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1 Introduction

The goal is a to develop a web-based software application for solving the satis-
�ability problem of formulas. The formulas are from the language of connected
contact logics. The application provides an easy syntax for writing a formula.
If the formula is satis�able the program visualizes a model for it. Information
for the variable evaluations and the relations between the modal pooints. If the
formula is not satis�able an output with proove for that is provided.

These are the main keypoints.
First, a classical proposition tableau is implemented. It is then extended

for connected contact logic. The tableau �nds a lexical contradicitons in the
formula.

A convinient representation of modal points is given. It provides an easy
way of generating the variable evaluations.

Implementing an algorithm for building a model. Another algoritmh for
building a connected model. These algorithms are used only on open branches
in the tableau tree. That way the algorithm for building a model will not be
executed on formula sections with lexical contradictions.

The application is developed in C++ as a library. This library is compiled
in WebAssembly. The end product is a standalone web application which runs
the satis�ability checking on the user's machine.

The application is located here - http://logic.fmi.uni-sofia.bg/theses/
Dudov_Stoev/
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2 Tableau Method For Classic Propositional Logic

2.1 What Is A tableau?

A tableau method is a formal proof procedure. First, it could be used as a
refutation procedure: to show that a formula X is valid we begin with some
syntactical expression intended to assert it is not valid. This expression is
broken down syntactically, generally splitting things into several cases. This
part of a tableau procedure - the tableau expansion stage - can be thought of as
a generalization of disjunctive normal form expansion. Generally, it moves from
formulas to subformulas. Finally, there are rules for closing cases: impossibility
conditions based on syntax. If each case closes, the tableau itself is said to be
closed. A closed tableau beginning with an expression asserting that X is not
valid is a tableau proof of X.

There is a second way of thinking about the tableau method: as a search
procedure for models meeting certain conditions. Each branch of a tableau can
be considered to be a partial description of a model. In automated theorem-
proving, tableaux can be used to generate counter-examples.

The connection between the two roles for tableau - as a proof procedure and
as a model search procedure - is simple. If we use tableau to search for a model
in which X is false, and we produce a closed tableau, no such model exists, so
X must be valid.

Will follow the tableau method described in Handbook of Tableau Methods
[1] . There are two types of tableaux - signed and unsigned. The signed version
is going to be used.

2.2 Classical Propositional Tableau

Let's look into the signed tableau system for classical propositional logic.
First, we need syntactical machinery for asserting the non-validity of a for-

mula, and for doing case analysis. For this purpose two signs are introduced:
T and F, where these are simply two new symbols, not part of the language of
formulas. Signed formulas are expressions of the form FX and TX, where X
is a formula. The intuitive meaning of FX is that X is false (in some model).
Similarly, TX intuitively asserts that X is true. Then FX is the syntactical
device for (informally) asserting the non-validity of X. A tableau proof of X
begins with FX.

Next, we need machinery (rules) for breaking signed formulas down and
doing a case division. We will de�ne rules for each logical operator (¬∧∨ ⇒⇔).

The treatment of negation is straightforward: from T¬X we get FX and
from F¬X we get TX. These rules can be conveniently presented as follows.

T¬X
FX

F¬X
TX

The rules for conjunction are somewhat more complex. From truth tables
we know that if X ∧ Y is true, X must be true and Y must be true. Likewise,
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if X ∧ Y is false, either X is false or Y is false. This involves a split into two
cases. Corresponding syntactic rules are as follows.

TX ∧ Y
TX
TY

FX ∧ Y
FX | FY

The rules for disjunction are similar. From truth tables we know that if
X ∨ Y is true, either X is true or Y is true. This involves a split into two cases.
Likewise, if X ∨Y is false, X must be false and Y must be false. Corresponding
syntactic rules are as follows.

TX ∨ Y
TX | TY

FX ∨ Y
FX
FY

The rules for implication. From truth tables we know that if X ⇒ Y is
true, either X is false or Y is true. Likewise, if X ⇒ Y is false, X must be true
and Y must be false. Corresponding syntactic rules are as follows.

TX ⇒ Y

FX | TY
FX ⇒ Y

TX
FY

The rules for equivalence. From truth tables we know that if X ⇔ Y is
true, either X is true and Y is true or X is false and Y is false. Likewise, if
X ⇒ Y is false, either X is true and Y is false or X is false and Y is true.
Corresponding syntactic rules are as follows.

TX ⇔ Y

TX
TY

∣∣∣∣ FXFY
FX ⇔ Y

TX
FY

∣∣∣∣ FXTY
The standard way of displaying tableau is as downward branching trees. The

nodes are sets of signed formulas. Indeed, the tableau method is often referred
to as the tree method. Think of a tree as representing the disjunction of its
branches, and a node as representing the conjunction of the signed formulas on
it.

When using a tree display, a tableau expansion is thought of temporally,
and one talks about the stages of constructing a tableau, meaning the stages
of growing a tree. The rules given above are thought of as branch-lengthening
rules. Thus, a leaf node containing {T¬X} ∪ S (where S is a set of signed
formulas) can be lengthened by adding a new leaf node, containing {FX} ∪ S.
Likewise, a leaf node containing {FX ∨ Y } ∪ S can be lengthened with a node
which contains {FX,FY }∪S. A leaf node containing {TX ∨Y }∪S can be split
to two leaf nodes (branching the tree) - one leaf containing {TX} ∪ S and the
other {TY } ∪ S. This is how the schematic rules above are applied to trees.

An important point to note is that the tableau rules are non-deterministic.
They say what can be done, not what must be done. At each stage, we choose
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a signed formula occurrence on a branch leaf and apply a rule to it. Since
the order of choice is arbitrary, there can be many tableaux for a single signed
formula.

De�nition 2.1. A branch is called closed if it contains a contradiction, For
example, if has a node which contains TX and FX for some formula X.

De�nition 2.2. A branch is called �nished if all formulas in it's leaf are
applied, i.e. contains only signed variables(atomic formulas).

De�nition 2.3. A branch is called opened if it is �nished and is not closed.

De�nition 2.4. A tableau is called closed if all branches are closed.

Lemma 2.5. A closed tableau for FX is a tableau proof of X, meaning that X
is a tautology.

Here is the tableau expansion beginning with the signed formula
F (X ∧ Y )⇒ ¬(¬X ∧ ¬Y ).

{F(X ∧ Y )⇒ ¬(¬X ∧ ¬Y )}

{TX ∧ Y , F¬(¬X ∨ ¬Y )}

{TX , TY , F¬(¬X ∨ ¬Y )}

{TX , TY , T¬X ∨ ¬Y }

{TX , TY , T¬X}

{TX , TY , FX}

{TX , TY , T¬Y }

{TX , TY , FY }

The tableau displayed above is closed, so the formula (X∧Y )⇒ ¬(¬X∧¬Y )
is a tautology.

It may happen that no tableau proof is forthcoming, and we can think of the
tableau construction as proving with counterexamples. Consider the following
attempt to prove (X ⇒ Y )⇒ ((Y ⇒ X)⇒ ¬Y )
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{F((X ⇒ Y )⇒ ((Y ⇒ X)⇒ ¬Y ))}

{TX ⇒ Y , F((Y ⇒ X)⇒ ¬Y )}

{TX ⇒ Y , TY ⇒ X , F¬Y }

{TX ⇒ Y , TY ⇒ X , TY }

{FX , TY ⇒ X , TY }

{FX , FY , TY } {FX , TX , TY }

{TY , TY ⇒ X}

{TY , FY } {TY , TX}

The tableau is not closed. The rightmost branch is opened. In fact the
branch yields a counterexample, as follows. Let υ be a propositional valuation
that maps X to true and Y to true as stated by the rightmost branch leaf. The
initial formula with this valuation is υ((X ⇒ Y )⇒ ((Y ⇒ X)⇒ ¬Y )) = false.

Later, we are going to use the tableau method to produce a model in which
the initial formula is valid.

From a di�erent point of view, we can think of a classical tableau simply as
a set of sets of signed formulas: a tableau is the set of its all branches, and a
branch is the set of signed formulas in it's leaf. Semantically, we think of the
outer set as the disjunction of its members, and these members, the inner sets, as
conjunctions of signed formulas they contain. Considered this way, a tableau is a
generalization of the disjunctive normal form (a generalization because formulas
more complex than literals can occur). Now, the tableau construction process
can be thought of as a variation of the process of converting a formula into a
disjunctive normal form.
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3 Contact Logic

3.1 Syntax

The language of contact logic consist of:

� Boolean variables (a denumerable set V)

� Boolean constants: 0 and 1

� Boolean operations:

� u boolean meet

� t boolean join

� ∗ boolean complement

� Boolean terms (or simply terms)

� Propositional connectives: ¬, ∧, ∨, ⇒, ⇔

� Propositional constants: > and ⊥

� Modal connectives: ≤(part-of) and C(contact)

� Complex formulas (or simply formulas)

Terms are de�ned by the following inductive de�nition:

� Each Boolean variable is a term

� Each Boolean constant is a term

� If a is a term then a∗ is a term

� If a and b are terms then a u b and a t b are terms

Atomic formulas are of the form a ≤ b and aCb, where a and b are terms.

Formulas are de�ned by the following inductive de�nition:

� Each propositional constant is a formula

� Each atomic formula is a formula

� If φ is a formula then ¬φ is a formula

� If φ and ψ are formulas then (φ ∧ ψ), (φ ∨ ψ), (φ ⇒ ψ) and (φ ⇔ ψ) are
formulas

Abbreviations: a = b
def
== (a ≤ b) ∧ (b ≤ a), a � b

def
== ¬(a ≤ b), a 6= b

def
==

¬(a = b)
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3.2 Relational semantics

Let F = (W, R) be a relational system with W 6= ∅ and R ⊆ W 2. We call such
systems frames. Following Galton we may give a spatial meaning of frames
naming the elements of W, cells and the relation R, adjacency relation. Then
F is called adjacency space. An example of adjacency space is the chessboard
table, the cells are the squares, and two squares are adjacent if they have a
common point.

Originally Galton assumed R to be a re�exive and symmetric relation but
it is more natural for R to be an arbitrary relation. Regions in an adjacency
space are arbitrary subsets of W.

De�nition 3.1. By a valuation of the Boolean variables in F we mean any
function υ : V → P(W ) assigning to each Boolean variable b a subset υ(b) ⊆W .
The valuation υ is then extended inductively to all Boolean terms as follows:

� υ(0) = ∅

� υ(1) =W

� υ(a u b) = υ(a) ∩ υ(b)

� υ(a t b) = υ(a) ∪ υ(b)

� υ(a∗) =W \ υ(a)

De�nition 3.2. The pairM = (F , υ) is called model. The truth of a formula
φ in M (M |= φ or F , υ |= φ) is extended inductively to all Boolean terms as
follows:

� For atomic formulas:

� M |= >
� M 6|= ⊥
� M |= a ≤ b ⇐⇒ υ(a) ⊆ υ(b)
� M |= aCb ⇐⇒ (∃x ∈ υ(a))(∃y ∈ υ(b))(xRy)

� For complex formulas:

� M |= ¬φ ⇐⇒ M 6|= φ

� M |= φ ∧ ψ ⇐⇒ M |= φ andM |= ψ

� M |= φ ∨ ψ ⇐⇒ M |= φ orM |= ψ

� M |= φ⇒ ψ ⇐⇒ M 6|= φ orM |= ψ

� M |= φ⇔ ψ ⇐⇒ (M |= φ andM |= ψ) or (M 6|= φ andM 6|= ψ)

Let us note that in the above semantics we evaluate formulas not locally at
points, as it is in the standard modal semantics, but globally in the whole model
and this is one of the main di�erences of the present modal approach with the
standard Kripke approach.
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De�nition 3.3. A modelM is a model of a formula φ if φ is true inM.

De�nition 3.4. If φ has a modelM, then φ is satis�able.

De�nition 3.5. M is a model of a set of formulas A if M is a model of
all formulas from A.

De�nition 3.6. A formula φ is true (or valid) in a frame F (F |= φ), if
M |= φ for all modelsM based on F , i.e. for all valuations υ we have F ,υ |= φ.

Lemma 3.7. (Equality of terms) Let a, b are terms andM be a model. Then

M |= a = b↔ υ(a) = υ(b)

Lemma 3.8. (Zero term) Let a, b are terms andM be a model. Then

M |= a ≤ b↔M |= a u b∗ = 0

Lemma 3.9. (Non-zero term) Let a, b are terms andM be a model. Then

M |= ¬(a ≤ b)↔M |= a u b∗ 6= 0

Lemma 3.10. (Re�exivity) Let a, b are terms andM be a model. Then

M |= a 6= 0↔M |= aCa

Lemma 3.11. (Symmetry) Let a, b are terms andM be a model. Then

M |= aCb↔M |= bCa

Lemma 3.12. (Monotonicity) Let a, b are terms andM be a model. Then

M |= aCb ∧ a ≤ a′ ∧ b ≤ b′ ↔M |= a′Cb′

Lemma 3.13. (Distributivity) Let a, b are terms andM be a model. Then

M |= aC(b t c)↔M |= aCb ∨ aCc

M |= (a t b)Cc↔M |= aCc ∨ bCc

Lemma 3.14. Let a, b, c are terms and f, g are formulas. The following
formulas are true:

� f ∧ T =⇒ f , T ∧ f =⇒ f

� f ∧ F =⇒ F , F ∧ f =⇒ F

� f ∨ T =⇒ T , T ∨ f =⇒ T

� f ∨ F =⇒ f , F ∨ f =⇒ f

� a u 0 = 0, 0 u a = 0
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� a t 0 = a, 0 t a = a

� a u 1 = a, 1 u a = a

� a t 1 = 1, 1 t a = 1

� (a t b)Cc ⇐⇒ aCc ∨ bCc

� (a t b) ≤ c ⇐⇒ a ≤ c ∧ b ≤ c

� aCb =⇒ a 6= 0 ∧ b 6= 0

� a u b 6= 0 =⇒ aCb

� a = 0 ∨ b = 0 =⇒ ¬(aCb)

� 0 ≤ a =⇒ T

� a ≤ 1 =⇒ T

� 0C0 =⇒ F

� aC0 =⇒ F

� 1C1 =⇒ T

� aC1 =⇒ a 6= 0

� a 6= 0 =⇒ aCa

3.3 Formula satis�ability

Let ψ be a propositional formula. Let us build a tableau beginning with Tψ. If
the tableau has an opened branch then ψ is satis�able. Unfortunately, for the
contact logic this is not enough because we need to verify the modal connectives
(≤ and C).

