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1 Introduction

In [KZ01], Maxim Kontsevich and Don Zagier introduced the notion of periods:

Definition 1. A period is a complex number whose real and imaginary parts are values of absolutely
convergent integral of rational functions with rational coefficients, over domains in Rn given by polynomial
inequalities with rational coefficients.

They denote the set of all periods by P and pose the following “Problem 3. Exhibit at least one number
which does not belong to P”. In [Yo08], Masahiko Yoshinaga gives an answer to this problem by constructing
a computable real number which can not be a period. Along the way he proves that every period is an
elementary real number (i.e. E3-computable). A year later Katrin Tent and Martin Ziegler proved in [TZ09]
that periods are lower elementary real numbers (i.e. L2-computable). The purpose of this thesis is to show
that periods are M2-computable real numbers.

I would like to express my sincere gratitude to my supervisor, Assoc. Prof. Ivan Georgiev, for steering me
toward such an interesting research problem. I am glad I had the opportunity to work with him and solve the
problem. I would also like to express my sincere thanks to the members of the Department of Mathemati-
cal Logic and Its Applications for their support and trust. Without them, I wouldn’t have been able to succeed.

2 The classes M2, L2, E2, E3

Definition 2. 2.1. We denote Tm = {f | f : Nm → N}, m ∈ N, and T =
⋃

m∈N Tm.

2.2. The following functions in T are called the initial functions:

q The projection functions, (x1, . . . , xn) 7→ xk, (n, k ∈ N & 1 ≤ k ≤ n).

q The successor function, x 7→ x+ 1.

q The product function, (x, y) 7→ xy.

q The modified subtraction function, (x, y) 7→ max(x− y, 0).

q The quotient function, (x, y) 7→
⌊ x

y + 1

⌋

.

2.3. The smallest subclass of T , which contains the initial functions and is closed under composition and:

q bounded minimisation
(
f 7→ λx, y.µz≤y[f(x, z) = 0]

)
, is denoted by M2.

q bounded summation
(
f 7→ λx, y.

∑

z≤y

f(x, z)
)
, is denoted by L2 (the class of lower elementary

functions).

q limited primitive recursion, is denoted by E2 (the second Grzegorczyk class).
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q bounded summation
(
f 7→ λx, y.

∑

z≤y

f(x, z)
)

and bounded product
(
f 7→ λx, y.

∏

z≤y

f(x, z)
)
, is

denoted by E3 (the class of elementary functions, i.e. the third Grzegorczyk class).

It is known that
M2 ⊆ L2 ⊆ E2 ( E3,

but whether the first and the second of these inclusions is proper is an open question.

Definition 3. 3.1. A name of a real number ξ is any triple (f, g, h) ∈ T 3
1 such that for all t ∈ N,

∣
∣
∣ξ −

f(t)− g(t)

h(t) + 1

∣
∣
∣ <

1

t + 1
.

3.2. For a class F ⊆ T of functions, a real number ξ is called F -computable iff there exists a triple
(f, g, h) ∈ F3 which is a name of ξ.

3 An increasing ω-sequence of compacts covering an open set

Definition 4. Let O be an open subset of Rn (n ≥ 1). For every e ∈ R≥1 we define the set

Oe =
{
x ∈ O

∣
∣ ‖x‖∞ ≤ e & dist(x,Rn \O) ≥

1

e

}
,

where ‖•‖∞ is the maximum norm

‖(x1, . . . , xn)‖∞ = max
{
|x1|, . . . , |xn|

}

and
dist(x,Rn \O) = inf

{
‖x− y‖∞ | y ∈ Rn \O

}
.

Remark 1. Note that if we denote by

B(x, r) =
{
y ∈ Rn | ‖x− y‖∞ < r

}

the open ball of radius r ∈ R>0 centred on x ∈ Rn, then

B
(

x,
1

e

)

⊆ O ↔ dist(x,Rn \O) ≥
1

e
.

Lemma 1. Let O be an open subset of Rn (n ≥ 1).

1.1. Oe is a compact for all e ∈ R≥1.
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1.2. e ≤ e′ → Oe ⊆ Oe′ for all e, e′ ∈ R≥1.

1.3.
⋃

e∈N+

Oe = O.

Lemma 2. Let O be an open subset of Rn (n ≥ 1) and α, β : O → R be continuous functions with
α < β on O. Then the following set is open

U =
{
(x, y) ∈ Rn+1 | x ∈ O & α(x) < y < β(x)

}
.

Further, suppose there exist strictly increasing functions dα, dβ : N → N and functions fα, fβ : Qn ×N → Q

such that the following conditions hold

(∀e ∈ N+)(∀x ∈ Oe)(∀a ∈ QN )
[

‖x− a‖∞ <
1

dα(e)
→ |α(x)− fα(a, e)| <

1

e

]

and

(∀e ∈ N+)(∀x ∈ Oe)(∀a ∈ QN )
[

‖x− a‖∞ <
1

dβ(e)
→ |β(x)− fβ(a, e)| <

1

e

]

.

Then

(∀e ∈ R≥1)(∃e
′′ ∈ R≥1, e < e′′)

(
∀(x, y) ∈ Rn+1

)[
x ∈ Oe & y ∈

(
α(x), β(x)

)

e
→

(
x, y

)
∈ Ue′′

]
.

Proof. Let’s define the function d : N → N by

d(e) = max
(
dα(e), dβ(e)

)
.

More precisely, we will show that

(∀e, e′, e′′ ∈ R≥1)
[

2e ≤ e′ &
d(2⌈e′⌉)

2
≤ e′′ & x ∈ Oe & y ∈

(
α(x), β(x)

)

e
→ (x, y) ∈ Ue′′

]

.

Let e, e′, e′′ ∈ R≥1, 2e ≤ e′,
d(2⌈e′⌉)

2
≤ e′′, x ∈ Oe and y ∈

(
α(x), β(x)

)

e
. Thus

1

e′
+

1

e′′
≤

1

e
and

y ∈
[

α(x) +
1

e′
+

1

e′′
, β(x)−

1

e′
−

1

e′′

]

.

We wish to show that (x, y) ∈ Ue′′ , i.e.

(x, y) ∈ U & ‖(x, y)‖∞ ≤ e′′ & dist
(
(x, y),Rn+1 \ U

)
≥

1

e′′
,

that is,

x ∈ O & y ∈
(
α(x), β(x)

)
& ‖x‖∞ ≤ e′′ & |y| ≤ e′′ & B

(

(x, y),
1

e′′

)

⊆ U.

The effort is on proving that B
(

(x, y),
1

e′′

)

⊆ U. Let (x ′, y′) ∈ B
(

(x, y),
1

e′′

)

(i.e. ‖x − x ′‖∞ <
1

e′′
and

|y − y′| <
1

e′′
). Thus we wish to see that (x ′, y′) ∈ U , i.e. x ′ ∈ O and α(x ′) < y′ < β(x ′).
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Next, let’s see that x ′ ∈ Oe′. From ‖x− x ′‖∞ <
1

e′′
≤

1

e
and B

(

x,
1

e

)

⊆ O (as dist
(
x,Rn \ O

)
≥

1

e
) we

conclude that x ′ ∈ O. We have

‖x ′‖∞ = ‖x+ (x ′ − x)‖∞ ≤ ‖x‖∞ + ‖x ′ − x‖∞ ≤ e+
1

e′′
< e+ 1 ≤ 2e ≤ e′.

We will show that

(∀z ∈ Rn \O)
[

‖x ′ − z‖∞ ≥
1

e′

]

.

From here we can conclude that dist(x ′,Rn \ O) ≥
1

e′
. Therefore x ′ ∈ Oe′. Let z ∈ Rn \ O. Hence

‖x− z‖∞ ≥
1

e
(as dist(x,Rn \O) ≥

1

e
). By the triangle inequality we have

‖x− z‖∞ ≤ ‖x− x ′‖∞ + ‖x ′ − z‖∞.

Thus

‖x ′ − z‖∞ ≥ ‖x− z‖∞ − ‖x− x ′‖∞ >
1

e
−

1

e′′
≥

1

e′
.

Further, since

‖x− x ′‖∞ <
1

e′′
≤

2

d(2⌈e′⌉)

let a ∈ Qn be such that

‖x− a‖∞ <
1

d(2⌈e′⌉)
≤

1

dα(2⌈e′⌉)

and

‖x ′ − a‖∞ <
1

d(2⌈e′⌉)
≤

1

dα(2⌈e′⌉)
.

From here, x ∈ Oe ⊆ O2⌈e′⌉ and x ′ ∈ Oe′ ⊆ O2⌈e′⌉ we obtain

∣
∣α(x)− fα(a, 2⌈e

′⌉)
∣
∣ <

1

2⌈e′⌉

and
∣
∣α(x ′)− fα(a, 2⌈e

′⌉)
∣
∣ <

1

2⌈e′⌉

respectively. Therefore
∣
∣α(x)− α(x ′)

∣
∣ =

∣
∣α(x)− fα(a, 2⌈e

′⌉) + fα(a, 2⌈e
′⌉)− α(x ′)| ≤

≤
∣
∣α(x)− fα(a, 2⌈e

′⌉)
∣
∣ +

∣
∣fα(a, 2⌈e

′⌉)− α(x ′)| <

<
1

2⌈e′⌉
+

1

2⌈e′⌉
=

1

⌈e′⌉
.

