
Sofia University “St. Kliment Ohridski”
Faculty of Mathematics and Informatics

Department of Mathematical Logic and Applications

Master Thesis

Satisfiability with Equivalences in
Agreement

Krasimir Georgiev
faculty number 24691, Logic and Algorithms (Informatics)

supervised by
Prof. Tinko Tinchev

Sofia
September 2016

Contents

Abstract ix

1 Preliminaries 1
1.1 Syntax . 2
1.2 Semantics . 4
1.3 Games . 5
1.4 Types . 6
1.5 Scott normal form . 7
1.6 Complexity . 7

2 Counter setups 9
2.1 Bits . 9
2.2 Counters . 10
2.3 Vectors . 11
2.4 Permutations . 13

3 Equivalence relations 15
3.1 Two equivalence relations in agreement . 15
3.2 Many equivalence relations in agreement 16

4 Reductions 19
4.1 Global agreement to refinement . 20
4.2 Local agreement to refinement . 23
4.3 Granularity . 27

5 Monadic logics 31
5.1 Cells . 31
5.2 Organs . 32
5.3 Satisfiability . 34
5.4 Hardness with a single equivalence . 35
5.5 Hardness with many equivalences in refinement 41

6 Two-variable logics 47
6.1 Type realizability . 47
6.2 Type realizability with equivalences . 54
6.3 Cosmic spectrums . 59
6.4 Locally consistent cosmic spectrums . 61

iii

Glossary

|A| the cardinality of A. 1
℘A the powerset of A. 1
℘+A the set of nonempty subsets of A. 1
℘κA the set of subsets of A of cardinality

κ. 1
A×B the cartesian product of A and B. 1
domR the domain of R. 1
ranR the range of R. 1
R−1 the inverse of R. 1
R � S the restriction of R to S. 1
R[a] the R-successors of a. 1
S ◦R the composition of S and R. 1
f : A→ B a total function from A to B. 1
f : A ↪→ B an injective function from A

into B. 1
f : A � B a surjective function from A

onto B. 1
f : A ↔ B a bijective function between A

and B. 1
idA the identity on A. 1
f : A; B a partial function from A to B.

1
f(a) ' b f is defined at a with value b. 1
f(a) ' ⊥ f is not defined at a. 1
chAS characteristic function. 1
N the natural numbers. 1
N+ the positive natural numbers. 1
[n,m] the discrete interval between n and

m. 1
log the base-2 logarithm. 2
v ≺ w antilexicographically smaller. 2
Sn the set of permutations of [1, n]. 2
expea(x) tetration. 2
‖A‖ the length of A. 2
〈a, b, c〉 a sequence. 2

ε the empty sequence. 2
A + B the concatenation of A and B. 2
A− B A without the elements of B. 2
Ω an alphabet. 2
w = w1w2 . . . wn a word. 2
Ω∗ the set of words over Ω. 2
Ω+ the set of nonempty words over Ω. 2
Ωn the set of words of length n over Ω. 2
B the bits. 2
B+ the bitstrings. 2
‖n‖ the bitsize of n. 2
n the binary encoding of n. 2
b the number encoded by b. 2
Nt the largest t-bit number. 2
Bt the t-bit numbers. 2
ΩL the symbol alphabet. 2
V the variable symbols. 3
x the first variable symbol. 3
y the second variable symbol. 3
z the third variable symbol. 3
Σ a predicate signature. 3
pi a predicate symbol. 3
ar pi the arity of pi. 3
At[Σ] the atomic formulas over Σ. 3
Lit[Σ] the literals over Σ. 3
L[Σ] the first-order formulas over Σ. 3
varsϕ the variables occurring ϕ. 3
fvarsϕ the variables freely occurring ϕ. 3
Lv[Σ] the v-variable first-order formulas

over Σ. 3
qrϕ the quantifier rank of ϕ. 3
Lr[Σ] the r-rank first-order formulas over

