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Chapter 1

Introduction

There is a natural correspondence between partial orders as first-order models
and intuitionistic Kripke frames - we can view such structures as either frames
or models. Because of this we can use either language to express properties
of partial orders. The difference in the semantics though make the languages
incomparable in their expressive power - there are properties definable with
sentences which are undefinable through propositional intuitionistic formulas
and vice versa.

A natural question arises then: can we algorithmically determine whether
a property expressible in one language is expressible in the other? Van Ben-
them poses the following algorithmic problems about the modal language:

1. Is there an algorithm which given an input sentence A, determines
whether there exists a modal formula φ such that A and φ have the
same models?

2. Is there an algorithm which given an input modal formula φ, determines
whether there exists a sentence A such that A and φ have the same
models?

3. Is there an algorithm which given an input sentence A and modal for-
mula φ, determines whether A and φ have the same models?

The same correspondence problems arise naturally when considering the
intuitionistic language instead of a modal language. In her dissertation,
L. Chagrova showed that all three of the problems are undecidable in the
intuitionistic case, reducing undecidable problems about Minsky machines
to the problems in consideration.

Despite this, we can consider restricted versions of the correspondence
problems with respect to particular classes - such instances of the correspon-
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6 CHAPTER 1. INTRODUCTION

dence problem are sometimes decidable, depending on the complexity of the
restricted class.

We will focus our work on the first problem.

Definition 1. We say that an intuitionistic formula φ is a definition of the
sentence A with respect to the class of structures K, if for every F ∈ K,
F |= A ⇐⇒ F |= φ.

Definition 2. The problem IntDef with respect to the class K is the fol-
lowing task: given an input sentence A, determine whether there exists a
definition φ of A with respect to K.

The text is structured in the following manner:

• Chapter 2 is a brief refresher on First-order, Monadic second-order and
Intuitionistic logic. The used notation is presented and the relevant
definitions and theorems are reminded to the reader.

• Chapter 3 examines a number of classes based on linear orders. Using
classical results due to Rabin, decidability of the first-order theories of
the classes is shown. By showing that certain properties of the models
of sentences can be effectively determined, the problem of definability
with respect to those classes is proven to be decidable.

• Chapter 4 is about undecidable instances of the definability problem.
The technique of stable classes due to Balbiani and Tinchev is briefly
commented on and is used as the main tool to prove undecidability of
the definability problem by reducing validity in a class to definability.
Undecidability of the first-order theories and stability of some natural
classes of structures is proven, showing that the definability problem
with respect to those classes is undecidable.

• Chapter 5 gives a brief summary of the results and alludes to a further
problem about a class of structures with similar nature to a class we
have considered in Chapter 4.



Chapter 2

Preliminaries

2.1 General

The general framework for the present work will be the theory ZFC. Unless
otherwise specified, we will use standard terminology and notation with its
usual meaning when reasoning about sets and set operations. We will use
the standard notation ω for the set of natural numbers and lowercase greek
letters for ordinals, sometimes using n or k with indices for natural numbers.
A central role will take partially ordered sets and here we will briefly list the
most relevant definitions and properties concerning them.

Definition 3. A partial order is a pair ⟨X,≤⟩, where X is a set and ≤ is a
reflexive, transitive and antisymmetric binary relation.

A strict partial order is a pair ⟨X,<⟩, where X is a set and < is an
irreflexive and transitive binary relation.

With every partial order ⟨X,≤⟩ we can associate in a natural way the
corresponding strict partial order ⟨X, (≤ \{⟨a, a⟩ | a ∈ X})⟩ and dually with
every strict partial order ⟨X,<⟩ we can associate the partial order ⟨X, (<
∪{⟨a, a⟩ | a ∈ X})⟩.

We will use the following accompanying notions when working with a
partial order P = ⟨X,≤⟩:

• The inverse relation is ≥= {⟨b, a⟩ | a ≤ b}. The inverse partial order
of P is P⋆ = ⟨X,≥⟩.

• The elements a ∈ X and b ∈ X are comparable if a ≤ b or b ≤ a. If
they are not comparable we say that they are incomparable.

• The element a ∈ X is minimal if for every element b ∈ X comparable
with a, a ≤ b.
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8 CHAPTER 2. PRELIMINARIES

• The element a ∈ X is the least element of X if for every b ∈ X, a ≤ b.

• The set Y ⊆ X is a chain if every two elements a, b ∈ Y are comparable.

• The set Y ⊆ X is an antichain if every two distinct elements a, b ∈ Y
are incomparable.

• The set Y ⊆ X is upward closed (or upper set, or upper cone) if for
every element a ∈ Y and every element b ∈ X, a ≤ b implies b ∈ X.

• The upper closure of Y ⊆ X is the set Y ↑= {x ∈ X |(∃y ∈ Y )(y ≤ x)}.

• P is dense if for every two elements a, b ∈ X such that a < b, there
exists an element c ∈ X such that a < c < b.

• P is a linear order if every two elements a, b ∈ X are comparable.

• The element b ∈ X is the successor of a ∈ X if a < b and there is no
element c ∈ X such that a < c < b.

• The partial orders P1 = ⟨X,≤⟩ and P2 = ⟨Y,⊑⟩ are isomorphic if
there exists a bijective function f : X → Y such that for every a, b ∈ X,
a ≤ b ⇐⇒ f(a) ⊑ f(b). We write P1

∼= P2.

Remark 1. Some relevant properties for any partial order P = ⟨X,≤⟩ are
the following:

• For every Y ⊆ X, ⟨Y,≤ ∩(Y × Y )⟩ is a partial order.

• If ⟨X,≤⟩ is a linear order and Y ⊆ X, then ⟨Y,≤ ∩(Y ×Y )⟩ is a linear
order.

• If P is an infinite linear order, then there is an infinite set Y ⊆ X,
such that ⟨Y,≤ ∩(Y × Y )⟩ is isomorphic to ω or ω⋆.

We will concern ourselves with computational aspects in the context of a
certain notion of definability. Since our work will mostly consist of analysis
of the models of theories, for the sake of readability we will use a somewhat
high level of abstraction. We will usually present algorithms in the form of
natural language description, from which it will be clear how to construct a
decision procedure in a formal manner.

Usually the problems we will consider will be of the following form: is
there an effective procedure, determining whether a formula A has a property
we are interested in.
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Remark 2. Post’s theorem.
The set A is decidable precisely when both A and its complement are

decidable.
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2.2 First-order languages and logic

The main setting of this thesis will be first-order languages, theories and
classes of models. We will work purely with semantic tools and here we will
outline briefly the relevant notions. For further reference the reader may
consult [3].

Definition 4. A relational first-order language (abbreviated RFOL) L with
equality consists of the following:

1. Logical symbols:

• A countably infinite set V AR of individual variables. Usually we
will denote individual variables with lowercase latin letters x, y, z, t,m,
sometimes with indices.

• The propositional connectives ¬,∧.
• The quantifier ∃
• The symbol for formal equality

.
=

2. Nonlogical symbols:

• A set of predicate symbols Pred(L). Usually we will denote predi-
cate symbols with uppercase latin R, S, T, E or ≤,⊑, <, sometimes
with indices. For each symbol R ∈ Pred(L) there is an associated
arity 1 ≤ #(R) < ω.

We say that L has cardinality κ if the set Pred(L) has cardinality κ.

The following definitions hold for arbitrary RFOL L:

Definition 5. An atomic formula of L is one of the following:

• (x
.
= y) for any x, y ∈ V AR

• R(x1, · · · , xn) for any R ∈ Pred(L), #(R) = n and x1, · · · , xn ∈ V AR

Definition 6. A L-formula is any atomic formula, and if A and B are
formulas and x ∈ V AR, then

• (A ∧B) is a formula

• (¬A) is a formula

• ∃xA is a formula
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Usually formulas will be denoted by uppercase latin A,B,C,D, sometimes
with indices. The set of all L-formulas will be denoted by FOR(L).

Remark 3. We will often use the additional propositional connectives ∨,→
and the quantifier ∀:

• A ∨B is an abbreviation for ¬(¬A ∧ ¬B)

• A→ B is an abbreviation for ¬A ∨B

• ∀xA is an abbreviation for ¬∃x(¬A)

Definition 7. Given an L-formula A, we define the variables occurring in A
- vars(A), the free variables of A - fv(A), the bound variables of A - bv(A),
and the quantifier rank of A - qr(A), as usual:

• if A = x
.
= y, then vars(A) = {x, y}, fv(A) = {x, y}, bv(A) = ∅,

qr(A) = 0

• if A = R(x1, · · · , xn), then vars(A) = {x1, · · · , xn}, fv(A) = {x1, · · · , xn},
bv(A) = ∅, qr(A) = 0

• if A = ¬B, then vars(A) = vars(B), fv(A) = fv(B), bv(A) = bv(B),
qr(A) = qr(B)

• if A = B ∧ C, then vars(A) = vars(B) ∪ vars(C), fv(A) = fv(B) ∪
fv(C), bv(A) = bv(B) ∪ bv(C), qr(A) = max{qr(B), qr(C)}

• if A = ∃xB, then vars(A) = vars(B) ∪ {x}, fv(A) = fv(B) \ {x},
bv(A) = bv(B) ∪ {x}, qr(A) = qr(B) + 1

If fv(A) = ∅ we will say that A is a sentence. The set of all L-sentences
will be denoted by SENT (L).

Definition 8. The L-formula B is a variant of the L-formula A if B is
obtained by repeatedly executing the following procedure:

Suppose A = · · · ∃xC · · · and y ̸∈ vars(C) is a variable. Then obtain
A′ = · · · ∃yC[x/y] · · · by replacing each free occurrence of x in C with y, i.e.:

• z[x/y] = z, if z ̸= x is a variable

• x[x/y] = y

• (x1
.
= x2)[x/y] = (x1[x/y]

.
= x2[x/y])
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• (R(x1, · · · , xn))[x/y] = R(x1[x/y], · · · , xn[x/y]) for every R ∈ Pred(L)

• (¬D)[x/y] = ¬(D[x/y])

• (D1 ∧D2)[x/y] = D1[x/y] ∧D2[x/y]

• (∃xD)[x/y] = ∃xD

• (∃zD)[x/y] = ∃z(D[x/y]), if z ̸= x is a variable

Remark 4. For every L-formula A there is an L-formula B, such that B is
a variant of A and fv(B) ∩ bv(B) = ∅.

Definition 9. Let L be a RFOL. An L-model(or L-structure) is any pair
A = ⟨A, I⟩, where:

• A is a nonempty set called the universe of A. For a model A we will
denote the universe of A with |A|.

• I is an interpretation of the nonlogical symbols of L, i.e. I : Pred(L) →
P(A⋆) such that for every R ∈ Pred(L), I(R) ⊆ A#(R). For a model
A and predicate symbol R ∈ Pred(L) we will denote its interpretation
I(R) with RA.

When it is clear what the language L is in the context of our arguments,
we may refer to L-models(L-structures) as just models(structures).

We will usually denote models with uppercase gothic letters A,B,C,F,G,
sometimes with indices.

Definition 10. A variable assignment is any function V : V AR → |A|.
For a model A, variable assignment V , variable x ∈ V AR and element

a ∈ |A|, the modified assignment V a
x is the variable assignment such that

• V a
x (x) = a

• V a
x (z) = V (z), for z ̸= x

Definition 11. For any L-model A and variable assignment V , the satisfac-
tion relation |= is defined as follows:

• A, V |= x
.
= y, if V (x) = V (y)

• A, V |= R(x1, · · · , xn), if ⟨V (x1), · · · , V (xn)⟩ ∈ RA

• A, V |= ¬A, if A, V ̸|= A
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• A, V |= A ∧B, if A, V |= A and A, V |= B

• A, V |= ∃xA, if there is an element a ∈ |A| such that A, V a
x |= A

We can readily see that:

• A, V |= A ∨B ⇐⇒ A, V |= A or A, V |= B

• A, V |= A→ B ⇐⇒ A, V |= B or A, V ̸|= A

• A, V |= ∀xA ⇐⇒ for every element a ∈ |A|, A, V a
x |= A

We say that:

• A is valid in the model A and write A |= A, if for every variable
assignment V , A, V |= A. We also say that A is a model of A.

