguous, T and xT,ďy will be used interchangeably: we could
say “let T be a type lattice”, which would refer to xT,ďy.

Definition 2.36. For a type lattice T , we extend7 the relation ď over its type closure:

• (σ Ñ σ1) ď (τ Ñ τ 1) ðñ (σ1 ď σ)&(τ ď τ 1)

Note that this definition assumes contravariant arguments. In essence, the se-
mantics of f ď g is “wherever we can use g, we can also use f”. Now, imagine
that f : α1 Ñ β1, g : α2 Ñ β2, and we have a function h : (α2 Ñ β2) Ñ γ

that takes g as argument and produces something of type γ. Supposedly, h
uses g somewhere in its body and supplies it with something of type α2.

Now, we supply f to h instead of g — this f needs to be able to take anything
of type α2 and its subtypes as argument.

The only way to make this work is to make arguments contravariant, while
making return values covariant.

Nevertheless, there exist systems (for example the Dart programming lan-
guage [doc19]) where covariant arguments are allowed and the inconsisten-
cies that arise from this decision are left to the user to look out for.

Lemma 2.2. If T is a type lattice and σ = σ1 Ñ σ2 P T (T ), τ = τ 1 Ñ τ 2 P T (T ), then:

1. η1 is a join of σ1 and τ 1 and η2 is a meet of σ2 and τ 2 if and only if η1 Ñ η2 = η is a meet
of σ and τ .

2. η1 is a meet of σ1 and τ 1 and η2 is a join of σ2 and τ 2 if and only if η1 Ñ η2 = η is a join
of σ and τ .

7To make this completely rigorous, T would have to be defined over lattices, not their carrier sets, so that
the notion of “extending the relation” makes sense (because we actually create a new relation). These details,
however, have been omitted for clarity.
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Proof. We will prove both directions of (1) by applying equivalent transformations:

η being a meet of σ and τ is defined as:

η ď σ, η ď τ, @ν P T (T )(ν ď σ, ν ď τ ùñ ν ď η)

Now, expand the complex types:

(η1 Ñ η2) ď (σ1 Ñ σ2),

(η1 Ñ η2) ď (τ 1 Ñ τ 2),

@(ν 1 Ñ ν2) P T (T )((ν 1 Ñ ν2) ď (σ1 Ñ σ2), (ν 1 Ñ ν2) ď (τ 1 Ñ τ 2) ùñ (ν 1 Ñ ν2) ď (η1 Ñ η2))

Then apply definition 2.36:
(σ1 ď η1), (η2 ď σ2)

(τ 1 ď η1), (η2 ď τ 2)

@(ν 1 Ñ ν2) P T (T )((σ1 ď ν 1), (ν2 ď σ2), (τ 1 ď ν 1), (ν2 ď τ 2) ùñ (η1 ď ν 1), (ν2 ď η2))

Now, split the third condition (properties of universal quantification and implication) and re-
arrange the lines:

σ1 ď η1, τ 1 ď η1, @ν P T (T )(σ1 ď ν, τ 1 ď ν ùñ η1 ď ν)

η2 ď σ2, η2 ď τ 2, @ν P T (T )(ν ď σ2, ν ď τ 2 ùñ ν ď η2)

This is exactly the condition that η1 is a join of σ1 and τ 1 and η2 is a meet of σ2 and τ 2.

The argument for joins is dual to the one for meets and is, therefore, omitted for brevity.

Proposition 2.8. If T is a type lattice, then T (T ) is a partial lattice.

Proof. Let σ, τ P T (T ). We will inductively (by their syntactic structure) prove that they have
at most one join or meet.

First, let η1 and η2 be meets of σ and τ . Since ď is only defined if operands have the same
syntactic structure and we have that η1 ď σ, η1 ď τ, η2 ď σ, η2 ď τ , they are all forced to have
the same syntactic structure. Thus, there are two possibilities:

• σ, τ, η1, η2 P T :

since T is a partial lattice, σ and τ have a unique meet. Thus, η1 = η2.

• σ = σ1 Ñ σ2, τ = τ 1 Ñ τ 2, η1 = η1
1 Ñ η1

1, η2 = η1
2 Ñ η1

2:

Since η1 and η2 are meets of σ and τ , we have by lemma 2.2 that η1
1 and η1

2 are meets of
σ1 and τ 1, and that η2

1 and η2
2 are meets of σ2 and τ 2.

Inductively, η1
1 = η1

2 and η2
1 = η2

2 . Thus, η1 = η1
1 Ñ η2

1 = η1
2 Ñ η2

2 = η2.

The argument for joins is dual to the argument for meets and is again omitted.
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Property 2.3. For a type lattice T , and arbitrary σ = σ1 Ñ σ2 P T (T ), τ = τ 1 Ñ τ 2 P T (T ),
we have:

σ ^ τ » (σ1 _ σ2)Ñ (τ 1 ^ τ 2)

σ _ τ » (σ1 ^ σ2)Ñ (τ 1 _ τ 2)

(where » means “either both sides are defined and equal or both are undefined”)

Proof. This follows directly from lemma 2.2 and the proof of proposition 2.8.

2.5.2 Terms

We will now extend the definition of λ-term given in section 2.1.1 to work with subtypes.

We need this in order to extend type systems with additional information, and to be able to
dispose of the extra information when it is no longer needed.

So, for a of type lattice T , we will define the set of pre-typed λ-terms with subtypes (ΛCďT ).

Definition 2.37. Let C Ă Const be a set of constants, typed in T .

ΛCďT is defined inductively:

• Constant:
c P C ùñ c P ΛCďT

• Variable:
v P Vλ ùñ v P ΛCďT

• Application:
A,B P ΛCďT ùñ (AB) P ΛCďT

• Abstraction:

v P Vλ, A P ΛCďT , σ P T (T ) ùñ (λv : σ ñ A) P ΛCďT

• Construction:
σ P T,A P ΛCďT ùñ σ[A] P ΛCďT

Definition 2.38. Derivation rules for λ-calculus with subtypes:

• Constant

c P C

Γ $ c : }c}

• Variable

x : σ P Γ

Γ $ x : σ
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• Application

Γ $ A : σ1 Ñ σ2 Γ $ B : τ τ ď σ1

Γ $ (AB) : σ2

• Abstraction

Γ ˝ x : τ $ A : σ

Γ $ (λx : τ ñ A) : τ Ñ σ

• Construction via upcast

Γ $ A : σ σ ď τ

Γ $ τ [A] : τ

• Construction via downcast (dangerous, doesn’t need to be included in most cases

Γ $ A : σ τ ď σ

Γ $ τ [A] : τ

Now we will show that every well-typed term has a unique type under a fixed context:

Proposition 2.9.
Γ $M : σ1 & Γ $M : σ2 ùñ σ1 = σ2

Proof. Assume Γ $M : σ1 and Γ $M : σ2 and prove this by induction over the construction
ofM :

• The proof for Constant, Variable, Application, and Abstraction is identical to the one for
proposition 2.9

• M = σ[A]: this directly means that σ1 = σ = σ2.

2.5.3 Type set subsumption

We will now formalise the notion of a type lattice being more general or more concrete than
another type lattice.

Definition 2.39. If xT,ď1y and xS,ďy are type lattices, we say that xT,ď1y Ě xS,ďy if:

• S Ď T

• ďĎď1 and ď1
ˇ

ˇ

SˆS
=ď

• @τ P (T zS)((Dσ P S : τ ď σ) Y (Dσ P S : σ ď τ)

(where Y means logical “exclusive or”)
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Essentially, this says that T subsumes, or encompasses, S: any type in T is either a more
concrete variant or a more general variant of some type in S.

If τ P T is such that (Dσ P S : τ ď σ), we will call τ special. Dually, if τ P T is such that
(Dσ P S : σ ď τ), we will call τ general.

If we have T Ě S, it would be convenient to be able to convert between them. The conversion
from S to T is trivial. The conversion from T to S, however, involves discarding information.

Example 2.13. For example, let S = tInt, Stringu, supposing the obvious semantics
behind those names. This is a nice type system — however, one might want to be able
to encode extra information within types: this comes especially handy in the context of
CCGs.

So, we add some extra types:

T = tInt, String,Distance, Count,NamedEntityu

We want ď to be defined as

Distance ď Int, Count ď Int,NamedEntity ď String

Now while doing natural language parsing, we can use T . Afterwards we no longer need
the extra information, so we could discard the extra types and return to S. To do this, we
define a squash function.

Definition 2.40. ω : T Ñ S is a squash function for xT,ď1y Ě xS,ďy, if:

• for each τ P S, ω(τ) = τ

• it follows the subtyping relation:

@σ P T (ω(σ) ď1 σ _ σ ď1 ω(σ))

• it preserves the subtyping relation:

@σ, τ P T (σ ď1 τ ùñ ω(σ) ď ω(τ))

Property 2.4. Squash functions preserve the subtyping relation for complex types:

@σ, τ P T (T )(σ ď1 τ ùñ ω̂(σ) ď ω̂(τ))

Proof. First, assume σ ď1 τ .

The property is proven by induction over the construction of σ and τ .

• σ P T, τ P T : this is true by definition.

• σ = (σ1 Ñ σ2), τ = (τ 1 Ñ τ 2): since σ ď1 τ , we have that τ 1 ď1 σ1 and σ2 ď1 τ 2.
Therefore, inductively, ω̂(τ 1) ď ω̂(σ1) and ω̂(σ2) ď ω̂(τ 2). Thus,

ω̂(σ) = (ω̂(σ1)Ñ ω̂(σ2)) ď (ω̂(τ 1)Ñ ω̂(τ 2)) = ω̂(τ)

56



• in other cases, σ and τ have different syntactic structure and ď1 is not defined. Since ω̂
preserves syntactic structure, ω̂(σ) and ω̂(τ)will also have different syntactic structure,
thus ď will be undefined for them as well.

Property 2.5. If ω : T Ñ S is a squash function for xT,ď1y Ě xS,ďy, then ω(τ) = minďtσ P

S | τ ď1 σu for special elements τ P T zS, and dually ω(τ) = maxďtσ P S | σ ď
1 τu. for

general elements τ P T zS.

Proof. Without loss of generality8, let τ be a special element in T zS. Because of the “exclusive
or” in definition 2.39, this means that Dσ P S(τ ď1 σ) and ␣Dσ P S(σ ď1 τ). Thus, for every
σ P S that τ is comparable with, τ ď1 σ.

Now, since ω(τ) is comparable with τ , we have τ ď1 ω(τ).

Let σ P S be an arbitrary element such that τ ď1 σ. By the preservation property of ω, we
know that τ ď1 ω(τ) ď ω(σ) = σ.

Thus, ω(τ) is lower than any element that is comparable by ď with any element that is com-
parable by ď1 with τ . This gives that ω(τ) is the minimal element in S that is greater than
τ .

Corollary 2.1. If there is a squash function ω : T Ñ S for xT,ď1y Ě xS,ďy, it is unique in
the sense that there is no other squash function for xT,ď1y Ě xS,ďy.

Proof. The value of ω(τ) is unambiguous in all cases:

• If τ P S, then ω(τ) = τ .

• If τ P T zS and τ is special then ω(τ) = minďtσ P S | τ ď
1 σu.

• If τ P T zS and τ is general then ω(τ) = maxďtσ P S | σ ď
1 τu.

Property 2.6. The composition of two squash functions is a squash function, i.e. if:

• ω1 : T 1 Ñ T is a squash function for xT 1,ď1y Ě xT,ďy

• ω2 : T 2 Ñ T 1 is a squash function for xT 2,ď2y Ě xT 1,ď1y

Then ω def
= ω1 ˝ ω2 is a squash function for xT 2,ď2y Ě xT,ďy.

Proof. We will prove the squash function properties of ω one by one:

• for each τ P T , ω(τ) = τ :
We have that ω(τ) = ω1(ω2(τ)). Since T 2 Ě T 1 Ě T implies T 2 Ě T 1 Ě T , then τ P T
implies τ P T 1. Also, ω2(τ) = τ . Thus, ω1(ω2(τ)) = τ .

8The argument for general elements is dual to the one for special elements.
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• it follows the subtyping relation:

@σ P T 2(ω(σ) ď2 σ _ σ ď2 ω(σ))

From the same property for ω1 and ω2, we have 2 cases:

– Both relations are in the same direction, Without loss of generality ω2(τ) ď2 τ

and ω1(ω2(τ)) ď1 ω2(τ):
This means that ω1(ω2(τ)) ď2 τ .

– The two relations are in different directions, Without loss of generality τ ď2 ω2(τ)

and ω1(ω2(τ)) ď1 ω2(τ):
In this case, ω2(τ) is both general for T 1 Ě T (because it is greatest in T 1 because
of property 2.5) and special for T 1 Ě T (because it is less than ω1(ω2(τ)) P T ).
This means that τ P T , which makes the property trivial.

• it preserves the subtyping relation:

@σ, τ P T 2(σ ď2 τ ùñ ω(σ) ď ω(τ))

Let σ, τ P T 2 be fixed such that σ ď2 τ . We have that ω2(σ) ď1 ω2(τ) because ω2

preservesď2. Subsequently, since ω1 preservesď1, we have that ω1(ω2(σ)) ď ω1(ω2(τ)).