Σ. 4
Lvr [Σ] the r-rank v-variable first-order for-

mulas over Σ. 4

v

Glossary

A a structure. 4
ϕA interpretation of ϕ in A. 4
SAT-K the satisfiable sentences of K. 4
FIN-SAT-K the finitely satisfiable sen-

tences of K. 4
ϕ ≡ ψ logically equivalent formulas. 5
A ≡ B elementary equivalent structures. 5
A ≡r B r-rank equivalent structures. 5
A ≡v B v-variable equivalent structures. 5
A ≡vr B r-rank v-variable equivalent struc-

tures. 5
p parital isomorphism. 5
Gr(A,B) the r-round Ehrenfeucht-Fraïssé

game. 5
Π[Σ] the set of 1-types over Σ. 6
T[Σ] the set of 1-types over Σ. 6
τ−1 the inverse of the type τ . 6
tpx τ the x-type of τ . 6
tpy τ the y-type of τ . 6
tpA[a] the 1-type of a in A. 6
πA the interpretation of the 1-type π in A.

6
tpA[a, b] the 2-type of (a, b) in A. 6
τA the interpretation of the 2-type τ in A.

6
PTime complexity class. 7
A ≤PTime

m B A is polynomial-time reducible
to B. 8

A =PTime
m B A and B are polynomial-time

equivalent. 8
B a bit setup. 9
[u:data]A u-data at A. 9
[u:eq-d](x) u-data at x is d. 9
[u:eq](x,y) u-data equal at x and y. 9
[u:eq-01](x,y) u-data at x and y is 0 and

1. 9
[u:eq-10](x,y) u-data at x and y is 1 and

0. 9
C a counter setup. 10
[C:data]A C-data at A. 10
[C:eq-d](x) C-data at x is d. 10
[C:eq](x,y) C-data equal at x and y. 10
[C:less](x,y) C-data at x less than C-data

at y. 10
[C:succ](x,y) C-data at y succeeds C-data

at x. 11
[C:less-d](x) C-data at x less than d. 11
[C:betw-d-e](x) C-data at x between d and

e. 11
[C:allbetw-d-e] C-data between d and e. 11
[V(p):data]Aa the value of the p-th counter

at a. 11
[V:data]A the V-data at a. 11
[V:eq-v](x) the V-data at x. 11
[V(pq):at-i-eq](x) equal i-th bits at p and

q at x. 12
[V(pq):at-i-eq-01](x) equal i-th bits at p

and q are 0 and 1. 12
[V(pq):at-i-eq-10](x) equal i-th bits at p

and q are 1 and 0. 12
[V(pq):eq](x) equal p and q V-data at x.

12
[V(pq):less](x) V-data at p less than at q.

12
[V(pq):succ](x) V-data at q succeeds the

data at p. 12
[P:alldiff] P-data at different positions is

different. 13
[P:perm] P-data is a permutation. 13
EE the set of equivalence classes of E. 15
[e:refl] e is reflexive. 15
[e:symm] e is symmetric. 15
[e:trans] e is transitive. 15
[e:equiv] e is transitive. 15
[d, e:refine] refinement. 16
[d, e:global] global agreement. 16
[d, e:local] local agreement. 16
[e1, e2, . . . , ee:refine] symbols in refine-

ment. 17
[e1, e2, . . . , ee:global] symbols in global

agreement. 17
[e1, e2, . . . , ee:local] symbols in local agree-

ment. 17
LvpeEa logic notation. 19
[P:alleq] P-data equal everywhere. 20
[P:globperm] P-data is a global permuta-

vi

Glossary

tion. 21
[L:eg-i](x,y) global refinement induced by

levels. 21
gtr translation of global agreement to re-

finement. 22
[E:chperm]A characteristic E-permutation

in A. 23
[L:fixperm] fixed permutation condition. 24
[L:locperm] local agreement condition. 25
[L:el-i] local refinement induced by levels.