• A set Γ ⊆ FOR(L) is valid in the model A and write A |= Γ, if for
every formula A ∈ Γ, A |= A.

Remark 5. A direct consequence of the definition of the satisfaction relation
is that if A is a model, A is a formula and V1 and V2 are variable assignments
such that for every x ∈ fv(A) V1(x) = V2(x), then A, V1 |= A ⇐⇒ A, V2 |=
A

Because of that, when A is a sentence we have that A |= A ⇐⇒ for all
variable assignments V , A, V |= A ⇐⇒ there exists a variable assignment
V such that A, V |= A, i.e. sentences state inherent properties of the models
and their validity does not depend on the variable assignment.

Remark 6. By Remark 3, for every formula A we can find a variant B
of A such that fv(B) ∩ bv(B) = ∅. Moreover, if B is a variant of A, for
every model A and every variable assignment V we have that A, V |= A ⇐⇒
A, V |= B. Therefore in our analysis of formulas we can always assume that
the formulas we are working with have the property that fv(A) ∩ bv(A) = ∅.

From the properties of formulas and satisfaction we have stated thus far
we can develop the following convenient notation: for a formula A with
fv(A) = {x1, · · · , xn}, A |= AJaK is an abbreviation for ”for every assign-
ment V , such that V (xi) = ai for every 1 ≤ i ≤ n, A, V |= A”.

Definition 12. Let K be a class of models. We say that:

• The sentence A is valid in K and write K |= A if for every model
A ∈ K, A |= A. If K is the class of all models we say that A is valid.
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• The sentence A is satisfiable in K if there is a model A ∈ K such that
A |= A. If K is the class of all models we say that A is satisfiable. We
have that A is satisfiable (in K) precisely when ¬A is not valid (in K).

• We will denote the class of all models of A from K with ModK(A).

• The set Γ ⊆ SENT is satisfiable (in K) if there is a model A(∈ K),
such that A |= Γ.

• K is axiomatizable if there exists a set Γ ⊆ SENT (L) such that for
every model A, A |= Γ ⇐⇒ A ∈ K. We say that Γ axiomatizes K

• K is finitely axiomatizable if there exists a finite set Γ ⊆ SENT (L)
such that Γ axiomatizes K. Since the conjunction of a finite number
of formulas is a formula, we can equivalently state that K is finitely
axiomatizable if there exists a sentence A such that {A} axiomatizes
K.

• T = {A ∈ SENT (L) | A is valid in K} is the theory of K and we will
denote it by th(K). When K = {A} we denote it simply by th(A).

Definition 13. Let A and B be L-models. We say that:

• A and B are elementarily equivalent and write A ≡ B if th(A) =
th(B).

• A and B are k-elementarily equivalent for k < ω and write A ≡k B
if for every L-sentence A with qr(A) ≤ k we have that A |= A ⇐⇒
B |= A.

Definition 14. Let A and B be L-models. We say that A and B are iso-
morphic and write A ∼= B if there is a bijection f : |A| → |B| such that for
every symbol R ∈ Pred(L) of arity #(R) = n and every a1, · · · , an ∈ |A|,
A |= R(x1, · · · , xn)Ja1, · · · , anK ⇐⇒ B |= R(x1, · · · , xn)Jf(a1), · · · , f(an)K.

Remark 7. If A ∼= B, then A ≡ B.

Definition 15. Let A and B be L-models. We say that:

• A is a submodel of B if |A| ⊆ |B| and for every symbol R ∈ Pred(L),
RA = RB ∩ (|A| × |A|).

• A is an extension of B if B is a submodel of A.
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• A is isomorphically embedded in B if A is isomorphic to a submodel of
B.

Definition 16. Let A and B be L-models. We say that:

• A is an elementary submodel of B if A is a submodel of B and for every
L-formula A with fv(A) = {x1, · · · , xn} and every a1, · · · , an ∈ |A|,
A |= AJa1, · · · , anK ⇐⇒ B |= AJa1, · · · , anK.

• A is an elementary extension of B if B is an elementary submodel of
A.

• A is elementarily embedded in B if A is isomorphic to an elementary
submodel of B.

Remark 8. If A is elementarily embedded in B, then A ≡ B. In particular,
if A is an elementary submodel of B, then A ≡ B.

Definition 17. Let A,B be L-formulas with fv(A) = {y, x1, · · · , xn} and
vars(A) ∩ vars(B) = ∅. We define the relativization of B with respect to A
and y, denoted by (B)A,y, as follows:

• (z1
.
= z2)

A,y = z1
.
= z2

• (R(z1, · · · , z2))A,y = R(z1, · · · , zn) for every symbol R ∈ Pred(L)

• (¬C)A,y = ¬(C)A,y

• (C ∧D)A,y = (C)A,y ∧ (D)A,y

• (∃zC)A,y = ∃z(A[y/z] ∧ (C)A,y)

Observe that if fv(B) = {z1, · · · , zk}, then fv((B)A,y) = {x1, · · · , xn, z1, · · · , zk}.

Definition 18. Let A be an extension of B, a1, · · · , an ∈ |A| and A ∈
FOR(L) such that fv(A) = {y, x1, · · · , xn}. Then B is called the relativized
reduct of A with respect to A and a if |B| = {b | A |= AJb, aK}.

Theorem 1. Relativization theorem. (for proof consult [4] theorem 5.1.1).
Let B be the relativized reduct of A with respect to A and a , where

fv(A) = {y, x}. Let B ∈ FOR(L) be such that vars(A) ∩ vars(B) = ∅ and
fv(B) = {z1, · · · , zk}. Then for every b1, · · · , bk B |= BJbK ⇐⇒ A |=
(B)A,yJa, bK.
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Theorem 2. Compactness theorem.
A set Γ ⊆ SENT (L) of sentences is satisfiable precisely when every finite

∆ ⊆ Γ is satisfiable.

Theorem 3. Downward Löwenheim–Skolem theorem.
Let L be a language of cardinality κ1 and B be an L-model of cardinality

κ2. Then for every cardinality κ such that ℵ0 + κ1 ≤ κ ≤ κ2, and for every
set S ⊆ |B| of cardinality at most κ, there exists an elementary submodel A
of B such that S ⊆ |A| and |A| is of cardinality κ.

Theorem 4. Tarski [9]
The theory of the class of all lattices is undecidable. The theory of the

class of all partial orders is undecidable.

Theorem 5. Rogers [7]
The theory of the class G of all models for the language L = {E} satisfying

the axioms ∀xE(x, x) and ∀x∀y(E(x, y) → E(y, x)) is undecidable.

Theorem 6. Lavrov [5]
For the class G as defined in the previous theorem and the class Gfin

consisting of the finite models in G, th(G) and FOR(E) \ th(Gfin) are re-
cursively inseparable, that is they are disjoint and there exists no decidable
set C such that C ∩ th(G) = ∅ and (SENT (E) \ th(Gfin)).
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2.3 Intuitionistic propositional logic

The other logic we will mainly work with will be the intuitionistic proposi-
tional logic (which we will abbreviate Int). We will consider standard Kripke
semantics and again focus on the semantic portion. For further reference, the
reader may consult [2].

Definition 19. The language of Int consists of:

• A countably infinite set PV AR of propositional variables. Usually we
will denote propositional variables with p, q, r, s, t, sometimes with in-
dices.

• The constant symbols ⊤,⊥

• The propositional connectives ∧,∨,→

Definition 20. Intuitionistic formula (Int-formula):
⊤, ⊥ and p for every p ∈ PV AR are Int-formulas, and if φ1 and φ2 are

Int-formulas, then

• (φ1 ∧ φ2) is an Int-formula

• (φ1 ∨ φ2) is an Int-formula

• (φ1 → φ2) is an Int-formula

Usually we will denote formulas with φ, ψ or χ, sometimes with indices.

Remark 9. We will often use the additional connective ¬. The formula
(¬φ) is an abbreviation for φ→ ⊥.

Definition 21. For a formula φ we will denote with vars(ϕ) the set of all
propositional variables, occurring in φ. Formally:

• vars(⊤) = vars(⊥) = ∅

• vars(p) = {p} for p ∈ PV AR

• vars(φ ∧ ψ) = vars(φ ∨ ψ) = vars(φ→ ψ) = vars(φ) ∪ vars(ψ)

Definition 22. A Kripke frame is any partial order F = ⟨W,≤⟩ with W ̸= ∅.

Definition 23. Let F = ⟨W,≤⟩ be a Kripke frame. A variable assignment
for F is a function V : PV AR → P(W ) such that for every p ∈ PV AR,
V (p) is an upper set.
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Definition 24. A Kripke model over a Kripke frame F is any pair M =
⟨F, V ⟩, where V is a variable assignment for F.

Definition 25. For any Kripke model M = ⟨F, V ⟩ over F = ⟨W,≤⟩ and any
point x ∈ W , the satisfaction relation |= is defined as follows:

• M, x |= ⊤

• M, x ̸|= ⊥

• M, x |= p, if x ∈ V (p)

• M, x |= φ1 ∨ φ2, if M, x |= φ1 or M, x |= φ2

• M, x |= φ1 ∧ φ2, if M, x |= φ1 and M, x |= φ2

• M, x |= φ1 → φ2, if for every y ∈ W such that x ≤ y, if M, y |= φ1,
then M, y |= φ2

We can readily see that:

• M, x |= ¬φ ⇐⇒ for every y ∈ W such that x ≤ y, M, y ̸|= φ

We say that:

• φ is true in M and write M |= φ if for every x ∈ W , M, x |= φ.

• φ is true at x ∈ W in F and write F, x |= φ if for every model M over
F, M, x |= φ.

• φ is valid in F and write F |= φ if for every model M over F, M |= φ.

• φ is satisfiable if there is a Kripke model M and point x ∈ W such that
M, x |= φ

• φ is valid if for every Kripke model F, F |= φ.

Definition 26. Let K be a class of Kripke frames. The logic of K is Log(K) =
{φ | for every F ∈ K,F |= φ}. We say that φ is valid in K and write K |= φ
if φ ∈ Log(K). If K = {F}, then we denote the logic of K simply by Log(F).

Definition 27. Let F = ⟨W,≤⟩ be a Kripke frame and X ⊆ W , X ̸= ∅. The
generated subframe of X is the frame FX = {X ↑,≤ ∩(X ↑ ×X ↑)}.

If X = {y} for some y ∈ W we will denote the generated subframe simply
by Fy and say that Fy is rooted with root y.
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Remark 10. Generated subframes theorem.
Let F = ⟨W,≤⟩ be a Kripke frame. The following properties hold for

generated subframes:

• F, x |= φ ⇐⇒ Fx |= φ

• F |= φ precisely when for every generated subframe FX , FX |= φ

• F |= φ precisely when for every x ∈ W , Fx |= φ

Definition 28. Let F = ⟨W,≤⟩ and G = ⟨U,⊑⟩ be Kripke frames. We say
that a function f : W → U is a p-morphism if the following conditions are
satisfied:

• f is surjective

• for every x, y ∈ W , if x ≤ y then f(x) ⊑ f(y)

• for every x, y ∈ W , if f(x) ⊑ f(y) then there is some z ∈ W such that
f(y) = f(z) and x ≤ z

We say that G is a p-morphic image of F if such function f exists.

Remark 11. P-morphism theorem.
For any Kripke frame F and G, if G is a p-morphic image of F and F |= φ

then G |= φ.

Remark 12. If F3 is a p-morphic image of F2 and F2 is a p-morphic image
of F1, then F3 is a p-morphic image of F1.

Remark 13. Consider the formulas φdepth≤n for 1 ≤ n < ω, defined as
follows:

• φdepth≤1 = p1 ∨ ¬p1

• φdepth≤n+1 = pn+1 ∨ (pn+1 → φdepth≤n)

Then the class of frames validating φdepth≤n is precisely the class of all
partial orders, such that every chain of elements in the frame contains no
more than n elements.
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2.4 Monadic second-order languages and logic

In order to show that we can effectively determine some properties of formu-
las, we will investigate certain classes of models in the context of the more
expressive monadic second-order language. Here we will very briefly list the
most relevant syntactical and semantic notions for second-order languages
and theories.