In the same manner we can see that
∣
∣β(x)− β(x ′)

∣
∣ <

1

⌈e′⌉
.

Finally, we consequently obtain

α(x ′) < α(x) +
1

⌈e′⌉
≤ α(x) +

1

e′
≤ y −

1

e′′
< y′ < y +

1

e′′
≤ β(x)−

1

e′
≤ β(x)−

1

⌈e′⌉
< β(x ′).

Hence α(x ′) < y′ < β(x ′) and (x ′, y′) ∈ U .
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4 Parametrically MSO-computable functions

Definition 5. For k,m ∈ N, a (k,m)-operator F is a total mapping F : T k
1 → Tm. An operator is

(k,m)-operator for some k,m ∈ N.

Remark 2. Next, we recall a higher-order counterpart for the class M2.

Definition 6. The class MSO (of M2-substitutional operators) is the smallest class of operators such
that:

(i) For all m,n, i with 1 ≤ i ≤ m, the (n,m)-operator F defined by F
(
f
n)
(xm) = xi belongs to MSO.

(ii) For any n,m and k ∈ {1, . . . , n}, if F0 is an (n,m)-operator which belongs to MSO, then the (n,m)-
operator F defined by

F
(
f
n)
(xm) = fk

(
F0

(
f
n)
(xm)

)

also belongs to MSO.

(iii) For any n,m, k and a ∈ Tk ∩M2, if F1, . . . , Fk are (n,m)-operators which belong to MSO, then so
does the (n,m)-operator F defined by

F
(
f
n)
(xm) = a(F1

(
f
n)
(xm), . . . , Fk

(
f
n)
(xm)

)
.

Remark 3. Our main reference for the properties of the class MSO is [G20].

Let O be an open subset of Rn (n ≥ 1) and θ : O → R be a function. Intuitively, if θ is uniformly
MSO-computable on O, then there exist operators in MSO which approximate the value θ(x) for any x ∈ O.
On the other hand, if θ is parametrically MSO-computable on O, then there exist operators in MSO which
for any fixed e ∈ N+ approximate the value θ(x) for any x in the compact Oe.

Definition 7. Let D be a subset of Rn (n ≥ 1). We call a function θ : D → R uniformly MSO-
computable iff there exist (3n, 1)-operators F,G,H ∈ MSO such that for all (x1, . . . , xn) ∈ D and any
names (p1, q1, r1), . . . , (pn, qn, rn) ∈ T 3

1 of x1, . . . , xn respectively, the triple

(
F (p1, q1, r1, . . . , pn, qn, rn),

G(p1, q1, r1, . . . , pn, qn, rn),

H(p1, q1, r1, . . . , pn, qn, rn)
)

is a name of θ(x1, . . . , xn).
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Definition 8. Let O be an open subset of Rn (n ≥ 1). We call a function θ : O → R paramet-
rically MSO-computable iff there exist (3n + 3, 1)-operators F,G,H ∈ MSO such that for all e ∈ N+,
(x1, . . . , xn) ∈ Oe and any names (p1, q1, r1), . . . , (pn, qn, rn), (pn+1, qn+1, rn+1) ∈ T 3

1 of x1, . . . , xn, e re-
spectively, the triple

(
F (p1, q1, r1, . . . , pn, qn, rn, pn+1, qn+1, rn+1),

G(p1, q1, r1, . . . , pn, qn, rn, pn+1, qn+1, rn+1),

H(p1, q1, r1, . . . , pn, qn, rn, pn+1, qn+1, rn+1)
)

is a name of θ(x1, . . . , xn).

Remark 4. If θ is uniformly MSO-computable on O, then it is also parametrically MSO-computable
on O. On the contrary, if θ is parametrically MSO-computable on O, then for any e ∈ N+ the restriction
(θ ↾ Oe) : Oe → R is uniformly MSO-computable on Oe.

Remark 5. Recall that if (p, q, r) is a name of e ∈ N, then e =
⌊ |p(1)− q(1)|

r(1) + 1
+

1

2

⌋

.

Remark 6. The function x 7→
1

x
is not uniformly MSO-computable on the interval (0, 1), because

it is not uniformly continuous on that interval. On the other hand, the function x 7→
1

x
is parametrically

MSO-computable on the interval (0, 1) via the (6, 1)-operators

F (p1, q1, r1, p2, q2, r2)(t) = r1

(⌊ |p2(1)− q2(1)|

r2(1) + 1
+

1

2

⌋2

(t+ 1) +
⌊ |p2(1)− q2(1)|

r2(1) + 1
+

1

2

⌋

− 1
)

+ 1,

G(p1, q1, r1, p2, q2, r2)(t) = 0,

H(p1, q1, r1, p2, q2, r2)(t) = p1

(⌊ |p2(1)− q2(1)|

r2(1) + 1
+

1

2

⌋2

(t+ 1) +
⌊ |p2(1)− q2(1)|

r2(1) + 1
+

1

2

⌋

− 1
)

− q1

(⌊ |p2(1)− q2(1)|

r2(1) + 1
+

1

2

⌋2

(t+ 1) +
⌊ |p2(1)− q2(1)|

r2(1) + 1
+

1

2

⌋

− 1
)

− 1.

In particular, if e ∈ N+, x ∈ (0, 1)e and (p1, q1, r1), (p2, q2, r2) are names of x and e respectively, then

F (p1, q1, r1, p2, q2, r2)(t) = r1
(
e2(t+ 1) + e− 1

)
+ 1,

G(p1, q1, r1, p2, q2, r2)(t) = 0,

H(p1, q1, r1, p2, q2, r2)(t) = p1
(
e2(t+ 1) + e− 1

)
− q1

(
e2(t+ 1) + e− 1

)
− 1.

Note that (0, 1)1 = ∅ and for all e ∈ N with e ≥ 2 we have (0, 1)e =
[1

e
, 1−

1

e

]

.

Proposition 1. Let O be an open subset of Rn (n ≥ 1) and the functions α, β : O → R be
parametrically MSO-computable. Then the following functions are also parametrically MSO-computable:

1.1.
p

q
· α : O → R,

(p

q
· α

)

(x) =
p

q
· α(x), for all p, q ∈ N+,

1.2. α + β : O → R, (α + β)(x) = α(x) + β(x),
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1.3. α− β : O → R, (α− β)(x) = α(x)− β(x),

1.4. α · β : O → R, (α · β)(x) = α(x).β(x), here we additionally assume that α and β are bounded.

Proof. Let α and β be parametrically MSO-computable via the triples (F1, G1, H1) and (F2, G2, H2)
respectively.

Since
p

q
·
F1 −G1

H1 + 1
=

p · F1 − p ·G1
(
q ·H1 + (q − 1)

)
+ 1

we define

F p

q
·α(p1, q1, r1, . . . , pn+1, qn+1, rn+1)(t) = (p · F1)(p1, q1, r1, . . . , pn+1, qn+1, rn+1)

(⌈p

q

⌉

.(t+ 1)− 1
)

,

G p

q
·α(p1, q1, r1, . . . , pn+1, qn+1, rn+1)(t) = (p ·G1)(p1, q1, r1, . . . , pn+1, qn+1, rn+1)

(⌈p

q

⌉

.(t+ 1)− 1
)

,

H p

q
·α(p1, q1, r1, . . . , pn+1, qn+1, rn+1)(t) =

(
q ·H1 + (q − 1)

)
(p1, q1, r1, . . . , pn+1, qn+1, rn+1)

(⌈p

q

⌉

.(t + 1)− 1
)

.

As
F1 −G1

H1 + 1
+

F2 −G2

H2 + 1
=

(
F1(H2 + 1) + F2(H1 + 1)

)
−
(
G1(H2 + 1) +G2(H1 + 1)

)

(H1H2 +H1 +H2) + 1

it is appropriate to define

Fα+β(p1, q1, r1, . . . , pn+1, qn+1, rn+1)(t) =
(
F1(H2 + 1) + F2(H1 + 1)

)
(p1, q1, r1, . . . , pn+1, qn+1, rn+1)(2t+ 1),

Gα+β(p1, q1, r1, . . . , pn+1, qn+1, rn+1)(t) =
(
G1(H2 + 1) +G2(H1 + 1)

)
(p1, q1, r1, . . . , pn+1, qn+1, rn+1)(2t+ 1),

Hα+β(p1, q1, r1, . . . , pn+1, qn+1, rn+1)(t) =
(
H1H2 +H1 +H2

)
(p1, q1, r1, . . . , pn+1, qn+1, rn+1)(2t+ 1).