25
ltr translation of local agreement to refine-

ment. 26
g granularity. 27
G granularity color setup. 28
[Γ:d] finer equivalence granularity formula.

28
grtr granularity translation. 28
[Σ:cell](x,y) Σ-cell formula. 31
O organ-equivalence relation. 33
O sub-organ-equivalence relation. 33
[D:Data]A D-Data. 38
[D:Zero](x) zero D-Data at x. 38
[D:Largest](x) maximum D-Data at x. 38
mi message symbols. 48
〈Σ, m̄〉 classified signature. 48
T ⊆ T[Σ] type instance. 49

ΠT 1-types over T. 49
κ king type. 49
KT the king types over T. 49
WT the worker types over T. 49
T[π] the neighbours of π. 49
T[A] the type instance of A. 49
σ star-type. 51
stpA[a] the star-type of a in A. 51
S certificate for a type instance. 52
Tg the galactic types of T. 55
Tc the cosmic types of T. 55
ν noble type. 55
NT the noble types over T. 55
PT the peasant types over T. 55
GA the galaxies of A. 55
GAN the noble galaxies of A. 55
GAP the peasant galaxies of A. 55
tpA[X] the 1-types realized in the galaxy

X. 55
ς cosmic spectrum. 59
Tpx ς the internal types of ς. 59
Tpy ς the external types of ς. 59
π−e the reduct of π to Σ− 〈e〉. 59
in the internal unary predicate symbol. 59
Tς spectral type instance of the cosmic

spectrum ς. 59

vii

Abstract

A sequence of equivalence relations E1, E2, . . . , En on A is in refinement if Ei ⊆ Ei+1
for i ∈ [1, n − 1], that is if E1 ⊆ E2 ⊆ · · · ⊆ En. The sequence is in global agreement
if there is some permutation ν of [1, n] such that the sequence Eν(1), Eν(2), . . . , Eν(n)
is in refinement. The sequence is in local agreement if for every a ∈ A there is some
permutation ν = ν(a) of [1, n] such that Eν(1)[a] ⊆ Eν(2)[a] ⊆ · · · ⊆ Eν(n)[a].
The topic of this work is to investigate questions about the algorithmic complexity

of the satisfiability and finite satisfiability of logics featuring equivalence symbols at
different levels of agreement. A summary of this work is as follows:

• In Chapter 1 we introduce the notations and the tools that we will need further.

• In Chapter 2 we define various setups — suites of appropriate formulas that allow
us to model bounded discrete objects such as t-bit numbers or permutations of
[1, n] — into logical structures.

• In Chapter 3 we define the three agreement properties: local, global agreement
and refinement and develop the theory of equivalence relations in local agreement
sufficiently for our purposes. In particular, we prove Theorem 3 that a sequence
E = 〈E1, E2, . . . , En〉 of equivalence relations on A is in local agreement iff the
union ∪S of any nonempty subsequence S of E is an equivalence relation on A.
This allows us to define the level sequence (Definition 28) of a sequence of equiv-
alence relations in local agreement and to characterize it as a some kind of a
“skeleton”, which combined with a permutation witnessing the local agreement at
every element a ∈ A completely characterizes the original sequence E (Lemma 2
and Lemma 3).

• In Chapter 4 we provide deterministic polynomial-time reductions for the (finite)
satisfiability problem featuring equivalence symbols in global and local agreement
into the corresponding problem for equivalence symbols in refinement (Proposi-
tion 1, Proposition 2, Proposition 3, Proposition 4). This allows us to concentrate
on the case of refinement further.

• In Chapter 5 we determine the computational complexity of the (finite) satisfiabil-
ity problem for the first-order logic featruing only unary predicate symbols together
with e equivalence symbols in agreement: L1eErefine, L1eEglobal and L1eElocal. We
prove that these logics have the finite model property and that the (finite) sat-
isfiability problem for any of them is N(e + 1)ExpTime-complete (Proposition 5
and Proposition 9).

ix

Abstract

• In Chapter 6 we determine the computational complexity of the (finite) satisfi-
ability problem for the two-variable first-order logic featuring unary and binary
predicate symbols together with e equivalence symbols in refinement, L2eErefine.
We prove that this logic has the finite model property and that its (finite) satisfi-
ability problem is in NExpTime (Corollary 5).