Definition 29. A relational monadic second-order language (RMSOL) LII

with equality is a first-order language LI extended with a countably infinite
set of set variables SV AR.

We will denote set variables with uppercase latin letters, sometimes with
indices.

Definition 30. An atomic formula of LII is one of the following:

• An atomic formula of LI .

• (x ∈ Y ), for any x ∈ V AR and Y ∈ SV AR.

Definition 31. An LII-formula is any atomic LII-formula, and if A and B
are formulas, x ∈ V AR, Y ∈ SV AR, then:

• (¬A) is a formula

• (A ∧B) is a formula

• ∃xA is a formula

• ∃Y A is a formula

The connectives ∨ and →, and universal quantification over individual
variables are defined as in the first-order case.

The formula ∀Y A is an abreviation for ¬∃Y ¬A.
The formula (∃x ∈ Y )A is an abbreviation for ∃x(x ∈ Y ∧ A).
The formula (∃x ̸∈ Y )A is an abbreviation for ∃x(¬x ∈ Y ∧ A)
The formula X ⊆ Y is an abbreviation for ∀z(z ∈ X → z ∈ Y ).
The formula X

.
= Y is an abbreviation for X ⊆ Y ∧ Y ⊆ X.

The formula (∃X ⊆ Y )A is an abbreviation for ∃X(X ⊆ Y ∧ A).

Definition 32. The notions of occurring variables, free variables and bound
variables in a formula A are defined similarly to the first-order case, tak-
ing into account the variables over sets. We will again denote them by
vars(A), fv(A) and bv(A), respectively.

Variants of formulas are again defined similarly to the first-order case,
again taking into account the variables over sets.
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Remark 14. For every LII-formula A, there is a variant B of A, such that
fv(B) ∩ bv(B) = ∅.

Definition 33. Let LII be a RMSOL. An LII-model is any first-order model
A for the language LI .

Definition 34. A variable assignment is any function V : (V AR∪SV AR) →
(|A| ∪ P(|A|)), such that for every x ∈ V AR, V (x) ∈ |A| and for every
Y ∈ SV AR, V (Y ) ⊆ |A|.

The modified assignment V a
x for x ∈ V AR is defined as in the first-order

case, copying the behaviour of V over set variables as well.
The modified assignment V T

Y for Y ∈ SV AR and T ⊆ |A| is the following
variable assignment:

• V T
Y (x) = V (x) for x ∈ V AR

• V T
Y (Y ) = T

• V T
Y (Z) = V (Z) for Z ∈ SV AR, Z ̸= Y

Definition 35. For an LII-model A and variable assignment V , the satis-
faction relation |= is defined as follows:

• A, V |= x
.
= y, if V (x) = V (y)

• A, V |= x ∈ Y , if V (x) ∈ V (Y )

• A, V |= R(x1, · · · , xn), if ⟨V (x1), · · · , V (xn)⟩ ∈ RA

• A, V |= ¬A, if A, V ̸|= A

• A, V |= A ∧B, if A, V |= A and A, V |= B

• A, V |= ∃xA, if there is an element a ∈ |A| such that A, V a
x |= A

• A, V |= ∃Y A, if there is a set T ⊆ |A| such that A, V T
Y |= A

It directly follows that:

• A, V |= A ∨B, if A, V |= A or A, V |= B

• A, V |= A→ B, if A, V |= ¬A or A, V |= B

• A, V |= X ⊆ Y , if V (X) ⊆ V (Y )

• A, V |= X
.
= Y , if V (X) = V (Y )
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• A, V |= ∀xA, if for every individual a ∈ |A|, A, V a
x |= A

• A, V |= ∀XA, if for every set T ⊆ |A|, A, V T
X |= A

Remark 15. Similarly to the first-order case, if A is a variant of B, then
A, V |= A ⇐⇒ A, V |= B, and if V1(η) = V2(η) for every η ∈ fv(A), then
A, V1 |= A ⇐⇒ A, V2 |= A.

We can thus adopt similar semantic notation:
For a formula A with fv(A) ⊆ {x1, · · · , xn, Y1, · · · , Yk}, A |= AJa, T K

is an abbreviation for ”for every assignment V , such that V (xi) = ai and
V (Yj) = Tj for 1 ≤ i ≤ n and 1 ≤ j ≤ k, A, V |= A”.

Definition 36. The notions of validity(in a class of models), satisfiability(in
a class), (finite) axiomatization of a class and the theory of a class, isomor-
phic models and elementary equivalence are stated in the exact same manner
as in the first-order case.

We denote the theory of a class K with thII(K).

Remark 16. If A ∼= B, then A ≡II B.

Of key importance will be the following classical theorem due to Rabin:

Theorem 7. Decidability of S2S [6]
The monadic second order theory S2S of two successors is decidable. As

a direct consequence, the monadic theory of at most countable linear orders
is decidable.



Chapter 3

Decidable instances of
definability

In this chapter we will consider some well-tamed classes of frames for which
the resulting instances of the problem of definability are decidable.

Linear orders will be the main building blocks for these classes. A useful
and in a sense restricting property of linear orders is that every generated
subframe is also a linear order.

Mainly due to this property, it turns out that with respect to the classes
we consider, all possible intuitionistic definitions modulo equivalence are the
following:

• ⊤

• ⊥

• φdepth≤n for 1 ≤ n < ω

The general approach in this chapter will be to consider a class of models
and perform careful analysis of the properties of the models of an arbitrary
first-order sentence A.

23
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3.1 Finite linear orders

First, we will consider the class of all finite linear orders. Despite not being
axiomatizable, the class has the important properties of having a decidable
theory and a very specific form of the class ModLINfin(A) for any sentence
A.

Definition 37. Denote with LIN fin the class of all finite linear orders.
Throughout this chapter, with Fn for 1 ≤ n < ω we will denote the model

⟨n,≤n⟩, where ≤n is the usual ordering of n.

Remark 17. Clearly, for any model F ∈ LIN fin, there exists a unique
1 ≤ n < ω such that F ∼= Fn. Without loss of generality, we will assume that
all models of the class are of this form.

Now, consider an arbitrary sentence A. The class Mod(A) has the fol-
lowing simple and finitary characterization:

Proposition 1. Denote LIN fin>n = {Fk | k > n} for every 1 ≤ n < ω,
and for any sentence A, the class Mod≤n(A) = {Fk | k ≤ n,Fk |= A}. Let
q = qr(A).

Then

• If F2q |= A, then Mod(A) =Mod≤2q(A) ∪ LIN fin>2q .

• If F2q ̸|= A, then Mod(A) =Mod≤2q(A).

Proof. A standard result for finite linear orders is that for every k < ω and
n1, n2 ≥ 2k, Fn1 ≡k Fn2 .

Consider a natural number n > 2q. Since q = qr(A), and since F2q ≡q Fn,
we can conclude that Fn |= A ⇐⇒ F2q |= A.

Therefore for any n > 2q, Fn ∈Mod(A) ⇐⇒ F2q ∈Mod(A).

This shows that instead of working with the whole class Mod(A), we can
instead argue about the finite set N(A) = {n ≤ 2qr(A) | Fn |= A}. We obtain
the following useful corollaries:

Corollary 1. 1. The set N(A) is decidable.

2. The theory th(LIN fin) is decidable.

3. It is decidable whether given a sentence A, the class Mod(A) is closed
under taking subframes.
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Proof. 1. Since we work in a finite RFOL, for every 1 ≤ n < ω we can
effectively determine whether Fn |= A by following the definition of |=.

2. A ∈ th(LIN fin) precisely when Mod(A) = LIN fin, which in turn
happens precisely when N(A) = {1, · · · , 2qr(A)}.

3. Since the set N(A) is decidable and bounded by 2qr(A), we can effec-
tively check if it is downward closed. This happens precisely when the
class Mod(A) has the desired property.

Remark 18. Observe that for any 1 ≤ n1 ≤ n2 < ω, the frame Fn1 is a
generated subframe of Fn2. Therefore, for any formula φ, Fn2 |= φ implies
Fn1 |= φ, and so the class of all frames in LIN fin validating φ is closed
under taking subframes.

Theorem 8. The problem IntDef with respect to the class LIN fin is decid-
able.

Proof. Suppose we are given a sentence A. The following procedure effec-
tively determines whether A is definable:

Generate the set N(A).

1. If N(A) = {1, · · · , 2qr(A)}, then LIN fin |= A and therefore ⊤ is a
definition of A.

2. If N(A) = ∅, then LIN fin |= ¬A and therefore ⊥ is a definition of A.

3. If N(A) ̸= {1, · · · , 2qr(A)} and N(A) ̸= ∅:

(a) If N(A) is not downward closed, then by Remark 17 A is unde-
finable.

(b) Otherwise, if N(A) is downward closed, then 2qr(A) ̸∈ N(A) since
N(A) ̸= {1, · · · , 2qr(A)} and thereforeMod(A) = {Fn |n ∈ N(A)}.
Since N(A) ̸= ∅, there exists a maximal number n ∈ N(A). Now
all models of A are precisely the frames F1, · · · ,Fn and therefore
the formula φdepth≤n is a definition of A.
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3.2 Linear orders

Next, we shall consider the class of all linear orders. We already know what
to do with the finite models of a sentence A, so the main task will be to
handle the infinite models. To do so, we will first make a few observations
on the intuitionistic side and use the fact that the theory of all infinite linear
orders is decidable.

Definition 38. Denote with LIN the class of all linear orders, with LIN inf

the class of all infinite linear orders, with LIN countable the class of all at most
countable linear orders and with LIN cinf the class of all countably infinite
linear orders.

First we will show that the intuitionistic logic Log(LIN) posseses the
finite model property. This will in essence reduce the problem of definability
to the finite case.

Proposition 2. For every frame F ∈ LIN and every intuitionistic formula
φ such that F ̸|= φ, there exists a finite frame Ffin ∈ LIN such that Ffin ̸|= φ.

Proof. Let F = ⟨W,R⟩ ∈ LIN be a frame and φ be an intuitionistic formula
such that vars(φ) ⊆ {p1, · · · , pn} and F ̸|= φ. Let M = ⟨F, V ⟩ be a Kripke
model and x ∈ W such that M, x ̸|= φ.

For a subset P ⊆ {p1, · · · , pn} we shall say that x ∈ W realizes P and
write x |= P if P = {q ∈ {p1, .., pn} | M, x |= q}. We shall say that P is
realized if some x ∈ W realizes it. It is clear that every x ∈ W realizes a
unique P and we shall denote it by Px.

• Wfin = {Px | x ∈ W}

• ≤fin= {⟨Px, Py⟩ | x, y ∈ W,x ≤ y}

• Vfin(pi) = {P ∈ Wfin | pi ∈ P}

We can readily see that ≤fin is a well-defined linear ordering of Wfin

since V is upward closed. Moreover, P1 ≤fin P2 ⇐⇒ P1 ⊆ P2. Since
Wfin ⊆ P({p1, · · · , pn}), the set Wfin is finite. Denote Ffin = ⟨Wfin,≤fin⟩
and Mfin = ⟨Ffin, Vfin⟩.

We now claim that for every x ∈ W and every formula ψ with vars(ψ) ⊆
{p1, · · · , pn}, M, x |= ψ ⇐⇒ Mfin, Px |= ψ.