We can now naturally extend squash functions to work over λ-terms and contexts:

Definition 2.41. If ω : T Ñ S is a squash function for T Ě S and C is typed in S, ωλ :

ΛCďT Ñ ΛCďS is defined inductively:

ωλ(A) =

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

c, A = c P C ,
v, A = v P Vλ,
ωλ(M)ωλ(N), A = (MN),
λx : ω̂(σ)ñ ωλ(M), A = λx : σ ñM ,
ω̂(σ)[M ], A = σ[M ].

Also, ωγ , which operates on contexts is defined as follows:

ωγ(Γ) = tx : ω̂(σ) | (x : σ) P Γu

From here on ω may be used freely in place of ωλ and ωγ .

And now, the main proposition of this section, which tells us that when dropping a well-typed
λ-term from an extended type system into a basic type system, it remains well-typed and has a
useful type. In the implementation this is used for dropping from the user-defined type system
used for CCG parsing into the Minipass type system (section 3.5.3).
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Proposition 2.10. For a squash function ω : T Ñ S, ωλ is well-defined, namely

Γ $ A : σ ùñ ωγ(Γ) $ ωλ(A) : ω̂(σ)

Proof. Let Γ $ A : σ. We will now prove the right-hand side by induction over the construc-
tion of A:

• A = c P C . This means that }c} = σ and thus σ P T (S) because C is typed in S:
therefore ω̂(σ) = σ. Also, we have that ωλ(c) = c, and so

Γ $ c : σ ùñ ωγ(Γ) $ c : σ ùñ ωγ(Γ) $ ωλ(c) : ω̂(σ)

• A = v P Vλ. We have that (v : σ) P Γ, thus (v : ω̂(σ)) P ωγ(Γ). But ωλ(v) = v, so
ωγ(Γ) $ ωλ(v) : ω̂(σ).

• A = (MN), where Γ $M : (η1 Ñ σ) and Γ $ N : η where η ď η1.

Inductively, we know that

ωγ(Γ) $ ωλ(M) : (ω̂(η1)Ñ ω̂(σ)) (2.11)

ωγ(Γ) $ ωλ(N) : ω̂(η) (2.12)

And by property 2.4 we have that ω̂(η) ď ω̂(η1).

Finally, by the application rule of definition 2.38, we have thatωγ(Γ) $ (ωλ(M)ωλ(N)) :

ω̂(σ)

• A = (λx : τ ñM), where Γ1 = Γ ˝ (x : τ) $M : η and σ = τ Ñ η.

Inductively, we have that ωγ(Γ1) $ ωλ(M) : ω̂(η). However, ωγ(Γ1) = ωγ(Γ) ˝ (x :

ω̂(τ)), therefore

ωγ(Γ) $ (λx : ω̂(η)ñ ωλ(M)) : ω̂(τ)Ñ ω̂(η) = ω̂(σ)

• A = σ[M ], where Γ $M : τ .

Inductively, we have ωγ(Γ) $ ωλ(M) : ω̂(τ).

Since either σ ď τ (upcast) or τ ď σ (downcast), by property 2.4 we have that either
ω̂(σ) ď ω̂(τ) or ω̂(τ) ď ω̂(σ).

Thus,
ωγ(Γ) $ ω̂(σ)[ωλ(M)] : ω̂(σ).
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2.5.4 Subtype libraries

Definition 2.42. A statement in the form σ ă: τ(σ, τ P T) is called a subtype assertion.

Since our definition of “subtype” doesn’t allow us to subtype a complex type, we have to work
around this by making σ be a complex type with the same syntactic structure as τ and then
subtyping on the level of individual basic types it is made of. To do this, we need to be able to
create a new term with the same syntactic structure of another term.

Example 2.14. Suppose we have the basic types Int and String, and we want to extend
them.

For example, take the subtype assertion F ă: (IntÑ String). Let τ = (IntÑ String).
We want F to correspond to a type σ such that σ ď τ . To do this, we clone the complex
type τ , creating a new type with the same syntactic structure: σ = (Int1 Ñ String1)

Now we extend our subtyping relation to include Int ď Int1, String1 ď String, which
indeed gives that σ ď τ .

Again, take note of the argument contravariance.

To remember thatF stands for σ, wewill iteratively build a functionφ such thatφ(F ) = σ.

The following few definitions will formalise this process.

First, having a type τ , we need to be able to create a new type that is its clone (has the same
syntactic structure), and is a subtype of τ .

To deal with contravariance, wewill differentiate between a “subtype clone” (clone) that clones
a type into a new one that will be its subtype, and a “supertype clone”, (clone) that dually
creates a “supertype” clone — in this way we will be able to use the clone in arguments and
clone in return values.

To do this, we will use the mappings ξ and ξ that rename the basic types used in τ into new
type symbols. To clone τ , we will recursively replace argument types and return value types
with their respective clones. One way to deal with contravariance is the following:

Definition 2.43. Let xT,ďy be a type lattice, τ P T (T ) be a type and ξ, ξ be mappings from
a superset of ts(τ) into T such that range(ξ)X range(ξ) =H.

cloneξξ and cloneξξ are defined by mutual recursion:

cloneξξ(τ) =

#

ξ(τ), τ P T

cloneξξ(τ1)Ñ cloneξξ(τ2), τ = τ1 Ñ τ2

cloneξξ(τ) =

#

ξ(τ), τ P T

cloneξξ(τ1)Ñ cloneξξ(τ2), τ = τ1 Ñ τ2

Property 2.7. If we have @η(ξ(η) ď η) and @η(η ď ξ(η)), then for any τ :

• cloneξξ(τ) ď τ
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• τ ď cloneξξ(τ)

Proof. This property is proven by induction over the structure of τ :

• τ P T :

– cloneξξ(τ) = ξ(τ) ď τ

– τ ď ξ(τ) = cloneξξ(τ)

• τ = τ1 Ñ τ2:

– Since inductively τ1 ď cloneξξ(τ1) and cloneξξ(τ2) ď τ2, by definition 2.36 we have
that:

cloneξξ(τ) = cloneξξ(τ1)Ñ cloneξξ(τ2) ď τ1 Ñ τ2 = τ.

– Since inductively cloneξξ(τ1) ď τ1 and τ2 ď cloneξξ(τ2), by definition 2.36 we have
that:

τ = τ1 Ñ τ2 ď cloneξξ(τ1)Ñ cloneξξ(τ2) = cloneξξ(τ).

Now we will define an iterative process for adding new types into a type lattice by subtyping
existing types.

Suppose we have the subtype assertion σ ă: τ with the intent of adding a new type “σ” to T
such that σ ď τ . We are unable to add σ to T directly, since this would require subtyping a type
with a different syntactic structure. So, instead we will construct another type φ(σ) P T (T )

whose constituent atomic types we add to T .

We will now define the operation ‘ that does exactly that.

Afterwards, when we need to refer to τ , we will use φ(σ).

Since we want to be able to define several new types one after the other, ‘ will need to use
the existing mapping φ to interpret existing manually-constructed types, and extend it with
the new type.

Definition 2.44. Given

• a type lattice xT,ďy

• a type symbol σ P TzT

• a mapping φ : T Ñ T (T )

• a type τ such that φ̂(τ) is defined
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Let ξ and ξ be injections from ts(φ̂(τ)) into Tz(T Ytσu) such that range(ξ)Xrange(ξ) =H9.

Now define the operation ‘ as:

xxT,ďy, φy ‘ (σ ă: τ)
def
= xxT 1,ď1y, φ1y

where:

• ρ = cloneξξ(φ̂(τ))

• T 1 = T Y ((range(ξ)Y range(ξ))X ts(ρ))

• ď1 is the transitive and reflexive closure of ď Yt(σ1, τ 1) P T 1 ˆ T | ξ(τ 1) = σ1u Y

t(σ1, τ 1) P T ˆ T 1 | ξ(σ1) = τ 1u

• φ1 = φY t(σ, ρ)u

Note: in the cases where φ is irrelevant, it will be omitted as so:

xT,ďy ‘ (σ ă: τ)
def
= xT 1,ď1y

Property 2.8. Objects constructed by ‘ are correct type lattices.

Proof. We extendď only by adding single edges (and their transitive and reflective closure) to
new vertices, which creates a “tree-like” extension. There is no way to introduce a double join
or meet, since this would require adding more than one edge to a new vertex.

Lemma 2.3. If xT,ďy is a type lattice, θ = (σ ă: τ) is a subtype assertion satisfying the
conditions from definition 2.44 and xT 1,ď1y = xT,ďy ‘ θ, then

T 1 Ě T

Proof. Let ξ and ξ be the injections from definition 2.44. Now, we check the conditions for
T 1 Ě T :

• T Ď T 1:

this is true by definition ( T 1 = T Y ((range(ξ)Y range(ξ))X ts(ρ)) ) where range(ξ)
and range(ξ) contain only fresh symbols (not in T ).

• ďĎď1:

ď1 contains ď by definition.

• ď1
ˇ

ˇ

SˆS
=ď:

we only add edges to ď that point to symbols that are not in T . Furthermore, the tran-
sitive and reflexive closures do not affect this condition because ď is already transitive
and reflexive.

9ξ and ξ depend on τ , T and σ. If one wants to make their choice constrictive, they may, for example, assume
that T is ordered, take the minimal elements that aren’t in T Y tσu and map to them in order.
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• @τ P (T 1zT )((Dσ P T : τ ď1 σ) Y (Dσ P T : σ ď1 τ):
Fix an arbitrary τ P (T 1zT ).
Since T 1zT is comprised of elements from the ranges of ξ and ξ, there are two options
for τ :

– τ P range(ξ): this means that ξ(σ) = τ for some σ P T , but that also means that
we have set τ ď1 σ.

– τ P range(ξ): this means that ξ(σ) = τ for some σ P T , but that also means that
we have set σ ď1 τ .

The exclusive “or” is satisfied because range(ξ)X range(ξ) =H.

Lemma 2.4. If xT,ďy is a type lattice, θ = (σ ă: τ) is a subtype assertion and φ is a function,
both of which satisfy the conditions from definition 2.44 and xxT 1,ď1y, φ1y = xxT,ďy, φy ‘ θ,
then

φ1(σ) ď1 φ̂(τ).

Proof. Let ξ and ξ be the injections from definition 2.44.

We know that φ1(σ) = cloneξξ(φ̂(τ)).

Furthermore, @η(ξ(η) ď1 η) and @η(η ď1 ξ(η)) by the construction of ď1.

Then, by property 2.7 we have that φ1(σ) ď1 φ̂(τ).

Definition 2.45. A finite sequence of subtype assertions ΘT = θ1...θn is called a subtype
library over T if the construction Θ̂T

def
= xxT,ďy, idT y ‘ θ1 ‘ θ2...‘ θn is defined 10.

Also, we can define the function that gives us all the new type names asserted by the subtype
library as left(ΘT ) = tσ | σ ă: τ P ΘT u

Proposition 2.11. If T is a type lattice and ΘT = θ1...θn is a subtype library over T , where
Θ̂T = xxT 1,ď1y, φy the following properties hold:

• dom(φ) = T Y left(Θ)

• σ ď τ ùñ σ ď1 τ

• σ ă: τ P Θ ùñ φ(σ) ď1 φ̂(τ)

Proof. We will check all conditions one by one:

• dom(φ) = T Y left(Θ) (and φ is defined correctly):
Initially, dom(φ) = idT . For every σ ă: τ P Θ, we have added (σ, ρ) to φ for some ρ in
T (T 1).
Thus, we never violate the domain constraint for φ.

10When trying to redefine a previously defined type, the sequence is not a subtype library because of the
restriction for σ in definition 2.44.
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• σ ď τ ùñ σ ď1 τ :

This is true because at each step we only add elements to the relation.

• σ ă: τ P Θ ùñ φ(σ) ď1 φ̂(τ):

Let σ ă: τ = θi.

We have that xxT 1,ď1y, φy = xxT,ďy, idT y ‘ θ1 ‘ ...‘ θi ‘ ...‘ θn
Let xxT (i),ď(i)y, φ(i)y = xxT,ďy, idT y ‘ θ1 ‘ ...‘ θi (T 1 = T (n),ď1=ď(n)).

Since Θ is a valid subtype library, we know that φ̂(i´1)(τ) P T (T (i´1)).

By lemma 2.4 φ(i)(σ) ď(i) φ̂(i´1)(τ). Since φ is constructed incrementally, we also have
φ(n)(σ) ď(n) φ̂(n)(τ).

Lemma 2.5. If xT,ďy is a type lattice, θ is a subtype assertion satisfying the conditions from
definition 2.44 and xT 1,ď1y = xT,ďy ‘ θ, then there is a squash function ωθ : T 1 Ñ T .

Proof. Let ξ and ξ be the injections from definition 2.44.

Now, define the squash function ωθ as:

ωθ(τ)
def
=

$

’

&

’

%

τ, τ P T ,
σ, τ = ξ(σ),
σ, τ = ξ(σ).