As for future work in this area, we believe that the methods introduced in Chapter 6
can be adapted to the two-variable first-order logic with counting quantifiers. Another
direction for research is to check if the decidability of the satisfiability in corresponding
modal logics is computationally simpler than the general two-variable case. Alterna-
tively, it may be interesting to consider more relaxed notions than agreement, where
two different equivalence classes may have common elements but only to some limited
extent.

x

1 Preliminaries

The cardinal number |A| is the cardinality of the set A. The set ℘A is the powerset of A.
The set ℘+A = ℘A \ {∅} is the set of nonempty subsets of A. If κ is a cardinal number,
the set ℘κA = {S ∈ ℘A | |S| = κ} is the κ-powerset of A. The cartesian product of A
and B is A × B. The sets A and B properly intersect if A ∩ B 6= ∅, A \ B 6= ∅ and
B \A 6= ∅.
Let A and B be sets and let R ⊆ A × B be a binary relation. The domain of R is

domR = A and its range is ranR = B. The inverse R−1 ⊆ B ×A of R is

R−1 = {(b, a) | (a, b) ∈ R} .

If A′ ⊆ A, the restriction (R � A′) ⊆ A′ ×B of R to A′ is

R � S =
{
(a, b) ∈ R

∣∣ a ∈ A′} .
If a ∈ A, the R-successors of a are

R[a] = {b ∈ B | (a, b) ∈ R} .

If S ⊆ B × C and R ⊆ A×B are two binary relations, their composition is

S ◦R = {(a, c) ∈ A× C | (∃b ∈ B) ((a, b) ∈ R ∧ (b, c) ∈ S)} .

A function f : A → B is formally just a functional relation f ⊆ A × B. An injective
function from A into B is denoted f : A ↪→ B. A surjective function from A onto B is
denoted f : A � B. A bijective function between A and B is denoted f : A ↔ B. The
identity function on A is idA. A partial function from A to B is denoted f : A ; B.
If f : A ; B is a partial function and a ∈ A, the notation f(a) ' b means that f is
defined at a and its value is b; the notation f(a) ' ⊥ means that f is not defined at a,
where ⊥ is specially chosen to never be an element of B. If S ⊆ A, the characteristic
function chAS : A→ {0, 1} of S in A is defined by:

chAS a =
{

1 if a ∈ S
0 otherwise.

The set of natural numbers is N = {0, 1, . . . }. The set of positive natural numbers is
N+ = N \ {0}. If n,m ∈ N are natural numbers, the discrete interval [n,m] between n
and m is

[n,m] =
{
{n, n+ 1, . . . ,m} if n ≤ m
∅ otherwise.

1

1 Preliminaries

The function log is the base-2 logarithm.
An n-vector v = (v1, v2, . . . , vn) ∈ Nn is an n-tuple of natural numbers. The n-vector

v is antilexicographically smaller than the n-vector w (written v ≺ w) if there is a
position p ∈ [1, n] such that vp < wp and vq = wq for all q ∈ [p + 1, n]. For instance
(1, 1, 0) ≺ (0, 0, 1).