Let φ be a formula. Let us build a tableau beginning with Tφ. Let the tableau
has an opened branch B. The leaf of branch B is a set of signed atomic formulas
of the following type:

� TC(a, b)

� FC(e, f)

� Ta ≤ b

� Fa ≤ b

where a and b are terms.
B is an opened branch, so there are no contradicting formulas in it's leaf, i.e.
(¬∃X)(TX ∈ B ∧ FX ∈ B). The signed atomic formulas could be written as
follows:
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� TC(a, b) → C(a, b) (contact)

� FC(a, b) → ¬C(a, b) (non-contact)

� Ta ≤ b → a ≤ b → a u b∗ = 0 → g = 0 (zero term)

� Fa ≤ b → ¬(a ≤ b) → a u b∗ 6= 0 → d 6= 0 (non-zero term)

where a,b,d and g are terms.
All atomic formulas in the branch's leaf should be satis�ed, so we can think

of it as a conjunction of them. Let's call it a branch conjunction. It is
su�cient to build a satis�able model for the branch conjunction to verify that
φ is satis�able. Building such a model could be done a lot more e�ective than
building a model for an arbitrary formula because it is just a conjunction.

De�nition 3.15. Let φ be a formula. Let T be a tableau beginning with φ.
Let B be a set of all atomic signed formulas in an open branch's leaf of T . A
branch conjunction β is the following formula:∧

TC(a,b)∈B

C(a, b) ∧
∧

Td=0∈B
d = 0 ∧

∧
FC(e,f)∈B

¬C(e, f) ∧
∧

Fg=0∈B
g 6= 0 (1)

3.4 Branch conjunction model building

The branch conjunction formula β is satis�able if β has a modelM. We have
to construct such a modelM = (F , υ) = ((W, R), υ).

Let V be the �nite set of all boolean variables in β. Let their count be n.
Let T be the in�nite set of all boolean terms with variables of V.
There are four types of atomic formulas in β, namely contacts, non-contacts,

zero terms and non-zero terms. Only contacts and non-zero terms require ex-
istence of modal points. The valuation υ should assign a set of modal points
to each boolean variable x ∈ V. Such that the contacts and non-zero terms be
satis�ed.

Step 3.16. Creating modal points
Let t ∈ T. Let p be a modal point. Let us try to extend υ such that p ∈

υ(t). By the valuation de�nition υ(t) is a composition of intersections, unions,
and compliments of valuations υ(x) for x ∈ V. Therefore, the modal point p
should be added to zero or more variable valuations depending on the boolean
operations in the term t. With n boolean variables there are 2n ways of adding
the point p. Note that it might not be possible to adjust the variable valuations
such that p ∈ υ(t). For example, if t is a u a∗ 6= 0.

Step 3.17. Creating modal points for non-zero terms
Let g 6= 0 ∈ β. If it is not possible to create a modal point p such that

p ∈ υ(t), then there is no satisfaible model for β.

Step 3.18. Creating modal points for contacts
Let C(a, b) ∈ β. If it is not possible to create a modal point pa such that

pa ∈ υ(a), then there is no satisfaible model for β. Analogously for the term b.
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De�nition 3.19. A variable evaluation En for n boolean variables is a se-
quence of 1s and 0s, as follows:

En = < e1, e2, . . . , en >, where e1, . . . , en ∈ {0, 1} (2)

Let X be the union of all evaluations of boolean variables in V.

X =
⋃
x∈V

υ(x) (3)

For n boolean variables there are 2n unique variable evaluations. We will
de�ne the modal points as variable evaluations. By the de�nition of the valua-
tion, it is not possible to distinguish two or more di�erent modal points in some
subsets. For example, the W \ X subset. The modal point representation also
has this limitation. Therefore, it is su�cient to work with the 2n unique modal
points while building the model.

De�nition 3.20. Let En be a variable evaluation for n boolean variables. Then
(En)i is the i-th element in the sequence En.

De�nition 3.21. The set of all unique variable evaluations Wn over n
variables is de�ned as follows:

Wn = {< e1, e2, . . . , en >| e1, . . . , en ∈ {0, 1}} (4)

De�nition 3.22. Let Vn be a �nite set of n boolean variables. Let Wn be the
set of all unique points over n variables. Then the valuation υn : Vn → P(Wn)
is de�ned as follows:

υn(xi) = {En | En ∈Wn and (En)i = 1}, for xi ∈ Vn (5)

It is then extended inductively to all boolean terms as standard valuation as
follows:

� Boolean constants

� υn(0) = ∅
� υn(1) =Wn

� Boolean terms

� υn(a u b) = υn(a) ∩ υn(b)
� υn(a t b) = υn(a) ∪ υn(b)
� υn(a

∗) =Wn \ υn(a)

Lemma 3.23. The zero terms in β are satis�ed if each zero term's valuation
is the empty set.

g = 0 ∈ β → υn(g) = ∅ (6)
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Lemma 3.24. The non-contacts in β are satis�ed if:

¬C(e, f) ∈ β → ¬(∃x ∈ υn(e))(∃y ∈ υn(f))(xRy) (7)

De�nition 3.25. Let En ∈Wn. En is a valid modal point of β if it preserve
the satis�ability of the zero terms and non-contacts in β:

g = 0 ∈ β → En /∈ υn(g)
and

¬C(e, f) ∈ β → En /∈ (υn(e) ∩ υn(f))

De�nition 3.26. Let W v ⊆Wn be the set of all valid modal points of β.

W v = {En | En ∈Wn and En is a valid modal point of β} (8)

De�nition 3.27. Let x, y ∈ W v are valid modal points. Then 〈x, y〉 is a
valid connected pair of β modal points if it preserves the satis�ability of non-
contacts in β.

¬C(e, f) ∈ β → ¬(x ∈ υn(e) and y ∈ υn(f)) or(x ∈ υn(f) and y ∈ υn(e)) (9)

De�nition 3.28. Let η : (T×Wn)→ {0, 1} be a function which de�nes whether
a modal point is in the valuation of a term. Let t ∈ T. Let En ∈ Wn. The
inductive de�nition of η on the structure of the term t is as follows:

� η(0, En) = 0

� η(1, En) = 1

� η(xi, En) = 1 ⇐⇒ (En)i = 1

� η(a u b, En) = 1 ⇐⇒ η(a, En) = 1 and η(b, En) = 1

� η(a t b, En) = 1 ⇐⇒ η(a, En) = 1 or η(b, En) = 1

� η(a∗, En) = 1 ⇐⇒ η(a, En) = 0

De�nition 3.29. Let IsV alidCon : (W v ×W v) → {0, 1} be a function which
de�nes whether a connected pair is valid.

IsV alidCon(x, y) = 1 ⇐⇒ 〈x, y〉 is a valid connected pair (10)

Lemma 3.30. Let t ∈ T be an arbitrary term. By the de�nition of η and υn
follows:

η(t, En) = 1 ⇐⇒ En ∈ υn(t) (11)

The algorithm described bellow creates modal points and connections only
for the non-zero and contact terms in β.
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Algorithm Building a model

1: W ← ∅
2: R← ∅
3: // Process the non-zero terms in β.
4: for d 6= 0 ∈ β do
5: for x ∈W v do
6: if η(d, x) = 1 then
7: W ←W ∪ {x}
8: R← R ∪ {〈x, x〉}
9: go to 4
10: end if
11: end for
12: Unable to construct a model.
13: end for
14: // Process the contacts in β.
15: for C(a, b) ∈ β do
16: for x, y ∈W v do
17: if η(a, x) = 1 ∧ η(b, y) = 1 ∧ IsV alidCon(x, y) then
18: W ←W ∪ {x, y}
19: R← R ∪ {〈x, x〉, 〈y, y〉, 〈x, y〉, 〈y, x〉}
20: go to 15
21: end if
22: end for
23: Unable to construct a model.
24: end for
25: // W should be non-empty.
26: if W = ∅ then
27: if W v 6= ∅ then
28: x ∈W v

29: W ←W ∪ {x}
30: R← R ∪ {〈x, x〉}
31: else
32: Unable to construct a model.
33: end if
34: end if
35: Successfully constructed a modelM = ((W,R), υ)
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3.5 Formal system

Let's describe a contact logic formal system.
All lemmas are deducible from the syntax and semantics. They are syntac-

tically checked. Therefore, they are syntactically correct.
Let φ be a formula. If the model building procedure creates a model for ¬φ,

then φ is not a tautology. The process of building the model is the proof.
If the model building procedure creates a model for φ, then φ is satis�able

and the model is the proof. Otherwise, the process of building a model is a
proof that φ is not satis�able.

4 Connected Contact Logic

4.1 Connectivity

In topology and related branches of mathematics, a connected space is a topo-
logical space that cannot be represented as the union of two disjoint non-empty
open subsets. Connectedness is one of the principal topological properties that
are used to distinguish topological spaces.

Lemma 4.1. (Connectivity) Let F = (W,R) be a relational system. F is
connected when for all valuations the following formula is true:

b 6= 0 ∧ b 6= 1 =⇒ bCb∗ (12)

Where b is a term. Let this formula be called connectivity axiome.

Let F = (W,R) be a relational system with W 6= ∅, R ⊆ W 2 and a, b are
terms. Let us recall the de�nition of C:

aCb ⇐⇒ (∃x ∈ υ(a))(∃y ∈ υ(b))(xRy)

The connectivity axiom can be written as follows:

υ(b) 6= ∅ ∧ υ(b) 6=W =⇒ (∃x ∈ υ(b))(∃y ∈W \ υ(b))(xRy) (13)

The relational system F = (W,R) de�nes an unidrected graph G(W, R). W
is the set of vertices and R is the set of edges.

De�nition 4.2. Let G = (W, R) be a graph. W is the set of vertices and R
the set of edges. A path πG(x, y) is a sequence of vertices (x, v1, . . . , vk, y) such
that x, v1, . . . , vk, y ∈ V and xRv1, v1Rv2, . . . , vk−1Rvk, vkRy.

De�nition 4.3. Let G = (W,R) be an undirected graph. W is the set of vertices
and R the set of edges. G is connected if there is a path between every two
di�erent vertices in W .

x, y ∈W → (x 6= y =⇒ πG(x, y))
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Theorem 4.4. (Connectivity) Let F = (W,R) be a relational system. Let G =
(W, R) be the undirected graph de�ned by F .

connectivity axiom is satisfied in F ⇐⇒ G is connected (14)

De�nition 4.5. Let F = (W, R) be a relational system. Let G = (W, R) be
the undirected graph de�ned by F . Let M = (F , υn) be a model of β. M is a
connected model if G = (W,R) is connected. Thus, the connectivity axiom is
satis�ed in F .

4.2 Connected model building

Let β be a branch conjunction as in 3.15 :∧
TC(a,b)∈B

C(a, b) ∧
∧

Td=0∈B
d = 0 ∧

∧
FC(e,f)∈B

¬C(e, f) ∧
∧

Fg=0∈B
g 6= 0

De�nition 4.6. Let W v be the set of all valid modal points of β. Let Rv ⊆W v2

be the set of all valid connected pairs of β modal points.

Rv = {〈x, y〉 | x, y ∈W v and 〈x, y〉 is a valid connected pair of β modal points}

Step 4.7. Let Fv = (W v, Rv) be a relational system and Mv = (Fv, υn) be a
model in this system. Mv contains all valid modal points and valid connections
between them w.r.t zero terms and non-contacts in β. Mv is a model of β if
the contacts and non-zero terms in β are satis�ed. If Mv is not a model of
β, then β does not have a model. There is no way of adding new modal points
or relations to satisfy the contacts and non-zero terms. Therefore, there is no
connected model eigther.