This is a correctly defined function because ξ and ξ are injectionswith non-overlapping ranges.

Now let us check the conditions for ωθ being a squash function for T 1 Ě T :

• For each τ P T , ωθ(τ) = τ :

This is true by the definition of ωθ.

• It follows the subtyping relation:

@τ P T (ωθ(τ) ď
1 τ _ τ ď1 ωθ(τ)).

Let τ P T 1. There are three possibilities for τ :

– τ P T :
ωθ(τ) = τ ď1 τ

– τ = ξ(σ) for some σ P T :
τ = ξ(σ) ď σ = ωθ(τ)

– τ = ξ(σ) for some σ P T :
ωθ(τ) = σ ď ξ(σ) = τ
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• It preserves the subtyping relation:

@σ, τ P T 1(σ ď1 τ ùñ ωθ(σ) ď ωθ(τ)).

Let σ ď1 τ for some σ and τ . There are 4 possibilities:

– σ P T, τ P T :
ωθ(σ) = σ ď τ = ωθ(τ).

– σ P T, τ P (T 1zT ):
This means that ωθ(σ) = σ and ωθ(τ) = σ. Since ď is reflexive, σ ď σ.

– σ P (T 1zT ), τ P T :
This means that ωθ(τ) = τ and ωθ(σ) = τ . Since ď is reflexive, τ ď τ .

– σ P (T 1zT ), τ P (T 1zT ):
Let σ1 = ωθ(σ) and τ 1 = ωθ(τ).
Since an edge “σ ď1 τ” wasn’t explicitly added to ď1, this means that they are in
relation because of transitivity or reflexivity. The reflexive case is trivial.
For each of σ and τ , we have added a single edge (plus transitive and reflective
closure) in the relation. Therefore, having σ ď1 τ , there is no σ2 such that σ ‰
σ2 ď1 σ and no τ 2 such that τ ď1 τ 2 ‰ τ .
Since σ1 is the least element in T such that σ ď1 σ1 and τ 1 is the greatest element
in T such that τ 1 ď1 τ (see property 2.5), we must have σ ď1 σ1 ď τ 1 ď1 τ .

The following proposition tells us that we can drop from an extended type system into a basic
type system and constructs a mapping that does this in a sensible way (for each general type
in the extended type system we take the most general possible basic type, and for each special
type we take the most special possible basic type).

Proposition 2.12. If xT,ďy is a type lattice and ΘT = θ1...θn is a subtype library over T ,
where Θ̂T = xxT 1,ď1y, φy, then T 1 Ě T . Furthermore, there is a squash function ωΘ : T 1 Ñ T .

Proof. Let
xTi,ďiy = xT,ďy ‘ θ1 ‘ θ2 ‘ ...‘ θi

This property shall be proven by induction over the iterative process that constructs T 1 = Tn,
while also building a squash function ωi for each iteration:

• for T0, we trivially know that T Ě T with an identity squash function ω0(σ) = σ.

• for Ti+1, we will define ωi+1(σ) = ωi(ωθi+1
(σ)).

– Inductively we have that Ti Ě T and a squash function ωi : Ti Ñ T .

– By lemma 2.3 we know that Ti+1 Ě Ti.
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– By the transitivity11 of Ě, we have that Ti+1 Ě T .

– By lemma 2.5, ωθi+1
: Ti+1 Ñ Ti is a well-defined squash function.

– By property 2.6, ωi+1 is a squash function for Ti+1 Ě T .

The squash function we constructed here is unique by corollary 2.1.

2.5.5 Type-tagged terms and type propagation

For the sake of performing optimisations, it is convenient to store extra information within
types. For example, we can extend our Num type to include a tag that says whether the
value this type is attached to is a constant. This information can then be used to prune entire
subterms whose value is constant.

In order to manipulate subterm types easily, we will introduce a construction called type-
tagged λ-terms, which essentially means attaching a type to every subterm.

We will then define the functions tag and untag that allow us to convert typed λ-terms into
type-tagged λ-terms and vice versa, and the function propagate that propagates type infor-
mation throughout the term.

Example 2.15. For simplicity, regard the world of arithmetic expressions with a single
type Num, numeric constants and the term plus of type NumÑ NumÑ Num.

We will implement a very simple optimisation: constant folding.

Take the following term:
plus x (plus 3 5)

We shall regard the type of every subterm:

((plusNumÑNumÑNum xNum)NumÑNum

((plusNumÑNumÑNum 3Num)NumÑNum 5Num)Num)Num

Now, we will extend the type system to the following lattice:

Num

...C69...C2C1C0

Since numeric constants like 5 still bear the Num type, we will attach a type-tag to each

11Which can be trivially proven
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subterm in order to be able to give them more concrete types:

xxxplus,NumÑ NumÑ Numy xx,Numy, NumÑ Numy

xxxplus,NumÑ NumÑ Numy x3, Numy, NumÑ Numy x5, Numy, Numy, Numy

We want to apply the following “rewrite rules” in the form of a mapping ρ:

ρ(M)
def
=

$

’

&

’

%

xi, Ciy, M = xi, Numy, i P Na,
xi, Ciy, M = xN,Ciy

b,
xM,Ci+jy, M = xplus xM 1, Ciy xM

2, Cjyy
c.

Intuitively, what we want to happen is:

1. Number literals are marked as constants (manipulate term):

xxxplus,NumÑ NumÑ Numy xx,Numy, NumÑ Numy

xxxplus,NumÑ NumÑ Numy x3, C3y, NumÑ Numy x5, C5y, Numy, Numy

2. Propagate type information into arguments (propagate types):

xxxplus,NumÑ NumÑ Numy xx,Numy, NumÑ Numy

xxxplus, C3 Ñ C5 Ñ Numy x3, C3y, C5 Ñ Numy x5, C5y, Numy, Numy

3. Apply “sum of constants” rule (manipulate term):

xxxplus,NumÑ NumÑ Numy xx,Numy, NumÑ Numy

xxxplus, C3 Ñ C5 Ñ C8y x3, C3y, C5 Ñ Numy x5, C5y, Numy, Numy

4. Propagate types again:

xxxplus,NumÑ C8 Ñ Numy xx,Numy, C8 Ñ Numy

xxxplus, C3 Ñ C5 Ñ C8y x3, C3y, C5 Ñ C8y x5, C5y, C8y, Numy

5. Prune constant subterms:

xxxplus,NumÑ C8 Ñ Numy xx,Numy, C8 Ñ Numy x8, C8y, Numy
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We can now strip the extra type information, and get the following optimised term:

plus x 8

This section will formalise this process.
amark literals as Constant
bsubstitute terms marked as Constant with a literal
csum with Constant type is of Constant type

The main goal is to be able to tag a term, perform rewriting passes that depend on type infor-
mation, then propagate any new type information that has arisen after rewriting, repeating
the process until12 it no longer produces a different term, and then untagging back into a
regular λ-term. This process is illustrated in fig. 2.1 and is utilised within section 3.3.1 and
section 3.3.2.

Figure 2.1: Illustration of a termmanipulation process. Orange nodes represent typed λ-terms,
while green nodes represent type-tagged λ-terms.

We will informally assume that term manipulations do not alter semantics13 (in a very broad
sense).

This “type-tagged term” construction does not need to include casts, since we are storing
a type for every subterm anyway, which can replace the use of casts for all practical14 cases.
There is also no need for storing the types of bound variables, since they can be easily extracted
from the types of the respective abstraction terms.

Definition 2.46. Let C Ă Const be a set of constants, typed in T .

The set of type-tagged λ-terms ΛCtT is defined inductively15:

• Constant:
c P C, τ P T (T ) ùñ xc, τy P ΛCtT

• Variable:
v P Vλ, τ P T (T ) ùñ xv, τy P ΛCtT

• Application:
A,B P ΛCtT , τ P T (T ) ùñ x(AB), τy P ΛCtT

12We will prove that type propagation always terminates. The termination of rewriting, however, depends on
the nature of the rewriter itself, and will just be discussed briefly.

13by much
14There is no way to preserve multiple consecutive casts.
15Here we use xM, τy instead ofMτ to denote type tags in order not to confuse themwith Church-style typing,

which would imply that types are always correct (which we do not require here).
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• Abstraction:

v P Vλ, A P ΛCtT , τ = (τ 1 Ñ τ 2) P T (T ), ùñ x(λv ñ A), τy P ΛCtT

This construction is completely equivalent to the regular typed λ-term construction (type-tags
may be emulated by inserting casts at all subterms), and is used only for convenience: this way
we canmanipulate types directly instead of having to deal with casts and bound variable types.

For convenience, we will also define the notion of length on type-tagged terms:

Definition 2.47.

|xA, τy|
def
=

$

’

’

’

’

&

’

’

’

’

%

1, A = c P C ,
1, A = v P Vλ,
|P |+ |Q|+ 1, A = (PQ),
|P |+ 1, A = (λv ñ P ).

Converting regular λ-terms into type-tagged λ-terms is relatively straightforward: simply
examine the type of every subterm according to its local context and then store it into the tag.

Note that all functions that follow are partial since they are not defined for valid but inade-
quately typed terms. In implementations, encountering an “undefined” case in any of them is
treated as a type error.

We will use the notation “ ÞÑ” for denoting partial functions.

Definition 2.48. For a context Γ, tagΓ : ΛCďT ÞÑ ΛCtT is defined inductively:

tagΓ(A) =

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

xc, }C}y, A = c P C ,
xv, τy, A = v P Vλ,Γ $ v : τ ,
x(tagΓ(M) tagΓ(N)), τy, A = (MN),Γ $ A : τ ,
xλv ñ tagΓ1(M), σ Ñ τy, A = (λv : σ ñM),Γ1 $M : τ,Γ1 = Γ ˝ v : σ,
xM, τy, A = τ [M ].

Although terms returned by tagΓ are well-typed (the unique type of each subterm according
to Γ matches its tag), we want to manipulate those terms before untagging them, and such
manipulations may induce discrepancies between actual types and type tags. Thus, our untagΓ
function will take extra care and insert casts where needed:

Definition 2.49. For a context Γ, untagΓ : ΛCtT ÞÑ ΛCďT and untag1
Γ : ΛCtT ÞÑ ΛCďT are defined

inductively:

untag1
Γ(xA, τy) =

$

’

’

’

’

&

’

’

’

’

%

c, A = c P C ,
v, A = v P Vλ,
untagΓ(P ) untagΓ(Q), A = (PQ),
λv : τ 1 ñ untagΓ1(P ), A = (λv ñ P ), τ = (τ 1 Ñ τ 2),Γ1 = Γ ˝ v : τ 1.

69



untagΓ(xA, τy) =

$

’

&

’

%

M, M = untag1
Γ(xA, τy),Γ $M : τ ,

τ [M ], M = untag1
Γ(xA, τy),Γ &M : τ and τ [M ] is a valid cast,

␣!, otherwise.

It can be easily seen that terms returned by untag are well-typed, since we have inserted casts
wherever the types do not match. Note that untag may be undefined in some cases (when its
definition produces an invalid cast). This means that it was given a term whose type cannot
be cast to its type-tag. We will assume that manipulations done to the term will not produce
such cases.

Now that we have the construction for attaching types to subterms, we can describe a universal
way to propagate information through those types.

We will use a basic operation ˆ̂ that unifies two types.

Definition 2.50. An operation ˆ̂ : T (T )ˆ T (T ) ÞÑ T (T ) is called a unifier for T if:

• it is only defined for types with identical syntactic structure and preserves it, i.e., σ ˆ̂ τ =

ν implies that σ, τ and ν have the same syntactic structure16.

• it is symmetric17:
σ ˆ̂ τ = ν ùñ τ ˆ̂σ = ν

• it is idempotent:
@σ P T (T )(σ ˆ̂σ = σ)

Definition 2.51. A unifier ˆ̂ : T (T )ˆ T (T ) ÞÑ T (T ) is calledmonotonic with respect to the
partial order ďĎ T (T )ˆ T (T ) when:

@σ, τ P T (T )((σ ˆ̂ τ ď σ) & (σ ˆ̂ τ ď τ))

A great example for a unifier is the type inference unifier defined in section 3.3.1.

It can also be extended for contexts in the following way:

Γ1 ˆ̂ Γ2 def
=t(x : σ ˆ̂ τ) | (x : σ) P Γ1, (x : τ) P Γ2u

Yt(x : σ) | (x : σ) P (Γ1 Y Γ2), (x : ¨) R Γ1, (x : ¨) R Γ2u.

Now, type propagation will be done in two steps: upward (propagating information up the
term tree and into the context) and downward (propagating information down the term tree
towards the leaves).