Further, since

F1 −G1

H1 + 1
−

F2 −G2

H2 + 1
=

(
F1(H2 + 1) +G2(H1 + 1)

)
−

(
F2(H1 + 1) +G1(H2 + 1)

)

(H1H2 +H1 +H2) + 1

we put

Fα−β(p1, q1, r1, . . . , pn+1, qn+1, rn+1)(t) =
(
F1(H2 + 1) +G2(H1 + 1)

)
(p1, q1, r1, . . . , pn+1, qn+1, rn+1)(2t+ 1),

Gα−β(p1, q1, r1, . . . , pn+1, qn+1, rn+1)(t) =
(
F2(H1 + 1) +G1(H2 + 1)

)
(p1, q1, r1, . . . , pn+1, qn+1, rn+1)(2t+ 1),

Hα−β(p1, q1, r1, . . . , pn+1, qn+1, rn+1)(t) =
(
H1H2 +H1 +H2

)
(p1, q1, r1, . . . , pn+1, qn+1, rn+1)(2t+ 1).

Suppose that Mα,Mβ > 0 bound α and β respectively. Since

F1 −G1

H1 + 1
·
F2 −G2

H2 + 1
=

(F1F2 +G1G2)− (F1G2 + F2G1)

(H1H2 +H1 +H2) + 1

we define

Fα·β(p1, q1, r1, . . . , pn+1, qn+1, rn+1)(t) =
(
F1F2 +G1G2

)
(p1, q1, r1, . . . , pn+1, qn+1, rn+1)

(
k(t)

)
,

Gα·β(p1, q1, r1, . . . , pn+1, qn+1, rn+1)(t) =
(
F1G2 + F2G1

)
(p1, q1, r1, . . . , pn+1, qn+1, rn+1)

(
k(t)

)
,

Hα·β(p1, q1, r1, . . . , pn+1, qn+1, rn+1)(t) =
(
H1H2 +H1 +H2

)
(p1, q1, r1, . . . , pn+1, qn+1, rn+1)

(
k(t)

)

9



where
k(t) = (t+ 1)⌈Mα +Mβ + 1⌉ − 1.

Indeed, let e ∈ N+, x = (x1, . . . , xn) ∈ Oe and (p1, q1, r1), . . . , (pn, qn, rn), (pn+1, qn+1, rn+1) ∈ T 3
1 be names

of x1, . . . , xn, e respectively. Let’s denote

(pi, qi, ri) = (p1, q1, r1, . . . , pn, qn, rn, pn+1, qn+1, rn+1).

Suppose t ∈ N. We consequently obtain

∣
∣
∣

(
α · β

)
(x)−

Fα·β(pi, qi, ri)(t)−Gα·β(pi, qi, ri)(t)

Hα·β(pi, qi, ri)(t) + 1

∣
∣
∣ =

=
∣
∣
∣α(x) · β(x)−

F1(pi, qi, ri)
(
k(t)

)
−G1(pi, qi, ri)

(
k(t)

)

H1(pi, qi, ri)
(
k(t)

)
+ 1

︸ ︷︷ ︸

=A

·
F2(pi, qi, ri)

(
k(t)

)
−G2(pi, qi, ri)

(
k(t)

)

H2(pi, qi, ri)
(
k(t)

)
+ 1

︸ ︷︷ ︸

=B

∣
∣
∣

=
∣
∣A · B − α(x) · β(x)

∣
∣

=
∣
∣A · B − α(x) · β(x)− (α(x)− A)(β(x)− B) + (α(x)−A)(β(x)− B)

∣
∣

=
∣
∣A · B − α(x) · β(x)− α(x) · β(x) + α(x) · B + β(x) · A− A · B + (α(x)−A)(β(x)− B)

∣
∣

=
∣
∣α(x)(B − β(x)) + β(x)(A− α(x)) + (α(x)− A)(β(x)− B)

∣
∣ ≤

≤|α(x)| · |B − β(x)|+ |β(x)| · |A− α(x)|+ |α(x)− A| · |β(x)− B)| <

<Mα ·
1

k(t) + 1
+Mβ ·

1

k(t) + 1
+

1

k(t) + 1
·

1

k(t) + 1
<

<Mα ·
1

k(t) + 1
+Mβ ·

1

k(t) + 1
+

1

k(t) + 1

=
1

k(t) + 1
· (Mα +Mβ + 1)

=
1

(t + 1)⌈Mα +Mβ + 1⌉
· (Mα +Mβ + 1) ≤

≤
1

t + 1
.

5 Semialgebraic sets

Definition 9. We say that a subset of Rn (n ≥ 1) is semialgebraic if it is a Boolean combination of
sets of the form

{
(x1, . . . , xn) ∈ Rn | p(x1, . . . , xn) > 0

}
,

where p ∈ Z[X1, . . . , Xn]. A function is called semialgebraic if its graph is semialgebraic.
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Remark 7. By definition, semialgebraic sets are closed under finite union, finite intersection and taking
complements. They are also closed under projection. Furthermore, by quantifier elimination, the semialge-
braic sets are exactly the definable sets in the ordered field R.

Proposition 2. ([BCR98], Proposition 2.2.4.) Let ϕ(x1, . . . , xn) (n ≥ 1) be a first-order formula of
the language {0, 1,+,−, ·, <} of ordered fields, without parameters, with free variables x1, . . . , xn. Then the
set

{
(x1, . . . , xn) ∈ Rn | ϕJx1, . . . , xnK

}

is semialgebraic.

Remark 8. All the semialgebraic sets we are considering are definable without parameters.

Proposition 3. ([BCR98], Proposition 2.6.1.) Let a ∈ R and f be a semialgebraic function from
(a,+∞) ⊆ R to R. There exist r ∈ (a,+∞), m ∈ N+, such that, for every x ≥ r, we have |f(x)| < xm,
i.e.

(
∃r ∈ (a,+∞)

)
(∃m ∈ N+)(∀x)

[
r ≤ x → |f(x)| < xm

]
.

6 Continuous semialgebraic functions defined on open semial-

gebraic sets are parametrically MSO-computable

Definition 10. A name of a rational number a is any triple (p, q, r) ∈ N3 such that a =
p− q

r + 1
.

Definition 11. A partial function f : Qn ⊸→ Q (n ≥ 1) is called M2-computable iff there
are functions f1, f2, f3 : N3n → N in M2 such that for all (a1, . . . , an) ∈ dom(f) and for any names
(p1, q1, r1), . . . , (pn, qn, rn) ∈ N3 of a1, . . . , an respectively, it holds that

f
( p1 − q1

r1 + 1
︸ ︷︷ ︸

=a1

, . . . ,
pn − qn

rn + 1
︸ ︷︷ ︸

=an

)

=
f1(p1, q1, r1, . . . , pn, qn, rn)− f2(p1, q1, r1, . . . , pn, qn, rn)

f3(p1, q1, r1, . . . , pn, qn, rn) + 1
.

Definition 12. A relation R ⊆ Qn (n ≥ 1) is called M2-computable iff its characteristic function is
M2-computable.

Lemma 3. Let R ⊆ Rn (n ≥ 1) be a semialgebraic relation. Then the restriction R ↾ Qn is M2-
computable.
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Proof. Let R be definable by the formula ϕ(x1, . . . , xn). By quantifier elimination ϕ is equivalent to a
quantifier-free formula. Further, ϕ is equivalent to a Boolean combination of formulas of the form p1 < p2
or p1 = p2, where both p1 and p2 are polynomials with natural coefficients in variables x1, . . . , xn. Hence the
restriction R ↾ Qn is definable by a Boolean combination of formulas of the form q1 < q2 or q1 = q2, where
both q1 and q2 are polynomials with natural coefficients in variables

x1,1, x1,2, x1,3, . . . , xn,1, xn,2, xn,3.

Indeed, we obtain q1 < q2 from p1 < p2 by the following steps:

3.1. in the inequality p1 < p2 we replace any of the variables x1, . . . , xn by
x1,1 − x1,2

x1,3 + 1
, . . . ,

xn,1 − xn,2

xn,3 + 1
respectively, obtaining p′1 < p′2;

3.2. we rewrite the inequality p′1 < p′2 so that each side becomes a polynomial with non-negative coefficients,
preserving the original relation, obtaining q1 < q2.

We apply the same steps to obtain the equality q1 = q2 from p1 = p2. Consequently, R ↾ Qn is an
M2-computable relation.

Lemma 4. Let O be an open semialgebraic subset of Rn (n ≥ 1) and θ : O → R be a continuous
semialgebraic function. Then there exist a strictly increasing function d : N → N in M2 and an M2-
computable function f : Qn × N → Q such that

(∀e ∈ N+)(∀x ∈ Oe)(∀a ∈ Qn)
[

‖x− a‖∞ <
1

d(e)
→ |θ(x)− f(a, e)| <

1

e

]

.

• (∃m1 ∈ N+)(∃r1 ∈ R≥1)(∀e ∈ R≥1, e ≥ r1)(∀x, y ∈ O2e)
[

‖x− y‖ <
1

em1
→ |θ(x)− θ(y)| ≤

1

2e

]

.