De�nition 4.8. Let G = (W,R) be a graph. Let G′ = (W ′, R′). G' is a
subgraph of G (G′ ⊆ G) if:

W ′ ⊆W and R′ = {〈x, y〉 | x, y ∈W ′ and xRy}

Lemma 4.9. Let F = (W,R) be a relational system and M = (F , υn) be a
model. Let G = (W,R) be the graph of F . Let G′ = (W ′, R′) ⊆ G. Then
G' de�nes a model M′ = ((W ′, R′), υ′n). Where υ′n is de�ned by the following
inductive de�nition:

� υ′n(xi) = υn(xi) ∩W ′ for each boolean variable xi

� υ′n(0) = ∅

� υ′n(1) =W ′

� υ′n(a u b) = υ′n(a) ∩ υ′n(b)

� υ′n(a t b) = υ′n(a) ∪ υ′n(b)
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� υ′n(a
∗) =W ′ \ υ′n(a)

Lemma 4.10. LetMv = (Fv, υn) be a model containing all valid modal points
and relations. Let Gv = (W v, Rv) be the graph of Fv. Let G = (W,R) ⊆ Gv

andM = ((W,R), υ′n) be the model de�ned from G by lemma 4.9. Then:

� M preserves the satis�ability of the contacts in β if

C(a, b) ∈ β → (∃x ∈ υ′n(a))(∃y ∈ υ′n(b))(xRy)

� M preserves the satis�ability of the non-contacts in β if

¬C(e, f) ∈ β → ¬((∃x ∈ υ′n(e))(∃y ∈ υ′n(f))(xRy))

� M preserves the satis�ability of the zero terms in β if

d = 0 ∈ β → υ′n(d) = ∅

� M preserves the satis�ability of the non-zero terms in β if

g 6= 0 ∈ β → υ′n(g) 6= ∅

De�nition 4.11. Let G = (W,R) be a graph. Let G′ = (W ′, R′) ⊆ G(W,R).
If G′ is connected, then G' is a connected component of G.

De�nition 4.12. Let G = (W,R) be a graph. Let G′ = (W ′, R′) be a connected
component of G. G′ is a maximal connected component of G if:

x ∈W ′ → ¬(∃y ∈W \W ′)(xRy)
x, y ∈W ′ → xRy ⇐⇒ xR′y

Step 4.13. LetMv be a model of β. Let Gv = (W v, Rv) be the graph of Fv. All
models de�ned by the connected components of Gv preserve the satis�ability of
the zero terms and non-contacts in β. If there is one which satis�es the contacts
and non-zero terms in β, then this is a connected model of β.

Let n be the number of elements in W v. There are 2n subgraphs of Gv. It
is slow to check each one of them if it's connected and whether it satis�es the
contacts and non-zero terms of β. It is su�cient to split Gv to it's maximal
connected components and check only them.

De�nition 4.14. Let G = (W,R) be a graph. Let CompG be the set of all
maximal connected components of G.

CompG = {G′ | G′ ⊆ G and G′ is maximal connected component}

De�nition 4.15. Let G′ = (W ′, R′) and G′′ = (W ′′, R′′) are graphs. The union
of these graphs is the graph G = (W,R) = (W ′ ∪W ′′, R′ ∪R′′).
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Lemma 4.16. Let G = (W,R) be a graph. Let CompG be the set of all maximal
connected components of G. The union of CompG is the graph G.

G =
⋃

G′∈Compg

G′

Lemma 4.17. Let G = (W,R) be a graph. Let CompG be the set of all maximal
connected components of G. Let G′ = (W ′, R′), G′′ = (W ′′, R′′) ∈ CompG.
Then G' and G� does not have a common vertices and edges.

W ′ ∩W ′′ = ∅ and R′ ∩R′′ = ∅

Step 4.18. Let CompG
v

is the set of the maximal connected components of
Gv. Let n be the number of elements in W v. The number elements in CompG

v

is at most n. The maximal connected components of Gv does not have com-
mon vertices nor edges. Therefore, the splitting of G to it's maximal connected
components is a fast and simple operation.

Step 4.19. Each model de�ned by a graph in CompG
v

satis�es the zero terms
and non-contacts of β. They do not introduce new modal points netiher a con-
nections. If there is one which satis�es the contacts and non-zero terms of β,
then this is a connected model of β. Otherwise, β does not have a connected
model.

Lemma 4.20. (Connected component extension)
Let G = (W,R) be a graph. Let G′ = (W ′, R′) ⊆ G be a connected component

of G. G' could be extended to a maximal connected component Gm(Wm, Rm) of
G as follows.

Wm =W ′ ∪ {x | x ∈W \W ′ and (∃y ∈W ′)(πG(x, y))}
Rm = {〈x, y〉 | 〈x, y〉 ∈ R and x, y ∈Wm}

Theorem 4.21. Let Gv = (W v, Rv) be the graph of Fv. If Gv does not have a
maximal connected component which de�nes a model of β, then β does not have
a connected model.

Proof. Let Gv does not have a maximal connected component which de�nes a
model of β. Let β have a connected modelM = (F(W,R), υ′′n). Let G = (W,R)
be the graph de�ned by F . From the de�nition of the connected model follows
that G is connected. G contains only valid modal points and valid relations
between them. Gv contains all valid modal points and all valid connections
between them. Therfore, G ⊆ Gv and G is a connected component of Gv.
By lemma 4.20 G can be extended to a maximal connected component Gm =
(Wm, Rm) of Gv. Let Mm = (Fm(Wm, Rm), υ′n) be the model de�ned from
Gm by lemma 4.9. The extension adds points from W v and relations from
Rv to Gm. These are only valid modal points and valid connections between
them. Therefore, Mm preserves the satis�ability of the non-contacts and zero
terms in β. Gm keeps the points and relations from G. Thus, Mm preserves the
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satis�ability of the contacts and non-zero terms in β. Hence,Mm is a connected
model of β. This leads to a contradiction with the assumption that Gv does not
have a maximal connected component which de�nes a model of β.
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5 Implementation Introduction

The main programming language is C++. Flex & Bison [4] [5] are used to
parse the input formula. The formula proover is a C++ library. The unit and
performance tests are C++ applications. The user application is a Web page.
The C++ libraries are compiled to WebAssembly and are placed inside the web
page. It is a standalone app and the algorithm is executed on the machine of
the client.

The project repository is at https://github.com/Anton94/modal_logic_
formula_prover. Each commit is build and tested on a various compilers (Win-
dows and Linux OS).

5.1 Syntax

The formula should be easy and intuitive to write. Only the keyboard keys
should be used. The legend bellow describes the formula's syntax:

Terms
0 0 Boolean constant 0
1 1 Boolean constant 1
- * Boolean complement
* u Boolean meet
+ t Boolean join
() () Parentheses

[a-zA-Z0-9]+ x1 Boolean variable. Syntax x1, Y 42, V ar101

Formulas
F ⊥ Propositional constant false
T > Propositional constant true
∼ ¬ Negation
& ∧ Conjunction
| ∨ Disjunction
-> ⇒ Implication
<-> ⇔ Equivalence
C C Contact, syntax C(t1, t2)
<= ≤ Part of , syntax <=(t1, t2)
=0 =0 Zero term, syntax t1 = 0
() () Parentheses

These are a few examples of formulas:

� C(x1 ∗ 1, x2 + y1)

� C(x1 + 0, (−x2 + x3) ∗ x1)

� C(x1, x2) & C(x2, x3) & ∼ C(x1, x3)

� C(x1, x2) & <= (x1, x3) & ∼ C(x2, x3)
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� C(x1, x2) -> C(x2, x1)

� C(x1, x2) & C(x2, x3) => C(x1, x3)

� F -> C(x1, x2) & ∼ C(x1, x2)

5.2 Formula parsing

The formula is a sequence of characters. These characters does not give us any
information for the formula's structure. It should be analyzed. Flex [6] and
Bison [7] are used to parse it into an AST (Abstract Syntax Tree) [8]. Flex is
used as a tokenizer. Bison is used as the parser.

5.2.1 Abstract Syntax Tree

The AST is a binary tree. Each node has an operation type and up to two
children. The formula nodes are prior term nodes. A formula node could have
term node as children. Term nodes could not have a formula node as a child.
The leaves are variables or constants.

Let φ = (C(x1, x2) & <= (x2, x3)) => C(x1, x3). The following is an AST
of φ:

=>

&

C

x1 x2

<=

x2 x3

C

x1 x3
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Operation types Enum structure is used to represent the type of formulas
and terms in a memory e�cient way.

as t . h

enum class formula_operation_t
{

constant_true ,
constant_fa l se ,
conjunct ion ,
d i s j unc t i on ,
negation ,
imp l i ca t i on ,
equa l i ty ,
contact ,
less_eq ,
eq_zero

} ;

enum class term_operation_t
{

constant_true ,
constant_fa l se ,
union_ , // union i s a keyword
i n t e r s e c t i o n ,
complement ,
v a r i a b l e

} ;
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Node types There are two types of nodes. Formula nodes and term nodes.
They are de�ned with a separate classes.

as t . h

class Node
{

. . .
} ;

class NFormula : public Node
{
public :

NFormula ( formula_operation_t op ,
Node* l e f t = nu l lp t r , Node* r i g h t = nu l l p t r ) ;

. . .

formula_operation_t op ;
Node* l e f t ;
Node* r i g h t ;

} ;

class NTerm : public Node
{
public :

NTerm( term_operation_t op ,
NTerm* l e f t = nu l lp t r , NTerm* r i g h t = nu l l p t r ) ;

. . .

term_operation_t op ;
NTerm* l e f t ;
NTerm* r i g h t ;
s td : : s t r i n g va r i ab l e ;

} ;

5.2.2 Tokenizer

The tokenizer is responsible for demarcating the special sybmols in the input
formula. After the symbols are identi�ed a token is created for each of them or
at least for those signi�cant to the semantic of the input formula. For example,
the whitespaces are not signi�cant and a tokens are not created for them. We
shall use Flex as a tokenizer [6].

Grammar The tokenizer's grammar is composed from two types of tokens.
Single character and multi character.

The Single character tokens are directly matched in the input formula and
are representing the token itself. The multi character token is a sequence of
characters which have some meaning when bundled together. This tokenizer's
grammar is unambiguous and each input formula is uniquely tokenized.

The tokens derivation is explaned in details in the following table with Flex
syntax. The matched symbol represents the symbol from the input formula and
the output token is the newly created token for the matched symbol.
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Matched sequence Output token

[ \t\n] ;
[,TF01()C&| *+-] yytext[0];
"<=" T_LESS_EQ;
"= 0" T_EQ_ZERO;
"->" T_FORMULA_OP_IMPLICATION;
"<->" T_FORMULA_OP_EQUALITY;
[a-zA-Z0-9]+ T_STRING;
. yytext[0];

Let us review the table above. All white spaces, tabulations and newlines are
ignored. The syntax for it is the ; character.

All single character tokens are passed as their ASCII code. The syntax for
it is yytext[0]. It gives the matched character. That way it will be easy to use
them in the parser.

The multi character tokens are converted to unique identi�cators. For exam-
ple, the "<=" sequence is converted to T_LESS_EQ. The sequence of letters
and numbers is converted to T_STRING. Later, it will be used as a term vari-
able.

The last matched symbol in the table represents everything else, if nothing
has been matched then just return the text itself. The parser will use it to
promt where the unrecongized symbol was found and the symbol itself can be
printed out.

5.2.3 Parser

The single character tokens are passed as their ASCII symbol to Bison. As
discussed above the multi character tokens need more clearance in order to
represent the literal from the input text symbols. The followings are de�nition
of literals for multi character tokens:

� %token <const char*> T_STRING is the literal for "string"

� %token T_LESS_EQ is the literal for "<="

� %token T_EQ_ZERO is the literal for "=0"

� %token T_FORMULA_OP_IMPLICATION is the literal for "->"

� %token T_FORMULA_OP_EQUALITY is the literal for "<->"

The followings are de�nitions of priority and associativity of the operation to-
kens. The priority is from low to hight (w.r.t. the line order in which they are
de�ned)

� %left T_FORMULA_OP_IMPLICATION T_FORMULA_OP_EQUALITY

� %left '|' '+'

25



� %left '&' '*'

� %right '~' '-'

� %nonassoc '(' ')'

Grammar With the usage of the Parser literals, the input formula can be
parsed to an Abstract Syntax Tree(AST). The AST contains all the data from
the input string formula in a more structed way. On the AST additional opti-
mizations can be done which will simplify the initial formula. It will produce
better performance when a model is seeked in the satis�ability algorithms.

For convenience, will de�ne two helper methods. Namely, create_term_node
and create_formula_node. Both method construct AST nodes.

The create_term_node method creates an AST term node. It's arguments
are an operation and up to two child terms. Depending on the operation arity.

The create_formula_node is analogious to the create_term_node method.
Creates an AST formula node.

Few special symbols to de�ne beforehand:

� $$ is the return value to the 'parent'. Later, he can use it, e.g. as a child.

� $i is the return value of the i-th matched element in the matcher sequence.