16See definition 2.3
17Everything in this section may also be done for asymmetric unifiers. Since the need for them has not yet

arisen, symmetricity has been assumed for simplicity.
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Definition 2.52. For a set of type symbols T and a unifier for T ˆ̂ , the functions up ˆ̂ that
maps a type-tagged term into a new type-tagged term and an inferred context for its free
variables, and down ˆ̂ that maps a type-tagged term, a desired type and a free variable context
into a new type-tagged term, are defined inductively as follows:

up ˆ̂ (xA, τy) =

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

(xc, τy, tu), A = c P C

(xv, τy, tv : τu), A = v P Vλ

(xλxñ xM,σ1y, (η1 Ñ σ1) ˆ̂ τy,Γ1), A = (λxñ P ), τ = (η Ñ σ),

(xM,σ1y,Γ) = up ˆ̂ (P ),Γ
1 = Γz(x : η1),

(x : η1) P Γ

(xλxñ xM,σ1y, (η Ñ σ1) ˆ̂ τy,Γ1), A = (λxñ P ), τ = (η Ñ σ),

(xM,σ1y,Γ) = up ˆ̂ (P )

(x : ¨) R Γ

(xP 1Q1, σ2 ˆ̂ τy,ΓP ˆ̂ ΓQ), A = (PQ), (P 1,ΓP ) = up ˆ̂ (P ),

(Q1,ΓQ) = up ˆ̂ (Q), P
1 = xM,σ1 Ñ σ2y

down ˆ̂ (xA, τy, τ
1,Γ) =

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

xc, τ ˆ̂ τ 1y, A = c P C

xv, τ ˆ̂ τ 1 ˆ̂ τ 2y, A = v P Vλ, (v : τ 2) P Γ

xλxñ P 1, τ 2y, A = (λxñ P ), τ 2 = τ ˆ̂ τ 1

τ 2 = (σ Ñ η), P 1 = down ˆ̂ (P, η,Γ ˝ (x : σ)),

xP 1Q1, τ 2y, A = (PQ), P = xM,σ Ñ ηy, Q = xN, σ1y,

τ 2 = (τ 1 ˆ̂ τ), σ2 = (σ1 ˆ̂σ)

P 1 = down ˆ̂ (P, (σ
1 Ñ τ 2),Γ), Q1 = down ˆ̂ (Q, σ

2,Γ)

For convenience, the function propagate ˆ̂ is defined as the combination of up ˆ̂ and down ˆ̂ :

propagate ˆ̂ (P ) = down ˆ̂ (xM, τy, τ,Γ) , where up ˆ̂ (P ) = (xM, τy,Γ).

We will now prove that the iterative application of propagate eventually terminates.

Definition 2.53. If T is a set of type symbols andďĎ T (T )ˆT (T ) is a partial order relation
on T (T ), the relationďCTĎ ΛCtT ˆΛCtT which works on terms is defined inductively as follows:

• Constant:

a, b P C τ ď σ

xa, τy ďCT xb, σy

• Variable:

v, w P Vλ σ, τ P T (T ) τ ď σ

xv, τy ďCT xw, σy

• Application:
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A1, A2, B1, B2 P Λ
C
tT A1 ď

C
T A2 B1 ď

C
T B2 τ ď σ

x(A1B1), τy ď
C
T x(A2B2), σy

• Abstraction:

v, w P Vλ A,B P ΛCtT A ďCT B τ ď σ

x(λv ñ A), τy ď x(λw ñ B), σy

Lemma 2.6. If ˆ̂ is a monotonic unifier for T with a partial order relation ď, then for any
type-tagged term P P ΛCtT ,

(P 1,Γ) = up ˆ̂ (P ) ùñ P 1 ďCT P.

Proof. Let (xA1, τ 1y,Γ) = up ˆ̂ (xA, τy).

We will prove the lemma inductively.

• A = c P C :
xA1, τ 1y = xc, τy ďCT xc, τy

loooooooomoooooooon

since τďτ

= xA, τy

• A = v P Vλ:
xA1, τ 1y = xv, τy ďCT xv, τy

loooooooomoooooooon

since τďτ

= xA, τy

• A = (λx ñ P ), τ = (η Ñ σ), (xM,σ1y,Γ) = up ˆ̂ (P ),Γ
1 = Γz(x : η1), (x : η1) P Γ:

Inductively, we have that xM,σ1y ďCT P . We also know that τ 1 = (η Ñ σ1) ˆ̂ τ ď τ .
Thus,

xA1, τ 1y = xλxñ xM,σ1y, τ 1y ďCT x(λxñ P ), τy = xA, τy.

• A = (PQ), (P 1,ΓP ) = up ˆ̂ (P ), (Q
1,ΓQ) = up ˆ̂ (Q), P

1 = xM,σ1 Ñ σ2y

Inductively, P 1 ďCT P and Q1 ďCT Q. Since also σ2 ˆ̂ τ ď τ , we have:

xA1, τ 1y = xP 1Q1, σ2 ˆ̂ τy ďCT xPQ, τy = xA, τy.

Lemma 2.7. If ˆ̂ is a monotonic unifier for T with a partial order relation ď, then for any
type-tagged term P P ΛCtT , any type τ and context Γ,

down ˆ̂ (P, τ,Γ) ď
C
T P

Proof. Let xA1, τy = down ˆ̂ (xA, τy, σ,Γ). We will prove the lemma inductively:

• A = c P C :
xA1, τ 1y = xc, τ ˆ̂σy ďCT xc, τy

loooooooooomoooooooooon

since (τ ˆ̂σ)ďτ

= xA, τy
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• A = v P Vλ, (v : τ 1) P Γ:

xA1, τ 1y = xv, τ ˆ̂σ ˆ̂ τ 1y ďCT xv, τy
looooooooooooomooooooooooooon

since (τ ˆ̂ τ 1 ˆ̂σ)ďτ

= xA, τy

• A = (λx ñ P ), τ 2 = τ ˆ̂σ, τ 2 = (σ Ñ η), P 1 = down ˆ̂ (P, η,Γ ˝ (x : σ)): Inductively,
P 1 ďCT P . Furthermore, (τ ˆ̂σ) ď τ . Thus,

xA1, τ 1y = x(λxñ P 1), τ ˆ̂σy ďCT x(λxñ P ), τy = xA, τy

• A = (PQ), P = xM, ν Ñ ηy, Q = xN, ν 1y, τ 1 = (σ ˆ̂ τ), ν2 = (ν 1 ˆ̂ν), P 1 =

down ˆ̂ (P, (ν
1 Ñ σ1),Γ), Q1 = down ˆ̂ (Q, ν

2,Γ):

Inductively, P 1 ďCT P and Q1 ďCT Q. Since also τ 1 = τ ˆ̂σ ď τ , we have:

xA1, τ 1y = xP 1Q1, τ 1y ďCT xPQ, τy = xA, τy

Lemma 2.8. If ˆ̂ is a monotonic unifier for T with a partial order relation ď, then for any
type-tagged term P P ΛCtT ,

propagate ˆ̂ (P ) ď
C
T P

Proof. This follows directly from the definition of propagate, lemma 2.6 and lemma 2.7.

Lemma 2.9. If T is a set of type symbols and ďĎ T (T )ˆ T (T ) is a partial order relation on
T (T ), the relation ďCT is also a partial order relation.

Proof. This lemma can be proven by a simple inductive argument.

Lemma 2.10. If T is a set of type symbols, ďĎ T (T ) ˆ T (T ) is a partial order relation on
T (T ) and xM,σy ďCT xN, τy, then:

|M | = |N | (2.13)

σ ď τ (2.14)

Proof. eq. (2.14) stems trivially from the definition of ďCT .

eq. (2.13) can be proven by induction over the same definition, since the terms on the left and
right of ďCT always have the same syntactic structure.

Lemma 2.11. If T is a set of type symbols, ďĎ T (T )ˆ T (T ) is a well-founded partial order
relation on T (T ) and n P N, then every nonempty subset ofΛCtT of type-tagged terms of length
n has a minimal element with respect to ďCT .
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Proof. We will prove this lemma by strong induction over the term length n.

First, forn = 1, we have that any nonempty subset ofΛCtT contains only Constants or Variables.
Each constant or variable is only related to itself, so the proof is trivial.

Now, we will prove the lemma for n ą 1:

Let S Ď ΛCtT be a nonempty set of terms of length n.

Furthermore, let τ0 be a minimal element of the set tτ | xM, τy P Su with respect to ď.

We know that if the set S 1 = txM, τy | τ = τ0u has a minimum, it is also the minimum of S,
since the contrary would contradict the choice of τ0 due to eq. (2.14).

Suppose that S 1 has no minimum, i.e. there exists an infinite strictly-decreasing chain:

... ăCT xM3, τ0y ă
C
T xM2, τ0y ă

C
T xM1, τ0y ă

C
T xM0, τ0y

such that for every i P N, |xMi, τ0y| = n.

Furthermore, the definition of ďCT implies that all terms in the chain have the same syntactic
structure:

• For every i P N,Mi is an Application, i.e. Mi = PiQi:
We know that |Pi| ď |Mi| and |Qi| ď |Mi| since |Mi| = |Pi|+ |Qi|+ 1.
Inductively, the sets tPi | i P Nu and tQj | j P Nu have minimal elements Pi andQj for
some fixed i and j. Without loss of generality, let i ě j.
We have xMi+1, τ0y ď

C
T xMi, τ0y, i.e. xPi+1Qi+1, τ0y ď

C
T xPiQi, τ0y. The definition of

ďCT implies that xPi+1, τ0y ď
C
T xPi, τ0y: thus, since Pi is minimal, Pi+1 = Pi. Similarly,

Qj+1 = Qj = Qi = Qi+1.
Therefore, the elements xPi+1Qi+1, τ0y and xPiQi, τ0y are equal, which contradicts our
supposition.

• For every i P N,Mi is an Abstraction:
This case can be proven analogously to the case with Application.

Lemma 2.12. If T is a set of type symbols and ďĎ T (T ) ˆ T (T ) is a well-founded partial
order relation on T (T ), the relation ďCT is also a well-founded partial order.

Proof. The fact that ďCT is a partial order is given by lemma 2.9.

To prove well-foundedness, take a nonempty set S Ď ΛCtT and fix M P S. Let n = |M |. We
can isolate Sn = tN | |N | = nu. By lemma 2.11, Sn has a minimal element. By eq. (2.13)
we know that this minimal element is not related to any element in SzSn, therefore it is also
minimal in S.

Proposition 2.13. If ˆ̂ is a monotonic unifier for T with a well-founded partial order relation
ď, then propagate ˆ̂ reaches a fixed point on every term, i.e.

@P P ΛCtT Dn P N (propagatenˆ̂ (P ) = propagaten+1
ˆ̂ (P ))
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Proof. By lemma 2.8 the sequence tAiu = tpropagatenˆ̂ u8
n=1 is a decreasing chain with respect

to ďCT .

By lemma 2.12 the relation ďCT is well-founded.

Then, tAiu has a minimal element An for a fixed n. Since An+1 ď
C
T An and An is minimal, it

follows that An+1 = An.

In practice, the propagate step shall be combined with a step which manipulates the term for
optimisation purposes. This is illustrated in section 3.3.2.
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3 Implementation

This section will discuss a practical implementation of an English-to-Overpass translator, writ-
ten as part of this thesis. The implementation contains a parser for a custom language for
defining CCGs, a CCG parser, an intermediate language which can be easily generated via
CCGs and translated into Overpass, the respective translator, and a web interface for evaluat-
ing queries.

3.1 Architecture

The system consists of several parts:

• Generic CCG definition language: a language for defining CCGs, their respective type
systems and term libraries. Can be used standalone (for specifying CCGs that output raw
parse trees) or by embedding a lambda calculus-based language (for specifying CCGs
that output lambda terms)

• CCG Rule Matcher: a module that tags tokens from the input stream with categories
based on the CCG rules (defined in the CCG definition language)

• CCG Parser: a simple proof-of-concept parser based on the CYK algorithm

• English Lexer: a tokeniser, POS-tagger, and lemmatiser for English (largely consists of
external components)

• TheMinipass language: a small, lambda calculus-based language that translates to Over-
pass, designed to be easily generated and to represent Overpass operators as operations
on a graph.

• Minipass to Overpass translator: a translator from Minipass terms to Overpass queries
that does some basic optimisations

An architecture overview can be seen at fig. 3.1.

It is implemented in Haskell, and in addition to the query engine contains also a demonstration
web interface through which the user can enter a text query, see the resulting Overpass query,
inspect the intermediate steps (derivation tree, minipass term before and after reduction) and
finally view the results on a map via Overpass Turbo (a public web interface for visualising
queries [wik19c]).

An “expert” canwrite grammar definitions that specify rules formatching tokens and attaching
categories and Minipass terms to them. This is done in .ccg files, which can then be loaded
at runtime and used for parsing the input queries.

A sample grammar definition is provided, which can parse several sentence constructions.

The pipeline can be easily modified to use a natural language other than English, since the
only language-dependent components are the tokeniser and the grammar definition, which
are straightforward to replace.
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Figure 3.1: Architecture overview
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3.2 The Intermediate Language (Minipass)

Overpass is a relatively complex language with assignment, sequentiality, and specialised syn-
tax. Because of this it is not well-suited for performing AST transformations.

Minipass addresses this problem: its goal is to be easy to manipulate and reason about, and
be translatable to Overpass. It is based on the typed lambda calculus variant described in
section 2.5 and speaks about a world much simpler than the one described by Overpass — a
directed graph with labelled edges and vertices.