Proof. Note that the family {Oe | e ∈ R≥1} is uniformly definable, i.e. there is a formula ϕ(e, x1, . . . , xn)
such that for all e ∈ R≥1 the set Oe is definable by ϕ(e, x1, . . . , xn). Since θ is continuous on O2e (as it is
continuous on O) and the set O2e is compact it follows that θ is uniformly continuous on O2e. Therefore the
set

A(e) =
{

d ∈ R>0

∣
∣
∣ (∀x, y ∈ O2e)

[

‖x− y‖ <
1

d
→ |θ(x)− θ(y)| ≤

1

2e

]}

is non-empty and semialgebraic for every e ∈ R≥1 (as O, O2e and θ are semialgebraic). We have that

(∀e ∈ R≥1)(∀d, d
′ ∈ R>0)

[
d ∈ A(e) & d ≤ d′ → d′ ∈ A(e)

]

and
(∀e ∈ R≥1)(∀d ∈ R>0)

[
inf A(e) < d → d ∈ A(e)

]
.

The function g : R≥1 → R≥0 defined by g(e) = inf A(e) is semialgebraic. Therefore by Proposition 3 let
r1 ≥ 1 be a real number and m1 be a positive natural number such that

(∀e ∈ R≥1, e ≥ r1)[g(e) < em1 ].

Hence

(∀e ∈ R≥1, e ≥ r1)(∀x, y ∈ O2e)
[

‖x− y‖ <
1

em1
→ |θ(x)− θ(y)| ≤

1

2e

]

. (r1, m1)

12



• (∃m2 ∈ N+)(∃r2 ∈ R≥1)(∀e ∈ R≥1, e ≥ r2)(∀x ∈ O2e)
[
|θ(x)| ≤ em2

]
.

Proof. Since θ is continuous on the compact O2e, the set

B(e) =
{
d ∈ R≥0 | (∀x ∈ O2e)

[
|θ(x)| ≤ d

]}

is nonempty and semialgebraic for all e ∈ R≥1. Thus the function h : R≥1 → R≥0 defined by h(e) = inf B(e)
is semialgebraic. By virtue of Proposition 3 let r2 ≥ 1 be a real number and m2 be a positive natural number
such that

(∀e ∈ R≥1, e ≥ r2)[h(e) < em2 ].

Thus
(∀e ∈ R≥1, e ≥ r2)(∀x ∈ O2e)

[
|θ(x)| < em2

]
.

Further, let’s define e0 = ⌈max(r1, r2)⌉. The function

d : N → N+, d(e) = (e + e0)
m1+1

(
thus d(e) ≥ (e+ 1)2 > 2e

)

is strictly increasing and it is in M2. Since O, O2e and θ are each semialgebraic, the relations R′ ⊆ Rn+2

and S ′ ⊆ Rn+1 defined by

R′(a, e, b) ↔
(

b ≤ θ(a) < b+
1

2e

)

and
S ′(a, e) ↔

(
a ∈ O2e & e ≥ r2

)

are also semialgebraic. Let’s denote R = R′ ∩Qn+2 and S = S ′ ∩Qn+1. By Lemma 3 we obtain that R and
S are M2-computable relations. Hence the function f0 : Q

n × N → Q given by

f0(a, e) =







0 if a 6∈ O2e ∨ e < r2

−em2 +
µi≤4em2+1

[
− em2 + i

2e
≤ θ(a) < −em2 + i+1

2e

]

2e
if a ∈ O2e & e ≥ r2

=







0 if ¬S(a, e)

µi≤4em2+1

[
R(a, e,−em2 + i

2e
)
]
− 2em2+1

2e
if S(a, e)

is M2-computable. Thus if a ∈ Qn ∩ O2e, e ∈ N and e ≥ r2, then f0(a, e) is the unique

b ∈
{

− em2 ,−em2 +
1

2e
, . . . , em2 −

1

2e
, em2

}

such that θ(a) ∈
[

b, b+
1

2e

)

and so
∣
∣θ(a)− f0(a, e)

∣
∣ <

1

2e
.
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Consequently, the function f : Qn × N → Q defined by

f(a, e) = f0(a, e + e0)

is also M2-computable. We will show that the functions d and f have the required properties.

• (∀e ∈ N+)(∀x ∈ Oe)(∀a ∈ Qn)
[

‖x− a‖∞ <
1

d(e)
→ |θ(x)− f(a, e)| <

1

e

]

.

Proof. Let e ∈ N+, x ∈ Oe, a ∈ Qn and ‖x− a‖∞ <
1

d(e)
. We need several auxiliary statements.

4.1. x ∈ Oe & ‖x− a‖∞ <
1

d(e)
→ a ∈ O2e.

Proof. Since ‖x − a‖∞ <
1

d(e)
≤

1

e
and B

(

x,
1

e

)

⊆ O (as dist(x,Rn \ O) ≥
1

e
), we have

a ∈ O. Further,

‖a‖∞ = ‖(a− x) + x‖∞ ≤ ‖a− x‖∞ + ‖x‖∞ ≤
1

d(e)
+ e < 1 + e ≤ 2e.

Now we want to show that dist(a,Rn \O) ≥
1

2e
. In order to do that, we will show that

(∀y ∈ Rn \O)
[

‖a− y‖∞ ≥
1

2e

]

.

Let y ∈ Rn \O. Thus ‖x− y‖∞ ≥
1

e
(as dist(x,Rn \O) ≥

1

e
). By the triangle inequality we have

‖x− y‖∞ ≤ ‖x− a‖∞ + ‖a− y‖∞

and so

‖a− y‖∞ ≥ ‖x− y‖∞ − ‖x− a‖∞ ≥
1

e
−

1

d(e)
>

1

2e

as
1

e
−

1

d(e)
>

1

2e
↔ d(e) > 2e.

4.2.
∣
∣θ(x)− θ(a)

∣
∣ <

1

2e
.

Proof. We have

‖x− a‖∞ <
1

d(e)
=

1

(e+ e0)m1+1
<

1

(e+ e0)m1

and x, a ∈ O2e ⊆ O2(e+e0). Thus by property (r1, m1) we can conclude that

∣
∣θ(x)− θ(a)

∣
∣ <

1

2(e+ e0)
<

1

2e
.
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4.3.
∣
∣θ(a)− f(a, e)

∣
∣ <

1

2e
.

Proof. Since a ∈ O2e ⊆ O2(e+e0) and

e+ e0 > e0 = ⌈max(r1, r2)⌉ ≥ max(r1, r2) ≥ r2

by the definition of f we can see that

∣
∣θ(a)− f(a, e)

∣
∣ =

∣
∣θ(a)− f0(a, e+ e0)

∣
∣ <

1

2(e+ e0)
<

1

2e
.

Finally, let’s check the inequality
∣
∣θ(x)− f(a, e)

∣
∣ <

1

e
. We consequently obtain that

∣
∣θ(x)− f(a, e)

∣
∣ =

∣
∣θ(x)− θ(a) + θ(a)− f(a, e)

∣
∣ ≤

≤
∣
∣θ(x)− θ(a)

∣
∣+

∣
∣θ(a)− f(a, e)

∣
∣ <

<
1

2e
+

1

2e
=

1

e
.

Lemma 5. Let O be an open subset of Rn (n ≥ 1) and θ : O → R be a function. Further, suppose
there exist a strictly increasing function d : N → N+ in M2 and an M2-computable function f : Qn×N → Q

such that

(∀e ∈ N+)(∀x ∈ Oe)(∀a ∈ Qn)
[

‖x− a‖∞ <
1

d(e)
→ |θ(x)− f(a, e)| <

1

e

]

.

Then θ is parametrically MSO-computable.

Proof. Suppose that e ∈ N+, x = (x1, . . . , xn) ∈ Oe, (p1, q1, r1), . . . , (pn, qn, rn), (pn+1, qn+1, rn+1) ∈
T 3
1 are names of x1, . . . , xn, e respectively, and t ∈ N. Let’s denote

p′i = p′i(e, t) = pi(d(max(e, t+ 1))),

q′i = q′i(e, t) = qi(d(max(e, t + 1))),

r′i = r′i(e, t) = ri(d(max(e, t+ 1))),

and

ai = ai(e, t) =
p′i − q′i
r′i + 1

=
pi(d(max(e, t+ 1)))− qi(d(max(e, t+ 1)))

ri(d(max(e, t+ 1))) + 1

for i = 1, 2, . . . , n. Thus

|xi − ai| <
1

d(max(e, t + 1))

for i = 1, 2, . . . , n. From here, x ∈ Oe ⊆ Omax(e,t+1) and a = (a1, . . . , an) ∈ Qn we can see that

∣
∣θ(x)− f

(
a1, . . . , an,max(e, t+ 1)

)∣
∣ <

1

max(e, t+ 1)
≤

1

t + 1
.
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Let f be M2-computable via the functions f1, f2, f3 : N
3n+3 → N. It follows that

f
(
a1, . . . , an,max(e, t+ 1)

)
=

=
f1
(
p′1, q

′
1, r

′
1, . . . , p

′
n, q

′
n, r

′
n,max(e, t+ 1), 0, 0

)
− f2

(
p′1, q

′
1, r

′
1, . . . , p

′
n, q

′
n, r

′
n,max(e, t+ 1), 0, 0

)

f3
(
p′1, q

′
1, r

′
1, . . . , p

′
n, q

′
n, r

′
n,max(e, t+ 1), 0, 0

)
+ 1

.