Induction on ψ:

• ψ = ⊥
M, x ̸|= ⊥ and Mfin, Px ̸|= ⊥
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• ψ = pi

M, x |= pi ⇐⇒ pi ∈ Px ⇐⇒ Px ∈ Vfin(pi) ⇐⇒ Mfin, Px |= pi

• ψ = ψ1 ∨ ψ2

M, x |= ψ ⇐⇒ M, x |= ψ1 or M, x |= ψ2
(ih)⇐=⇒ Mfin, Px |= ψ1 or

Mfin, Px |= ψ2 ⇐⇒ Mfin, Px |= ψ

• ψ = ψ1 ∧ ψ2

M, x |= ψ ⇐⇒ M, x |= ψ1 and M, x |= ψ2
(ih)⇐=⇒ Mfin, Px |= ψ1 and

Mfin, Px |= ψ2 ⇐⇒ Mfin, Px |= ψ

• ψ = ψ1 → ψ2

1. Suppose M, x ̸|= ψ. Then there exists y ≥ x such that M, y |= ψ1

and M, y ̸|= ψ2. Then by (ih) Mfin, Py |= ψ1 and Mfin, Py ̸|= ψ2.
Then since x ≤ y, we have that Px ≤fin Py and Mfin, Px ̸|= ψ.

2. Suppose Mfin, Px ̸|= ψ. Then there is Py ≥fin Px such that
Mfin, Py |= ψ1 and Mfin, Py ̸|= ψ2.

(a) If x ≤ y, then by (ih) we have that M, y |= ψ1 and M, y ̸|= ψ2.
Then M, x ̸|= ψ.

(b) Otherwise, y < x (F is a linear order) and then Py ≤fin Px.
Since we know that Px ≤fin Py, this means that Px = Py.
Therefore Mfin, Px |= ψ1 and Mfin, Px ̸|= ψ2 and by (ih)
M, x |= ψ1 and M, x ̸|= ψ2. Therefore M, x ̸|= ψ.

Now since M, x ̸|= φ, we can conclude that Mfin, Px ̸|= φ and thus
Ffin ̸|= φ.

To finish our analysis on the intuitionistic side we will need the following
property, which lets us, in conjunction with the above, to immediately state
that an intuitionistic formula φ is valid in LIN if it is valid in any infinite
frame.

Proposition 3. Let F = ⟨W,≤⟩ ∈ LIN be an infinite linear order and
1 ≤ n < ω. Then Fn is a p-morphic image of F.

Proof. Let a1 < a2 < · · · < an−1 ∈ W . Since F is infinite, we can always
choose such elements for any positive n.

Consider the frame F′ = ⟨W ′,≤ ∩(W ′ ×W ′)⟩, where W ′ = {a ∈ W | a ≤
an−1}, and the following two functions:
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1. f : W → W ′, defined as

• f(a) = a, if a ≤ an−1

• f(a) = an−1, if a > an−1

2. g : W ′ → n, defined as

• g(a) = k, where k is the least number k ≤ n such that a ≤ ak

Now clearly f is a p-morphism from F onto F′ and g is a p-morphism
from F′ onto Fn. Therefore Fn is a p-morphic image of F

On the first-order side, we will use a well-known result due to Rabin:

Proposition 4. th(LIN) and th(LIN inf ) are decidable.

Proof. By [6], the monadic second-order theory of the class LIN countable of all
at most countable linear orders is decidable. Therefore, th(LIN countable) is de-
cidable and directly th(LIN) is decidable since by the Downward Lowenheim-
Skolem theorem th(LIN) = th(LIN countable).

Consider the following second-order sentence:

• Inf = ∃Y ∀x∃y(x < y) ∨ ∃Y ∀x∃y(x > y)

Then for a countable model A ∈ LIN countable, clearly if A |= Inf then
A is an infinite linear order. Conversely, if A is a countably infinite linear
order, then it contains a submodel isomorphic to either ω or ω⋆. Evaluating
Y with the universe of this model shows that A |= Inf .

Therefore any at most countable linear order A is infinite precisely when
A |= Inf , hence LIN cinf |= A ⇐⇒ LIN countable |= Inf → A for any
second-order sentence A. Hence thII(LIN cinf ) is decidable and therefore
th(LIN cinf ) is decidable. Again by the Downward Lowenheim-Skolem theo-
rem this means that th(LIN inf ) = th(LIN cinf ) is decidable.

Now we have all the preparation needed to state the following:

Proposition 5. The problem IntDef with respect to the class LIN is de-
cidable.

Proof. Suppose we are given a sentence A. The following procedure effec-
tively determines whether A is definable:

1. If LIN |= A, then ⊤ is a definition of A.
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2. If LIN |= ¬A, then ⊥ is a definition of A.

3. If A and ¬A are satisfiable:

(a) If LIN inf |= ¬A, then A has only finitely(modulo isomorphism)
many finite models. Otherwise by the Compactness theorem A
would have an infinite model which contradicts our assumption.
Proceed with finding a definition of A as in the case of LIN fin.

(b) If LIN inf ̸|= ¬A, then we claim that A is undefinable:

Let F ∈ LIN inf ,F |= A and assume that φ is a definition of
A. Then since every G ∈ LIN fin is a p-morphic image of F,
LIN fin |= φ. Since LIN has the finite model property, LIN |= φ
and therefore LIN |= A - contradiction.
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3.3 Disjoint unions of linear orders

The third class of models we will consider is the class of all disjoint unions
of linear orders. We will adopt a similar strategy as for the class of all linear
orders: we will wish to show that the models of a sentence A have properties
similar to those needed in the previous case.

We will need to see that the theory of the class is decidable, that we
can effectively determine whether A has a model with an infinite chain(this
condition corresponds to the need to rule out infinite models in the case of
linear orders), and whether A is valid in all models of bounded depth, i.e.
when we manage to reasonably bound the size of the models A should have
in order to be definable, we need to be able to determine that in fact A is
true in all such models.

Definition 39. Denote with DLIN the class of all disjoint unions of linear
orders. For an index set I ̸= ∅ and an indexed family (Fi)i∈I of disjoint linear
orders, we will denote its disjoint union model with

⊔
i∈I

Fi, defined as follows:

•
⊔
i∈I

Fi =
⋃
i∈I

|Fi|

• ≤
⊔
i∈I

Fi

=
⋃
i∈I

≤Fi

Proposition 6. The class DLIN is finitely axiomatized by the following
formulas:

• P1 = ∀x(x ≤ x)

• P2 = ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z)

• P3 = ∀x∀y(x ≤ y ∧ y ≤ x→ x
.
= y)

• D1 = ∀x∀y∀z(x ≤ y ∧ x ≤ z → y ≤ z ∨ z ≤ y)

• D2 = ∀x∀y∀z(x ≥ y ∧ x ≥ z → y ≤ z ∨ z ≤ y)

The first three are the usual axioms for partial orders. The last two in
essence force a model to be a collection of linear orders - there is no branching
allowed.

Proof. Suppose first that F ∈ DLIN , F =
⊔
i∈I

Fi where (Fi)i∈I is an indexed

family of linear orders.
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In particular (Fi)i∈I is a family of partial orders and the disjoint union of
partial orders is a partial order. Therefore F satisfies P1, P2, P3.

Suppose a, b, c ∈ |F| such that a ≤F b and a ≤F c. Then by the definition
of ≤F and the fact that the union is disjoint, there exists an index i ∈ I such
that a ≤Fi b and a ≤Fi c. In particular, b, c ∈ Fi. Since Fi is a linear order,
this means that b ≤Fi c or c ≤Fi b. Therefore b ≤F c or c ≤F b. Thus F
satisfies D1. The argument about D2 is symmetric.

Now suppose that F satisfies the axioms P1, P2, P3, D1, D2. Because of
P1, P2 and P3, F is a partial order. Consider the following family of models
(Fi)i∈I , where:

• I is an arbitrary maximal antichain in F. Such exists as a consequence
of the Axiom of choice.

• |Fi| = {a ∈ |F| | a ≤F i ∨ i ≤F a} for i ∈ I.

• ≤Fi=≤F ∩(|Fi| × |Fi|) for i ∈ I.

Immediately, Fi is a partial order for every i ∈ I. We claim that Fi is a
linear order: let a, b ∈ |Fi|, then by the definition of |Fi|, (a ≤F i or i ≤F a)
and (b ≤F i or i ≤F b).

We examine the possible cases:

• a ≤F i and i ≤F b

Then since ≤F is a partial order, a ≤F b and therefore a ≤Fi b.

• b ≤F i and i ≤F a

Symmetric to the previous case.

• i ≤F a and i ≤F b

Then by axiom D1 we have that a ≤F b or b ≤F a. Therefore a ≤Fi b
or b ≤Fi a.

• a ≤F i and b ≤F i

Symmetric to the previous case taking axiom D2 instead of D1.

Therefore any two elements of |Fi| are comparable and Fi is a linear order.
Let i, j ∈ I and choose k ∈ |Fi| ∩ |Fj| ̸= ∅. Then (i ≤F k or k ≤F i) and

(j ≤F k or k ≤F i). Arguing as above, we see that then i and j must be
comparable. Since I is an antichain, this is only possible if i = j. Therefore
the family is disjoint.
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Let a ∈ |F|. Since I is a maximal antichain, I ∪ {a} = I or I ∪ {a} is not
an antichain. In the first case, a ∈ I and therefore a ∈ |Fa|. In the second,
a is comparable to some i ∈ I and therefore a ∈ |Fi|. Therefore |F| ⊆ |

⊔
i∈I

Fi|,

so |F| = |
⊔
i∈I

Fi|. Since ≤F=≤
i∈I

Fi , F =
⊔
i∈I

Fi.

With this we have shown that F ∈ DLIN .

To show that the theory of the class is decidable and that we can effec-
tively determine whether a sentence A has a model with an infinite chain, we
will show that we can embed the at most countable models of DLIN into
models of LIN . In order to extract the desired reduction we will need to
consider the second-order theory of LIN .

An important consideration is that the second-order theory of the full
class LIN is undecidable ([8]) but if we limit ourselves to only countable
models, the theory is decidable ([6]) and this will suffice.

Definition 40. Denote with DLIN countable the class of all at most countable
disjoint unions of linear orders.

Proposition 7.

• By application of the Downward Löwenheim–Skolem theorem, th(DLIN countable) =
th(DLIN).

Indeed, since DLIN countable ⊆ DLIN , we have that th(DLIN) ⊆
th(DLIN countable).

In the other direction, suppose that A ̸∈ th(DLIN). Then since DLIN
is axiomatizable, there is a model F ∈ DLIN such that F ̸|= A, i.e.
F |= ¬A. By the Downward Löwenheim–Skolem theorem, there is a
countable elementary submodel F′ of F. Then F′ ≡ F and therefore
F′ |= ¬A, i.e. F′ ̸|= A. Since F′ ∈ DLIN , A ̸∈ th(DLIN countable). In
conclusion, th(DLIN countable) ⊆ th(DLIN).

• The property of a model having an infinite chain is not expressible with
a first-order sentence. Nevertheless, by using the full strength of the
Downward Löwenheim–Skolem we can show that a sentence A has a
model in DLIN with this property precisely when A has a model in
DLIN countable with the property:

If A has a model F ∈ DLIN countable with an infinite chain, then imme-
diately F ∈ DLIN .

Suppose F ∈ DLIN , F |= A and C ⊆ |F| is an infinite chain. Pick a
countably infinite subset C ′ ⊆ C. By the Downward Löwenheim–Skolem
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theorem there exists an elementary submodel F′ of F such that C ⊆ |F′|.
Then F′ ≡ F and therefore F′ |= A and F′ ∈ DLIN countable.

The above remarks show that it is enough to consider only at most count-
able models when checking for those properties. Now we will proceed with
the promised embedding:

Definition 41. Let A ∈ DLIN countable and without loss of generality, assume
that A =

⊔
i<α

Ai, where α is a countable ordinal and for every index i, Ai ∈

LIN countable. Without loss of generality we will assume that |A| ∩ α = ∅.
The linearization of A with respect to the index set α is the model B ∈

LIN countable, defined as follows:

• |B| = |A| ∪ (
⋃
α)

• ≤B=≤A ∪{⟨β, y⟩ | y ∈ |Aγ|, β < γ < α} ∪ {⟨x, β⟩ | x ∈ |Aγ|, γ ≤ β <⋃
α} ∪ {⟨β, γ⟩ | β ≤ γ <

⋃
α} ∪ {⟨x, y⟩ | x ∈ |Aβ|, y ∈ |Aγ|, β < γ < α}

In essence, the linearization of a model A is the result of glueing together
all the linear orders one after the other in a fashion dependent on the index
set α. Between the linear orders we have inserted special separators which
will be our guidemarks where one chain ends and starts another.