The graph abstraction works as follows:

• Overpass objects (nodes, ways, relations, areas) are regarded as vertices

• Object tags are encoded into vertex labels: for example, we may have a label for “named
London” or “is a cafe”.

• Edges labels represent relations between objects: for example, we may have an edge
that means “nearby” or an edge “on the same transport route”

Example 3.1. Tomodel a query like"bus stops near schools in Russia"
using the graph abstraction, we could think like this:

• Let B be the set of all vertices whose label unifies with "is a bus stop".

• Let S be the set of all vertices whose label unifies with "is a school".

• LetR be the set of all vertices whose label unifies with "is called Russia".

• Let N be the set of all vertices we can reach from S by traversing an edge whose
label unifies with "near to".

• Let P be the set of all vertices we can reach from R by traversing an edge whose
label unifies with "is inside of".

• Our result is B XN X P .

3.2.1 Language grammar

Here is a BNF grammar for the intermediate language.

xprogramy ::= xtstatementy xtstatementy*

xtstatementy ::= xstatementy ‘.’

xstatementy ::= ximport-statementy
| xterm-definitiony
| xtype-definitiony
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ximport-statementy ::= ‘import’ xfilepathy

xterm-definitiony ::= xidentifiery ‘:=’ xtermy

xtype-definitiony ::= xidentifiery ‘<’ xtypey

xtypey ::= xsimple-typey | xsimple-typey xarrowy xtypey

xsimple-typey ::= xidentifiery | ‘*’ | ‘(’ xtypey ‘)’

xarrowy ::= ‘->’

xtermy ::= xnonapp-termy | xnonapp-termy xtermy

xnonapp-termy ::= xconstanty | xvariabley | xconstry | xabstry | ‘(’ xtermy ‘)’

xconstanty ::= xidentifiery | xliteraly

xvariabley ::= xidentifiery

xconstry ::= xtypey ‘[’ xtermy ‘]’

xabstry ::= xlambday xdeclarationy ‘=>’ xtermy

xlambday ::= ‘\’ | ‘lambda’

xdeclarationy ::= xvariabley | xvariabley ‘:’ xtypey

xliteraly ::= xstring-literaly | xnum-literaly

xstring-literaly ::= xsingle-quoted-stringy

xnumber-literaly ::= xdecimal-numbery

xfilepathy ::= xdouble-quoted-stringy

The definitions for xsingle-quoted-stringy, xdouble-quoted-stringy and xnumber-literaly have
been omitted: the first two are plain quoted strings with backslash escaping, while the third
is a standard floating point number.

Note that Minipass is characterised by its predefined constants and base types. Because of the
modular architecture of the implementation, they can be replaced by something else, allowing
to target a different intermediate language.

Applications are left-associative while types are right-associative. Single-line comments can
be entered by using the -- syntax (everything on the same line after the two dashes is ignored
by the parser.

Import statements are used to split a program into multiple files, and are resolved relative to
the current program’s path (or the current working directory when not applicable).

3.2.2 Builtins and base types

SinceMinipass is built on top of λ-calculus syntax, all built-in “functions” are actually constants
in the context of λ-terms.

The base types are:
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Num represents a floating point number.

String represents a string of unicode characters.

List represents a polymorphic linked list that may contain Nums,
Strings, and nested Lists.

GSet refers to a set of geographical objects. It is not represented inter-
nally in any way: the only way to manipulate GSet objects is via
builtin operations that work on GSets.

The implementation also allows for the special type * that acts as a wildcard. Typeless decla-
rations are assumed to bear the wildcard type, which is removed from all terms by performing
type inference (see section 3.3.1) before translation.

The builtin identifiers (which act as λ-constants) are the following:

Identifier Type
and GSetÑ GSetÑ GSet set intersection

or GSetÑ GSetÑ GSet set union

not GSetÑ GSet set negation

get ListÑ GSet get geographical elements by vertex label

next ListÑ GSetÑ GSet traverse edges by label, obtaining a new GSet

empty List empty list

consNum NumÑ ListÑ List prepend a Num to a list

consString String Ñ ListÑ List prepend a String to a list

consList ListÑ ListÑ List prepend a List to a list (prepends the list it-
self, not its elements)

Should the need arise, the addition of extra operations (for example arithmetical) is trivial.

3.2.3 Composing terms

The syntax for composing terms is analogous to the λ-calculus syntax (section 2.5). The valid
term constructions are the following:

• Constant: number literal, string literal, or builtin identifier

• Variable: any identifier that is not a builtin

• Application: term application is represented by listing terms separated by whitespace.
It is by default left-associative and application order may be adjusted by using round
braces.
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• Abstraction:

\xvariabley:xtypey => xtermy.
or

\xvariabley => xtermy.

• Construction:

xtypey[xtermy].

3.2.4 Labels and graph queries

The main use for Lists is as labels: all vertices and edges can be thought to be labelled with
a (possibly infinite) set of such labels. Another way to think about labels is as queries that
retrieve data (either new data in the case of vertex labels, or relational data in the case of edge
labels).

For the sake of simplicity the implemented parser does not support a list literal shorthand, but
for the following examples we will adopt a list syntax such that

[[42, 'bar'], 'foo']

means

consList
(consNum 42 (consString 'bar' empty))
(consString 'foo' empty)

Below are the two edge label templates that are currently implemented in the translator:

Label Semantics
['around', [<dist>]] Items that are within <dist> metres

from given items

['in'] Items that are inside the given items

And the three vertex label templates:
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Label Semantics

['tagFilter',
['=', <key>, <value>]]

Items that contain a tag that has the given
key and value

['tagFilter',
[' ', <key>, <regex>]]

Items that contain a tag that has the given
key and whose value matches the given
regular expression

['all', [<type>]] All items in the universe that are of the
given Overpass type (way, relation, area,
node)

Example 3.2. Here is a query that retrieves all schools in Bristol:

and
(get (consString 'tagFilter'

(consList (consString '='
(consString 'amenity'

(consString 'school' empty)))
empty)))

(next (consString 'in' empty)
(get (consString 'tagFilter' (consList

(consString '='
(consString 'name'

(consString 'Bristol' empty)))
empty))))

Since Minipass queries can get too long and cumbersome for humans, a mechanism for mod-
ularisation has been implemented. Similarly to most programming languages, the expert can
define named terms and types that can later be composed into other terms and types.

3.2.5 Defining types

New types are defined by subtyping an existing type via a “type definition” (subtype assertion)
that has the following syntax:

NewType < OldType.

whereNewType is not a basic type that is a supertype of OldType and has not been already
user-defined.

The subtyping semantics are the same as the ones described in section 2.5: all subtype asser-
tions provided by the expert make up a subtype library, which is checked for validity and used
for resolving the types contained in all terms.
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3.2.6 Defining terms

New terms are defined by using the “term definition” syntax:

term_name := some term.

Named terms are resolved after parsing by performing free variable substitution in the source
code and are bundled in a “term library”. The resolver also handles possible type errors and
loops.

Note that this language is not Turing complete (not even primitively recursive) since recursion
is not handled18.

Note that only closed terms are permitted in definition statements (free variables make little
sense).

3.2.7 A “standard” library

This is a small library of term definitions that makes some basic queries easier to write:

-- identity
id := \y => y.

-- the set of all cities
city := or (or

(kv 'admin_level' '8')
(kv 'admin_level' '6'))

(kv 'capital' '4').

-- within 100 metres
near := within 100.

-- find items by name
name := \x => or (or

(kv 'name' x)
(kv 'int_name' x))

(kv 'name:en' x).

-- find items by name infix
nameLike := \x => or (or

(contains 'name' x)
(contains 'int_name' x))

(contains 'name:en' x).

-- find items by amenity key (fountain, school...)
amenity := kv 'amenity'.

18Actually, recursion is easy to implement (and was implemented at some point) by adding a recursion combi-
nator and resolving term definition loops to constructions that use that combinator. However, so far the author
has not found any use for recursion in such a language apart from abuse.
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-- find items by tag key and value
kv := \k: String, n: String => get

(consString 'tagFilter'
(consList (consString '='

(consString k (consString n empty)))
empty)).

-- find items by tag key and value infix
contains := \k: String, n: String => get

(consString 'tagFilter'
(consList (consString '~'

(consString k (consString n empty)))
empty)).

-- find items within distance of given items
within := \dist : Num => next

(consString 'around' (consNum dist empty)) .

-- find items inside of given items
in := next (consString 'in' empty).

-- get all items of given type
nodes := get (consString 'all'

(consString 'nodes' empty)).
ways := get (consString 'all'

(consString 'ways' empty)).
relations := get (consString 'all'

(consString 'relations' empty)).
areas := get (consString 'all'

(consString 'areas' empty)).

-- get all items in the universe
everything := get (consString 'all' empty).

Example 3.3. With the aid of this term library, the query in example 3.2 becomes more
concise:

and (amenity 'school') (in (name 'Bristol'))

When regarding a standalone Minipass program, the term main is used as the query.

3.3 AST Transformations

Minipass terms are subjected to several transformations before emitting an Overpass query.
Since type information is used almost everywhere, the term is first converted into a type-
tagged term (see definition 2.48) and all transformations (including translation to Overpass)
are applied afterwards.
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There are three type-systems in use:

• The bare Minipass type system, as described in section 3.2.2

• An expert-defined type system, defined in .ccg files by subtyping existing Minipass
types (as in section 3.2.5)

• An Intermediate type system which contains more Overpass-centric information and
facilitates translation into Overpass, which also subsumes the bare type system

A Minipass term, after being extracted from a CCG derivation tree, is converted to a type-
tagged term for easier manipulation and is then subjected to type inference. Afterwards,
the expert-defined type information is discarded by squashing the extra types (see proposi-
tion 2.12), which gives a regular Minipass type-tagged term, and then setting the type system
to the Intermediate type system. This operation does not change the term, since bare Minipass
types are also types within the Intermediate type system. Then, several optimisations (some
of which take advantage of the extra type information) are performed, and the term is finally
translated to Overpass. An illustration of this process is shown at fig. 3.2.

Expert-defined (CCG) type system

Derivation

tree

extract

term

tag

type

inference

Bare Minipass type system

s
q
u
a
s
h

ty
p
e
s

Intermediate Minipass type system

lift

ty
p
e
s

optimise

untag

Term
Preview

Raw

Minipass

term

tag

Overpass
program

translate

Figure 3.2: Illustration of the transformations undergone by a Minipass term

3.3.1 Type inference

Minipass allows for the usage of the special type * that acts as a wildcard type. It violates the
partial order of the type lattice since it is equivalent to all types (i.e. @σ P T : (* ď σ)&(σ ď
*)).

Thus, all significant19 occurrences of * are removed by finding the fixed point of propagate
19Since we only work with closed terms, the only case when a type cannot be inferred is when a bound

variable is unused (for example in terms like (\x, y => y) 42, where the type of x cannot be inferred).
This, however, is harmless, because the type is unneeded anyway.
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from definition 2.52 with the following unifier:

σ ˆ̂ τ =

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

τ, σ = *,
σ, τ = *,
σ, σ = τ ,
(σ1 ˆ̂ τ 1)Ñ (σ2 ˆ̂ τ 2), σ = (σ1 Ñ σ2), τ = (τ 1 Ñ τ 2),
␣!, otherwise.

Whenever the algorithm encounters a case where the unifier is not defined, a type error is
produced.

This unifier is monotonic (definition 2.51) for the partial order “* is above every other type, and
there are no other edges”. By proposition 2.13, the process of iteratively applying propagate
always terminates.
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3.3.2 Minipass query optimisation

While Overpass differentiates between 4 types of objects (nodes, ways, relations, areas20), its
queries are heterogeneous.

Example 3.4. For example, the following Minipass querya returns all items with name
“Brussels”:

name 'Brussels'

The returned set, among any other objects, contains:

• the city Brussels (a node)

• the administrative area of the city Brussels (an area)

• the Brussels boulevard in Sofia (a way)

Since Overpass contains separate keywords for querying different objects, the aboveMini-
pass term would have to be translated to a query as such:

( node["name" = "Brussels"];
way["name" = "Brussels"];
rel["name" = "Brussels"];
area["name" = "Brussels"]; ) -> .x1;

.x1 out;

In fact, since the current implementation of name looks for the name in several fields, the
actual emitted Overpass translation is the following:

( node["name" = "Brussels"];
way["name" = "Brussels"];
rel["name" = "Brussels"];
area["name" = "Brussels"];

node["int_name" = "Brussels"];
way["int_name" = "Brussels"];
rel["int_name" = "Brussels"];
area["int_name" = "Brussels"];

node["name:en" = "Brussels"];
way["name:en" = "Brussels"];
rel["name:en" = "Brussels"];
area["name:en" = "Brussels"]; ) -> .x1;

20The “area” type is only present in Overpass (not in OpenStreetMap databases), and area objects are con-
structed by finding relations that form a closed polygon [wik19a].
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.x1 out;

Now, regard the following Minipass term:

in (name 'Brussels')

In order to translate it, we could take the result from the previous query and take all nodes,
ways or relationsb inside returned items by using the area. filter:

( node["name" = "Brussels"];
way["name" = "Brussels"];
rel["name" = "Brussels"];
area["name" = "Brussels"]; ) -> .x1;

( node(area.x1); way(area.x1); rel(area.x1); ) -> .x2;
.x2 out;

However, the area. filter only takes into account areas from the input set and discards
all other objects. Thus, a less naïve translator should only take areas in the first place:

( area["name" = "Brussels"]; ) -> .x1;
( node(area.x1); way(area.x1); rel(area.x1); ) -> .x2;
.x2 out;

aMinipass queries presented here assume the library from section 3.2.7 for clarity.
bIn Overpass, an area may not be inside another area

To make this task of optimisation easier, the Intermediate type system extends the GSet type
with subtypes for each combination of node, way, relation and area (shown at fig. 3.3): essen-
tially, we attach a set of tags (subset of tn,w, r, au) to each GSet type.