Hence it is appropiate to define

Γi( p1, q1, r1
︸ ︷︷ ︸

a name of x1

, . . . , pn, qn, rn
︸ ︷︷ ︸

a name of xn

, pn+1, qn+1, rn+1
︸ ︷︷ ︸

a name of e

)(t) =

= fi
(
p′1, q

′
1, r

′
1, . . . , p

′
n, q

′
n, r

′
n,max(e, t+ 1), 0, 0

)
=

= fi
(
p′1(e, t), q

′
1(e, t), r

′
1(e, t)

︸ ︷︷ ︸

the corresponding
name of a1

, . . . , p′n(e, t), q
′
n(e, t), r

′
n(e, t)

︸ ︷︷ ︸

the corresponding
name of an

,max(e, t+ 1), 0, 0
)

for i ∈ {1, 2, 3}. Consequently the operators Γ1,Γ2,Γ3 belong to the class MSO and θ is parametrically
MSO-computable via the triple (Γ1,Γ2,Γ3).

Remark 9. We should have written
⌊ |pn+1(1)− qn+1(1)|

rn+1(1) + 1
+

1

2

⌋

in place of e earlier in the definition of

the operator Γi.

Theorem 1. Let O ba an open semialgebraic subset of Rn (n ≥ 1) and θ : O → R be a continuous
semialgebraic function. Then θ is parametrically MSO-computable.

Proof. A direct consequence of Lemma 4 and Lemma 5.

7 Integration of parametrically MSO-computable functions

Remark 10. The following theorem is due to Ivan Georgiev and it is our main reference for the com-
plexity of integration. In [G20] it is proved for l = 1. The proof remains practically the same for l > 1.

Theorem 2. ([G20], Theorem 6.1.) Let α, β be M2-computable real numbers, α < β, D ⊆ Rl

(l ≥ 1) be a set (of parameters) and θ : [α, β] × D → R be a uniformly MSO-computable function. Let
there exist A ∈ R>0, such that for every fixed (ξ1, . . . , ξl) ∈ D the function θ(ξ1,...,ξl) : [α, β] → R, defined by
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θ(ξ1,...,ξl)(x) = θ(x, ξ1, . . . , ξl), has a (complex) analytic continuation Θ(ξ1,...,ξl) : [α, β]× [−A,A] → C. Let
there also exist a polynomial P in l variables with natural coefficients, such that

(
∀(ξ1, . . . , ξl) ∈ D

)(
∀x ∈ [α, β]

)(
∀B ∈ [−A,A]

)[
|Θ(ξ1,...,ξl)(x+ iB)| ≤ P

(
|ξ1|, . . . , |ξl|

)]
.

Then the function I : D → R defined by

I(ξ1, . . . , ξl) =

β∫

α

θ(x, ξ1, . . . , ξl)dx

is uniformly MSO-computable.

Definition 13. Let O be a bounded open subset of Rn (n ≥ 1). We call a function θ : O → R

restricted analytic iff there exists a positive real number A such that θ has a bounded (complex) analytic
continuation to the set

{
(x1 + iy, . . . , xn + iy) ∈ Cn | (x1, . . . , xn) ∈ O & y ∈ [−A,A]

}
.

Corollary 1. Let α, β be M2-computable real numbers, α < β, and the real function θ : (α, β) → R

be restricted analytic and parametrically MSO-computable. Then the definite integral

β∫

α

θ(x)dx

is an M2-computable real number.

Proof. We are looking for functions p, q, r ∈ T1 ∩M2 such that

∣
∣
∣

β∫

α

θ(x)dx−
p(t)− q(t)

r(t) + 1

∣
∣
∣ <

1

t+ 1

for all t ∈ N.

Let the real number Mθ > 0 bound θ. For e, t ∈ N with e > max
(
Mθ · 3(t+ 1),

1

β − α

)
we have

∣
∣
∣

α+ 1
e∫

α

θ(x)dx
∣
∣
∣ ≤

α+ 1
e∫

α

|θ(x)|dx ≤
Mθ

e
<

1

3(t+ 1)
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and
∣
∣
∣

β∫

β− 1
e

θ(x)dx
∣
∣
∣ ≤

β∫

β− 1
e

|θ(x)|dx ≤
Mθ

e
<

1

3(t+ 1)
.

For e ∈ N+ with

α +
1

e
< β −

1

e

(

↔
2

β − α
< e

)

,

we have

(α, β)e = [−e, e] ∩
[

α +
1

e
, β −

1

e

]

.

Hence for e > max
(
|α|, |β|,

2

β − α

)
we have

[−e, e] ⊇ [α, β] ⊇
[

α +
1

e
, β −

1

e

]

and whence

(α, β)e =
[

α +
1

e
, β −

1

e

]

.

The function e : N → N+ defined by

e = e(t) = 1 + max
(⌈

|α|
⌉
,
⌈
|β|

⌉
,
⌈ 2

β − α

⌉

, ⌈Mθ⌉ · 3(t+ 1)
)

is in M2. We consequently obtain that

∣
∣
∣

β∫

α

θ(x)dx−
p(t)− q(t)

r(t) + 1

∣
∣
∣ =

∣
∣
∣

α+ 1
e(t)∫

α

θ(x)dx+
(

β− 1
e(t)∫

α+ 1
e(t)

θ(x)dx−
p(t)− q(t)

r(t) + 1

)

+

β∫

β− 1
e(t)

θ(x)dx
∣
∣
∣

≤
∣
∣
∣

α+ 1
e(t)∫

α

θ(x)dx
∣
∣
∣ +

∣
∣
∣

β− 1
e(t)∫

α+ 1
e(t)

θ(x)dx−
p(t)− q(t)

r(t) + 1

∣
∣
∣ +

∣
∣
∣

β∫

β− 1
e(t)

θ(x)dx
∣
∣
∣

<
1

3(t+ 1)
+
∣
∣
∣

β− 1
e(t)∫

α+ 1
e(t)

θ(x)dx−
p(t)− q(t)

r(t) + 1

∣
∣
∣+

1

3(t + 1)

=
2

3(t+ 1)
+
∣
∣
∣

β− 1
e(t)∫

α+ 1
e(t)

θ(x)dx−
p(t)− q(t)

r(t) + 1

∣
∣
∣.

So we wish to show that

∣
∣
∣

β− 1
e(t)∫

α+ 1
e(t)

θ(x)dx−
p(t)− q(t)

r(t) + 1

∣
∣
∣ ≤

1

3(t+ 1)
.
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We will prove that the function I : N → R defined by

I(t) =

β− 1
e(t)∫

α+ 1
e(t)

θ(x)dx

is uniformly M2-computable. Applying the linear change of variables

x =
(β − 1

e(t)
)− (α+ 1

e(t)
)

2
· u+

(β − 1
e(t)

) + (α + 1
e(t)

)

2
=

β − α− 2
e(t)

2
· u+

β + α

2

we obtain

I(t) =

β− 1
e(t)∫

α+ 1
e(t)

θ(x)dx =
β − α− 2

e(t)

2
·

1∫

−1

θ
(β − α− 2

e(t)

2
· u+

β + α

2

)

︸ ︷︷ ︸

=θ1(u,t)

du

=
β − α− 2

e(t)

2
·

1∫

−1

θ1(u, t)du

︸ ︷︷ ︸

=J(t)

=
β − α− 2

e(t)

2
· J(t).

Since α and β are M2-computable real numbers and the function e : N → N+ is in M2, it suffices to show
that the function J : N → R defined by

J(t) =

1∫

−1

θ1(u, t)du

is uniformly MSO-computable. In order to do that, we will apply Theorem 2 (with parameters from N) to
the function (the integrand) θ1 : [−1, 1]× N → R defined by

θ1(u, t) = θ
(β − α− 2

e(t)

2
· u+

β + α

2

)

.

Since θ is restricted analytic, let A be a positive real number for which θ has a bounded (complex) ana-
lytic continuation Θ to the set (α, β) × [−A,A]. Let Θ be bounded by MΘ. In particular, for every fixed
t ∈ N the continuation Θ is defined on the set

[
α + 1

e(t)
, β − 1

e(t)

]
× [−A,A]. Consequently, for every fixed

t ∈ N the function θ1,t : [−1, 1] → R, defined by θ1,t(u) = θ1(u, t), has a (complex) analytic continuation to
the set [−1, 1]×[−A,A], which is bounded by MΘ. It remains to show that θ1 is uniformly MSO-computable.

Let θ : (α, β) → R be parametrically MSO-computable via the triple (Fθ, Gθ, Hθ). Since α and β

are M2-computable real numbers and the function λt. 2
e(t)

: N → Q is M2-computable (for the function

e : N → N+ is in M2), the function ∆ : [−1, 1]× N → [α, β] defined by

∆(u, t) =
β − α− 2

e(t)

2
· u+

β + α

2
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is uniformly MSO-computable. Thus let ∆ be uniformly MSO-computable via the triple (P,Q,R).