The following proposition presents the translation and establishes the
connection between satisfaction of a sentence in a model A ∈ DLIN countable

and in its linearization with respect to an ordering of the index set.

Proposition 8. For a monadic predicate M consider the following transla-
tion trM(A) of first-order formulas A in L = {≤}:

• trM(x
.
= y) = x

.
= y

• trM(x ≤ y) = x ≤ y ∧ ¬∃m(m ∈M ∧ x < m < y)

• trM(¬A) = ¬trM(A)

• trM(A ∧B) = trM(A) ∧ trM(B)

• trM(∃xA) = ∃x(x ̸∈M ∧ trM(A))

Let A ∈ DLIN countable, A =
⊔
i∈I

Ai and B ∈ LIN countable be the lineariza-

tion of A with respect to I. Then for any sentence A, A |= A ⇐⇒ B |=
trM(A)JIK.
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Proof. We will prove by induction that for all variables x and all a ∈ |A|
and for all formulas A with free variables among x, A |= AJaK ⇐⇒ B |=
trM(A)JI, aK

• A = xi
.
= xj

Then A |= xi
.
= xjJaK ⇐⇒ ai = aj ⇐⇒ B |= xi

.
= xjJI, aK ⇐⇒

B |= trM(A)JI, aK

• A = xi ≤ xj

Suppose first that A |= xi ≤ xjJaK. Then ai ≤A aj and since B is the
linearization of A, this means that ai ≤B aj and there is no k ∈ I such
that ai <

B k <B aj. Therefore B |= xi ≤ xj ∧ ¬∃m(m ∈ M ∧ xi <
m < xj)JI, aK, i.e. B |= trM(A)JI, aK.

Now suppose that B |= trM(A)JI, aK, i.e. B |= xi ≤ xj ∧ ¬∃m(m ∈
M ∧xi < m < xj)JI, aK. Therefore ai ≤B aj and there is no k ∈ I such
that ai <

B k <B aj. By the definition of ≤B this is only possible if
ai ≤A aj. So A |= AJaK.

• A = ¬C

Then A |= ¬CJaK ⇐⇒ A ̸|= CJaK
(ih)⇐=⇒ B ̸|= trM(C)JI, aK ⇐⇒

B |= ¬trM(C)JI, aK ⇐⇒ B |= trM(A)JI, aK

• A = C ∧D

Then A |= C ∧ DJaK ⇐⇒ A |= CJaK and A |= DJaK
(ih)⇐=⇒ B |=

trM(C)JI, aK andB |= trM(D)JI, aK ⇐⇒ B |= trM(C)∧trM(D)JI, aK ⇐⇒
B |= trM(C ∧D)JI, aK ⇐⇒ B |= trM(A)JI, aK

• A = ∃xiC

Then A |= ∃xiCJaK ⇐⇒ there exists a ∈ |A| : A |= CJa, aK
(ih)⇐=⇒

there exists a ∈ |A| : B |= CJI, a, aK ⇐⇒ there exists a ∈ |B| :
B |= xi ̸∈ M ∧ CJI, a, aK ⇐⇒ B |= ∃xi((xi ̸∈ M) ∧ C)JI, aK ⇐⇒
B |= trM(A)JI, aK

Remark 19. For every B ∈ LIN countable and every set M ⊂ |B| with the
properties:

1. M is of order type α ≤ ω.
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2. For every m ∈M there are x, y ∈ |B| \M such that x < m < y.

3. If m1 ∈ M and m2 ∈ M is the successor of m1 then there is some
x ∈ |B| \M such that m1 ≤ x ≤ m2.

we can find a structure A ∈ DLIN countable such that B is isomorphic to
the linearization of A with respect to M .

Let M = {m0,m1, · · · } be an enumeration of M .
If M = ∅ take I = {0},A0 = B.
If M ̸= ∅ and there is some x ∈ |B| \M which is an upper bound for M

take:

• I = α + 1

• A0 = {x ∈ |B| | (∀m ∈M)(x < m)}

• An+1 = {x ∈ |B| |mn < x < mn+1} for n < α

• Aα = {x ∈ |B| | (∀m ∈M)(x > m)}

If M ̸= ∅ and M is unbounded by B \M take:

• I = 1 + α

• A0 = {x ∈ |B| | x < m0}

• An+1 = {x ∈ |B| |mn < x < mn+1} for n < α

Now if B′ is the linearization of A with respect to M , the function f :
|B| → |B′| defined as follows is an isomorphism:

• f(a) = a for a ∈ |A|.

• f(mn) = n for n < α

Corollary 2. For any sentence A, DLIN countable |= A ⇐⇒ LIN countable |=
∀M(B → trM(A)) where B is the conjunction of the following sentences:

• B1 = (∀I ⊆M)((∃m ∈M)(∀x ∈ I)(x < m) → fin(I))

• B2 = (∀m ∈M)(∃x ̸∈M)(∃y ̸∈M)(x < m < y)

• B3 = (∀m1 ∈ M)(∀m2 ∈ M)(succM(m1,m2) → (∃x ̸∈ M)(m1 < x <
m2))
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where we use the following abbreviations:

• succM(m1,m2) = m1 < m2 ∧ (∀m ∈M)(m < m1 ∨m2 < m)

• fin(X) = ¬inf(X)

• inf(X) = (∃Y ⊆ X)((∀y ∈ Y )(∃z ∈ Y )(y < z) ∨ (∀y ∈ Y )(∃z ∈
Y )(y > z))

Proof. First note that the sentences B1, B2 and B3 correspond to the condi-
tions we gave in order to be able to represent a model in LIN countable as an
isomorphic copy of the linearization of a model in DLIN countable.

Suppose that DLIN countable ̸|= A. Then there is some A ∈ DLIN countable

such that A ̸|= A. Let A =
⊔
i<α

Ai, α ≤ ω and B ∈ LIN countable be the

linearization of A with respect to α. Then by Proposition 8 B ̸|= trM(A)JIK.
But B |= BJIK. Therefore B |= ∃m(B ∧ ¬trM(A)), i.e. B ̸|= ∀M(B →
trM(A)).

Now suppose that LIN countable ̸|= ∀M(B → trM(A)). Then there is some
B ∈ LIN countable such that B ̸|= ∀M(B → trM(A)). Therefore there is
I ⊆ |B| such that B |= B ∧ ¬trM(A)JIK. But since B |= BJIK and B forces
that I fulfills all conditions of Remark 20, there is A ∈ DLIN countable such
that B is isomorphic to the linearization of A with respect to I. Now since
B ̸|= trM(A)JIK, we can conclude that A ̸|= A.

Corollary 3. The theory th(DLIN) is decidable.

Proof. We established thatDLIN countable |= A ⇐⇒ LIN countable |= ∀M(B →
trM(A)). Since the theory thII(LIN countable) is decidable ([6]) and the trans-
lation trM is effective, this gives us a decision procedure for th(DLIN countable) =
th(DLIN).

Corollary 4. It is decidable whether a sentence A has a model with an
infinite chain in DLIN .

Proof. Arguing as in the previous Corollary, we can prove that A has no
countable model with an infinite chain precisely when LIN countable |= ∀M(B∧
trM(A) → C) where C = ∀X(¬(∃m ∈ M)(∃x1 ∈ X)(∃x2 ∈ X)(x1 < m <
x2) → fin(X)).

The formula C says that every subset of the linear order such that it
is not partitioned by an element in the interpretation of M is finite. Since
such segments correspond exactly to the chains in the delinearized model,
the property is assured.
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Now by the decidability of the second-order theory of LIN countable, we can
effectively check if A has a model with an infinite chain in DLIN countable, but
by Proposition 7, this happens precisely when A has a model with an infinite
chain in DLIN .

Corollary 5. For any sentence A and any 0 < n < ω it is decidable whether
for every A ∈ DLIN with chain sizes at most n, A |= A.

Proof. The sentence A has the desired property precisely when DLIN |=
C → A, where

C = ∀x1 · · · ∀xn+1(
∧

1≤i<j≤n+1

(xi ≤ xj) →
∨

1≤i<j≤n+1

(xi
.
= xj)).

The sentence C says that among any n+ 1 elements in the model which
form a chain, at least two are equal.

Proposition 9. The problem IntDef with respect to the class DLIN is
decidable.

Proof. Suppose we are given a sentence A. The following procedure effec-
tively determines whether A is definable:

1. If DLIN |= A, then ⊤ is a definition of A

2. If DLIN |= ¬A, then ⊥ is a definition of A

3. If A and ¬A are satisfiable in DLIN :

(a) If A has a model in DLIN with an infinite chain, then arguing as
in the case of LIN , A is undefinable.

(b) If all models ofA contain only finite chains, then by a Compactness
argument there exists n < ω such that all models of A have chains
with at most n elements.

If LIN fin |= ¬A, then A is undefinable: A is satisfiable so it has
at least one model F. Assuming that φ is a definition of A, F |= φ.
But taking the generated subframe Fx by any point x ∈ |F| results
in a linear order. Moreso, Fx |= φ and by the assumption Fx |= A.
But LIN fin |= ¬A - contradiction.

If LIN fin ̸|= ¬A, search for the maximal n ≤ 2qr(A) such that
Fn |= A. Such must exist by the characterization ofModLINfin(A)
established earlier.

If A |= A for every A ∈ DLIN with chains with at most n ele-
ments, then φdepth≤n is a definition of A.



38 CHAPTER 3. DECIDABLE INSTANCES OF DEFINABILITY

Otherwise, A is undefinable: assume that φ is a definition of A.
Choose a model F ∈ DLIN such that every chain contains at
most n elements and F ̸|= A. Then every rooted subframe of F
is isomorphic to Fk for some 1 ≤ k ≤ n. Since Fn |= A, Fn |= φ
and so Fk |= A for any 1 ≤ k ≤ n. Therefore F |= φ. But φ is a
definition of A, so F |= A - contradiction.

Remark 20. The theory of the class DLIN fin of all finite disjoint unions
of finite linear orders and the problem of definability with respect to it are
decidable.

Recall the notation Fn for the linear order ⟨n,≤n⟩.
Using Ehrenfeucht-Fraisse games, we can see that if n ≥ 1, then every

model F =
⊔
i∈I

Ai ∈ DLIN fin is n-elementarily equivalent to a reduced model

G ∈ DLIN fin, obtained in the following way:

1. Replace any Ai with more than 2n elements with a fresh isomorphic copy
of F2n. Denote the resulting family (Bi)i∈I . The strategy to show that
the resulting disjoint union is n-elementarily equivalent to the original
model is the classical strategy for finite linear orders.

2. Obtain a maximal J ⊆ I with the property that for any i ∈ I, the model
Ai contains at most n isomorphic copies in the family (Bj)j∈J . The
strategy is straightforward: when Spoiler picks an element from any
linear order that has not been used yet, Spoiler picks the corresponding
element from one of its isomorphic copies in the other model.

Denote the class of such reduced models DLIN fin
n . This subclass is finite

modulo isomorphism, therefore given a sentence A we need only consider the
frames reduced by n = qr(A) in order to determine whether A is valid in the
class. Hence, the theory of the class is decidable.

A decision procedure for the problem IntDef with respect to the class is
similar to the one for the full class DLIN :

1. If DLIN fin |= A or DLIN fin |= ¬A, then respectively ⊤ or ⊥ is a
definition of A.

2. If A and ¬A are satisfiable in the class, then:

(a) Find the maximal size k of a chain in a model of A in DLIN fin
n

where n = qr(A)
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(b) If k = 2n, then the sentence A is undefinable:

Suppose that A is definable and φ is a definition of A. Since there
exists a model A ∈ DLIN fin

n , such that A |= A and the maximal
size of a chain in A is 2n, then the finite linear order F2n is a
generated subframe of A.

Since φ is a definition of A, this means that A |= φ, hence F2n |=
φ. Since Ft is a generated subframe of F2n for 1 ≤ t ≤ 2n, Ft |= φ.
Therefore, Ft |= A for any 1 ≤ t ≤ 2n.