During the optimisation phase, several rules are applied to each subterm, some of which are
displayed in the table below:21:

21In this table, “the type of something” means its type tag.
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GSet[nwra] = GSet

GSet[nwr] GSet[nra]GSet[nwa] GSet[rwa]

GSet[nw] GSet[wr]GSet[nr] GSet[ra]GSet[na] GSet[wa]

GSet[n] GSet[w] GSet[r] GSet[a]

GSet[]

Figure 3.3: The lattice of the GSet type within the Intermediate type system

Subterm Action
“and” of type GSet[X] Ñ GSet[Y ] Ñ

GSet[Z]

set its type to GSet[X X Y X Z] Ñ

GSet[X X Y X Z]Ñ GSet[X X Y X Z]

“or” of type GSet[X] Ñ GSet[Y ] Ñ

GSet[Z]

set its type to GSet[X XZ]Ñ GSet[Y X

Z]Ñ GSet[(X Y Y )X Z]

β-redex reduce it
“get all nodes” change it to “get everything” of type

GSet[n]

“get all ways” change it to “get everything” of type
GSet[w]

“get all relations” change it to “get everything” of type
GSet[r]

“get all areas” change it to “get everything” of type
GSet[a]

“next” of type GSet[X] Ñ GSet[Y ] ap-
plied to an “in” label

set its type toGSet[XXtau]Ñ GSet[Y X

tn,w, ru]

“or” with one of the arguments being of
type GSet[]

rewrite the term to only the other argu-
ment

… …

After applying these rules, types are propagated through the term (see definition 2.52) with
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the following unifier:

σ ˆ̂ τ
def
=

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

GSet[X X Y ], σ = GSet[X], τ = GSet[Y ],
Num, σ = Num, τ = Num,
String, σ = String, τ = String,
List, σ = List, τ = List,
(σ1 ˆ̂ τ 1)Ñ (σ2 ˆ̂ τ 2), σ = (σ1 Ñ σ2), τ = (τ 1 Ñ τ 2),
␣!, otherwise.

We can induce a natural ordering on the finite set ofGSet subtypes, so the iterative application
of propagate terminates by proposition 2.13.

It can also be seen that the optimisation rules shown above converge after a finite number of
steps. A rigorous proof will be omitted22

, which is now ready for the translation phase.

While there are many other possible optimisations which can be done here,
only these few have been implemented as a proof-of-concept, since this is not
the main focus of this work.

3.3.3 Translating to Overpass

The implemented translator can only translate closed terms of non-arrow types. It keeps an
internal state which contains the statements generated thus far and the index of the last used
variable (used for generating new variable names). At its core is the translate function,
which takes a Minipass term, returns a Value and updates the internal state.

Value is defined as follows:

data Value
= StringValue Text
| NumValue Float
| SetValue VarName
| ListValue [ListC]

data ListC
= NumC Float
| StringC Text
| ListC [ListC]

type VarName = Text

As can be seen above, values of type GSet (SetValue) are represented as a variable name.
All other values are represented internally (this means that they are evaluated during transla-
tion).

22As with the optimisation steps of most compilers, any bugs in the optimiser are left to the user to discover.
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Here is an outline of the basic translation process:

• Uncurry23 the term in order to be able to inspect its arguments

• Recursively evaluate (translate) all arguments (since there are no constants of higher-
order type and the term has been fully β-reduced, the head is always a constant and the
arguments are of non-arrow types — see property C.1 )

• Perform pattern matching of the argument list against a set of translation rules. Modify
state and return value according to matched rule (or throw translation error).

Here are some of the aforementioned rules:

# Input term Action
1 xstring-literaly return a StringValue with the lit-

eral’s content
2 xnumber-literaly return a NumValue with the literal’s

content
3 ConsString xarg1y xarg2y Unpack the StringValue returned by

the translation of xarg1y and prepend it to
the ListValue returned by the transla-
tion of xarg2y

4 ConsNum xarg1y xarg2y similar to the above
5 ConsList xarg1y xarg2y similar to the above
6 “and”, “or”, “get” or “next”, applied to its

respective arguments
Walk the syntax tree of “and”s and “or”s
downwards, stopping at leaves (anything
that is not “and” or “or”). Create an Over-
pass filter from the resulting tree. Gen-
erate a new variable name and emit an
Overpass statement that saves the result
from the filter into the variable. Return a
SetValue bearing said variable name.

At the end of translation, if the result is aSetValue, an overpass “out .<variable>;”
statement is added.

Example 3.5. Consider the following query, generated by the query “pharmacies in
Sofia”:

and (get (consString 'tagFilter' (consList (consString '='
(consString 'amenity' (consString 'pharmacy' empty))) empty)))
(next (consString 'in' empty) (or (or (get (consString
'tagFilter' (consList (consString '=' (consString 'name'
(consString 'Sofia' empty))) empty))) (get (consString
'tagFilter' (consList (consString '=' (consString 'int_name'
(consString 'Sofia' empty))) empty)))) (get (consString

23See appendix C

91



'tagFilter' (consList (consString '=' (consString 'name:en'
(consString 'Sofia' empty))) empty)))))

Since long labels make this code rather unreadable, we will replace them by human-
readable placeholders, and will assign numbers to AST nodes (after uncurrying):

and -- #1
(get -- #2

<amenity=pharmacy>) -- #3
(next -- #4

<in> -- #5
(or -- #6

(or -- #7
(get -- #8

<name=Sofia>) -- #9
(get -- #10

<int_name=Sofia>) -- #11
)
(get -- #12

<name:en=Sofia>) -- #13
)

)

The translator will first apply rule 6 on the following syntax tree:

and#1

next#4get#2

For this tree, after recursively translating the amenity#3, in#5 and or#6 subterms,
the translator would emit the following Overpass filter:

( node(area.<result from or#6>)["amenity" = "pharmacy"]; ) ->
.<newvar>;

So, let’s see how or#6 will be evaluated. Again, we apply rule 6 on the following syntax
tree:

or#6

get#12or#7

get#10get#8
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After recursively translating name#9, int_name#11 and name:en#13, the trans-
lator emits thisa Overpass filter:

( area["name" = "Sofia"];
area["int_name" = "Sofia"];
area["name:en" = "Sofia"]; ) -> <newvar>;

Finally, after substituting the generated variable names and adding an output statement,
we get the following query:

( area["name" = "Sofia"];
area["int_name" = "Sofia"];
area["name:en" = "Sofia"]; ) -> .x1;

( node(area.x1)["amenity" = "pharmacy"]; ) -> .x2;
out .x2;

aOnly “area” nodes are emitted because the type of the “get”s has been inferred as GSet[a] by the opti-
miser.

While this translator is at proof-of-concept level, it can easily be extended to cover most of
Overpass. An overview of features is presented in table 3.1.

Feature Status
Set Union Implemented

Set Intersection Implemented
Set Difference Trivial to implement
Set Negation Easy to implement24
Equality filter Implemented

Regex filter Implemented
Bounding box Trivial to implement

Recurse (get children) Trivial to implement
Get item by id Trivial to implement

Around (within distance) Implemented
Area (within area) Implemented

Relation operators (next, previous) Trivial to implement
Recurse (get children) Trivial to implement

For-each-loop Difficult to implement
Complete (fixed point) Easy to implement

Retro Not applicable25
Counting, summing, stats etc Difficult to implement

… …

Table 3.1: Some Overpass features and their corresponding level of support by the translator
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3.4 The CCG definition language

When paired with Minipass, the language for defining CCGs consists of the entire Minipass
language (section 3.2.1) extended by additional syntax for defining token matchers and cat-
egories. It can also be used standalone as a library (in that case, arbitrary payloads can be
provided instead of Minipass terms and types).

xprogramy ::= xtstatementy xtstatementy*

xtstatementy ::= xstatementy ‘.’

xstatementy ::= ximport-statementy
| xbegin-statementy
| xmatch-statementy
| xterm-definitiony
| xtype-definitiony

ximport-statementy ::= ‘import’ xfilepathy

xbegin-statementy ::= ‘begin’ xcategoryy

xmatch-statementy ::= xphrase-ruley ‘:’ xtargety (‘,’ xtargety)*

xphrase-ruley ::= xmatch-ruley (‘<’ xphrase-idy ‘>’ xmatch-ruley)*

xmatch-ruley ::= xmatchery (xtemplatey | ε)

xmatchery ::= xsimple-matchery | xor-matchery | xand-matchery

xnot-or-matchery ::= xsimple-matchery | xand-matchery

xnot-and-matchery ::= xsimple-matchery | xor-matchery

xsimple-matchery ::= xexact-matchery | xregex-matchery | ‘(’ xmatchery ‘)’

xor-matchery ::= xnot-or-matchery ‘|’ xmatchery

xand-matchery ::= xnot-and-matchery ‘&’ xmatchery

xexact-matchery ::= xidentifiery ‘=’ xdouble-quoted-stringy

xregex-matchery ::= xidentifiery ‘~’ xdouble-quoted-stringy

xtemplatey ::= xbacktick-quoted-stringy ‘:’ xtypey

xtargety ::= xcategoryy ‘@’ xtermy

xcategoryy ::= xsimple-categoryy | xsimple-categoryy xslashy xcategoryy

xsimple-categoryy ::= xtypey | ‘(’ xcategoryy ‘)’

xslashy ::= ‘/’ xmodalityy | ‘\’ xmodalityy

xmodalityy ::= ‘.’ | ‘d’ | ‘x’ | ‘*’ | ε

Constructions for defining terms, subtyping, importing files, comments and such remain.
What the CCG definition language adds is the ability to match natural language tokens and
assign categories and terms to them, and the ability to select a starting category.

The starting category is specified with the following statement:
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begin SomeCategory.

There can be only one begin statement in the entire program.

3.4.1 Matching tokens

Tokens (words) in the natural language input are emitted by the tokeniser as sets of key-value
data (for example, the tokencitiesmay be represented asraw=cities,pos=nnp,lemma=city
— for a more detailed explanation see section 3.5.1). The CCG definition language allows us
to define matchers that can either match a token or not match a token.

The following matchers have been implemented:

• exact matcher (matches tokens that contain a tag with key ‘key’ and value ‘value’):

key='value'

• regexmatcher (matches tokens that contain a tagwith key ‘key’ and a value thatmatches
the regular expression ‘regex’):

key~'regex'

• ”and” matcher (matches tokens that are matched by both given matchers):

xmatchery & xmatchery

• ”or” matcher (matches tokens that are matched by any of the given matchers):

xmatchery | xmatchery

3.4.2 Assigning categories and terms to matched tokens

The syntax for assigning categories and terms is analogous to the one described in section 2.3.3:

xmatchery:xcategoryy@xpayloady

where xpayloady is a Minipass term when the language is used to generate Minipass.

Multiple categories and respective terms may be attached to a single matcher by separating
them with commas:

xmatchery:xcategoryy@xpayloady, xcategoryy@xpayloady, …, xcategoryy@xpayloady

The payload terms can only be closed terms and their type must match the respective cate-
gory’s type.

Categories are constructed as follows:
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• Every Minipass type is a valid atomic category (including types defined by the expert
via subtyping). Using a complex type for an atomic category is permitted but is seldom
useful.

• Complex categories may be constructed by the syntax

xcategoryy xslashy xcategoryy

where xslashy is a modal slash (/., /s, /d or /x that respectively stand for /., /‹,
/♢, /ˆ, and their backslash counterparts). The modality may be omitted, and is then
assumed to be the dot modality.

• Categorial variables (section 2.4.2) are specified with a dollar sign followed by
[a-zA-Z][a-zA-Z0-9_]*

Example 3.6. Below is a sample grammar defined using the CCG definition languagea:

import "library.ccg"

-- Use GSet as the starting category.
-- This means that all queries parsed
-- by this CCG will have type GSet.
begin GSet.