Hence the (6, 1)-operators Fθ1 , Gθ1 and Hθ1 defined as follows

Fθ1(p1, q1, r1
︸ ︷︷ ︸

a name of
u∈ [−1,1]

, p2, q2, r2
︸ ︷︷ ︸

a name of
t∈N

) = Fθ

(
P (p1, q1, r1, p2, q2, r2), Q(p1, q1, r1, p2, q2, r2), R(p1, q1, r1, p2, q2, r2)
︸ ︷︷ ︸

the corresponding name of
β−α− 2

e(t)
2

·u+β+α

2
∈ [α+ 1

e(t)
,β− 1

e(t)
]

,

λm.e
(⌊ |p2(1)− q2(1)|

r2(1) + 1
+

1

2

⌋

︸ ︷︷ ︸
= t

)

, λm.0, λm.0
)
,

Gθ1(p1, q1, r1, p2, q2, r2) = Gθ

(
P (p1, q1, r1, p2, q2, r2), Q(p1, q1, r1, p2, q2, r2), R(p1, q1, r1, p2, q2, r2),

λm.e
(⌊ |p2(1)− q2(1)|

r2(1) + 1
+

1

2

⌋)

, λm.0, λm.0
)
,

Hθ1(p1, q1, r1, p2, q2, r2) = Hθ

(
P (p1, q1, r1, p2, q2, r2), Q(p1, q1, r1, p2, q2, r2), R(p1, q1, r1, p2, q2, r2),

λm.e
(⌊ |p2(1)− q2(1)|

r2(1) + 1
+

1

2

⌋)

, λm.0, λm.0
)

are in the class MSO and θ1 : [−1, 1]×N → R is uniformly MSO-computable via the triple (Fθ1 , Gθ1, Hθ1).

Consequently, the function I : N → R is also uniformly MSO-computable. By Remark 4.3 in [G20] let
the functions f, g, h ∈ T2 ∩M2 be such that for any t ∈ N the triple

(
λn.f(t, n), λn.g(t, n), λn.h(t, n)

)

is a name of the definite integral

I(t) =

β− 1
e(t)∫

α+ 1
e(t)

θ(x)dx.

In particular, we have

∣
∣
∣

β− 1
e(t)∫

α+ 1
e(t)

θ(x)dx−
f(t, 3t+ 2)− g(t, 3t+ 2)

h(t, 3t+ 2) + 1

∣
∣
∣ <

1

(3t+ 2) + 1
=

1

3t+ 3

for any t ∈ N. Hence the triple

(p, q, r) =
(
λt.f(t, 3t+ 2), λt.g(t, 3t+ 2), λt.h(t, 3t+ 2)

)

is a name of

β∫

α

θ(x)dx and so

β∫

α

θ(x)dx is an M2-computable real number.
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Corollary 2. Let α and β be M2-computable real numbers, α < β, O be a bounded open subset
of Rn (n ≥ 1) and suppose that the function θ : O × (α, β) → R is restricted analytic and parametrically
MSO-computable. Then the function I : O → R defined by

I(x) =

β∫

α

θ(x, y)dy

is restricted analytic and uniformly MSO-computable.

Proof. Let Mθ ∈ R>0 bound θ. The function e : N → N+ defined by

e(t) = 1 + max
(⌈

|α|
⌉
,
⌈
|β|

⌉
,
⌈ 2

β − α

⌉

, ⌈Mθ⌉.3(t+ 1)
)

is in M2.

We consequently obtain

|I(x)−?| =
∣
∣
∣

β∫

α

θ(x, y)dy−?
∣
∣
∣ =

=
∣
∣
∣

α+ 1
e(t)∫

α

θ(x, y)dy +
(

β− 1
e(t)∫

α+ 1
e(t)

θ(x, y)dy−?
)

+

β∫

β− 1
e(t)

θ(x, y)dy
∣
∣
∣ ≤

≤
∣
∣
∣

α+ 1
e(t)∫

α

θ(x, y)dy
∣
∣
∣+

∣
∣
∣

β− 1
e(t)∫

α+ 1
e(t)

θ(x, y)dy−?
∣
∣
∣+

∣
∣
∣

β∫

β− 1
e(t)

θ(x, y)dy
∣
∣
∣ ≤

<
1

3t + 3
+
∣
∣
∣

β− 1
e(t)∫

α+ 1
e(t)

θ(x, y)dy−?
∣
∣
∣+

1

3t+ 3
=

=
2

3t + 3
+
∣
∣
∣

β− 1
e(t)∫

α+ 1
e(t)

θ(x, y)dy−?
∣
∣
∣.

So we wish the following inequality to hold

∣
∣
∣

β− 1
e(t)∫

α+ 1
e(t)

θ(x, y)dy−?
∣
∣
∣ ≤

1

3t+ 3
.
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We will show that the function J : O × N → R defined by

J(x, t) =

β− 1
e(t)∫

α+ 1
e(t)

θ(x, y)dy

is uniformly MSO-computable. If J is unifomly MSO-computable via the triple (FJ , GJ , HJ), then the
function I : O → R will be uniformly MSO-computable via the triple (FI , GI , HI), where

FI(p1, q1, r1, . . . , pn, qn, rn)(t) = FJ(p1, q1, r1, . . . , pn, qn, rn, λm.t, λm.0, λm.0)(3t+ 2),

GI(p1, q1, r1, . . . , pn, qn, rn)(t) = GJ(p1, q1, r1, . . . , pn, qn, rn, λm.t, λm.0, λm.0)(3t+ 2),

HI(p1, q1, r1, . . . , pn, qn, rn)(t) = HJ(p1, q1, r1, . . . , pn, qn, rn, λm.t, λm.0, λm.0)(3t+ 2).

The restricted analyticity of I follows from the restricted analyticity of θ and from classical results in complex
analysis.

Applying the linear change of variables

y =
(β − 1

e(t)
)− (α+ 1

e(t)
)

2
· u+

(β − 1
e(t)

) + (α + 1
e(t)

)

2
=

β − α− 2
e(t)

2
· u+

β + α

2

we obtain

J(x, t) =

β− 1
e(t)∫

α+ 1
e(t)

θ(x, y)dy =
β − α− 2

e(t)

2
·

1∫

−1

θ
(

x,
β − α− 2

e(t)

2
· u+

β + α

2
︸ ︷︷ ︸

=θ1(x,t,u)

)

du

=
β − α− 2

e(t)

2
︸ ︷︷ ︸

=J0(t)

·

1∫

−1

θ1(x, t, u)du

︸ ︷︷ ︸

=J1(x,t)

= J0(t) · J1(x, t).

Since the function J0 : N → R defined by

J0(t) =
β − α− 2

e(t)

2

is uniformly MSO-computable and in view of the fact that multiplication preserves uniform MSO-computability,
it remains to show that the function J1 : O × N → R defined by

J1(x, t) =

1∫

−1

θ1(x, t, u)du
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is uniformly MSO-computable. In order to do that, we will apply Theorem 2 (with parameters from O×N)
to the function θ1 : O × N× [−1, 1] → R defined by

θ1(x, t, u) = θ
(

x,
β − α− 2

e(t)

2
· u+

β + α

2

)

.

Since θ : O × (α, β) → R is restricted analytic, let A be a positive real number for which θ has a bounded
(complex) analytic continuation Θ to the set

{
(x1 + iz, . . . , xn + iz, y + iz) ∈ Cn+1 | (x1, . . . , xn) ∈ O & y ∈ (α, β) & z ∈ [−A,A]

}
,

Let Θ be bounded by MΘ. In particular, for every fixed (x, t) ∈ O × N the continuation Θ is defined on
[
α+ 1

e(t)
, β− 1

e(t)

]
× [−A,A]. Consequently, for every fixed (x, t) ∈ O×N the function θ1,(x,t) : [−1, 1] → R,

defined by θ1,(x,t)(u) = θ1(x, t, u), has a (complex) analytic continuation to the set [−1, 1]× [−A,A], which
is bounded by MΘ. It remains to show that θ1 is uniformly MSO-computable.

Suppose the function θ : O×(α, β) → R is parametrically MSO-computable via the (3n+6, 1)-operators
(Fθ, Gθ, Hθ). Since α and β are M2-computable real numbers and the function λt. 2

e(t)
: N → Q is uniformly

MSO-computable (as the function e : N → N+ is in M2), let the function ∆ : N× [−1, 1] → R defined by

∆(t, u) =
β − α− 2

e(t)

2
· u+

β + α

2

be uniformly MSO-computable via the (6, 1)-operators (P,Q,R). Thus the function θ1 : O×N×[−1, 1] → R

is uniformly MSO-computable via the (3n+ 6, 1)-operators (Fθ1, Gθ1 , Hθ1) defined by

Fθ1(p1, q1, r1, . . . , pn, qn, rn
︸ ︷︷ ︸

a name of x∈O

, pn+1, qn+1, rn+1
︸ ︷︷ ︸

a name of t∈N

, pn+2, qn+2, rn+2
︸ ︷︷ ︸

a name of u∈ [−1,1]

) =

=Fθ

(
p1, q1, r1, . . . , pn, qn, rn
︸ ︷︷ ︸

the same name of x∈O

,

P (pn+1, qn+1, rn+1, pn+2, qn+2, rn+2), Q(pn+1, qn+1, rn+1, pn+2, qn+2, rn+2), R(pn+1, qn+1, rn+1, pn+2, qn+2, rn+2)
︸ ︷︷ ︸

the corresponeding name of
β−α− 2

e(t)
2

·u+β+α

2
∈ (α,β)e(t)

,

λm.e
(⌊ |pn+1(1)− qn+1(1)|

rn+1(1) + 1
+

1

2

⌋)

, λm.0, λm.0

︸ ︷︷ ︸

the corresponding name of e(t)∈N

)
.