By our previous results, this means that LIN fin |= A. Therefore,
LIN fin |= φ. But then any rooted generated subframe of a frame
B ∈ DLIN fin validates φ, thus DLIN fin |= φ. But then this
means that DLIN fin |= A - contradiction.

(c) If k < 2n, this means that every F ∈ DLIN fin such that F |= A
is the disjoint union of families of linear orders with at most k
elements. The rest is similar to the the case of the full DLIN :

i. If for every model A ∈ DLIN fin
n such that every chain in

A contains at most k elements, A |= A, then φdepth≤k is a
definition of A.

ii. Otherwise, A is undefinable.
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Chapter 4

Undecidable instances of
definability

In this chapter we will survey a few classes of models with undecidable in-
stances of the definability problem.

Our main tool will be a general method developed in [1] by Tinchev and
Balbiani consisting of a reduction of the problem of deciding the validity of
sentences with respect to the class to the problem of definability with respect
to the class.

We will first present the method in the case of well known classes with
undecidable theories and then consider some natural classes in the context
of partial orders which happen to have undecidable theories.

The main tool to prove undecidability will be the deduction theorem and
a variation of the method we used when considering disjoint unions of linear
orders: we will embed models of a class known to have an undecidable theory
into the class in consideration.

41
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4.1 Outline of the method for reduction

First we will outline the general method developed by Tinchev and Balbiani
in its full form.

Consider a sentence C and a class of models K. The main idea is to
conceive a translation of C into a sentence tr(C) for the same language such
that:

1. C is valid in K precisely when its translation tr(C) is unsatisfiable in
K.

2. If tr(C) is satisfiable in K, then the sentence tr(C) is forced to be
undefinable with respect to K.

If tr(C) is unsatisfiable in K, then tr(C) is definable with respect to
K with definition ⊥. Then clearly the translation tr is a reduction of the
problem of deciding the validity of sentences in the class to the problem of
definability: C is valid in K precisely when tr(C) is definable.

We will first explore the details of the construction in the class PO of all
partial orders.

In order to force the translation tr to have the first property, we will
exploit the notion of relativized reducts.

Recall that for models A and B, B is the relativized reduct of A with
respect to the formula A and parameters a ∈ |A| if |B| is a submodel of A
and |B| = {a ∈ |A| | A |= AJa, a, K}. In particular, A possesses a relativized
reduct with respect to A and a precisely when A |= ∃yAJaK. If this is the
case, the relativized reduct is unique.

We will usually seek a formula A with fv(A) = {y, x1, · · · , xn}. The
Relativization theorem gives us a connection between truth in a model and
truth in its reduct with respect to A and a, namely if B is the relativized
reduct of A with respect to A and a, and B is a sentence, then B |= B ⇐⇒
A |= (B)A,yJaK.

Consider an arbitrary sentenceD and the sentenceRD = ∃x1 · · · ∃xn(∃yA∧
(¬D)A,y). What RD expresses is the property that a model has a relativized
reduct in which D is not true.

Consider the translation tr(D) = RD. If every partial order B is the
relativized reduct of some partial order A with respect to A and parameters
a1, · · · , an ∈ |A|, then tr satisfies the first property:

• If PO |= D and we assume that there is a model F ∈ PO such that
F |= RD then there is a relativized reduct of F such that F |= ¬D. But
the reduct is a partial order, therefore PO ̸|= D - contradiction.
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• If PO |= ¬RD and we assume that there is a model B ∈ PO such
that B |= ¬D then since there exists a partial order A and parameters
a1, · · · , an ∈ |A| such that B is the relativized reduct of A, then A |=
RD - contradiction.

For now we have restricted ourselves to the class PO since this class has
the useful property that it is closed with respect to submodels and therefore
a relativized reduct of a partial order is guaranteed to be a partial order.
When the class is not axiomatizable with universal formulas we will have to
be more careful in the translation in order to force the reducts to belong to
the class.

So far we have seen how we can achieve only the first property by carefully
choosing a formula A - this does not yet grant us the desired reduction. The
strategy for the second property will be to extend the translation, adding in
a sentence which expresses a property that is intuitionistically undefinable
and separates the models in the class. We will also need to strengthen the
property we desire of A.

Consider the translation tr(D) = ∃x1 · · · ∃xn(∃yA ∧ (¬D)) ∧ B, where
the sentences A and B have the property that for every model F there exist
models F1 and F2, such that:

• F1 |= B and there exist parameters b1, · · · , bn ∈ |F1| such that F is the
relativized reduct of F1 with respect to A and b1, · · · , bn.

• F2 ̸|= B and Log(F1) ⊆ Log(F2).

This forces that if tr(D) is satisfiable, then arguing as before D must not
be valid in the class. Therefore we can find a model F |= ¬D. Now take
the models F1 and F2 as above. F1 |= tr(D) and assuming we can find a
definition φ of tr(D), the model F2 would have to validate φ, hence validate
tr(D). But F2 ̸|= B - contradiction.

Now we will produce such a reduction for the class PO.

Proposition 10. Validity in the class PO reduces to definability with respect
to PO.

Proof. Consider the following formulas:

• A = x < y

• B = ¬∃x∀y(x ≤ y)

• tr(C) = ∃x(∃yA ∧ (¬C)A,y) ∧B
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The sentence B expresses the property that a model does not have a least
element.

We will show that for any sentence C, PO |= C ⇐⇒ tr(C) is definable.
Suppose first that PO |= C and assume that PO ̸|= ¬tr(C). Then there

is a model F ∈ PO such that F |= tr(C). Therefore F |= ∃x(∃yA∧ (¬C)A,y).
Take a ∈ F such that F |= ∃yA ∧ (¬C)A,yJaK.
Since F |= ∃yAJaK, there exists a relativized reduct G of F with respect to

A and a. Since F |= (¬C)A,yJaK, by the relativization theorem we have that
G |= ¬C. But every submodel of a partial order is a partial order, therefore
G ∈ PO and G |= ¬C. But PO |= C - contradiction.

Since PO |= ¬tr(C), ⊥ is a definition of tr(C) and so tr(C) is definable.
Now assume that tr(C) is definable with definition φ, PO ̸|= C and take

F ∈ PO such that F |= ¬C.
Take two elements a, b ̸∈ |F| and consider the following models:

• F1 with universe |F| ∪ {a} and ≤F1=≤F ∪{⟨a, c⟩ | c ∈ |F1|}

• F2 with universe |F| ∪ {a, b} and ≤F1=≤F1 ∪{⟨b, b⟩}

We can readily see that F1 ̸|= B since a is the least element of F1 and
therefore F1 ̸|= tr(C). Since φ is a definition of tr(C), F1 ̸|= φ. But F1 is a
generated subframe of F2 and therefore F2 ̸|= φ, i.e. F2 ̸|= tr(C).

Since F2 |= B (a and b are incomparable), we can conclude that F2 ̸|=
∃x(∃yA ∧ (¬C)A,y). Now since F is the relativized reduct of F2 with respect
to A and a and F |= ¬C we have that F2 |= (¬C)A,yJaK. Since F2 |= ∃yAJaK
we can conclude that F2 |= ∃x(∃yA ∧ (¬C)A,y) - contradiction.

Corollary 6. The problem IntDef with respect to the class PO is undecid-
able.

Proof. By [9], the theory of lattices is undecidable. Since the class of all
latices is finitely axiomatizable, by the Deduction theorem a sentence A is
valid in the class of lattices precisely when PO |= Lattice→ A, where Lattice
is the axiom for the class.

Therefore the theory th(PO) is undecidable and by the above reduction,
the problem or definability with respect to the class PO is undecidable.
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4.2 Stable classes

We will now consider the notion of stable classes, introduced in [1] by Tinchev
and Balbiani in the case of definability with modal formulas. It abstracts
away the piecing of the reduction, given suitable formulas A and B which
possess the properties we sketched in the previous section.

Definition 42. Consider a class K of models. We say that K is stable if
there exist a sentence B and a formula A with fv(A) = {y, x1, · · · , xn}, such
that:

• If F ∈ K and a1, · · · , an ∈ |F| and F1 is the relativized reduct of F with
respect to A and a, then F1 ∈ K.

• If F ∈ K, then there exist models F1,F2 ∈ K such that Log(F2) ⊆
Log(F1), F1 ̸|= B, F2 |= B and F is the relativized reduct of F2 with
respect to A and some parameters a from |F2|.

Theorem 9. If the class K is stable, then the problem of deciding the validity
of sentences in K is reducible to the problem of definability with respect to K.

Proof. The proof of Theorem 1 in [1] for the modal case taken verbatim
constitutes a proof for the intuitionistic case.

4.3 Examples of stable classes

Here we will outline two examples: the classes of dense partial orders and
of lattices. A technical detail which did not appear in the proof for the
class of all partial orders but is necessary to accomodate to here, is that the
formula A should force the relativized reducts we consider to be members
of the respective class of models in consideration. Since the two classes are
finitely axiomatizable extensions of PO, this can be easily achieved by just
plugging in the relativized axiom.

Proposition 11. Consider the class DPO of all dense partial orders(i.e.
the partial orders F such that F |= Dense, where Dense = ∀x∀y(x < y →
∃z(x < z < y))). The class DPO is stable.

Proof. Consider the following formulas:

• D = x1 < y ∧ x2 < y

• A = D ∧ (Dense)D,y
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• B = ¬∃x∀y(x ≤ y)

We will see that the formulas A and B are witnesses of the stability of
DPO.

• Every reduct of a model F ∈ DPO is in DPO:

Suppose that F1 is the relativized reduct of F with respect to A and a, b.
Since F1 is a submodel of F, F1 is a partial order, hence we must only see to
the density axiom.

Take an arbitrary element c ∈ |F1|. Then F |= AJc, a, bK. In par-
ticular, F |= (Dense)D,yJc, a, bK. Since y ̸∈ fv((Dense)D,y), then F |=
(Dense)D,yJa, bK. Since F1 is the relativized reduct of F with respect to
A and a, b, then by the relativization theorem, F1 |= Dense.

• For every model F, there exist models F1 and F2 with the desired
properties for stability:

Let F ∈ DPO and without loss of generality assume that |F| ∩ (Q ×
{0, 1}) = ∅. Consider the following models:

• F1 with universe |F|∪(Q≥0×{0}) and ≤F1=≤F ∪{⟨⟨q1, 0⟩, ⟨q2, 0⟩⟩|q1 ≤Q

q2} ∪ {⟨p, c⟩ | c ∈ |F|, p ∈ (Q≥0 × {0})}

• F2 with universe |F|∪(Q≥0×{0, 1}) and≤F1=≤F ∪{⟨⟨q1, i⟩, ⟨q2, i⟩⟩|q1 ≤Q

q2, i ∈ {0, 1}} ∪ {⟨q, c⟩ | c ∈ |F|, q ∈ (Q≥0 × {0, 1})}

It is immediate that F1 and F2 are partial orders.
If q1, q2 ∈ (Q≥0 × {0, 1}) and q1 < q2, then q1, q2 ∈ (Q≥0 × {0}) or

q1, q2 ∈ (Q≥0×{1}). SinceQ≥0 is dense, there is an element q ∈ (Q≥0×{0, 1})
such that q1 < q < q2. If ⟨q, i⟩ < a, then ⟨q, i⟩ < ⟨q + 1, i⟩ < a. Therefore F1

and F2 are dense.
F1 is a generated subframe of F2, so Log(F2) ⊆ Log(F1).
F1 has a least element ⟨0, 0⟩ and therefore F1 ̸|= B.
⟨0, 0⟩ and ⟨0, 1⟩ are incomparable, therefore F2 does not have a least

element and hence F2 |= B.
F is the relativized reduct of F2 with respect to A and ⟨0, 0⟩, ⟨0, 1⟩:

for every element a ∈ |F|, ⟨0, 0⟩ <F2 a and ⟨0, 1⟩ <F2 a. Any element
b ∈ (Q≥0 × {i}) is incomparable with ⟨0, 1− i⟩.