-- Here Mult is used to handle lists like
-- "schools, churches, and hospitals"
Mult < GSet.

raw="and"
: GSet / GSet \ GSet @ or
, Mult / GSet \ GSet @ \r, l => Mult[or l r].

pos="comma" : $X \ $X @ id -- some commas mean nothing
, GSet \ GSet / Mult @ or.

raw="in"
: GSet / GSet \ GSet
@ \things, where => and things (in where).

lemma="school",pos="nnp" : GSet @ amenity 'school'.

aHere "library.ccg" is assumed to contain the code from section 3.2.7

3.4.3 Composing phrases

In most cases we would would want our rule to match single tokens. Sometimes, however,
it is convenient to be able to match an entire phrase (for example, phrases like ‘parking lot’,
‘coworking space’, or ‘rubbish bin’) and assign a category to it.
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To achieve this, the CCG definition language supports a syntax for composing phrases (one
way to think of it is as “matcher concatenation”):

xmatchery <> xmatchery
or

xmatchery <DummyCategory> xmatchery

This phrase syntax is a shorthand for creating a dummy category for each pair and assigning
categories such that the entire phrase will be assigned the correct category and term specified
for it.

The expert can also explicitly specify the name of the dummy category (this is mainly useful
for debugging purposes: the category will show up in the resulting derivation trees).

For more details about this construction, see convention 2.4.

Example 3.7. The following statement:

lemma="place" <> raw="of" <> lemma="worship"
: GSet
@ amenity 'place_of_worship'.

desugars to something like this:

Dummy1 < * -> *.
Dummy2 < * -> *.

lemma="place"
: GSet /s Dummy2 /s Dummy1
@ \x: Dummy1, y: Dummy2 =>

amenity 'place_of_worship'.

raw="of"
: Dummy1
@ Dummy1[\x => x].

lemma="worship"
: Dummy2
@ Dummy2[\x => x].

3.4.4 Term templates

Sometimes it is required to insert arbitrary information from tokens into the respective gen-
erated terms (e.g. decimal numbers, names, etc.).

This is currently implemented by adding a template after the matcher. Templates have the
following syntax:
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`xtemplate-contenty`: xtypey

They are stored in raw form instead of being parsed at the time of parsing the CCG definition
source. Apart from regular term syntax, templates may also contain template variables, the
syntax for which is a dollar sign followed by a valid key that may be found in token data.

Whenever a rule with a template matches a token, template variables are substituted by their
values, the template is parsed as a term and is fed as a first argument to the primary term
specified in the rule.

Templates are inherently unsafe — failure to parse the template after substitution or having a
term with a wrong type produced by the template will cause the CCG parsing process to fail.
It is the expert’s responsibility to ensure that templates are correct.

Example 3.8. Consider the following rule that contains a template:

pos="nnp" `'$raw'` : String
: GSet
@ name.

It is valid at compile time because the term name has type String Ñ GSet, which yields
a term of type GSet after being given a String as argument. When matching the to-
ken data ”pos="nnp",raw="Belgium"”, the template `'$raw'` will become
`'Belgium'` after substitution. Its type (String) will be verified, and the resulting

term (name 'Belgium') will be constructed.

In the case of multiple concatenated matchers with templates, all templates are fed to the
term from left to right. This is achieved by making the generated dummy categories subtypes
of the respective template types instead of the identity type. The resulting term then forms
naturally.

3.5 Natural language parsing

This section deals with the part of the pipeline which transforms the input query (raw text)
into a payload (when targeting Minipass, the payload is a Minipass term).

The process can be broken down into 3 stages:

• Tokenisation: Generating a sequence of tokens from the input text. This stage is natural-
language dependant at source-code level (targeting a different natural language requires
attaching a different tokeniser). The implementation comes with a simple English to-
keniser made with the help of external libraries.

• CCG parsing: Applying the rules specified in the input grammar (which comes as a
.ccg file) and finding valid parse trees for the input query (if any).

• Term generation: generating final terms by composing the subterms within parse tree
leaves
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3.5.1 Tokenisation

Tokens are represented as sets of key-value pairs26. Currently, there is one implemented to-
keniser wrapper, which will be described in this section. Other tokenisers (for different natural
languages, for example) may easily be added due to the project’s modular architecture.

The English tokeniser wrapper uses a simple tokeniser from the NLP.POS package from the
chatter Haskell library [Cre17]. After splitting the input text into distinct tokens, a POS
tagger from the same library is used to assign a part of speech to each token. The POS tagger
uses the “averaged perceptron” model [Col02] and is trained on the Penn Treebank POS tag
corpus [MMS93].

The raw token string is included under keyraw in the token object and the POS tag is included
under key pos.

After POS tagging, tokens are subjected to lemmatisation. This is done using WordNet’s
morph library [Fel98]. Since at the time of writing this thesis available Haskell bindings
to WordNet either included no morph support or could not run with the most recent ver-
sion of GHC, a small binding library which wraps the C interface provided with WordNet was
written. The morph lemmatiser is given a token and its POS tag and returns the lemma for
this token. The lemma (if it exists27) is then included under key lemma in the token object.

The tokeniser also emits special tokens for “begin of sentence” and “end of sentence”. These
are included as special mark=begin and mark=end tokens objects.

26There is no restriction on the uniqueness of keys.
27Tokens like punctuation items have no lemmas.
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Example 3.9. The following text:

Suddenly there came a tapping.
As if someone gently rapping.

Produces the following token list (one token on each row):

mark=begin
raw=Suddenly pos=rb lemma=suddenly
raw=there pos=ex lemma=there
raw=came pos=vbd lemma=come
raw=a pos=dt lemma=a
raw=tapping pos=nn lemma=tapping
raw=. pos=. lemma=.

mark=end
mark=begin

raw=As pos=in lemma=as
raw=if pos=in lemma=if
raw=someone pos=nn lemma=someone
raw=gently pos=rb lemma=gently
raw=rapping pos=vbg lemma=rap
raw=. pos=. lemma=.

mark=end

3.5.2 CCG parsing

After tokenising, all rule matchers (section 3.4) are evaluated against each token one by one28
and a list of (Category, Term) pairs is generated for each token. Then, proceeding with the
categorial CYK algorithm, a set of items (in the sense of section 2.2.2) is constructed recursively.

The maximum composition arity n in the implementation is set to 1 since no need for more
arguments has arisen. If the grammar demands a higher arity, this is easily remedied.

The straightforward recursive implementation of the algorithm relies on a memoiser in order
to avoid recomputing shared items. Memoisation is used in several places throughout the
code, and two generic memoisers have been implemented:

• A lazy memoiser, based on an infinite bit trie which stores the return value for each
possible argument. Only the already accessed paths are stored in memory at a given
moment, while the rest of the possible subtrees are represented byHaskell thunks, which
are computed on demand.

• A pragmatic memoiser which stores computed values in a hashmap which is accessed
via unsafePerformIO.

28This naïve quadratic approach may be replaced by a decision tree-based traversal of the set of matchers with
little effort.
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The lazy memoiser, while elegant, is about twice as slow as the pragmatic memoiser, which is
used by default.

Another performance consideration is the fact that when combining categories, care is taken
to share common parts of categories with ones constructed from them29.

3.5.3 Parse forests and generating terms

Since there are potentially an exponential number of derivation trees for a single query, many
of them share an identical trunk due to the way the categorial CYK algorithm works. Thus, it
is beneficial to encode the resulting parse forest in such a way as to share the common trunks
between trees, and also be able to avoid enumerating all of them when performing simple
manipulations.

The listing below is a simplified definition of the ParseTree and ParseForest
datatypes used in the implementation. Here, cat is a category, payload is a pay-
load attached to the matched token (a λ-term and metadata about the token itself), and
(CombineRule cat) is a rule30 by which this derivation was produced (used for
debugging and visualisation):

data ParseTree cat payload where
Leaf cat payload |
Vert cat (CombineRule cat) (ParseTree cat payload) (ParseTree cat

payload)

data ParseForest cat payload
= ParseForest cat [MultiNode cat payload]

data MultiNode cat payload where
MultiLeaf payload (MultiNode cat payload) |
MultiVert (CombineRule cat) (ParseForest cat payload) (ParseForest

cat payload)

A ParseForest is recursively generated from the set of items produced by the parsing
algorithm, starting from the initial category and the whole query.

From the ParseForest, all ParseTrees are enumerated in a lazy list: this way most of
the encoded trees will never be evaluated individually (unless requested by the user).

A λ-term is generated for each relevant tree, following the procedure from definition 2.22.
Afterwards, in the case of Minipass terms, their types are squashed31 into the bare Minipass
type system, discarding any type information that was useful only for parsing.

29This comes for free because of Haskell’s immutability mechanism: the only care that needs to be taken is
not obstructing the compiler in that regard.

30The syntax “(CombineRule cat)” relies on the TypeFamilies Haskell extension. Type family
constraints have been omitted for brevity.

31See definition 2.40.
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4 Building and usage

4.1 Directory layout

The project’s source code has the following directory structure:

• ccg — CCGs and CCG parsing

• lambda-calculus — λ-terms, type systems, and type-tagging

• utils — Various utilities

• thething — Project entry point (CLI interface)

• examples

– library.ccg — A library of useful Minipass terms (see section 3.2.7)
– amenities.ccg — CCG matching rules for the 170 most frequently used

OpenStreetMap amenities
– sample_minipass.ccg — a sample Minipass term
– sample_grammar.ccg — a sample CCG which can parse several types of

sentences in English

4.2 Running

The CLI can run in 3 modes:

• summary mode — given an input query, generate at most five distinct Minipass terms
and display them in the terminal along with the respective Overpass translations

• LATEX mode — given an input query, generate a PDF file with at most 10 parses, visuali-
sations of their derivation trees, respective Minipass terms and Overpass translations

• web interface mode — start a local web server, which provides an user interface for en-
tering queries, inspecting the results including derivation trees, type hierarchies, and
token data, and visualising Overpass results on a map via Overpass Turbo32.

Note: For using the LATEXmode and for being to inspect derivation trees within
the web interface, xelatex and latexmk must be installed.

For a build system, Haskell’s Stack has been used. The CLI can be run by issuing:

$ stack run underpass-exe <arguments>

32Overpass Turbo is a publicly-available Overpass frontend [wik19c]
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When run without arguments, the program loads examples/sample_grammar.ccg
and starts in web interface mode.

Other modes can be used as follows:

# Start in web-interface mode and load my_grammar.ccg:
$ stack run underpass-exe serve my_grammar.ccg

# Display summary for a given query:
$ stack run underpass-exe summary my_grammar.ccg 'hospitals in China'

# Generate a PDF breakdown for a given query:
$ stack run underpass-exe latex my_grammar.ccg 'hospitals in China'

While the actual running time with the sample grammar is negligible, the
CLI must load the trained POS tagger and lemmatiser on startup, which takes
several seconds. Also, drawing trees is relatively slow because it uses LATEX,
so some patience is required.

4.3 Sample results

These are the contents of examples/sample_grammar.ccg:

import "library.ccg".
import "amenities.ccg".

begin S.

SE < GSet.

S < GSet.

Entity < GSet.
NamedEntity < String.

mark="begin" : S / SE @ \x: SE => S[GSet[x]] .
mark="end" : SE \ GSet @ \x: GSet => SE[x] .

pos="comma" : $X \ $X @ id.

raw="in"
: GSet / GSet \ GSet
@ \things, where => and things (in where).

pos="nnp" `'$raw'` : String
: Entity
@ name.
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pos="nnp" `'$raw'` : String
: NamedEntity
@ \x => NamedEntity[x].

raw="like" : GSet \ NamedEntity @ nameLike.
raw="city" : GSet \ Entity @ \x : Entity => and city x.
raw="near" : GSet \ GSet / GSet @ \b, a => and a (near b).

We will now, for a more elaborate example, inspect the following query:

pharmacies near parking spaces in Berlin

A relevant excerpt from amenities.ccg (which defines the phrase “parking space”) is the
following:

lemma="parking" <> lemma="space"
: Amenity
@ amenity 'parking_space'.