The set of n-permutations of [1, n] is Sn. We think of an n-permutation ν as an
n-vector ν = (ν(1), ν(2), . . . , ν(n)).
A function f : N → N is polynomially bounded if there is a polynomial p such that

f(n) ≤ p(n) for all n ∈ N. The function f is exponentially bounded if there is a polyno-
mial p such that f(n) ≤ 2p(n) for all n ∈ N. We are going to use these terms implicitly
with respect to quantities that depend on one another. For example, the cardinality of
Sn is exponentially bounded in n.
Define the tetration operation expea(x) by exp0

a(x) = x and expe+1
a (x) = aexpea(x), so

expea(x) = aa
··
ax

is a tower of e exponentiations.
A sequence is formally just a function with domain an ordinal number. If A is a

sequence, its length ‖A‖ is just the domain of A. An element of a sequence is an element
from its range. The sequence consisting of the elements a, b and c in that order is 〈a, b, c〉,
or alternatively written using a word notation abc. The empty sequence is ε. A finite
sequence is a sequence of finite length. If A and B are two sequences, their concatenation
is A + B, and the sequence obtained from A by dropping all elements of B is A− B.
An alphabet Ω is just a nonempty set. A word w = w1w2 . . . wn over Ω is a finite

sequence with elements from Ω. The set of words over Ω is Ω∗. The set of nonempty
words over Ω is Ω+ = Ω∗ \ {ε}. If n ∈ N, the set of words of length n over Ω is Ωn.
By abuse of notation, we identify the set of words of length n over Ω with the n-ary
cartesian power: Ωn = Ω× Ω× . . .× Ω︸ ︷︷ ︸

n

.

The set of bits is B = {0, 1}. The set of bitstrings is B+. The bitstrings are read
right-to-left, that is the bitstring b = 10 has first character 0. If t < u ∈ N+, the t-bit
bitstrings Bt are embedded into the u-bit bitstrings Bu by appending leading zeroes. If
n ∈ N, the bitsize ‖n‖ of n is:

‖n‖ =
{

1 if n = 0
blognc+ 1 otherwise.

If n ∈ N, the binary encoding of n is n ∈ B‖n‖. If b ∈ Bt, the number encoded by b is b.
The largest t-bit number is Nt = 2t − 1. The set of t-bit numbers is Bt = [0, Nt].

1.1 Syntax

The symbol alphabet for the first-order logic is

ΩL = {¬,∧,∨,→,↔; ∃, ∀,=, (, , ,)}

2

1.1 Syntax

The propositional connectives are listed in decreasing order of precedence. The negation
¬ is unary; the disjunction ∨, conjunction ∧ and equivalence ↔ are left-associative; the
implication → is right-associative. The quantifiers bind as strong as the negation. We
consider logics with formal equality =.
The sequence V = 〈v1,v2, . . .〉 is a countable sequence of distinct variable symbols. We

pay special attention to x = v1, y = v2 and z = v3, the first, second and third variable
symbol, respectively.
A predicate signature Σ = 〈p1,p2, . . . ,ps〉 is a finite sequence of distinct predicate

symbols pi together with their arities ar pi ∈ N+. A predicate signature is unary or
monadic if all of its predicate symbols have arity 1. A predicate signature is binary if
all of its predicate symbols have arity 1 or 2. For the purposes of this work we will
not be considering constant and function symbols—constant symbols can be simulated
by a fresh unary predicate symbol having the intended interpretation of being true at
a unique element; presence of function symbols on the other hand leads quite easily to
undecidable satisfiability problems. By convention ΩL, V and Σ are disjoint.
Let Σ be a predicate signature. The set of atomic formulas At[Σ] ⊂ (ΩL ∪ V ∪ Σ)∗

over Σ is generated by the grammar:

α ::= (x = y) | p(x1, x2, . . . , xn)

for x, y ∈ V, p ∈ Σ, n = ar p and x1, x2, . . . , xn ∈ V.
The set of literals Lit[Σ] ⊂ (ΩL ∪ V ∪ Σ)∗ over Σ is generated by the grammar:

λ ::= α | (¬α).