Corollary 7. The problem IntDef with respect to the class DPO is unde-
cidable.
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Proof. As we will see later in Corollary 11, th(DPO) is undecidable. By the
stability of the class, this means that the problem of definability with respect
to the class is undecidable.

Proposition 12. Consider the class LAT of all lattices.
The class LAT is stable.

Proof. Consider the following formulas:

• D = x < y

• atom(x) = ∃z(z < x ∧ ∀y(y < x → y
.
= z)) is a formula stating that

the interpretation of x is an atom in the lattice

• B = ∃x∃y(¬x .
= y ∧ atom(x) ∧ atom(y)) is a sentence saying that a

lattice has at least two distinct atoms.

• Lattice is the axiom for lattices.

• A = D ∧ (Lattice)D,y

We will see that the formulas A and B are witnesses of the stability of
LAT .

• Every reduct of a model F ∈ LAT is in LAT - similar to the proof for
DPO.

• For every model F ∈ LAT , there exist models F1 ∈ LAT and F2 ∈ LAT
with the desired properties for stability:

Take the elements 0, a1, a2, b ̸∈ |F| and consider the following models:

• F1 with universe |F| ∪ {a1, b} and ≤F1=≤F ∪{⟨a1, b⟩, ⟨a1, a1⟩, ⟨b, b⟩} ∪
{⟨p, c⟩ | c ∈ |F|, p ∈ {a1, b}}

• F2 with universe |F| ∪ {0, a1, a2, b} and ≤F2=≤F ∪
{⟨0, a1⟩ ⟨0, a2⟩, ⟨a1, b⟩, ⟨a2, b⟩}⋆∪{⟨p, c⟩ |c ∈ |F|, p ∈ {0, a1, a2, b}} where
X⋆ is the transitive closure of X

We can immediately see that F1 and F2 are lattices.
F1 is a generated subframe of F2, so Log(F2) ⊆ Log(F1)
F1 has one atom, namely b. Therefore F1 ̸|= B.
F2 has two atoms, namely a1, a2. Therefore F2 |= B.
F is the relativized reduct of F2 with respect to A and b.
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Corollary 8. The problem IntDef with respect to the class LAT is unde-
cidable.

Proof. By [9], the theory of the class of all lattices is undecidable. Therefore
by the stability of the class, the problem of definability with respect to the
class LAT is undecidable.
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4.4 Some classes with undecidable theories

A natural class of partial orders to consider is the class of all partial orders
with bounded depth, where depth is interpreted as the maximal size of a
chain in the set.

Definition 43. For every 1 ≤ n < ω denote with POdepth≤n the class of all
partial orders such that every chain contains no more than n elements.

We will show that for n ≥ 2, the theory of the class POdepth≤n and the
problem IntDef with respect to the class are undecidable.

Proposition 13. For every 1 ≤ n < ω, the class POdepth≤n is axiomatizable.

The respective axiom is the conjunction of the axiom P for partial orders
and the axiom Dn, where

Dn = ∀x1 · · · ∀xn+1(
∧

1≤i≤n

(xi ≤ xi+1) →
∨
i<j

(xi
.
= xj))

Proof. Suppose F ∈ POdepth≤n. Then F is a partial order and every chain
contains at most n elements.

Let a1, · · · , an+1 ∈ |F| and suppose that ai ≤F ai+1 for 1 ≤ i ≤ n. Then
the set {a1, · · · , an+1} is a chain and therefore contains at most n elements.
Therefore there are some indices 1 ≤ i < j ≤ n+ 1 such that ai = aj.

In the other direction, suppose F |= P ∧ Dn. Then F is a partial order.
Let C ⊆ |F| be a chain. Assume that C contains more than n elements
and pick a1, · · · , an+1 ∈ C such that ai <

F ai+1 for 1 ≤ i ≤ n. Then
F |=

∧
1≤i≤n

(xi ≤ xi+1)JaK but F ̸|=
∨
i<j

(xi
.
= xj)JaK. Therefore F ̸|= Dn -

contradiction.

Remark 21. The theory of the class POdepth≤1 is decidable. Indeed, the class
is axiomatizable and contains a unique model of any cardinality. Therefore
the theory is α-categorical for any cardinal α and therefore complete. Since
the class is finitely axiomatizable, we can conclude that the theory is decidable.

As for the problem IntDef with respect to the class, if an intuitionistic
formula φ is true in any frame in the class, it must be true in all frames
in the class since all frames are disjoint unions of copies of the single-point
frame. In fact, the logic of the class is exactly the Classical propositional
logic. Therefore the only definable formulas are the valid formulas in the
class. Since the theory of the class is decidable, we can conclude that the
problem IntDef with respect to POdepth≤1 is decidable.
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While bounded in depth, the models remain unbounded in width and
when n ≥ 2 they can take shapes of all kind. It turns out that this is
enough for the theory to be complex enough to be undecidable. In order to
prove it, we will consider the class of models of a symmetric and reflexive
binary relation - such models we will call graphs. The theory of this class is
undecidable as shown by Rogers in [7] and we will use this in order to prove
that the theories of the classes of consideration are also undecidable.

Definition 44. Let G be the class of all graphs, i.e. the class of all models
for the language L = {E} satisfying the axiom ∀xE(x, x) ∧ ∀x∀y(E(x, y) →
E(y, x)).

We will show that any graph can be encoded in a model in the following
subclass of POdepth≤n for n ≥ 2:

Definition 45. The class CON is the class of all models F ∈ POdepth≤2 such
that each element has exactly 0 or exactly 2 elements strictly above it and for
any two elements, if there exists a common element strictly below them, then
it is unique.

Proposition 14. The class CON is axiomatized by the following set of ax-
ioms:

• The axiom Pdepth≤2 for the class POdepth≤2.

• P0,2 = ∀x(¬∃y(x < y) ∨ ∃y1∃y2(x < y1 ∧ x < y2 ∧ ¬y1
.
= y2 ∧ ∀z(x <

z → z
.
= y1 ∨ z

.
= y2))), stating that strictly above each element there

are exactly 0 or exactly 2 elements.

• L = ∀x∀y∀z1∀z2(¬x
.
= y∧ z1 < x∧ z1 < y∧ z2 < x∧ z2 < y → z1

.
= z2)

stating that existence of a common element strictly below two elements
implies its uniqueness.

The following formulas will be useful to us:

• vertex(x) = ¬∃y(x < y), stating that an individual has no elements
above it.

• edge(x) = ∃y(x < y), stating that an individual has an element above
it. With the other properties the class posseses, this means that there
are exactly 2 elements above it.

• connected(x, y) = ∃z(z ≤ x∧z ≤ y), stating that there exists a common
element below the interpretations of x and y.
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Definition 46. Consider a graph G ∈ G, which without loss of generality is
such that |G| ∩ {{x, y} | x, y ∈ |G|} = ∅. The connectivity map of G is the
model C ∈ CON defined as follows:

• |C| = |G| ∪ {{x, y} | ⟨x, y⟩ ∈ EG}

• ≤C= {⟨{x, y}, x⟩ | x ̸= y, ⟨x, y⟩ ∈ EC} ∪ {⟨x, x⟩ | x ∈ |C|}

An easy way to visualize the connectivity map is to imagine that the
graph is made up of points on a grid and the edges are represented by some
loose rope connecting points. If to every edge is attached a weight, it will
sink below the points the rope connects. The resulting diagram of a partial
order, in which the individuals are the original points in the grid and the
weights, is the connectivity map we have now defined.

Remark 22. For every C ∈ CON we can find a model G ∈ G such that C
is isomorphic to the connectivity map of G.

Indeed, for arbitrary C ∈ CON , consider the model G, defined as follows:

• |G| = {a ∈ |C| | C |= vertex(x)JaK}

• EG = {⟨a, b⟩ | C |= connected(x, y)Ja, bK}

Now if C′ is the connectivity map of G, then the function f : |C| → |C′|
is clearly an isomorphism:

• f(a) = a, if a ∈ |G|

• f(a) = {b, c}, if C |= edge(x)JaK and b and c are the two elements above
a in C.

Proposition 15. Consider the following translation from L1 = {E} to L2 =
{≤}:

• tr(x
.
= y) = x

.
= y

• tr(E(x, y)) = connected(x, y)

• tr(¬A) = ¬tr(A)

• tr(A ∧B) = tr(A) ∧ tr(B)

• tr(∃xA) = ∃x(vertex(x) ∧ tr(A))
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Let G ∈ G and C ∈ CON be the connectivity map of G. Then for all
sentences A, G |= A ⇐⇒ C |= tr(A).

Proof. We will prove by induction that for all variables x and for all pa-
rameters a ∈ |G| and for all formulas A with free variables among x, G |=
AJaK ⇐⇒ C |= tr(A)JaK:

• A = xi
.
= xj

Then G |= xi
.
= xjJaK ⇐⇒ ai = aj ⇐⇒ C |= xi

.
= xjJaK ⇐⇒ C |=

tr(A)JaK

• A = E(x, y)

Suppose first that G |= AJaK, i.e. G |= E(xi, xj)JaK. First, if ai = aj,
then ai ≤C aj and ai ≤C aj, therefore C |= connected(xi, xj)JaK, i.e.
C |= tr(A)JaK. Now, if ai ̸= aj, and ⟨ai, aj⟩ ∈ EG, by the definition
of ≤C this means that {ai, aj} ≤C ai and {ai, aj} ≤C aj. Therefore
C |= z ≤ xi ∧ z ≤ xjJ{ai, aj}, aK and so C |= ∃z(z ≤ xi ∧ z ≤ xj)JaK. In
conclusion, C |= connected(xi, xj)JaK, i.e. C |= tr(A)JaK.

Now suppose that C |= tr(A)JaK, i.e. C |= connected(xi, xj)JaK, i.e.
C |= ∃z(z ≤ xi ∧ z ≤ xj)JaK. Then if ai = aj, ⟨ai, aj ∈ EG and so G |=
E(xi, xj)JaK, i.e. G |= AJaK. Otherwise, there is some a ∈ |C| such that
C |= z ≤ xi ∧ z ≤ xjJa, aK, i.e. a ≤C ai and a ≤C aj. By the definition
of ≤C this is only possible when a = {ai, aj}. But since a ∈ |C|, this
can only mean that ⟨ai, aj⟩ ∈ EG. Therefore G |= E(xi, xj)JaK, i.e.
G |= AJaK.

• A = ¬B
Then G |= AJaK ⇐⇒ G |= ¬BJaK ⇐⇒ G ̸|= BJaK ih⇐⇒ C ̸|=
tr(B)JaK ⇐⇒ C |= ¬tr(B)JaK ⇐⇒ C |= tr(A)JaK

• A = B ∧ C
Then G |= AJaK ⇐⇒ G |= B ∧ CJaK ⇐⇒ G |= BJaK and G |=
CJaK ih⇐⇒ C |= tr(B)JaK and C |= tr(C)JaK ⇐⇒ C |= tr(B) ∧
tr(C)JaK ⇐⇒ C |= tr(A)JaK

• A = ∃xB
First suppose that G |= AJaK, i.e. G |= ∃xB. Then there is some
a ∈ |G| such that G |= BJa, aK. By the induction hypothesis, C |=
tr(B)Ja, aK. But by the definition of ≤C we have C |= vertex(x)JaK,
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since a ∈ |G|. Therefore C |= vertex(x) ∧ tr(B)Ja, aK. In conclusion,
C |= ∃x(vertex(x) ∧ tr(B))JaK, i.e. C |= tr(A)JaK.

Now suppose that C |= tr(A)JaK, i.e. C |= ∃x(vertex(x) ∧ tr(B))JaK.
Then there is some a ∈ |C| such that C |= vertex(x)∧tr(B)Ja, aK. Since
C |= vertex(x)JaK, we must have that a ∈ |G| by the definition of ≤G.
Now C |= tr(B)Ja, aK and by the induction hypothesis G |= BJa, aK. In
conclusion, G |= ∃xBJaK, i.e. G |= AJaK.

Corollary 9. The theory th(CON) is undecidable.