Algorithm The following is the parser algorithm which produces an Abstract
Sytax Tree.

par s e r . y

formula // ' formula ' non−t ermina l
: 'T ' { // matching token 'T '

$$ = create_formula_node ( constant_true ) ;
}
| 'F ' {

$$ = create_formula_node ( cons tant_fa l s e ) ;
}
| 'C ' ' ( ' term ' , ' term ' ) ' {

$$ = create_formula_node ( contact , $3 , $5 ) ;
}
| "<=" ' ( ' term ' , ' term ' ) ' {

$$ = create_formula_node ( less_eq , $3 , $5 ) ;
}
| term "=0" {

$$ = create_formula_node ( eq_zero , $1 ) ;
}
| ' ( ' formula '&' formula ' ) ' {

$$ = create_formula_node ( conjunct ion , $2 , $4 ) ;
}
| formula '&' formula {

$$ = create_formula_node ( conjunct ion , $1 , $3 ) ;
}
| ' ( ' formula ' | ' formula ' ) ' {

$$ = create_formula_node ( d i s j unc t i on , $2 , $4 ) ;
}
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| formula ' | ' formula {
$$ = create_formula_node ( d i s j unc t i on , $1 , $3 ) ;

}
| '~ ' formula {

$$ = create_formula_node ( negation , $2 ) ;
}
| ' ( ' formula "−>" formula ' ) ' {

$$ = create_formula_node ( imp l i ca t i on , $2 , $4 ) ;
}
| formula "−>" formula {

$$ = create_formula_node ( imp l i ca t i on , $1 , $3 ) ;
}
| ' ( ' formula "<−>" formula ' ) ' {

$$ = create_formula_node ( equa l i ty , $2 , $4 ) ;
}
| formula "<−>" formula {

$$ = create_formula_node ( equa l i ty , $1 , $3 ) ;
}
| ' ( ' formula ' ) ' {

$$ = $2 ;
}

;
term

: ' 1 ' {
$$ = create_term_node ( constant_true ) ;

}
| ' 0 ' {

$$ = create_term_node ( cons tant_fa l s e ) ;
}
| " s t r i n g " {

$$ = create_term_node ( term_operation_t : : v a r i a b l e ) ;
$$−>va r i ab l e = std : : move(* $1 ) ;
// the s t r i n g i s a l l o c a t e d from the
// token i ze r , and we need to f r e e i t
f r e e_ l exe r_s t r i ng ( $1 ) ;

}
| ' ( ' term ' * ' term ' ) ' {

$$ = create_term_node ( i n t e r s e c t i o n , $2 , $4 ) ;
}
| term ' * ' term {

$$ = create_term_node ( i n t e r s e c t i o n , $1 , $3 ) ;
}
| ' ( ' term '+' term ' ) ' {

$$ = create_term_node ( union_ , $2 , $4 ) ;
}
| term '+' term {

$$ = create_term_node ( union_ , $1 , $3 ) ;
}
| '− ' term {

$$ = create_term_node ( complement , $2 ) ;
}
| ' ( ' term ' ) ' {

$$ = $2 ;
}

;
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5.3 Formula re�nement

The AST can be easily modi�ed and optimized. One of the modi�cations is
removing the implications and equivalences. They are replaced by conjunction,
disjunction, and negation. This is convenient because it simpli�es the tableau
method. It does not have to handle implication and equivalence operations.
The following is a modi�ed AST of φ 5.2.1 without the implication:

|

∼

&

C

x1 x2

<=

x2 x3

C

x1 x3

5.3.1 Visitor Pattern

The AST modi�cation is best achieved with the visitor pattern [9]. Uses double
virtual dispatching. Separates the algorithm from the object structure on which
it operates. Allows new visitors to be added in a simple manner. Each AST
modi�cation will be implemented as a visitor. Will not explain the pattern in
depth. In essence, the visitor pattern requires the AST nodes to impelement a
virtual accept method. This method accepts a visitor as argument and calls
the visitor's virtual visit method with the real node's type. This is the double
virtual dispatching. One virtual call to �nd the node's real type. Another to
�nd the visitor's real type. Now, adding a new visitor requires only adding it's
class. Does not require changes in the AST node classes or other visitor classes.
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v i s i t o r . h/ as t . h

. . .
class Vi s i t o r
{
public :

virtual void v i s i t (NFormula& f ) = 0 ;
virtual void v i s i t (NTerm& t ) = 0 ;

} ;

// Example v i s i t o r ( ag lor i thm ) which w i l l p r i n t the AST t r e e .
class VPrinter : public Vi s i t o r
{
public :

void v i s i t (NFormula& f ) ov e r r i d e
{

// Print the formula node ' s data .
}
void v i s i t (NTerm& t ) ove r r i d e
{

// Print the term node ' s data .
}

} ;

class Node
{
public :

virtual void accept ( V i s i t o r& v) = 0 ;
} ;

class NFormula : public Node
{
public :

void accept ( V i s i t o r& v) ove r r i d e { v . v i s i t (* this ) ; }

. . .
} ;

class NTerm : public Node
{
public :

void accept ( V i s i t o r& v) ove r r i d e { v . v i s i t (* this ) ; }

. . .
} ;
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It's worth showing the implementation of the VPrinter visit methods. They
are simple and a good illustration of the pattern. Shows how the AST tree is
traversed by calling the VPrinter instance with the AST's root node.

v i s i t o r . cpp

void VPrinter : : v i s i t (NFormula& f )
{

switch ( f . op )
{

case formula_operation_t : : constant_true :
out_ << "T" ; // out_ i s an output stream , e . g . s t d : : cout .
break ;

case formula_operation_t : : cons tant_fa l s e :
out_ << "F" ;
break ;

case formula_operation_t : : con junct ion :
out_ << " ( " ;
f . l e f t −>accept (* this ) ;
out_ << " & " ;
f . r i ght−>accept (* this ) ;
out_ << " ) " ;
break ;

case formula_operation_t : : d i s j un c t i o n :
// Analogous to conjunct ion . The symbol i s ' | ' .

case formula_operation_t : : imp l i c a t i on :
// Analogous to conjunct ion . The symbol i s '−>'.

case formula_operation_t : : e qua l i t y :
// Analogous to conjunct ion . The symbol i s '<−>'.

case formula_operation_t : : negat ion :
out_ << "~" ;
f . l e f t −>accept (* this ) ;
break ;

case formula_operation_t : : l e s s_eq :
out_ << "<=(" ;
f . l e f t −>accept (* this ) ;
out_ << " ,  " ;
f . r i ght−>accept (* this ) ;
out_ << " ) " ;
break ;

case formula_operation_t : : eq_zero :
out_ << " ( " ;
f . l e f t −>accept (* this ) ;
out_ << ")=0" ;
break ;

case formula_operation_t : : contact :
out_ << "C( " ;
f . l e f t −>accept (* this ) ;
out_ << " ,  " ;
f . r i ght−>accept (* this ) ;
out_ << " ) " ;
break ;

default :
a s s e r t ( fa l se && "Unrecognized . " ) ;

}
}
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void VPrinter : : v i s i t (NTerm& t )
{

switch ( t . op )
{

case term_operation_t : : constant_true :
out_ << "1" ;
break ;

case term_operation_t : : cons tant_fa l s e :
out_ << "0" ;
break ;

case term_operation_t : : v a r i a b l e :
out_ << t . v a r i ab l e ;
break ;

case term_operation_t : : union_ :
out_ << " ( " ;
t . l e f t −>accept (* this ) ;
out_ << " + " ;
t . r i ght−>accept (* this ) ;
out_ << " ) " ;
break ;

case term_operation_t : : i n t e r s e c t i o n :
// Analogous to union_ . The symbol i s '* ' .

case term_operation_t : : complement :
out_ << "−" ;
t . l e f t −>accept (* this ) ;
break ;

default :
a s s e r t ( fa l se && "Unrecognized . " ) ;

}
}

5.3.2 Visitors Overview

The following are the supported visitors. Their implementation is close to a
thousand lines of code and can be checked in the repository.

VReduceConstants Removes all unnecessary children of And/Or/Negation
operations of the following type:

� ~T ≡ F � C(0,0) ≡ F � ~F ≡ T � C(1,1) ≡ T
� (T & T) ≡ T � C(a,0) ≡ F � (F | F) ≡ F � C(0,a) ≡ F
� (g & T) ≡ g � -1 ≡ 0 � (g | T) ≡ T � -0 ≡ 1
� (T & g) ≡ g � (1 * 1) ≡ 1 � (T | g) ≡ T � (0 + 0) ≡ 0
� (g & F) ≡ F � (t * 1) ≡ t � (g | F) ≡ g � (t + 1) ≡ 1
� (F & g) ≡ F � (1 * t) ≡ t � (F | g) ≡ g � (1 + t) ≡ 1
� 0=0 ≡ T � (t * 0) ≡ 0 � 1=0 ≡ F � (t + 0) ≡ t
� <=(0,a) ≡ T � (0 * t) ≡ 0 � <=(a,1) ≡ T � (0 + t) ≡ t

VConvertContactsWithConstantTerms Converts C with constant 1 terms
in !=0 atomic formulas. This visitor is best used after the contacts are reduced,
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via VReduceConstants

� C(a,1) ≡ ~(a=0)

� C(1,a) ≡ ~(a=0)

VConvertLessEqContactWithEqualTerms Converts C and <= atomic
formulas with identical terms:

� <=(a,a) ≡ T,
since (a * -a = 0))

� C(a,a) ≡ ~(a=0)

VReduceDoubleNegation Removes the double/tripple/etc negations. This
visitor is best used after all visitors which might add additional negations!

� -(-g) ≡ g

� -(-t) ≡ t

VConvertImplicationEqualityToConjDisj Converts all formula nodes of
type implication and equality to nodes which are using just conjunction and dis-
junction. The main reason for this visitor is to simplify the formula operations.
This visitor simpli�es the formula to contain only conjunctions, disjunctions and
negation operations.

� (f -> g) ≡ (~f | g)

� (f <-> g) ≡ ((f & g) | (~f & ~g))

VConvertLessEqToEqZero Converts a <= formula to an equals to zero
atomic formula

� <=(a,b) ≡ (a * -b) = 0

VSplitDisjInLessEqAndContacts Divides C and <= atomic formulas with
a disjunction term into two simpler formulas

� C(a + b, c) ≡ C(a, c) | C(b, c)

� C(a, b + c) ≡ C(a, b) | C(a, c)

� <=(a + b, c) ≡ <=(a,c) & <=(b,c)

There are few visitors which only collect or print information from the for-
mula

� VVariablesGetter - gets all variables from the formula (as string)

� VPrinter - prints the formula to some provided output stream
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5.4 Formula building

The formula is a binary tree. A subformula is a subtree in the formula's tree.
The process of building a satis�able model is computational heavy. A part of
it is lexical comparing and traversing subformulas. The AST is convenient to
modify the formula. These modi�cations are a preprocessing step. After them
the formula will not be modifed. A few optimizations could be done.

5.4.1 Optimizations

Reducing formula operations The formula operations could be reduced
to not have implication, equivalence and less equal. The VConvertImplica-
tionEqualityToConjDisj and VConvertLessEqToEqZero visitor should be ap-
plied.

Variable substitution The variables are a sequence of characters, i.e. strings.
It is slow to compare them. An integer ID could be assigned to each variable.
One way to do it is via the VVariablesGetter visitor. Retrieve all unique vari-
ables in a vector and use their positions as IDs.

Hashing subformulas Conducting a test whether two subformulas are equal
in a lexical way is an important procedure for the sake of performance. Such
equality checks are required in various situations. One of which is checking if a
subformula exists in a set of subformulas.

Have in mind that the naive solution to do an equality check is to compare
the whole subformula strcuture. The complexity is O(n), where n is the size of
the subformula. To reduce this complexity a precalcaulated hash value shall be
used. For each formula node an additional hash variable is stored. The hash
is computed recursively through the formula's structure. The hash of a parent
node depends on the hashes of its children nodes. The equality comparison �rst
checks the hash codes. The full equality checking is done only for matching hash
codes.
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5.4.2 Layout

The formula structure will be similar to the AST. A couple of changes re�ecting
the optimizations above. The following is the �nal formula node's layout.

formula . h/term . h

class formula {
. . .
enum class operat ion_type : char {

constant_true ,
constant_fa l se ,
conjunct ion ,
d i s j unc t i on ,
negation ,
eq_zero ,
c ,
i nva l i d ,

} ;

operat ion_type op_ ;
std : : s i z e_t hash_ ;

struct ch i ld_formulas {
formula * l e f t ;
formula * r i g h t ;

} ;
struct chi ld_terms {

term* l e f t ;
term* r i g h t ;

} ;

union {
// Holds only one o f the de sc r i b ed o b j e c t s .
// Depending on the operat ion type the
// child_f_ or child_t_ i s " v a l i d " .
ch i ld_formulas child_f_ ;
chi ld_terms child_t_ ;

} ;
} ;

class term {
. . .
enum class operat ion_type : char
{

constant_true ,
constant_fa l se ,
union_ ,
i n t e r s e c t i o n ,
complement ,
va r i ab l e ,
i nva l i d ,

} ;

operat ion_type op_ ;
std : : s i z e_t hash_ ;

struct ch i l d r en
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{
term* l e f t ;
term* r i g h t ;

} ;
union {

// Holds e i t h e r ch i l d r en or v a r i a b l e id .
// Depending on the node ' s opera t ion type .
ch i l d r en chi ldren_ ;
s i ze_t variable_id_ ;

} ;
} ;

5.4.3 Hashing

The following is the implemented hash construction procedure for the term node.
The formula node is analogous.

term . cpp

void term : : construct_hash ( )
{

switch (op_)
{
case operat ion_t : : constant_true :
case operat ion_t : : cons tant_fa l s e :
break ;

case operat ion_t : : union_ :
case operat ion_t : : i n t e r s e c t i o n :

hash_ = ( ( ch i l d r en . l e f t −>get_hash ( ) & 0xFFFFFFFF) * 2654435761) +
ch i l d r en . r i ght−>get_hash ( ) & 0xFFFFFFFF) * 2654435741) ;

break ;
case operat ion_t : : complement :

hash_ = ( ch i l d r en . l e f t −>get_hash ( ) & 0xFFFFFFFF) * 2654435761;
break ;

case operat ion_t : : v a r i a b l e :
hash_ = ( variable_id_ & 0xFFFFFFFF) * 2654435761;
break ;

default :
a s s e r t ( fa l se && "Unrecognized . " ) ;

}

// Add the opera t ion type to the hash .
const auto op_code = static_cast<unsigned>(op_) + 1 ;
hash_ += (op_code & 0xFFFFFFFF) * 2654435723;

}

Let τ1 and τ2 be two terms. Let h1 be the precalculated hash of τ1 and h2 be
the precalculated hash of τ2. The equality check procedure follows the following
steps:

� if h1 6= h2, then the terms are not equal

� if h1 = h2, then recursively compare the children.