The operators Gθ1 and Hθ1 are defined in the corresponding way.

Corollary 3. Let O be a bounded open semialgebraic subset of Rn (n ≥ 1), α, β : O → R be restricted
analytic semialgebraic functions with α < β on O. Denote

U =
{
(x, y) ∈ Rn+1 | x ∈ O & α(x) < y < β(x)

}
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and suppose that θ : U → R is restricted analytic and parametrically MSO-computable function on U . Then
the function I : O → R defined by

I(x) =

β(x)∫

α(x)

θ(x, y)dy

is restricted analytic and parametrically MSO-computable.

Remark 11. Note that if α and β are uniformly MSO-computable, then so is the function I.

Proof. For any fixed x ∈ O we apply the linear change of variables

y =
β(x)− α(x)

3
· u+ α(x)

to the given integral and we obtain

I(x) =

β(x)∫

α(x)

θ(x, y)dy =
β(x)− α(x)

3
·

3∫

0

θ
(

x,
β(x)− α(x)

3
· u+ α(x)

)

︸ ︷︷ ︸

=θ1(x,u)

du

=
β(x)− α(x)

3
·

3∫

0

θ1(x, u)du

︸ ︷︷ ︸

=J(x)

=
β(x)− α(x)

3
· J(x).

Remark 12. Any bounded open interval (a, b) with M2-computable endpoints a, b ∈ R, a < b, and
2 < (b− a), is suitable for the linear change of the variable y, because in this case

(∀e ∈ R≥1)
[

a+
1

e
< b−

1

e

]

.

The set (0, 3) is just one fixed interval with that property.

By virtue of Theorem 1 and Proposition 1 the function
β − α

3
: O → R is parametrically MSO-

computable. It is also restricted analytic. In order to see that the function I : O → R is restricted
analytic and parametrically MSO-computable, it is enough (having in mind the same Proposition 1) to show
that the function J : O → R defined by

J(x) =

3∫

0

θ1(x, u)du

is restricted analytic and parametrically MSO-computable (actually, J is uniformly MSO-computable). Fur-
ther, by Corollary 2 it suffices to show that the function θ1 : O × (0, 3) → R, defined by

θ1(x, u) = θ
(

x,
β(x)− α(x)

3
· u+ α(x)

)

24



is restricted analytic and parametrically MSO-computable. Note that θ1 is restricted analytic, since it is a
composition of restricted analytic functions.

Since α, β : O → R are parametrically MSO-computable, let the function ∆ : O× (0, 3) → R defined by

∆(x, u) =
β(x)− α(x)

3
· u+ α(x)

be parametrically MSO-computable via the (3n + 6, 1)-operators (P,Q,R). Note that for all e ∈ N+ we
have

(
O × (0, 3)

)

e
= Oe × (0, 3)e.

For each e ∈ R≥1 the following set is non-empty

A(e) =
{

e′ ∈ R
∣
∣ e ≤ e′ &

(
∀(x, u) ∈ Rn+1

)[

(x, u) ∈
(
O×(0, 3)

)

e
→

(

x,
β(x)− α(x)

3
·u+α(x)

)

∈ Ue′

]}

.

Indeed, let e ∈ R≥1. For

u ∈ (0, 3)e = [−e, e] ∩
[

0 +
1

e
, 3−

1

e

]

⊆
[1

e
, 3−

1

e

]

we see that

α(x) +
β(x)− α(x)

3e
≤

β(x)− α(x)

3
· u+ α(x)

︸ ︷︷ ︸
=y

≤ β(x)−
β(x)− α(x)

3e
.

Let me be the least value of the function (β −α) on Oe (the function (β −α) is continuous on the compact
Oe). This number is positive (as α < β on O). We have

α(x) +
me

3e
≤ α(x) +

β(x)− α(x)

3e
≤

β(x)− α(x)

3
· u+ α(x)

︸ ︷︷ ︸
=y

≤ β(x)−
β(x)− α(x)

3e
≤ β(x)−

me

3e
.

Let Mα and Mβ bound the functions α and β respectively. Taking

e′ = max
(

e,
⌈
Mα

⌉
,
⌈
Mβ

⌉
,
⌈ 3e

me

⌉)

we obtain

α(x) +
1

e′
≤

β(x)− α(x)

3
· u+ α(x)

︸ ︷︷ ︸
=y

≤ β(x)−
1

e′

and so
β(x)− α(x)

3
· u+ α(x)

︸ ︷︷ ︸
=y

∈
[

α(x) +
1

e′
, β(x)−

1

e′

]

=
(
α(x), β(x)

)

e′

for all x ∈ Oe ⊆ Oe′. Thus we have

x ∈ Oe′ &
β(x)− α(x)

3
· u+ α(x)

︸ ︷︷ ︸
=y

∈
(
α(x), β(x)

)

e′
.
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Now we refer to Lemma 4 and Lemma 2 (with e replaced by e′).

The function g : R≥1 → R≥1 defined by

g(e) = inf A(e)

is semialgebraic (here we use the semialgebraicity of the set O and the functions α and β). If e ∈ R≥1, then
e is a lower bound of the set A(e) and so 1 ≤ e ≤ g(e). Further, we have

(∀e, e′, e′′ ∈ R≥1)
[
e′ ∈ A(e) & e′ ≤ e′′ → e′′ ∈ A(e)

]

and thus
(∀e, e′′ ∈ R≥1)

[
g(e) < e′′ → e′′ ∈ A(e)

]
.

By Proposition 3 let r ≥ 1 be a real number and k be a positive natural number such that

(∀e ∈ R≥1)
[
r ≤ e → g(e) < ek

]
.

Therefore
(∀e ∈ R≥1)

[
r ≤ e → ek ∈ A(e)

]
.

Hence

(∀e ∈ N, r ≤ e)
(
∀(x, u) ∈ Rn+1

)[

(x, u) ∈
(
O × (0, 3)

)

e
→

(

x,
β(x)− α(x)

3
· u+ α(x)

)

∈ Uek

]

.

It follows that the computation of
(

θ1 ↾
(
O × (0, 3)

)

e

)

can be performed by (θ ↾ Umax(⌈r⌉,e)k) for

each e ∈ N+. Indeed, let θ : U → R be parametrically MSO-computable via the (3n + 6, 1)-operators
(Fθ, Gθ, Hθ). Then the function θ1 : O× (0, 3) → R is parametrically MSO-computable via the (3n+6, 1)-
operators (Fθ1 , Gθ1, Hθ1) defined as follows:

Fθ1(pi, qi, ri) =

=Fθ1(p1, q1, r1, . . . , pn, qn, rn
︸ ︷︷ ︸

a name of x∈Oe

, pn+1, qn+1, rn+1
︸ ︷︷ ︸

a name of u∈ (0,3)e
︸ ︷︷ ︸

a name of (x,u)∈Oe×(0,3)e =(O×(0,3))e

, pn+2, qn+2, rn+2
︸ ︷︷ ︸

a name of e∈N+

) =

=Fθ

(
p1, q1, r1, . . . , pn, qn, rn
︸ ︷︷ ︸

the same name of x

, P (pi, qi, ri), Q(pi, qi, ri), R(pi, qi, ri)
︸ ︷︷ ︸

the corresponding name of(
β(x)−α(x)

3
·u+α(x)

)
∈ (α(x),β(x))

︸ ︷︷ ︸

the corresponding name of

(
x,

β(x)−α(x)
3

·u+α(x)
)
∈U

max(⌈r⌉,e)k

, λm.max(⌈r⌉, e)k, λm.0, λm.0
︸ ︷︷ ︸

the corresponding name of

max(⌈r⌉,e)k ∈N+

)
.

We define the other two operators Gθ1 and Hθ1 in the same way.

Remark 13. We should have written
⌊ |pn+2(1)− qn+2(1)|

rn+2(1) + 1
+

1

2

⌋

in place of e in max(⌈r⌉, e).
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8 The volumes of open restricted analytic cells are M2-computable

real numbers

Definition 14. A 1-dimensional open restricted analytic cell is a bounded open interval with algebraic
endpoints. An (n+1)-dimensional open restricted analytic cell (n ≥ 1) is a set of the form

{
(x, y) ∈ Rn+1 | x ∈ O & α(x) < y < β(x)

}

for some n-dimensional open restricted analytic cell O and restricted analytic semialgebraic functions α, β :
O → R with α < β on O.