So, one33 of the derivation trees generated for this query is given below:

S

SE

(SEzGSet)

mark:end

GSet

(GSetzGSet)

GSet

Entity

pos:nnp
raw:Berlin
lemma:berlin

(GSet/GSet)

((GSet/GSet)zGSet)

pos:in
raw:in
lemma:in

Amenity

Phrase : amenities : 54 : 17

pos:nns
raw:spaces
lemma:space

(Amenity/‹Phrase : amenities : 54 : 17)

pos:nn
raw:parking
lemma:parking

((GSetzGSet)/GSet)

pos:in
raw:near
lemma:near

Amenity

pos:nns
raw:pharmacies
lemma:pharmacy

(S/SE)

mark:begin

This tree yields the following Minipass term:

λ ((λ x ñ S[GSet[x]]) ((λ x ñ SE[x]) ((λ b ñ (λ a ñ ((Amenity Ñ

(GSet Ñ GSet))[and] a ((λ dist ñ (next (consString 'around'
(consNum dist empty)))) 100.0 b)))) ((λ things ñ (λ where ñ

((Amenity Ñ (GSet Ñ GSet))[and] things ((List Ñ (Entity Ñ

GSet))[next] (consString 'in' empty) where)))) ((λ _ ñ ((λ k ñ (λ n
ñ ((List Ñ Amenity)[get] (consString 'tagFilter' (consList
(consString '=' (consString k (consString n empty))) empty)))))
'amenity' 'parking_space')) Phrase:amenities:54:17[(λ _ ñ _)]) ((λ
x ñ ((GSet Ñ (GSet Ñ Entity))[or] (or ((λ k ñ (λ n ñ (get
(consString 'tagFilter' (consList (consString '=' (consString k
(consString n empty))) empty))))) 'name' x) ((λ k ñ (λ n ñ (get
(consString 'tagFilter' (consList (consString '=' (consString k

33Weget two semantic parses for this query: “pharmacies near parking spaces, said pharmacies being in Berlin”
and “pharmacies near parking spaces, said parking spaces being in Berlin”. Both are valid.
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(consString n empty))) empty))))) 'int_name' x)) ((λ k ñ (λ n ñ

(get (consString 'tagFilter' (consList (consString '=' (consString
k (consString n empty))) empty))))) 'name:en' x))) 'Berlin')) ((λ k
ñ (λ n ñ ((List Ñ Amenity)[get] (consString 'tagFilter' (consList
(consString '=' (consString k (consString n empty))) empty)))))
'amenity' 'pharmacy'))))

Whose types are then squashed:

(( λ x ñ x) (( λ x ñ x) (( λ things ñ ( λ where ñ (and things (next
(consString 'in' empty) where)))) (( λ b ñ ( λ a ñ (and a (( λ dist
ñ (next (consString 'around' (consNum dist empty)))) 100.0 b)))) ((
λ _ ñ (( λ k ñ ( λ n ñ (get (consString 'tagFilter' (consList
(consString '=' (consString k (consString n empty))) empty)))))
'amenity' 'parking_space')) ( λ _ ñ _)) (( λ k ñ ( λ n ñ (get
(consString 'tagFilter' (consList (consString '=' (consString k
(consString n empty))) empty))))) 'amenity' 'pharmacy')) (( λ x ñ

(or (or (( λ k ñ ( λ n ñ (get (consString 'tagFilter' (consList
(consString '=' (consString k (consString n empty))) empty)))))
'name' x) (( λ k ñ ( λ n ñ (get (consString 'tagFilter' (consList
(consString '=' (consString k (consString n empty))) empty)))))
'int_name' x)) (( λ k ñ ( λ n ñ (get (consString 'tagFilter'
(consList (consString '=' (consString k (consString n empty)))
empty))))) 'name:en' x))) 'Berlin'))))

And is then β-reduced:

(and (and (get (consString 'tagFilter' (consList (consString '='
(consString 'amenity' (consString 'pharmacy' empty))) empty)))
(next (consString 'around' (consNum 100.0 empty)) (get (consString
'tagFilter' (consList (consString '=' (consString 'amenity'
(consString 'parking_space' empty))) empty))))) (next (consString
'in' empty) (or (or (get (consString 'tagFilter' (consList
(consString '=' (consString 'name' (consString 'Berlin' empty)))
empty))) (get (consString 'tagFilter' (consList (consString '='
(consString 'int_name' (consString 'Berlin' empty))) empty)))) (get
(consString 'tagFilter' (consList (consString '=' (consString
'name:en' (consString 'Berlin' empty))) empty))))))

Finally, after optimisation and translation, we get an Overpass query:

( node["amenity" = "parking_space"]; ) -> .x1;
( area["name" = "Berlin"]; area["int_name" = "Berlin"]; area["name:en"

= "Berlin"]; ) -> .x2;
( node(area.x2)(around.x1:100.0)["amenity" = "pharmacy"]; ) -> .x3;
.x3 out;

When rendering this query with Overpass Turbo, as of the time of writing this document, we
get exactly the result shown in fig. 1.1.
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5 Closure

Theprimary objective of this thesis was to explore the suitability CCGs for formulating geospa-
tial queries in a formal language based on a natural language phrase. English was chosen as a
concrete natural language while Overpass was chosen as a target formal language. To achieve
this goal, the following tasks were accomplished:

• Design of a functional intermediate language that can be easily generated and translated
into Overpass

• Design of a language for defining CCGs on top of aforementioned intermediate language

• Implementation of parsers and internal representations for said languages

• Design, implementation and prooves of correctness for a subtyping system and a type
variable system for providing polymorphism

• Implementation and proof of correctness of a Categorial CYK-based CCG parser

• Implementation of an intermediate language term generator from CCG derivation trees

• Implementation and proof of termination of a translator from intermediate language
terms into Overpass programs

• Implementation of user interfaces (console and web-based)

In the process it became clear that defining the exact subset of English was not as interesting as
expected, so the project grew to allow definition of frontends for any natural language subsets.
This shifted the focus into the design of a rule definition language, which felt more fulfilling.

It seems clear that this CCG-based approach can’t model the input natural language as well as
somemethods based on statistics would have (the language subsetmodelled byCCG feelsmore
formal than actual natural language sentences), but it may prove useful for many scenarios:
this “formality” ensures predictability of the system and still models enough of the natural
language for queries to be semantically-recognisable to non-experts. Interfacing such a system
may be much easier to learn than working directly with a formal language such as Overpass.

In retrospect, the subjectively most interesting part of this thesis was probably incorporating
the concept of subtyping into CCGs and using it to model real-world semantics, and also
the most tedious, since the details arising from contravariance had to be considered in most
prooves.

Even without using Overpass as a target formal language, this project might be useful for
generating queries into other formal languages by simply substituting the backend.
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5.1 Future work

The current implementation is fairly basic and may be extended along multiple axes:

• Implement more Overpass features into the translator to cover a greater target domain

• Allow assigning weights to CCG rules in order to be able to prioritise different parses
for the same query

• Implement a version of the Vijay-Shanker algorithm for CCG parsing in order to im-
prove performance

• Avoid β-reduction on Minipass terms of typeGSet in order to eliminate some duplicate
subqueries

• Use Eisner normal form parsing to handle ambiguity better

• Use learning methods to automatically extend grammars by using query corpora

5.2 Conclusion

Mostly harmless.
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Appendices

A Of mythical creatures and magical sets

Sooner or later, in every work related to formal logic, the need for a set of basic objects arises.
For example, wewant to construct a system for basic arithmetic, for whichwe need “variables”.
At first glance, this is a trivial matter — just take an arbitrary countable set and call it a “set
of variables” - but wait! What if the left parenthesis symbol ends up in this set? Well, let’s fix
that: we banish all parentheses from our set of variables V.

t(, )u X V =H

Fine. But what if the number 7 ends up in our set of variables? Then, when we say 7, did we
mean the number or the variable? Well. No place for numbers in our set of variables as well.

(t(, )u Y N)X V =H

But wait! What if the string (42) ends up in our set of variables? That will surely lead to
problems. Try again:

(t(, )u Y N)˚ X V =H

Alas, this is still not enough. We haven’t excluded strings like foo(bar.

Hmm, maybe this problem isn’t that easy after all — why not give up and make V be the set
of all splotches of ink that an ancient Greek would recognise as a sequence of their letters?

As entertaining as it is to think about this problem instead of trying to write the actual thesis,
it’s time for a quick solution. One way to wave hands about this is to assume that V is a
magical set that contains no elements that we have used anywhere: essentially a set that is
disjoint with any set we feel convenient that it be disjoint with. It contains none of the special
symbols we use elsewhere.

Another way is to construct a very specific set, which is what we’ll do here:

V def
= tv, v1, v2...u,

where v is the specific symbol v that is used nowhere else.

This construction will be used everywhere we need a set of unique symbols.

B Type variables in λ-terms

This section extends the version of simply-typed λ-calculus from section 2.1 to include type
variables. The same construction can also be applied to simply-typed λ-calculus with subtypes
(section 2.5) without modification.
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This construction closely resembles the parametric polymorphism construction from [Pie02,
chap. 25].

Let VT def
= tτ 1, τ 2, τ3, ...u be a set of symbols we call type variables.

First, we will extend definition 2.1 to include variables:

Definition B.1. For a set of type symbols T , its type closure with type variables Tv(T ) Ď
(T Y VT Y tÑ, ), ( u)˚ is defined inductively:

• α P VT ùñ α P Tv(T )

• σ P T ùñ σ P Tv(T )

• σ, τ P Tv(T ) ùñ (σ Ñ τ) P Tv(T )

Definition B.2. We call a set X typed with variables in T ðñ there is a function

} ¨ }v : X Ñ Tv(T )

Now we need type variable substitution:

Definition B.3. For a type σ P Tv(T ), a type variable α and another type τ P Tv(T ), the type
variable substitution σ[α := τ ] is defined recursively as follows:

σ[α := τ ]
def
=

$

’

’

’

’

&

’

’

’

’

%

σ, σ P T ,
σ, σ P VT ztαu,
τ, σ = α,
σ1[α := τ ]Ñ σ2[α := τ ], σ = σ1 Ñ σ2.

And now we can define λ-terms (the definition is completely identical to definition 2.6 except
for the fact that types may contain variables:

Definition B.4. Let C Ă Const be a set of constants, typed with variables in T .

ΛCaT is defined inductively:

• Constant:
c P C ùñ c P ΛCaT

• Variable:
v P Vλ ùñ v P ΛCaT

• Application:
A,B P ΛCaT ùñ (AB) P ΛCaT

• Abstraction:

v P Vλ, A P ΛCaT , σ P Tv(T ) ùñ (λv : σ ñ A) P ΛCaT
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The definitions for free variables, declaration, context and judgement shall also be reused from
section 2.1.

Now, we will redefine the derivation rules for typed terms (definition 2.9), extending them
with an additional rule that lets type variables act as any type:

Definition B.5. Derivation rules for typed λ-terms:

• Constant

c P C

Γ $ c : }c}v

• Variable

x : σ P Γ

Γ $ x : σ

• Application

Γ $ A : σ1 Ñ σ2 Γ $ B : σ1

Γ $ (AB) : σ2

• Abstraction

Γ ˝ x : τ $ A : σ

Γ $ (λx : τ ñ A) : τ Ñ σ

• Type variable substitution

Γ $ A : σ α P VT τ P Tv(T )
Γ $ A : σ[α := τ ]

Also, for convenience, we will define type variable substitution over all types within a term:

Definition B.6. For α P VT , A P ΛCaT and τ P Tv(T ),

A[α := τ ]
def
=

$

’

’

’

’

&

’

’

’

’

%

c, A = c P C ,
v, A = v P Vλ,
M [α := τ ] N [α := τ ], A =MN ,
λx : σ[α := τ ]ñM [α := τ ], A = (λx : σ ñM).

Note that while for consistency we allow type variables within the types of
constants, this rarely arises in practice. In particular, the current implemen-
tation does not use variables in constant types anywhere.
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C β-reduction and (un)currying

C.1 β-reduction

This section briefly explains the concept of β-reduction. For more details, see [Pie02].

Definition C.1. For M,N P ΛCT , the substitution of the free variable x within M with N is
defined inductively as follows:

M [x := N ]
def
=

$

’

’

’

’

&

’

’

’

’

%

N, M = x

y, M = y P Vλztxu

λx : σ ñ P [x := N ], M = (λx : σ ñ P ), y ‰ x & y R fv(P )

A[x := N ]B[x := N ], M = (AB)

Note that this function is partial, but this can be swept under the rug by renaming bound
variables when needed [Pie02].

We will now define the β-reduction relation β
ÝÑ between λ-terms:

Definition C.2. Two terms are in β
ÝÑ relation only in the following case:

(λx : σ ñM)N
β
ÝÑM [x := N ]

If A β
ÝÑ B, A is called a β-redex.

The relation β
ùñ β-reduces any subterm:

Definition C.3. The β
ùñ relation is defined inductively:

• A β
ÝÑ B ùñ A

β
ùñ B

• A β
ùñ B ùñ AP

β
ùñ BP

• A β
ùñ B ùñ PA

β
ùñ PB

• A β
ùñ B ùñ (λx : σ ñ A)

β
ùñ (λx : σ ñ B)

Definition C.4. A termM P ΛCT is called fully β-reduced if:

@N P ΛCT (␣(M
β
ùñ N))

C.2 Uncurrying

We can represent every λ-term as a function (head) applied to a sequence of arguments:

• If the given termM is not an application, its head isM itself with no arguments.

• If the given term is M = (AB), its head is the head of A and its arguments are B
appended to the arguments of A.
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Example C.1. The term P (QR)(λx : σ ñ S)T has head P and arguments (QR), (λx :

σ ñ S) and T .

Property C.1. If a term:

• is closed

• contains no β-redex

• contains no constants of higher-order-type

• is of non-arrow type

then its arguments have non-arrow types.

Proof. LetM P ΛCT be a term which satisfies the conditions above.

SinceM is of non-arrow type and contains no β-redex, it contains no abstractions, therefore
no bound variables. Since it is closed, this means it also contains no free variables.

Thus,M only contains constants and applications, and must have the following form:

((...(cM1)...Mk´1)Mk)

where the head c is a constant and the argumentsM1...Mk.

Since c is a constant of first-order type, its arguments have simple types.
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