The set of first-order formulas L[Σ] ⊂ (ΩL ∪ V ∪ Σ)∗ over Σ is generated by the
grammar:

ϕ ::= α | (¬ϕ) | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | (ϕ→ ϕ) | (ϕ↔ ϕ) | (∃xϕ) | (∀xϕ)

for x ∈ V.
The set of variables occurring in ϕ is varsϕ ⊂ V. The set of variables freely occurring

in ϕ is fvarsϕ ⊂ V. A formula ϕ is a sentence if fvarsϕ = ∅. For v ∈ N, a formula ϕ is a
v-variable formula if varsϕ ⊆ {v1,v2, . . . ,vv}. The set of v-variable first-order formulas
over Σ is Lv[Σ].
If ϕ ∈ L[Σ], the quantifier rank qrϕ ∈ N of ϕ is defined as follows. If ϕ matches:

• (x = y), then qrϕ = 0

• p(x1, x2, . . . , xn), then qrϕ = 0

• (¬ψ), then qrϕ = qrψ

• ψ1 ⊕ ψ2 for ⊕ ∈ {∧,∨,→,↔}, then qrϕ = max(qrψ1, qrψ2)

• (∃xψ) or (∀xψ), then qrϕ = 1 + qrψ

3

1 Preliminaries

An r-rank formula is a formula having quantifier rank r. The set of r-rank first-order
formulas over Σ is Lr[Σ]. The set of r-rank v-variable first-order formulas over Σ is
Lvr [Σ].

If ϕ is a formula and x1, x2, . . . , xn ∈ V are distinct variables, we use the notation
ϕ(x1, x2, . . . , xn), a focused formula, to show that we are interested in the free occurrences
of the variables xi in ϕ. If ϕ(x1, x2, . . . , xn) is a focused formula and y1, y2, . . . , yn ∈ V,
then ϕ(y1, y2, . . . , yn) denotes the formula ϕ where all free occurrences of xi are replaced
by yi. The notation ϕ = ϕ(x1, x2, . . . , xn) means that fvarsϕ ⊆ {x1, x2, . . . , xn}.
We will omit unnecessary brackets in formulas.

1.2 Semantics
If Σ is a predicate signature, a Σ-structure A consists of a nonempty set A (the domain of
A), together with a relation pA ⊆ Aar p (the interpretation of p in A) for every predicate
symbol p ∈ Σ. A structure is finite if its domain is finite. We omit the standard
definitions of semantic notions. If A is a structure and B ⊆ A is a nonempty set of
elements of A, the substructure of A induced by B is denoted by (A � B). An intended
interpretation condition A for a predicate signature Σ is a class of Σ-structures. A
predicate signature with intended interpretation is a predicate signature Σ together with
an intended interpretation condition A for Σ. The Σ-structure A is a model for the
predicate signature Σ with intended interpretation A if A ∈ A. That is, when we speak
about a predicate signature with intended interpretations, we are considering the logics
strictly over the class of structures respecting the intended interpretation condition. The
semantic concepts are relativized appropriately in this context. For example, if Σ = 〈e〉 is
a predicate signature consisting of the single binary predicate symbol e, having intended
interpretation as an equivalence, then the Σ-formula ∀xe(x,x) is logically valid. From
now on, we will use the term predicate signature as an abbreviation of predicate signature
with possible intended interpretation.
The predicate signature Σ′ is an enrichment of the predicate signature Σ if Σ′ con-

tains all predicate symbols of Σ and respects their intended interpretation in Σ. A
Σ′-structure A′ is an enrichment of the Σ-structure A if they have the same domain and
the same interpretation of the predicate symbols of Σ. The basic semantic significance
of enrichment is that if ϕ(x1, x2, . . . , xn) is a Σ-formula and a1, a2, . . . , an ∈ A, then
A � ϕ(a1, a2, . . . , an) iff A′ � ϕ(a1, a2, . . . , an). If A′ is an enrichment of A then A is a
reduct of A′.
If ϕ = ϕ(x1, x2, . . . , xn) is a focused formula, the interpretation of ϕ in A is

ϕA = {(a1, a2, . . . , an) ∈ An | A � ϕ(a1, a2, . . . , an)} .