35



5.4.4 Conversion from AST

The formula building from an AST is straightforward. Recursive depth �rst
iteration over the AST. For each AST node a coresponding formula/term node
is constructed. The implementation could be found in term.cpp and formula.cpp
in the repository.
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6 Tableau Implementation

The Tableau process is a decision procedure. Recursively breaks down a given
formula into basic components. Based on that a decision can be concluded.
The recursive step breaks down a formula part into one or two subformulas.
Continuously appling the recursive step produces a binary tree. The nodes are
the formulas and the links represent the recursive step.

All formulas in a branch are considered to be in conjunction. Contradiction
may arise in a same branch if there exists a formula and its negation.

The main principle of the tableau is to break complex formula into smaller
ones until complementary pairs of atomic formulas are produced.

De�nition: Signed formulas set

The signed formulas set consists only of signed formulas. The letter X is usually
used for its representation.

6.1 De�nition: Tableau Step

The Tableau Step takes as input a formula and a signed formulas set and pro-
duces as output one or two new formulas, depending on the operation. The
signed formulas set consists of the broken down formulas by previous tableau
steps. The output of the tableau step depends on the rule applied to the formula.

6.1.1 Rules

Only negation conjunction and disjunction operations will be handled. The
implication and equivalence are converted.

Negation

T(¬ϕ), X
F(ϕ), X

F(¬ϕ), X
T(ϕ), X

Conjunction

T(ϕ ∧ ψ), X
Tϕ,Tψ,X

F(ϕ ∧ ψ), X
Fϕ,X Fψ,X

Disjunction

T(ϕ ∨ ψ), X
Tϕ,X Tψ,X

F(ϕ ∨ ψ), X
Fϕ,Fψ,X
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For our case the functionality of the tableau process shall be extended. If the
branch is not closed there are additional calculations needed in order to verify
that there is no contradiction. Namely to verify that there is no contradiction on
Term level. This means that there exists a satis�able model. This veri�cation
can be done in di�erent manners. Depending on the algorithm type. The best
way to think about it is that the tableau process returns a not-closed branch and
if there is a model for the set of atomic formuas in this branch, then the formula
is satis�able, otherwise the tableau process proceeds with the next not-closed
branch. If such branch does not exist then the formula is not satis�able.

6.2 Implementation

The program implementation of the tableau method follows the standard tableau
process. First interesting design decision is to keep all true signed formulas in
one data set, and all false signed formulas in another data set. This enables fast
searches whether a formula has been signed as true or false.

De�nition: Signed Formula Collection

Let X be a set of formulas, then X is called signed formula collection if and only
if all formulas in X are signed as true or all formulas are signed as false.

This collection is implemented with std::unordered_set (hashset), which
stores the formulas by pointers to their root nodes. The hashing uses the node's
precalculated hash. The comparing is via the node's operator==. That way dif-
ferent pointers to subformulas with same structure will be threated as identic.

The average complexity for search, insert and erase in this collection is O(1).
There is no formula coping. So, almost no memory overhead for keeping the
formulas in the set.

There are 8 signed formula collections:

� formulas_T - contains only non-atomic formulas signed as true

� formulas_F - contains only non-atomic formulas signed as false,
For example, if ¬ϕ is encountered as an output of the tableau step, then
only ϕ is inserted into the formula_F

� contacts_T - contains only atomic contact formulas signed as true

� contacts_F - contains only atomic contact formulas signed as false

� zero_terms_T - contains only formulas of type ϕ ≤ ψ signed as true

� zero_terms_F - contains only formulas of type ϕ ≤ ψ signed as false

These collctions are unordered sets of points to the formulas/terms.

types . h
using formulas_t = std : : unordered_set<const formula * , formula_ptr_hasher , formula_ptr_comparator >;
using terms_t = std : : unordered_set<const term * , term_ptr_hasher , term_ptr_comparator >;
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tab leau . h

formulas_t formulas_T_ ;
formulas_t formulas_F_ ;
formulas_t contacts_T_ ;
formulas_t contacts_F_ ;
terms_t zero_terms_T_ ;
terms_t zero_terms_F_ ;

De�nition: Formula Contradiction

Let ϕ be a signed formula, then ϕ is causing a contradiction if any of the
following is true:

� ϕ is a non-atomic signed as true and ϕ belongs to formulas_F

� ϕ is a non-atomic signed as false and ϕ belongs to formulas_T

� ϕ is a contact formula signed as true and ϕ belongs to contacts_F

� ϕ is a contact formula signed as false and ϕ belongs to contacts_T

� ϕ is a zero terms formula signed as true and ϕ belongs to zero_terms_F

� ϕ is a zero terms formula signed as false and ϕ belongs to zero_terms_T

Invariant

At any time, all formulas in all eight signed formula collections do not contradict.
A contradiction may occure if a formula is split and some of the resulting

components causes a contradiction.

Example

Let's assume that contacts_T = {C(a, b)} and let's have a look at the following
formula T(T ∧ ¬C(a, b)).
By the rules of decomposition, namely the ( ∧ ) rule produces TT and T¬C(a, b).

Then the T¬C(a, b) will be decomposed to FC(a, b) by the ( ¬ ) rule, which
causes a contradiction since C(a, b) is already present in contacts_T formulas.

Tableau Algorithm

Given a formula ϕ, the following algorithm determines the atomic formulas in
all branches of the tableau process.

As a �rst step if the formula ϕ is the constant F, then false is returned di-
rectly, otherwise the whole formula ϕ is inserted in formulas_T .
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Remarks

� true boolean value is used to represent the formula constant T

� false boolean value is used to represent the formula constant F

� Contact atomic formula is commutative, meaning that: C(a, b) ⇐⇒
C(b, a)

Few lemmas which will provide a much more e�cient contradiction �nding
in the tableau process.

Lemma: A

Let x be a term. Suppose that the atomic formula x = 0 has already been signed
as true. Then marking the following formulas as true will lead to contradiction:

� C(x,y)

� C(y,x)

for any term y.

Lemma: A-inverse

Let x, y and z be terms. Suppose that the atomic formulas C(x,y) or C(z, x)
has already been signed as true, then marking the formula x = 0 as true will
lead to contradiction.

Time Complexity A and A-inverse

The algorithmic complexity to check whether a new formula leads to contradic-
tion by Lemma A and Lemma A-inverse is done e�ectively. Namely in constant
time with the usage of one new collection contact_T_terms_. It keeps the
terms of the true contacts. Namely the contacts in the collection contacts_T .
This means that for each T(C(x, y)), the terms x and y are in the mentioned
collection of true terms. The contact_T_terms_ is a multiset and keeps track
of all added terms, meaning that if the term x is added twice and then removed
only once there will still be an entry of that x in the contact_T_terms_ col-
lection. Removing a true contact appears when moving up the tableau tree, i.e.
switching to another branch.

To check if a new formula leads to contradiction by Lemma A or Lemma
A-inverse the following method is used:

auto has_broken_contact_rule ( const formula * f ) const −> bool ;
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6.2.1 Handy methods

Searching

Search for formula signed as true

auto find_in_T ( const formula * f ) const −> bool

Checks existence of formula ϕ in any positive collection depending on the type
of ϕ. Namely if ϕ is of type:

� C(x, y): returns whether ϕ ∈ contacts_T

� x = 0: returns whether ϕ ∈ zero_terms_T

� non-atomic formula: returns whether ϕ ∈ formulas_T

Search for formula signed as false

auto find_in_F ( const formula * f ) const −> bool

Checks existence of formula ϕ in any negative collection depending on the type
of ϕ. Namely if ϕ is of type:

� C(x, y): returns whether ϕ ∈ contacts_F

� x = 0: returns whether ϕ ∈ zero_terms_F

� non-atomic formula: returns whether ϕ ∈ formulas_F

Adding

Mark formula as true

void add_formula_to_T( const formula * f )

Adds the formula ϕ as true in in the respective positive collection. Namely if ϕ
is of type:

� C(x, y): ϕ is added to contacts_T , and the terms x and y are added to
the contact_T_terms_

� x = 0: x is added in zero_terms_T

� non-atomic formula: ϕ is added to formulas_T

Mark formula as false

void add_formula_to_F( const formula * f )

Adds the formula ϕ as false in the respective negative collection. Namely if ϕ
is of type:

� C(x, y): ϕ is added to contacts_F

� x = 0: x is added in zero_terms_F

� non-atomic formula: ϕ is added to formulas_F
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Removing

Remove formula signed as true

void remove_formula_from_T( const formula * f )

Removes the formula ϕ from the respective positive collection. Namely if ϕ is
of type:

� C(x, y): ϕ is removed from contacts_T , and the terms x and y are removed
from the contact_T_terms_.

� x = 0: x is removed from zero_terms_T

� non-atomic formula: ϕ is removed from formulas_T

Remove formula signed as false

void remove_formula_from_F( const formula * f )

Removes the formula ϕ from the respective negative collection. Namely if ϕ is
of type:

� C(x, y): ϕ is removed from contacts_F

� x = 0: x is removed from zero_terms_F

� non-atomic formula: ϕ is removed from formulas_F
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Tableau Satis�able Step Implementation

The Tableau satis�able step is the whole tableau algorithm.

auto tab leau : : s a t i s f i a b l e_ s t e p ( ) −> bool
{

// The bottom of the r e cu r s i v e a lgor i thm i s when we have
// only atomic formulas ( which does not con t r ad i c t s ) .
// Then we can run a l gor i thms fo r model cons t ruc t i on .
i f ( formulas_T_ . empty ( ) && formulas_F_ . empty ( ) )
{

// This i s the method which t r i e s
// to cons t ruc t s a t i s f i a b l e model .
return has_sat i s f iab le_mode l ( ) ;

}

i f ( ! formulas_T_ . empty ( ) )
{

// Choosing some formula to handle in t h i s s t ep .
// I f t h i s branch does not produce a v a l i d s a t i s f i a b l e path ,
// then t h i s formula w i l l be re turned to formulas_T_ .
auto f = * formulas_T_ . begin ( ) ;

const auto op = f−>get_operation_type ( ) ;
i f ( op == op_t : : negat ion )
{

// T(~X) −> F(X)
auto X = f−>get_le f t_chi ld_formula ( ) ;
i f (X−>is_constant ( ) )
{

// F(T) i s not s a t i s f i a b l e
i f (X−>is_constant_true ( ) )
{

return fa l se ;
}
// F(F) i s s a t i s f i a b l e , cont inue with the r e s t .
return s a t i s f i a b l e_ s t e p ( ) ;

}

i f ( find_in_T (X) )
{

// Contradict ion , we want to s a t i s f y F(X)
// but we a l ready have to s a t i s f y T(X) .
return fa l se ;

}

i f ( find_in_F (X) ) // Skip adding F(X) mu l t i p l e t imes .
{

return s a t i s f i a b l e_ s t e p ( ) ;
}

add_formula_to_F(X) ;
auto r e s = s a t i s f i a b l e_ s t e p ( ) ;
// Revert i t on the way back .
remove_formula_from_F(X) ;
return r e s ;

}
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i f ( op == op_t : : con junct ion )
{

// T(X & Y) −> T(X) & T(Y)
T_conjunction_child X(* this , f−>get_le f t_chi ld_formula ( ) ) ;
T_conjunction_child Y(* this , f−>get_right_chi ld_formula ( ) ) ;

// Checks i f X breaks the contac t ru l e
// or b r ing s a con t rad i c t i on
i f ( !X. v a l i d a t e ( ) )
{

return fa l se ;
}
X. add_to_T ( ) ; // Adds X to T c o l l e c t i o n

i f ( !Y. v a l i d a t e ( ) )
{

X. remove_from_T ( ) ;
return fa l se ;

}
Y. add_to_T ( ) ;

auto r e s = s a t i s f i a b l e_ s t e p ( ) ;
X. remove_from_T ( ) ;
Y. remove_from_T ( ) ;

return r e s ;
}

a s s e r t ( op == op_t : : d i s j un c t i o n ) ;
// T(X v Y) −> T(X) v T(Y)
auto X = f−>get_le f t_chi ld_formula ( ) ;
auto Y = f−>get_right_chi ld_formula ( ) ;
t r a c e ( ) << "Wil l  s p l i t  to  two subt r e e s :  "

<< *X << " and " << *Y;

// T(T) i s s a t i s f i a b l e and we can sk i p the other branch
i f (X−>is_constant_true ( ) | | Y−>is_constant_true ( ) )
{

t r a c e ( ) << "One o f  the  c h i l d s  i s  constant  t rue " ;
return s a t i s f i a b l e_ s t e p ( ) ;

}
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auto process_T_disj_chi ld = [& ] ( const formula * ch i l d ) {
i f ( ch i ld−>is_cons tant_fa l s e ( ) | | // T(F) i s not s a t i s f i a b l e

find_in_F ( ch i l d ) | | has_broken_contact_rule ( c h i l d ) )
{

return fa l se ;
}

i f ( find_in_T ( ch i l d ) ) // sk i p adding i t mu l t i p l e t imes
{

return s a t i s f i a b l e_ s t e p ( ) ;
}

add_formula_to_T( ch i l d ) ;
const auto r e s = s a t i s f i a b l e_ s t e p ( ) ;
remove_formula_from_T( ch i l d ) ;
return r e s ;