Remark 14. Note that every n-dimensional open restricted analytic cell is open, bounded, semialge-
braic, Jordan measurable, and it has positive measure.

Definition 15. Let n, i ∈ N+ and i ≤ n. πi : Rn → Ri is the projection function on the first
i-coordinates, i.e.

πi(x1, . . . , xi, xi+1, . . . , xn) = (x1, . . . , xi).

Remark 15. If i < n and

C =
{
(x, y) ∈ Rn | x ∈ O & α(x) < y < β(x)

}
,

then πn−1[C] = O.

Definition 16. Let n, i ∈ N+, 1 ≤ i < n and C be an n-dimensional open restricted analytic cell. The
fiber over a point xn−i ∈ πn−i[C] is the set

Cxn−i =
{
y i ∈ Ri | (xn−i, y i) ∈ C

}
.

Lemma 6. Let C be an n-dimensional open restricted analytic cell (n ≥ 2). For i ∈ N with 1 ≤ i < n

we define the function Vi : πn−i[C] → R by

Vi(x
n−i) = vol(Cxn−i) =

∫

C
x n−i

1dy i.

The functions V1, V2, . . . , Vn−1 are restricted analytic and parametrically MSO-computable.

Proof. We proceed by induction on i ∈ {1, 2, . . . , n − 1}. Let i = 1. We consider the function
V1 : πn−1[C] → R defined by

V1(x
n−1) = vol(Cxn−1).
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Since C is an n-dimensional open restricted analytic cell, it has the form

C =
{
(xn−1, y) ∈ Rn | xn−1 ∈ πn−1[C] & αn−1(x

n−1) < y < βn−1(x
n−1)

}

for some restricted analytic semialgebraic functions αn−1, βn−1 : πn−1[C] → R with αn−1 < βn−1 on πn−1[C].
By virtue of Theorem 1 the functions αn−1 and βn−1 are parametrically MSO-computable. For every xn−1 ∈
πn−1[C] we have

Cxn−1 = {y ∈ R | (xn−1, y) ∈ C} =
(
αn−1(x

n−1), βn−1(x
n−1)

)

and
V1(x

n−1) = vol(Cxn−1) = vol
((

αn−1(x
n−1), βn−1(x

n−1)
))

= βn−1(x
n−1)− αn−1(x

n−1).

Consequently, the function V1 is restricted analytic and parametrically MSO-computable (as a difference of
such functions).

Further, let i ∈ N, 1 < i < n − 1 and the function Vi : πn−i[C] → R be restricted analytic and
parametrically MSO-computable. By definition we have

Vi+1 : πn−i−1[C] → R, Vi+1(x
n−i−1) = vol(Cxn−i−1) =

∫

C
x n−i−1

1d(y, z i).

As πn−i[C] is an (n− i)-dimensional open restricted analytic cell we have

πn−i[C] =
{
(xn−i−1, y) ∈ Rn−i | xn−i−1 ∈ O & α(xn−i−1) < y < β(xn−i−1)

}

for some (n− i−1)-dimensional open restricted analytic cell O and restricted analytic semialgebraic functions
α, β : O → R with α < β on O. Note that O = πn−i−1[C]. By virtue of Theorem 1 the functions α and β

are parametrically MSO-computable. The fiber over a point xn−i−1 ∈ O has the form

Cxn−i−1 =
{
(y, z i) ∈ Ri+1 | (xn−i−1, y, z i) ∈ C

}

=
{
(y, z i) ∈ Ri+1 | (xn−i−1, y) ∈ πn−i[C] & z i ∈ C(x n−i−1,y)

}

=
{
(y, z i) ∈ Ri+1 | xn−i−1 ∈ O & α(xn−i−1) < y < β(xn−i−1) & z i ∈ C(x n−i−1,y)

}

=
{
(y, z i) ∈ Ri+1 | α(xn−i−1) < y < β(xn−i−1) & z i ∈ C(xn−i−1,y)

}
.

Therefore by Fubini’s Theorem we can see that

Vi+1(x
n−i−1) = vol(Cxn−i−1) =

∫

C
x n−i−1

1d(y, z i) =

β(x n−i−1)∫

α(x n−i−1)

( ∫

C
(x n−i−1,y)

1dz i
)

dy

=

β(x n−i−1)∫

α(x n−i−1)

vol(C(x n−i−1,y))dy

=

β(x n−i−1)∫

α(x n−i−1)

Vi(x
n−i−1, y)dy
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for each xn−i−1 ∈ O = πn−i−1[C]. Consequently, by Corollary 3 (with U = πn−i[C] and θ = Vi) we can
conclude that the function Vn−i−1 : O → R is restricted analytic and parametrically MSO-computable.

Corollary 4. The volumes of open restricted analytic cells are M2-computable real numbers.

Proof. Let C be an n-dimensional open restriced analytic cell (n ≥ 1). Since π1[C] ⊆ R and π1[C] is
an open restricted analytic cell, we have π1[C] = (α, β) for some algebraic real numbers α, β with α < β.
By Lemma 6 we know that the function Vn−1 : (α, β) → R defined by

Vn−1(y) = vol(Cy) =

∫

Cy

1dzn−1

is restricted analytic and parametrically MSO-computable. As C is an n-dimensional open restricted analytic
cell, it can be written in the form

C =
{
(y, zn−1) ∈ Rn | y ∈ (α, β) & zn−1 ∈ Cy

}
.

Therefore by Fubini’s Theorem we have

vol(C) =

∫

C

1dxn =

β∫

α

(∫

Cy

1dzn−1
)

dy =

β∫

α

vol(Cy)dy =

β∫

α

Vn−1(y)dy.

As algebraic numbers α and β are M2-computable. Hence by Corollary 1 the volume of C is an M2-
computable real number.

9 The volumes of bounded semialgebraic sets are M2-computable

real numbers

Definition 17. Analytic Cells are non-empty semialgebraic sets defined inductively as follows:

(i) The analytic cells in R are points {c} and open intervals (α, β), −∞ ≤ α < β ≤ +∞.

Let C ⊆ Rn (n ≥ 1) be an analytic cell and α, β : C → R be analytic semialgebraic functions such
that α < β on C. Then the sets:

(ii) (α, β) =
{
(x, y) ∈ C × R | α(x) < y < β(x)

}
(a cylinder);

(iii) (−∞, α) =
{
(x, y) ∈ C × R | −∞ < y < α(x))

}
;
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(iv) (β,+∞) =
{
(x, y) ∈ C × R | β(x) < y < +∞

}
;

(v) graph(f) =
{
(x, y) ∈ C × R | y = α(x)

}
, and

(vi) C × R

are analytic cells in Rn+1.

Remark 16. Every bounded analytic cell is a Jordan measurable set.

Definition 18. An analytic cell decomposition of Rn (n ≥ 1) is defined by induction on n:

18.1. An analytic cell decomposition of R is a finite collection of open intervals and points:

{
(−∞, a1), {a1}, (a1, a2), {a2}, . . . , (ak−1, ak), {ak}, (ak,∞)

}
,

where a1 < a2 < · · · < ak are points in R.

18.2. Assuming that the class of analytic cell decompositions of Rn−1 (n ≥ 2) has been defined, an analytic
cell decomposition of Rn is a finite partition P of Rn into analytic cells such that the set

π(P ) =
{
π(C) |C ∈ P

}

is an analytic cell decomposition of Rn−1, where π : Rn → Rn−1 is the projection on the first (n− 1)
coordinates.

Definition 19. We say that an analytic cell decomposition P of Rn partitions a set S ⊆ Rn if S is a
finite union of disjoint cells in P .

Theorem 3. ([HP17], Theorem 1.1) (Analytic Cell Decomposition) Let S1, . . . , Sk (k ≥ 1) be semial-
gebraic subsets of Rn. Then there is an analytic cell decomposition of Rn partitioning each Si.

Remark 17. Additionally, the functions defining the cells in the analytic cell decomposition can be
chosen to be restricted analytic.

Corollary 5. The volumes of bounded semialgebraic sets are M2-computable real numbers.

Proof. Let S be a bounded semialgebraic subset of Rn. By the Analytic Cell Decomposition Theo-
rem (i.e. Theorem 3) let C1, . . . , Cp be analytic cells partitioning the set S. Since S is definable without
parameters, the cells C1, . . . , Cp can also be chosen to be definable without parameters. Hence each of
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the sets C1, . . . , Cp is either open restricted analytic cell or has volume zero. Therefore their volumes are
M2-computable real numbers (by virtue of Corollary 4). Thus the volume of S is an M2-computable real
number (as a finite sum of such numbers).

10 The real periods are M2-computable real numbers

Theorem 4. ([Yo08], Lemma 24) The ring P of all periods is generated by

⋃

n∈N+

{
vol(S) | S ⊆ Rn & “S is a bounded open semialgebraic set”

}
.

Corollary 6. The real periods are M2-computable real numbers.

Proof. The set of M2-computable real numbers is a field. Therefore by Theorem 4 and Corollary 5
we can conclude that every period is an M2-computable real number.
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