If Σ is a predicate signature and ϕ is a Σ-sentence, then ϕ is satisfiable if there
is a Σ-structure that is a model for ϕ; ϕ is finitely satisfiable if there is a finite Σ-
structure that is a model for ϕ. If K ⊆ L[Σ] is a family of formulas over the predicate
signature Σ, the set of satisfiable sentences is SAT-K ⊆ K and the set of finitely satisfiable
sentences is FIN-SAT-K ⊆ K. The family K has the finite model property if SAT-K =

4

1.3 Games

FIN-SAT-K. By the Löwenheim-Skolem theorem, every satisfiable sentence ϕ has a finite
or countable model, assuming the intended interpretation condition of the predicate
signature is first-order-definable. In this work the intended interpretation conditions of
the predicate signatures will always be first-order-definable and we will silently assume
that all structures are either finite or countable.
Two Σ-sentences ϕ and ψ are logically equivalent (written ϕ ≡ ψ) if they have the

same models.
Two Σ-structures A and B are elementary equivalent (written A ≡ B) if they satisfy

the same first-order sentences. The structures A and B are r-rank equivalent (written
A ≡r B) if they satisfy the same r-rank first-order sentences. The structures A and B
are v-variable equivalent (written A ≡v B) if they satisfy the same v-variable first-order
sentences. The structures A and B are r-rank v-variable equivalent (written A ≡vr B) if
they satisfy the same r-rank v-variable first-order sentences.

1.3 Games

Logic games capture structure equivalence. Let Σ be a predicate signature and let A and
B be Σ-structures. A partial isomorphism p : A; B from A to B is a partial mapping
that is an isomorphism between the induced substructures (A � dom p) and (B � ran p).

Let r ∈ N+. The r-round Ehrenfeucht-Fraïssé game Gr(A,B) is a two-player game,
played with a pair of pebbles, one for each structure. The two players are Spoiler and
Duplicator. Initially the pebbles are off the structures. During each round, Spoiler picks
a pebble and a structure and places it on some element in that structure. Duplicator
responds by picking the other pebble and placing it on some element in the other struc-
ture. Thus during round i the players play a pair of elements ai 7→ bi ∈ A×B. Collect
the sequences of played elements ā = 〈a1, a2, . . . , ar〉 and b̄ = 〈b1, b2, . . . , br〉. Duplicator
wins the match if the relation ā 7→ b̄ = {a1 7→ b1, a2 7→ b2, . . . , ar 7→ br} ⊆ A × B, built
from the pairs of elements in each round, is a partial isomorphism from A to B. Ehren-
feucht’s theorem says that Duplicator has a winning strategy for Gr(A,B) iff A ≡r B.
Fraïssé’s theorem gives a back-and-forth characterization of the winning strategy for
Duplicator [1, ch. 2]:

Theorem 1. Suppose that (I0, I1, . . . ,Ir) is a sequence of nonempty sets of partial
isomorphisms between A and B with the following properties:

1. For every i < r, p ∈ Ii and a ∈ A, there is q ∈ Ii+1 such that p ⊆ q and a ∈ dom q.

2. For every i < r, p ∈ Ii and b ∈ B, there is q ∈ Ii+1 such that p ⊆ q and b ∈ ran q.

Then A ≡r B.

5

1 Preliminaries

1.4 Types

Let Σ = 〈p1,p2, . . . ,ps〉 be a predicate signature. A 1-type π over Σ is a maximal
consistent set of literals featuring only the variable symbol1 x. The set of 1-types over
Σ is Π[Σ]. Note that consistency here is relativized by the intended interpretations of
the predicate signature. For example, if Σ contains the binary predicate symbol e with
intended interpretation as an equivalence, then every 1-type over Σ includes the literal
e(x,x). Also note that the cardinality of a 1-type over Σ is polynomially bounded in
the length s of Σ and the cardinality of Π[Σ] is exponentially bounded in s.