Proof. We will show that the translation tr as defined above is a reduction
between the problems of deciding the validity of sentences in the theories of
the classes G and CON , i.e. G |= A ⇐⇒ CON |= tr(A):

Suppose first that G ̸|= A. Then there is a model G ∈ G such that G ̸|= A.
Consider the connectivity map C ∈ CON of G. Then by Proposition 15,
C ̸|= tr(A). Therefore CON ̸|= tr(A).

Now suppose that CON ̸|= tr(A). Then there is a model C ∈ CON such
that C ̸|= tr(A). By our above remark, C is isomorphic to the connectivity
map of some model G ∈ G. Therefore by Proposition 15, G ̸|= A and hence
G ̸|= A.

Thus we have shown that tr is a reduction and since th(G) is undecidable
by [7], the theory th(CON) must also be undecidable.

Corollary 10. The theory th(POdepth≤n) is undecidable for every 2 ≤ n < ω.

Proof. Since the class CON is a subclass of POdepth≤n and is finitely axiom-
atizable, a reduction of the theory th(CON) to the theory th(POdepth≤n) is
given by the deduction theorem:

CON |= A ⇐⇒ POdepth≤n |= C → A,
where C is the axiom for CON .

We will consider a variant of the class CON , consisting of dense partial
orders.

The models in this class are obtained by replacing every non-reflexive
arrow in a CON model by a dense linear order with first and last elements
the original ends of the arrow.

Definition 47. The class DCON is the class of all models of the following
axioms:
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• ∀x(mid(x) → ∃!y(min(y) ∧ y ≤ x))

• ∀x(mid(x) → ∃!y(max(y) ∧ x ≤ y))

• ∀x(min(x) ∧ ¬max(x) → ∃!y1∃!y2(max(y1) ∧max(y2) ∧ x < y1 ∧ x <
y2 ∧ ¬y1

.
= y2))

• ∀x1∀x2∀y1∀y2(¬y1
.
= y2∧min(x1)∧min(x2)∧max(y1)∧max(y2)∧x1 ≤

y1 ∧ x2 ≤ y1 ∧ x1 ≤ y2 ∧ x2 ≤ y2 → x1
.
= x2)

• Dense = ∀x∀y(x < y → ∃z(x < z < y))

where we use the following abbreviations:

• min(x) = ¬∃y(y < x), i.e. the interpretation of x is a minimal element

• max(x) = ¬∃y(x < y), i.e. the interpretation of x is a maximal ele-
ment

• mid(x) = ¬min(x) ∧ ¬max(x)

Remark 23. If C ∈ CON , the model D ∈ DCON , defined as follows is the
densification of C:

• |D| = |C| ∪ (Q× {{a, b} | C |= min(x) ∧max(y) ∧ x < yJa, bK})

• ≤D=≤C ∪{⟨a, ⟨q, {a, b}⟩⟩, ⟨⟨q, {a, b}⟩, b⟩ | q ∈ Q, a <C b}

Conversely, if D ∈ DCON , D is isomorphic to the densification of the
following model C ∈ CON :

• |C| = {a ∈ |D| |D |= min(x) ∨max(x)JaK}

• ≤C=≤D ∩(|C| × |C|)

Observe that the model C is the relativized reduct of D with respect to the
formula min(y) ∨max(y).

Proposition 16. The theory of the class DCON is undecidable.

Proof. Consider the formula A = min(y) ∨max(y). We will show that the
translation tr(B) = (B)A,y is a reduction of the problem of validity in CON
to the problem of validity in DCON .

First, suppose that CON ̸|= B. Then there exists a model C ∈ CON
such that C ̸|= B. Take the densification D ∈ DCON of C. Then C is the



4.4. SOME CLASSES WITH UNDECIDABLE THEORIES 55

relativized reduct of D with respect to the formula A (with no parameters
since A has only one free variable y). Since C ̸|= B, by the relativization
theorem we have that D ̸|= (B)A,y, i.e. D ̸|= tr(B). Therefore, DCON ̸|=
tr(B).

Now, suppose that DCON ̸|= tr(B) and take a model D ∈ DCON such
that D ̸|= tr(B). By the axiomatization of DCON , there exists at least
one minimal element, therefore D |= ∃yA and a relativized reduct of D with
respect to A exists. Taking this reduct produces a model C ∈ CON and
since tr(B) = (B)A,y, D ̸|= (B)A,y, therefore by the relativization theorem
C ̸|= B and thus CON ̸|= B.

Since the theory of the class CON is undecidable and tr is a reduction,
the theory of the class DCON is also undecidable.

Corollary 11. The theory of the class DPO of all dense partial orders is
undecidable.

Proof. Since DCON ⊆ DPO and DCON is finitely axiomatizable, for every
sentence A it is true that DCON |= A ⇐⇒ DPO |= C → A where C is
the axiom for DCON . Therefore th(DPO) is undecidable.

Definition 48. Denote with POisuccessors≤n for each n < ω the class of all
partial orders such that every element has at most n immediate successors,
i.e. POisuccessors≤n is the class of all models of the following axioms:

• The axiom P for partial orders.

• Sn = ∀x∀y1 · · · ∀yn+1(
∧

1≤i≤n+1

(succ(x, yi)) →
∨

1≤i<j≤n+1

(yi
.
= yj))

where succ(x, y) = x < y ∧ ¬∃z(x < z < y).

Proposition 17. For every 0 ≤ n < ω, the theory POisuccessors≤n is unde-
cidable.

Proof. We can readily see that the class POisuccessors≤0 is in fact the class
DPO of all dense partial orders:

On one side, for each model F ∈ DPO and each element a ∈ |F|, a cannot
have any immediate successors, otherwise it would not fulfill the density
condition. Therefore F ∈ POisuccessors≤0

Now, if F ∈ POisuccessors≤0, then consider any two elements a, b ∈ |F| such
that a <F b. Then since a has no successors, b is not a successor of a and
therefore there is an element c ∈ |F| such that a <F c <F b. Therefore F is a
dense partial order.

Therefore POisuccessors≤0 = DPO and therefore has undecidable theory.
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Now by an argument similar as above, since POisuccessors≤0 is finitely
axiomatized and a subclass of POsuccessors≤n for every n < ω, the theory of
the class POisuccessors≤n is undecidable for every n < ω.
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4.5 Stability of the considered classes

We will show that all the classes considered in the previous section are stable.

Proposition 18. The classes

• POdepth≤n for 2 ≤ n < ω

• CON

• POisuccessors≤n for n < ω

are stable.

Proof. Let K be any of the listed classes.
Consider the following formulas:

• Ax is the axiom for K.

• isolated(x) = ∀y(x ≤ y ∨ y ≤ x→ x
.
= y), stating that the interprata-

tion of x is incomparable with any other point.

• D = ¬x1
.
= y ∧ ¬x2

.
= y

• A = D ∧ (Ax)D,y

• B = ∃x∃y(¬x .
= y ∧ isolated(x) ∧ isolated(y)), stating that a model

contains at least two distinct points, incomparable with any other.

We will show that the formulas A and B are witnesses of the stability of
K:

Clearly, any relativized reduct of a model F ∈ K with respect to A and
parameter a ∈ |F| is in K.

Let F ∈ K and take the elements a, b ̸∈ |F|. We will show that there exist
models F1,F2 ∈ K with the desired properties for stability:

• F1 with universe {a} and ≤F1= {⟨a, a⟩}.

• F2 with universe |F| ∪ {a, b} and ≤F2=≤F ∪{⟨a, a⟩, ⟨b, b⟩}.

We can readily see that if K is any of the considered classes, F1 ∈ K and
F2 ∈ K.

F1 is a generated subframe of F2, therefore Log(F2) ⊆ Log(F1).
F1 ̸|= B, since |F2| contains a single point.
F2 |= B, since a and b are isolated.
F is the relativized reduct of F2 with respect to A and a, b.

Corollary 12. The problem IntDef with respect to any of the considered in
this section classes is undecidable.
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4.6 Finite restrictions of the classes

For a class of models K denote with Kfin the class of all finite models in K.
We will see that most of the results in the previous two sections hold for the
finite restrictions of the classes.

Proposition 19. The theory of the class CON fin is undecidable (not even
semidecidable).

Proof. Given a finite graph G ∈ Gfin, the connectivity map C of G is also
finite. Therefore, the same reduction as in the the case of the full classes
works in the finite case without modification, i.e. for every sentence A,
Gfin |= A ⇐⇒ CON fin |= tr(A).

By [5], th(G) and FOR(E) \ th(Gfin) are recursively inseparable, i.e.
they are disjoint and there exists no decidable set C such that C ∩ th(G) = ∅
and (SENT (E) \ th(Gfin)) ⊆ C. In particular, this means that the set
SENT (E) \ th(Gfin) is not decidable.

Since the language L = {E} is finite and all models in Gfin are finite, an
exhaustive search for countermodels semidecides the set SENT (E)\th(Gfin).
By Post’s theorem, since this set is semidecidable and is not decidable, its
complement is not semidecidable, i.e. th(Gfin) is not semidecidable.

Since tr reduces the problem of validity in Gfin to the problem of validity
in CON fin, the theory th(CON fin) is not semidecidable.

Corollary 13. The theory of the class POfin
depth≤n is not semidecidable for

every 2 ≤ n < ω.

Proof. Since CON fin ⊆ POfin
depth≤n for n ≥ 2, the deduction theorem gives

us the reduction CON fin |= A ⇐⇒ POfin
depth≤n |= C → A where C is the

axiom for CON .

Corollary 14. The theory of the class POfin
isuccessors≤n is not semidecidable

for 2 ≤ n < ω.

Proof. Since the class CON fin ⊆ POfin
isuccessors≤n for 2 ≤ n < ω, again the

deduction theorem yields a reduction.

Proposition 20. The classes

• CON fin

• POfin
depth≤n for n ≥ 2

• POfin
isuccessors≤n for n ≥ 2
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are stable.

Proof. In the proof of stability of the full classes, if the model F is finite,
then so are the models F1 and F2 we constructed. Therefore, the same
formulas A and B as in the previous section are witnesses of the stability of
the classes.

Corollary 15. The problem IntDef with respect to any of the above classes
of finite models is not semidecidable.

Remark 24. The theory of the class POfin
isuccessors≤0 is decidable.

The models in the class are finite disjoint unions of copies of the single-
point frame. Using Ehrenfeucht-Fraisse games, we can directly see that if
A,B ∈ POfin

isuccessors≤0 with respectively k1 ≥ n and k2 ≥ n elements, then
A ≡n B. Therefore, given a sentence A with qr(A) = n, it suffices to check if
A is valid in all models with at most n elements, which modulo isomorphism
are finitely many.

Now arguing as in the the remark for POdepth≤1, a sentence A is definable

precisely when POfin
isuccessors≤0 |= A.
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Chapter 5

Conclusion

In the present work we have examined the algorithmic problem of definability
of first-order sentences with intuitionistic formulas with respect to several
classes of models.

We have seen that the following classes have decidable theories and de-
cidable instances of the definability problem:

• LIN fin, the class of all finite linear orders

• LIN , the class of all linear orders

• DLIN , the class of all disjoint unions of linear orders

• DLIN fin

• POdepth≤1, the class of all disjoint unions of single-point frames

• POfin
depth≤1

The following classes have undecidable theories and undecidable instances
of the definability problem (not even semidecidable in the case of the classes
of finite models):

• CON , the class of all connectivity maps

• POdepth≤n for 2 ≤ n < ω, the classes of partial orders bounded in chain
size

• POfin
depth≤n for 2 ≤ n < ω

• POisuccessors≤n for n < ω, the classes of partial orders bounded in the
number of immediate successors

61
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• POfin
isuccessors≤n for 2 ≤ n < ω

Another natural class to consider is the class POwidth≤n of all partial or-
ders with bounded size of antichains. In a certain sense, the class is dual to
the class POdepth≤n, but the transitivity axiom plays a much more significant
role. The author could not determine whether the theory of the class is de-
cidable or not, but is slightly more inclined to believe that it is decidable.
The models essentially consist of a finite number of chains with arrows inbe-
tween them and transitivity tames the possible configurations of arrows, but
we were unable to determine whether this makes them tame enough for the
theory to be decidable.
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