} ;

t r a c e ( ) << " Star t  o f  the  l e f t  subt ree :  " << *X << " o f  " << * f ;
i f ( process_T_disj_chi ld (X) )
{

// There was no con t rad i c t i on in the l e f t path ,
// so there i s no need to cont inue with the r i g h t path .
return true ;

}

t r a c e ( ) << " Star t  o f  the  r i g h t  subt ree :  " << *Y << " o f  " << * f ;
return process_T_disj_chi ld (Y) ;

}

// Almost analogous but t ak ing a formula from Fs

// Choosing some formula to handle in t h i s s t ep .
// I f t h i s branch does not produce a v a l i d s a t i s f i a b l e path ,
// then t h i s formula w i l l be re turned to formulas_F_
auto f = * formulas_F_ . begin ( ) ;

const auto op = f−>get_operation_type ( ) ;
i f ( op == op_t : : negat ion )
{

// F(~X) −> T(X)
auto X = f−>get_le f t_chi ld_formula ( ) ;
i f (X−>is_constant ( ) )
{

// T(F) i s not s a t i s f i a b l e
i f (X−>is_cons tant_fa l s e ( ) )
{

return fa l se ;
}
// T(T) i s s a t i s f i a b l e , cont inue with the r e s t
return s a t i s f i a b l e_ s t e p ( ) ;

}
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i f ( find_in_F (X) )
{

// Contradict ion , we want to s a t i s f y T(X)
// but we a l ready have to s a t i s f y F(X) .
return fa l se ;

}
// We w i l l add T(X) where X might be Contact or =0 term ,
// so we need to v e r i f y t ha t we w i l l not break the contac t ru l e .
i f ( has_broken_contact_rule (X) )
{

return fa l se ;
}

i f ( find_in_T (X) ) // sk i p adding i t mu l t i p l e t imes
{

return s a t i s f i a b l e_ s t e p ( ) ;
}

add_formula_to_T(X) ;
auto r e s = s a t i s f i a b l e_ s t e p ( ) ;
remove_formula_from_T(X) ;
return r e s ;

}

i f ( op == op_t : : d i s j un c t i o n )
{

// F(X v Y) −> F(X) & F(Y)
F_dis junct ion_chi ld X(* this , f−>get_le f t_chi ld_formula ( ) ) ;
F_dis junct ion_chi ld Y(* this , f−>get_right_chi ld_formula ( ) ) ;

// Checks t ha t X does not br ing a con t rad i c t i on
i f ( !X. v a l i d a t e ( ) )
{

return fa l se ;
}
X. add_to_F ( ) ;

i f ( !Y. v a l i d a t e ( ) )
{

X. remove_from_F ( ) ;
return fa l se ;

}
Y. add_to_F ( ) ;

auto r e s = s a t i s f i a b l e_ s t e p ( ) ;

X. remove_from_F ( ) ;
Y. remove_from_F ( ) ;

return r e s ;
}
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a s s e r t ( op == op_t : : con junct ion ) ;
// F(X & Y) −> F(X) v F(Y)
auto X = f−>get_le f t_chi ld_formula ( ) ;
auto Y = f−>get_right_chi ld_formula ( ) ;

t r a c e ( ) << "Wil l  s p l i t  to  two subt r e e s :  " << *X << " and " << *Y;

// F(F) i s s a t i s f i a b l e and we can sk i p the other branch
i f (X−>is_cons tant_fa l s e ( ) | | Y−>is_cons tant_fa l s e ( ) )
{

t r a c e ( ) << "One o f  the  c h i l d s  i s  constant  f a l s e " ;
return s a t i s f i a b l e_ s t e p ( ) ;

}

auto process_F_conj_child = [& ] ( const formula * ch i l d ) {
i f ( ch i ld−>is_constant_true ( ) | | // F(T) i s not s a t i s f i a b l e

find_in_T ( ch i l d ) )
{

return fa l se ;
}
i f ( find_in_F ( ch i l d ) ) // sk i p adding i t mu l t i p l e t imes
{

return s a t i s f i a b l e_ s t e p ( ) ;
}

add_formula_to_F( ch i l d ) ;
const auto r e s = s a t i s f i a b l e_ s t e p ( ) ;
remove_formula_from_F( ch i l d ) ;
return r e s ;

} ;

t r a c e ( ) << " Star t  o f  the  l e f t  subt ree :  " << *X << " o f  " << * f ;
i f ( process_F_conj_child (X) )
{

// There was no con t rad i c t i on in l e f t path ,
// so there i s no need to cont inue with the r i g h t path .
return true ;

}

t r a c e ( ) << " Star t  o f  the  r i g h t  subt ree :  " << *Y << " o f  " << * f ;
return process_F_conj_child (Y) ;

}
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7 Model Implementation

Tableau branch output

As stated above the ouput of a branch in the tableau process is a set of atomic
formulas. These atomic formulas are grouped in six sets:

� Contacts (contacts_T )

� Non Contacts (contacts_F )

� Equal to Zero Terms (zero_terms_T )

� Not Equal to Zero Terms (zero_terms_F )

All atomic formulas in the branch should be satis�ed. So, they are in a
conjunction. Can be represented with the following formula:∧

i
C(ai, bi) ∧

∧
j
¬C(ej , fj) ∧∧

k
dk = 0 ∧

∧
l
gl 6= 0

Model output

The model bulding algorithm should produce a set of modal points. The con-
tacts between them and to de�ne the valuation for each boolean variable.

7.1 Modal point representation

The modal points are variable evaluations. The variables are converted to iden-
ti�cators from 0 to N - 1, where N is the number of di�erent boolean variables.
The variable evaluation is a sequence of N 1s and 0s. Thus, all di�erent eval-
uations are 2N . It is implemented via the boost::dynamic_bitset. Which is an
optimized vector of N booleans. The memory for N elements is rough�y N bits.
The element at position X is the evaluation for the variable with identi�cator
X.

There might be variables in the formula which are not used in the branch
conjunction. The evaluations for those variables are not needed. So, the variable
evaluations will be only over the used variables. Let the used variables count
is K. Then, all di�erent modal points will be 2K .

It is crucial to have an iterative algorithm for generating all modal points.
The modal point representation is similar to the binary numbers. Therefore,
the plus one binary operation is simulated over the bitset. It allows a generation
of the next modal point. It is convenient for the model construction.

The following is the implementation of the variable evaluation:
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var iab l e s_eva luat ions_block . h/cpp

using variables_mask_t = boost : : dynamic_bitset <>;
using var iab l e s_eva luat ions_t = boost : : dynamic_bitset <>;
using set_var iab les_ids_t = std : : vector<size_t >;

class var iab l e s_eva luat ions_block {
public :

var iab l e s_eva luat ions_block ( const variables_mask_t& va r i a b l e s ) ;

auto ge t_var iab l e s ( ) const −> variables_mask_t ;
auto get_eva luat ions ( ) −> var iab l e s_eva luat ions_t&;
auto get_eva luat ions ( ) const −> const var iab l e s_eva luat ions_t&;

auto get_set_var iab les_ids ( ) const −> const set_var iab les_ids_t&;
auto generate_next_evaluat ion ( ) −> bool ;
void r e s e t_eva lua t i on s ( ) ;

private :
void i n i t ( ) ;

variables_mask_t var iab le s_ ;
var iab l e s_eva luat ions_t evaluat ions_ ;

// Caching the s e t v a r i a b l e s .
// For genera t ing the next e va l ua t i on s in order to make i t
// O( | s e t v a r a i b l e s | ) in s t ead o f O( | a l l v a r i a b l e s in the mask | )
set_var iab les_ids_t set_var iables_ids_ ;

} ;
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. . .
auto var iab l e s_eva luat ions_block : : generate_next_evaluat ion ( ) −> bool
{

i f ( ( var iab le s_ & evaluat ions_ ) == var iab le s_ )
{

// I f the eva lua t i on fo r the v a r i a b l e s i s only 1 s
// then we cannot generate a new one ,
// i . e . we have a l ready generated a l l o f them .
return fa l se ;

}

/*
* Wil l generate the e va l ua t i on s in the f o l l ow i n g order :
* 0 . . . 0 0 , 0 . . . 0 1 , 0 . . . 1 0 , . . . , 1 1 . . . 1 0 , 1 1 . . . 1 1 .
* This i s very s im i l a r to the increment (+1) operat ion o f i n t e g e r
* numbers in t h e i r b inary r ep r e s en ta t i on .
* For the b inary number an a lgor i thm could be the f o l l ow i n g :
* I t e r a t e a l l b i t s s t a r t i n g from the l e a s t s i g n i f i c a n t .
* − b i t ( i ) == 1 => b i t ( i ) = 0
* − b i t ( i ) == 0 => b i t ( i ) = 1 & stop
* In our case i t i s s imi lar , we want to make the increment
* operat ion only on the s e t b i t s in the var iab l e s_ mask .
* set_variab les_ids_ has the i d s o f the s e t b i t s
* in the v a r i a b l e s mask in reverce order .
*/
for ( const auto id : set_var iables_ids_ )
{

i f ( ! eva luat ions_ [ id ] )
{

eva luat ions_ . s e t ( id ) ;
break ;

}
else
{

evaluat ions_ . s e t ( id , fa l se ) ;
}

}

return true ;
}

model . h
using points_t = std : : vector<var iab le s_eva luat ions_block >;
points_t points_ ;
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7.2 Contacts representation

The contact relations are impleneted via a standard adjacency matrix. The
elements of the matrix indicate whether pairs of points are in contact or not.
Their values are 0 or 1. Thus, the optimized boost::dynamic_bitset is used
again.

using model_points_set_t = boost : : dynamic_bitset <>;
using contacts_t = std : : vector<model_points_set_t >;
contacts_t contact_re lat ions_ ;

7.3 Valuation representation

The valuation υn requires to de�ne it for each boolean variable. It's implemeted
via a NxM bit matrix. N is the number of boolean variables and M is the number
of modal points. The matrix element at position (i, j) indicates whether the
valuation for the variable with id i contains the modal point j.

using model_points_set_t = boost : : dynamic_bitset <>;
using variable_id_to_points_t = std : : vector<model_points_set_t >;

// A vec tor o f b i t s e t s r ep re s en t ing the va lue o f v ( var iab l e_id ) .
variable_id_to_points_t var iab le_eva luat ions_ ;

7.4 Handy methods

Contact matrix �lling

The algorithm for building a model creates a pair of points for each contact
in the branch conjunction. Therefore these points should be in contact. In
addition to that each modal point is in contact with itself (re�exivity).
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imodel . h/cpp

// Use fu l f o r models which have t h e i r f i r s t 2*@number_of_contacts po in t s
// in contac t ( po in t 2k i s in contac t wi th po in t (2 k+1))
// In s e r t s 1 s in the contac t r e l a t i o n s matrix between po in t s 2k and 2k+1
// ( f o r each k in range [0 , @number_of_contacts ) )
// In s e r t s 1 s in the contac t r e l a t i o n s matrix between
// each po in t and i t s e l f ( r e f l e x i v i t y ) .
void imodel : : c reate_contact_re lat ions_f i r s t_2k_in_contact (

s i ze_t number_of_points ,
s i ze_t number_of_contacts )

{
contact_re lat ions_ . c l e a r ( ) ;
// F i l l NxN matrix with 0 s .
contact_re lat ions_ . r e s i z e ( number_of_points ,

model_points_set_t ( number_of_points ) ) ;
for ( s i z e_t k = 0 ; k < number_of_contacts ; ++k)
{

const auto a = 2 * k ;
const auto b = a + 1 ;
contact_re lat ions_ [ a ] . s e t (b ) ; // Sets the b−th b i t to 1 .
contact_re lat ions_ [ b ] . s e t ( a ) ;

}

// Add a l s o the r e f l e x i v i t y .
for ( s i z e_t i = 0 ; i < number_of_points ; ++i )
{

contact_re lat ions_ [ i ] . s e t ( i ) ;
}

}
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Variable evaluation �lling

Fills the variable_evaluations_ matrix based on the current modal points.

imodel . h/cpp

void model : : calculate_the_model_evaluation_of_each_variable ( )
{

const auto po in t s_s i z e = points_ . s i z e ( ) ;
var iab le_eva luat ions_ . c l e a r ( ) ;
// I n i t i a l i z e each v a r i a b l e e va l ua t i on as the empty s e t .
var iab le_eva luat ions_ . r e s i z e (

mgr_−>get_var iab l e s ( ) . s i z e ( ) ,
model_points_set_t ( po in t s_s i z e ) ) ;

// Ca l cu la t e the va l ua t i on o f each var i a b l e ,
// i . e . each var iab l e_id
// v (Pi ) = { po in t | po in t_eva luat ion [ Pi ] == 1 } ,
// i . e . the eva lua t i on o f v a r i a b l e with id Pi i s 1
// ( the b i t at p o s i t i on Pi i s 1)
for ( s i z e_t po int = 0 ; po int < po in t s_s i z e ; ++point )
{

const auto& point_evaluat ion = points_ [ po int ] . ge t_eva luat ions ( ) ;

// I t e r a t e only s e t b i t s (1 s )
auto Pi = point_evaluat ion . f i n d_ f i r s t ( ) ;
while ( Pi != var iab l e s_eva luat ions_t : : npos )
{

// Adds the po in t to the v (Pi ) s e t .
var iab le_eva luat ions_ [ Pi ] . s e t ( po int ) ;
Pi = point_evaluat ion . f ind_next ( Pi ) ;

}
}

}
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Evaluating a term

The implementation of the boolean valuation is in the term class. The details
are in the term.cpp �le. The boolean valuation assings a constant true or false
to the term for some variable evaluation. This variable evaluation assings a
constant true or false to each boolean variable in the term.

term . h

class term {
. . .
struct eva lua t i on_re su l t
{

enum class resu l t_type : char
{

none ,
constant_true ,
constant_fa l se ,

} ;

auto i s_constant_true ( ) const −> bool ;
auto i s_cons tant_fa l s e ( ) const −> bool ;

r e su l t_type type{ resu l t_type : : none } ;
. . . .

} ;
. . .
} ;

// Ignore the second argument f o r subterm crea t i on .
// I t i s a support f o r a p a r t i a l v a r i a b l e e va l ua t i on b l o c k
// which does not e va l ua t e a l l boo lean v a r i a b l e s in the term .
// Then i t w i l l e va l ua t e a l l known v a r i a b l e s and reduces the cons tant s .
// Returns i t as a subterm .
// I t i s not used because i t was needed
// fo r an o ld model b u i l d i n g a lgor i thm .
auto term : : eva luate (

const var iab l e s_eva luat ions_block& evaluat ion_block ,
bool skip_subterm_creation = true ) const −> eva lua t i on_re su l t ;
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Zero terms satis�ability

Checks whether a modal point(variable evaluation) does not con�ict with the
zero terms. The point should not be part of any zero term evaluation. So, the
point should evaluate all zero terms to constant false.

u t i l s . h/cpp

/// Returns t rue i f the eva l ua t i on eva l ua t e s a l l zero terms to f a l s e .
auto are_zero_terms_T_satisf ied (

const terms_t& zero_terms_T ,
const var iab l e s_eva luat ions_block& eva lua t i on ) −> bool

{
// The eva lua t i on shou ld eva l ua t e a l l zero terms to constant f a l s e .
// That way i t w i l l not p a r t i c i p a t e in any o f t h e i r e va l ua t i on s .
for ( const auto& z : zero_terms_T)
{

i f ( ! z−>eva luate ( eva lua t i on ) . i s_cons tant_fa l s e ( ) )
{

return fa l se ;
}

}
return true ;

}
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Non-contacts satis�ability

Checks whether a modal point (or a pair of points) does not con�ict with the
non-contacts. It is splitted to two components. Based on the re�exivity and
connectivity rules.

For the re�exivity it is su�cient to verify that the point is not part of the
both non-contact terms evaluations. So, the point should not evaluate both
terms to constant true.

For the connectivity it is su�cient to verify that the pair of points does
not participate in the non-contact terms evaluations. So, the points should not
evaluate the terms to constant true.

u t i l s . h/cpp
auto i s_contac t s_F_re f l ex ive_ru l e_sat i s f i ed (

const formulas_t& contacts_F ,
const var iab l e s_eva luat ions_block& eva lua t i on ) −> bool

{
for ( const auto& c : contacts_F )
{

// The eva lua t i on shou ld not be parth o f both
// non−contac t term ' s e va l ua t i on s .
const auto l e f t_ t = c−>get_left_chi ld_term ( ) ;
const auto r ight_t = c−>get_right_child_term ( ) ;
i f ( l e f t_t−>eva luate ( eva lua t i on ) . i s_constant_true ( ) &&

right_t−>eva luate ( eva lua t i on ) . i s_constant_true ( ) )
{

return fa l se ;
}

}
return true ;

}

auto i s_contact s_F_connect iv i ty_ru le_sat i s f i ed (
const formulas_t& contacts_F ,
const var iab l e s_eva luat ions_block& eval_a ,
const var iab l e s_eva luat ions_block& eval_b ) −> bool

{
for ( const auto& c : contacts_F )
{

// In order the eval_a and eval_b to not c o n f l i c t wi th a
// non−contac t they shou ld not p a r t i c i p a t e in the non−contac t
// term ' s e va l ua t i on s . In other words , both e va l ua t i on s
// shou ld not e va l ua t e both terms to t rue .
const auto l = c−>get_left_chi ld_term ( ) ;
const auto r = c−>get_right_child_term ( ) ;
i f ( ( l−>eva luate ( eval_a ) . i s_constant_true ( ) &&

r−>eva luate ( eval_b ) . i s_constant_true ( ) ) | |
( l−>eva luate ( eval_b ) . i s_constant_true ( ) &&
r−>eva luate ( eval_a ) . i s_constant_true ( ) ) )

{
// The r e f l e x i v i t y case i s not taken in to account here .
return fa l se ;

}
}
return true ;

}
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Modal points constructors

Construction modal points for non-zero terms

Creates a modal point for each non-zero term in the branch conjunction. The
point should not con�ict with any zero term or non-contact.

model . h/cpp

auto model : : construct_non_zero_model_points (
const terms_t& zero_terms_F , const formulas_t& contacts_F ,
const terms_t& zero_terms_T) −> bool

{
for ( const auto& z : zero_terms_F )
{

// I t w i l l be o v e r r i t en i f succeed .
var iab l e s_eva luat ions_block eva l ( variables_mask_t ( 0 ) ) ;
i f ( ! c reate_point_evaluat ion ( z , eval , contacts_F , zero_terms_T ) )
{

return fa l se ;
}
points_ . push_back ( std : : move( eva l ) ) ;

}

return true ;
}

auto model : : c reate_point_evaluat ion (
const term* t , var iab l e s_eva luat ions_block& out_evaluation ,
const formulas_t& contacts_F ,
const terms_t& zero_terms_T) const −> bool

{
out_evaluat ion = var iab l e s_eva luat ions_block ( used_variables_ ) ;

return does_po int_eva luat ion_sat i s f i e s_bas i c_ru l e s (
t , out_evaluation , contacts_F , zero_terms_T) | |

generate_next_point_evaluation (
t , out_evaluation , contacts_F , zero_terms_T ) ;

}

auto model : : does_po int_eva luat ion_sat i s f i e s_bas i c_ru l e s (
const term* t ,
const var iab l e s_eva luat ions_block& eva luat ion ,
const formulas_t& contacts_F ,
const terms_t& zero_terms_T) const −> bool

{
return t−>eva luate ( eva lua t i on ) . i s_constant_true ( ) &&

are_zero_terms_T_satisf ied ( zero_terms_T , eva lua t i on ) &&
is_contac t s_F_re f l ex ive_ru l e_sat i s f i ed (

contacts_F , eva lua t i on ) ;
}
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auto model : : are_zero_terms_T_satisf ied (
const terms_t& zero_terms_T ,
const var iab l e s_eva luat ions_block& eva lua t i on ) const −> bool

{
for ( const auto& z : zero_terms_T)
{

i f ( ! z−>eva luate ( eva lua t i on ) . i s_cons tant_fa l s e ( ) )
{

return fa l se ;
}

}
return true ;

}

auto model : : generate_next_point_evaluation (
const term* t , var iab l e s_eva luat ions_block& out_evaluation ,
const formulas_t& contacts_F ,
const terms_t& zero_terms_T) const −> bool

{

while ( out_evaluat ion . generate_next_evaluat ion ( ) )
{

i f ( does_po int_eva luat ion_sat i s f i e s_bas i c_ru l e s (
t , out_evaluation , contacts_F , zero_terms_T ) )

{
return true ;

}
}
return fa l se ;

}
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Construction modal points for contacts

Creates a pair of modal points for each contact in the branch conjunction.

model . h/cpp

auto model : : construct_contact_model_points (
const formulas_t& contacts_T , const formulas_t& contacts_F ,
const terms_t& zero_terms_T) −> bool

{
for ( const auto& c : contacts_T )
{

i f ( ! construct_contact_points ( c , contacts_F , zero_terms_T ) )
{

return fa l se ;
}

}

return true ;
}
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auto model : : construct_contact_points (
const formula * c , const formulas_t& contacts_F ,
const terms_t& zero_terms_T) −> bool

{
const auto l e f t = c−>get_left_chi ld_term ( ) ;
const auto r i g h t = c−>get_right_child_term ( ) ;

// I t w i l l be overr idden i f succeed .
var iab l e s_eva luat ions_block l e f t_eva l ( variables_mask_t ( 0 ) ) ;
i f ( ! c reate_point_evaluat ion (

l e f t , l e f t_eva l , contacts_F , zero_terms_T ) )
{

return fa l se ;
}

do
{

var iab l e s_eva luat ions_block r ight_eva l ( variables_mask_t ( 0 ) ) ;
i f ( ! c reate_point_evaluat ion (

r i ght , r ight_eval , contacts_F , zero_terms_T ) )
{

return fa l se ;
}

do
{

i f ( i s_contact s_F_connect iv i ty_ru le_sat i s f i ed (
contacts_F , l e f t_eva l , r i ght_eva l ) )

{
points_ . push_back ( std : : move( l e f t_eva l ) ) ;
points_ . push_back ( std : : move( r ight_eva l ) ) ;
return true ;

}
} while ( generate_next_point_evaluation (

r ight , r ight_eval , contacts_F , zero_terms_T ) ) ;
} while ( generate_next_point_evaluation (

l e f t , l e f t_eva l , contacts_F , zero_terms_T ) ) ;

return fa l se ;
}
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7.5 Building algorithm

The building algorithm is simple. Creates a pair of suitable modal points for
each contact. Creates a suitable modal point for each non-zero term. Lastly,
updates the boolean variable valuation and connectivity matrix.

model . h/cpp

auto model : : c r e a t e (
const formulas_t& contacts_T , const formulas_t& contacts_F ,
const terms_t& zero_terms_T , const terms_t& zero_terms_F ,
const variables_mask_t& used_var iables ,
const formula_mgr* mgr) −> bool

{
. . .
i f ( ! construct_contact_model_points (

contacts_T , contacts_F , zero_terms_T) | |
! construct_non_zero_model_points (

zero_terms_F , contacts_F , zero_terms_T ) )
{

return fa l se ;

}

i f ( points_ . empty ( ) &&
! construct_point ( contacts_F , zero_terms_T ) )

{
return fa l se ;

}

calculate_the_model_evaluation_of_each_variable ( ) ;
c reate_contact_re lat ions_f i r s t_2k_in_contact (

points_ . s i z e ( ) , contacts_T . s i z e ( ) ) ;
return true ;

}
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8 Connected Contact Logic Implementation

The connected model reuses the core part of the model. It has the same modal
points contacts and valuation representation. The model output is also the
same. Uses some of the described Handy methods in the Model implementation
section.

8.1 Handy methods

Construction of all valid modal points

The �rst step of the algorithm for building a connected model is to create all
valid modal points. A valid modal point is a point that does not con�ict with
any zero term or non-contact.

connected_model . h/cpp

void connected_model : : construct_al l_val id_unique_points (
const formulas_t& contacts_F ,
const terms_t& zero_terms_T)

{
var iab l e s_eva luat ions_block eva lua t i on ( used_variables_ ) ;

do
{

i f ( are_zero_terms_T_satisf ied ( zero_terms_T , eva lua t i on ) &&
is_contac t s_F_ru l e_sat i s f i ed_on ly_re f l ex iv i ty (

contacts_F , eva lua t i on ) )
{

points_ . push_back ( eva lua t i on ) ;
}

} while ( eva lua t i on . generate_next_evaluat ion ( ) ) ;
}
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Evaluating a term with a valuation

The term evaluation with the variable_evaluation_block returns a constant
true or false. It tells whether the variable evaluation participates in the term's
evaluation.

Another way of evaluating a term is via the whole valuation. It returns a
set of modal points which participate in its evaluation. It is implemented in the
term class.

term . h/cpp

auto term : : eva luate (
const variable_id_to_points_t& var iab l e_eva luat ions ,
const s i ze_t points_count ) const −> model_points_set_t

{
switch (op_)
{

case operat ion_t : : constant_true :
return ~model_points_set_t ( points_count ) ;

case operat ion_t : : cons tant_fa l s e :
return model_points_set_t ( points_count ) ;

case operat ion_t : : union_ :
return chi lds_ . l e f t −>eva luate ( var iab l e_eva luat i ons ,

points_count ) |
ch i lds_ . r i ght−>eva luate ( var iab l e_eva luat i ons ,

points_count ) ;
case operat ion_t : : i n t e r s e c t i o n :

return chi lds_ . l e f t −>eva luate ( var iab l e_eva luat i ons ,
points_count ) &

chi lds_ . r i ght−>eva luate ( var iab l e_eva luat i ons ,
points_count ) ;

case operat ion_t : : complement :
return ~chi lds_ . l e f t −>eva luate ( var iab l e_eva luat i ons ,

points_count ) ;
case operat ion_t : : v a r i a b l e :

// Returns the eva lua t i on fo r the v a r i a b l e .
return var i ab l e_eva lua t i on s [ variable_id_ ] ;

default :
a s s e r t ( fa l se && "Unrecognized . " ) ;
return model_points_set_t ( points_count ) ;

}
}
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Contacts satisfcation

Checks whether the contacts are satis�ed. It is su�cient to verify that there is
a pair of points in the contact terms evaluations which are in contact.

connected_model . h/cpp

auto connected_model : : i s_contacts_T_rule_sat i s f i ed (
const formulas_t& contacts_T ) const −> bool

{
// C(a , b )
for ( const auto& c : contacts_T )
{

i f ( ! i s_con ta c t_sa t i s f i e d ( c ) )
{

return fa l se ;
}

}
return true ;

}

auto connected_model : : i s_con ta c t_sa t i s f i e d (
const formula * c ) const −> bool

{
const auto l e f t_ t = c−>get_left_chi ld_term ( ) ;
const auto r ight_t = c−>get_right_child_term ( ) ;
const auto v_a = le f t_t−>eva luate ( var iable_evaluat ions_ ,

points_ . s i z e ( ) ) ;
const auto v_b = right_t−>eva luate ( var iable_evaluat ions_ ,

points_ . s i z e ( ) ) ;

auto point_from_v_a = v_a . f i n d_ f i r s t ( ) ;
while ( point_from_v_a != model_points_set_t : : npos )
{

const auto& contacts_of_point_from_v_a =
contact_re lat ions_ [ point_from_v_a ] ;

i f ( ( contacts_of_point_from_v_a & v_b ) . any ( ) )
{

return true ;
}

point_from_v_a = v_a . f ind_next ( point_from_v_a ) ;
}
return fa l se ;

}
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Contacts existence satis�ability

Checks whether the contacts have at least one point in their term's evaluations.
It's a faster veri�cation than the whole contact satis�cation.

connected_model . h/cpp

auto connected_model : : i s_contacts_T_exi s tence_ru le_sat i s f i ed (
const formulas_t& contacts_T ) const −> bool

{
for ( const auto& c : contacts_T )
{

const auto a = c−>get_left_chi ld_term ( ) ;
const auto b = c−>get_right_child_term ( ) ;

i f ( a−>eva luate ( var iable_evaluat ions_ , points_ . s i z e ( ) ) . none ( ) | |
b−>eva luate ( var iable_evaluat ions_ , points_ . s i z e ( ) ) . none ( ) )

{
return fa l se ;

}
}
return true ;

}
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Non-zero term satis�ability

Checks whether the non-zero terms are satis�ed. It is su�cient to verify that
there is a at least one modal point in each non-zero term's evaluation.

connected_model . h/cpp

auto connected_model : : i s_zero_terms_F_rule_satis f ied (
const terms_t& zero_terms_F ) const −> bool

{
for ( const auto& z : zero_terms_F )
{

i f ( z−>eva luate ( var iable_evaluat ions_ , points_ . s i z e ( ) ) . none ( ) )
{

return fa l se ;
}

}
return true ;

}
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Contact matrix building

The �rst step of the algorithm for building a connected model is to create all
valid modal points. A valid modal point is a point which does not con�ict with
any zero term or non-contact.

connected_model . h/cpp

/*
* Bui lds N x N b i t matrix with contac t r e l a t i o n s between a l l po ints ,
* which l a t e r reduces in order to s a t i s f y a l l ~C atomic formulas .
* Returns t rue i f the produced contac t r e l a t i o n s s a t i s f y a l l
* contac t atomic formulas .
*/
auto connected_model : : bui ld_contact_re lat ions_matr ix (

const formulas_t& contacts_T , const formulas_t& contacts_F ) −> bool
{

const auto po int_s i ze = points_ . s i z e ( ) ;
contact_re lat ions_ . c l e a r ( ) ;
// F i l l NxN matrix with 1 s .
contact_re lat ions_ . r e s i z e ( po int_size ,

~model_points_set_t ( po int_s i ze ) ) ;

// Removes the connect ion between every po in t in v_l
// and a l l po in t s from v_r .
auto connection_remover = [& ] ( auto& v_l , auto& v_r)
{

const auto neg_v_r = ~v_r ;

auto point_from_v_l = v_l . f i n d_ f i r s t ( ) ;
while ( point_from_v_l != model_points_set_t : : npos )
{

auto& contacts_of_point_from_v_l =
contact_re lat ions_ [ point_from_v_l ] ;

// Remove a l l po in t s in @contacts_of_point_from_v_l
// which are a l s o in @v_r .
contacts_of_point_from_v_l &= neg_v_r ;

point_from_v_l = v_l . f ind_next ( point_from_v_l ) ;
}

} ;
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// ~C(a , b )
for ( const auto& c : contacts_F )
{

const auto l e f t_ t = c−>get_left_chi ld_term ( ) ;
const auto r ight_t = c−>get_right_child_term ( ) ;
const auto v_a = le f t_t−>eva luate ( var iable_evaluat ions_ ,

points_ . s i z e ( ) ) ;
const auto v_b = right_t()−>eva luate ( var iable_evaluat ions_ ,

points_ . s i z e ( ) ) ;
// There are no common points ,
// because we b u i l t them tha t way .

a s s e r t ( ( v_a & v_b ) . none ( ) ) ;

connection_remover (v_a , v_b ) ;
connection_remover (v_b , v_a ) ;

}

return i s_contacts_T_rule_sat i s f i ed ( contacts_T ) ;
}
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Connected components

Let us look at the model as a graph. The modal points are the vertices. The
contacts between them are the edges. This method returns a vector of connected
components in the graph. Each connected component is described by the points
in it. The algorithm is a standard BFS from each not visited node in the graph.

connected_model . h/cpp

auto connected_model : : get_connected_components ( )
const −> std : : vector<model_points_set_t>

{
i f ( points_ . empty ( ) )
{

return {} ;
}

std : : vector<model_points_set_t> connected_components ;
model_points_set_t not_vis i ted_points ( points_ . s i z e ( ) ) ;
// B i t s e t o f 1 s f o r the not v i s i t e d points , i n ve r t ed
// because we have f a s t f i nd in g o f 1 s in the b i t s e t .
not_vis i ted_points . s e t ( ) ;

s i z e_t root_point_id = not_vis i ted_points . f i n d_ f i r s t ( ) ;
while ( root_point_id != model_points_set_t : : npos )
{

auto connected_component =
get_connected_component ( root_point_id , not_vis i ted_points ) ;

connected_components . push_back ( std : : move( connected_component ) ) ;

root_point_id = not_vis i ted_points . f ind_next ( root_point_id ) ;
}
return connected_components ;

}
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auto connected_model : : get_connected_component (
s i ze_t root_point_id ,
model_points_set_t& not_vis i ted_points )
const −> model_points_set_t

{
a s s e r t ( not_vis i ted_points . t e s t ( root_point_id ) ) ;

model_points_set_t connected_component ( points_ . s i z e ( ) ) ;

// A simple t r a v e r s i n g
std : : queue<size_t> q ;
q . push ( root_point_id ) ;

while ( ! q . empty ( ) )
{

const auto point_id = q . f r on t ( ) ;
q . pop ( ) ;
// While the po in t wai t s in the queue some other po in t
// cou ld a l s o push i t .
i f ( ! not_vis i ted_points . t e s t ( point_id ) )
{

continue ;
}

const auto& point_connect ions = contact_re lat ions_ [ point_id ] ;
auto connected_point_id = point_connect ions . f i n d_ f i r s t ( ) ;
while ( connected_point_id != model_points_set_t : : npos )
{

i f ( not_vis i ted_points . t e s t ( connected_point_id ) )
{

connected_component . s e t ( point_id ) ;
not_vis i ted_points . r e s e t ( point_id ) ;
q . push ( connected_point_id ) ;

}
connected_point_id =

point_connect ions . f ind_next ( connected_point_id ) ;
}

}

return connected_component ;
}

Reduce variable evaluations to a subset of points

Leaves only a selected subset of points in the variable evaluations.

connected_model . h/cpp
void connected_model : : reduce_variable_evaluat ions_to_subset_of_points (

const model_points_set_t& points_subset )
{

for (auto& eva lua t i on : var iab le_eva luat ions_ )
{

eva lua t i on &= points_subset ;
}

}
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Reduce model to a subset of points

Leaves only a selected subset of points in the model. Updates the variable eval-
uations and the contact relations between them.

connected_model . h/cpp

void connected_model : : reduce_model_to_subset_of_points (
const model_points_set_t& points_subset )

{
// Construct the reduced po in t s c o l l e c t i o n .
points_t reduced_points ;
const auto reduced_points_size = points_subset . count ( ) ;
reduced_points . r e s e r v e ( reduced_points_size ) ;
// Let K i s the number o f po in t s in @points_subset .
// A l l c o l l e c t i o n s shou ld have s i z e K. That r e qu i r e a mapping
// between o ld po in t s indexes and the reduced .
std : : unordered_map<size_t , s ize_t> point_id_old_to_new ;
point_id_old_to_new . r e s e r v e ( reduced_points_size ) ;
auto point = points_subset . f i n d_ f i r s t ( ) ;
while ( po int != model_points_set_t : : npos )
{

point_id_old_to_new [ po int ] = reduced_points . s i z e ( ) ;

reduced_points . push_back ( points_ [ po int ] ) ;
po int = points_subset . f ind_next ( po int ) ;

}

// Converts the @points_subset o f o ld po in t s to a sub s e t o f
// reduced po in t s . The o ld po in t s have a ( p o t e n t i a l ) b i g g e r
// conta iner s i z e than the reduced po in t s .
auto map_subset_of_points_to_reduced_points =

[& ] ( const model_points_set_t& points_subset)−>model_points_set_t
{

// Al l 0 s .
model_points_set_t mapped_subset ( reduced_points_size ) ;

auto point = points_subset . f i n d_ f i r s t ( ) ;
while ( po int != model_points_set_t : : npos )
{

mapped_subset . s e t ( point_id_old_to_new [ po int ] ) ;
po int = points_subset . f ind_next ( po int ) ;

}
return mapped_subset ;

} ;
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// KxK matrix o f 0 s .
contacts_t reduced_contact_re lat ions (

reduced_points_size ,
model_points_set_t ( reduced_points_size ) ) ;

po int = points_subset . f i n d_ f i r s t ( ) ;
while ( po int != model_points_set_t : : npos )
{

auto& point_contacts = contact_re lat ions_ [ po int ] ;
po int_contacts &= points_subset ; // Remove ex t ra con tac t s .

const auto reduced_point_id = point_id_old_to_new [ po int ] ;
reduced_contact_re lat ions [ reduced_point_id ] =

map_subset_of_points_to_reduced_points ( point_contacts ) ;
po int = points_subset . f ind_next ( po int ) ;

}

// Update the models data .
points_ = std : : move( reduced_points ) ;
contact_re lat ions_ = std : : move( reduced_contact_re lat ions ) ;
calculate_the_model_evaluation_of_each_variable ( ) ;

}
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8.2 Building algorithm

The building algorithm used the described methods. Follows the 4.2 connected
model building algorithm.

connected_model . h/cpp

auto connected_model : : c r e a t e (
const formulas_t& contacts_T , const formulas_t& contacts_F ,
const terms_t& zero_terms_T , const terms_t& zero_terms_F ,
const formulas_t&, const formulas_t&,
const variables_mask_t& used_var iables ,
const formula_mgr* mgr) −> bool

{
construct_al l_val id_unique_points ( contacts_F , zero_terms_T ) ;

i f ( points_ . empty ( ) )
{

t r a c e ( ) << "Unable to  c r e a t e  even one model po int  which "
"does  not break the  =0 or  the  r e f l e x i v i t y  o f  ~C atomics . " ;
return fa l se ;

}

calculate_the_model_evaluation_of_each_variable ( ) ;

i f ( ! i s_zero_terms_F_rule_satis f ied ( zero_terms_F ) | |
! i s_contacts_T_exi s tence_ru le_sat i s f i ed ( contacts_T ) )

{
t r a c e ( ) << "Unable to  c r e a t e  model po in t s  even to  s a t i s f y  "
" the  ex i s t e n c e  o f  po in t s  in  the  model eva lua t i on  "
" o f  != 0 and contact  terms . " ;
return fa l se ;

}

i f ( ! bui ld_contact_re lat ions_matr ix ( contacts_T , contacts_F ) )
{

t r a c e ( ) << "Unable to  c r e a t e  contact  r e l a t i o n s  which "
" s a t i s f i e s  ~C and C atomic  formulas . " ;
return fa l se ;

}

// Now, we have in some sense the b i g g e s t model (w. r . t number
// o f unique po in t s and maximal contac t r e l a t i o n s between them ) .
t r a c e ( ) << "Wil l  t ry  to  f i nd  a connected  component o f  po in t s  "
" ( which i t s e l f  i s  a s a t i s f i a b l e  model )  in  the  f o l l ow i ng  "
" s a t i s f i a b l e  model : \ n" << * this ;
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const auto o r i g i na l_va r i ab l e_eva lua t i on s = var iab le_eva luat ions_ ;
const auto connected_components = get_connected_components ( ) ;
for ( const auto& connected_component : connected_components )
{

// Re s t r i c t the v a r i a b l e e va l ua t i on s to only those po in t s
// which are in the @connected_component .
reduce_variable_evaluat ions_to_subset_of_points (

connected_component ) ;

i f ( is_zero_terms_F_rule_satis f ied ( zero_terms_F ) &&
is_contacts_T_rule_sat i s f i ed ( contacts_T ) )

{
// Good . The connected component i s a l s o a v a l i d model .
// Remove a l l o ther po in t s ( ou t s i d e the connected component )
// because we do not need them .
reduce_model_to_subset_of_points ( connected_component ) ;
t r a c e ( ) << "Found a connected  component which i s  a l s o  "
"a s a t i s f i a b l e  model f o r  the  formula : \ n" << * this ;
return true ;

}

// Ro l l back the va r i a b l e_eva lua t i ons .
var iab le_eva luat ions_ = or i g i na l_va r i ab l e_eva lua t i on s ;

}

t r a c e ( ) << "Unable to  f i nd  such connected  component o f  po in t s . " ;
return fa l se ;

}
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