A 2-type τ over Σ is a maximal consistent set of literals featuring only the variable
symbols x and y and including the literal (x 6= y). The set of 2-types over Σ is T[Σ].
Again, consistency is relativized by the intended interpretation of the predicate signature.
For example, if Σ contains the binary predicate symbol e with intended interpretation
as an equivalence, then if e(x,y) ∈ τ , then e(y,x) ∈ τ . Again, the cardinality of a
2-type over Σ is polynomially bounded in s and the cardinality of T[Σ] is exponentially
bounded in s.
If τ ∈ T[Σ], the inverse τ−1 of τ is the 2-type obtained from τ by swapping the

variables x and y in every literal. The x-type of τ is the 1-type tpx τ consisting of all
the literals of τ featuring only the variable symbol x. Similarly, the y-type of τ is the
1-type tpy τ consisting of all the literals of τ featuring only the variable symbol y, that
is replaced by x. For instance we have the identity tpx τ

−1 = tpy τ . We say that τ
connects the 1-types tpx τ and tpy τ and we refer to tpx τ and tpy τ as the endpoints of
τ . Two 2-types τ, τ ′ are parallel if tpx τ = tpx τ

′ and tpy τ = tpy τ
′.

If A is a Σ-structure and a ∈ A, the 1-type of a in A is

tpA[a] = {λ(x) ∈ Lit[Σ] | A � λ(a)} .

If tpA[a] = π, we say that the 1-type π is realized by a in A. The interpretation of the
1-type π in A is the set of elements realizing π:

πA =
{
a ∈ A

∣∣∣ tpA[a] = π
}
.

If a ∈ A and b ∈ A \ {a}, the 2-type of (a, b) in A is

tpA[a, b] = {λ(x,y) ∈ Lit[Σ] | A � λ(a, b)} .

We do not define a 2-type in case a = b. If tpA[a, b] = τ , we say that the 2-type τ is
realized by (a, b) in A. The interpretation of the 2-type τ in A is the set of pairs realizing
τ :

τA =
{

(a, b) ∈ A×A
∣∣∣ a 6= b ∧ tpA[a, b] = τ

}
.

1this is different than the commonly used notion of type in model theory, where types are sets of general
formulas, not just literals

6

1.5 Scott normal form

1.5 Scott normal form
In two-variable logics, a common technique of reducing formula quantifier rank while
preserving satisfiability is Skolemization [2]: Let ϕ be a L2-sentence. Consider a sub-
formula ψ = ψ(y) = Qxα(x, y) of ϕ that has the lowest possible nontrivial quantifier
rank 1, where y ∈ {x,y} should not necessarily occur freely in α, x ∈ {x,y} \ {y}
and Q ∈ {∀,∃}. Introduce a new unary predicate symbol uψ with the intended in-
terpretation ∀y(uψ(y) ↔ Qxα(x, y)) and let ϕ′ be the formula obtained from ϕ by
replacing the subformula ψ by uψ(y). The original formula ϕ is equisatisfiable with
ϕ1 = ∀y(uψ(y) ↔ Qxα(x, y)) ∧ ϕ′ in a strict sense, that is any model for ϕ can be
uψ-enriched into a model for ϕ1 and any model for ϕ1 is a model for ϕ. By repeating
this process, we can bring the formula to a form where the quantifier rank is at most
2 [3, 2]:

Theorem 2 (Scott). There is a polynomial-time reduction sctr : L2 → L2 which reduces
every sentence ϕ to a sentence sctrϕ in Scott normal form:

∀x∀y(α0(x,y) ∨ x = y) ∧
∧

1≤i≤m
∀x∃y(αi(x,y) ∧ x 6= y),

wherem ≥ 1, the formulas αi are quantifier-free and use at most linearly many new unary
predicate symbols. The sentences ϕ and sctrϕ are satisfiable over the same domains of
cardinality at least 2. Moreover the length sctrϕ is linear in the length of ϕ.

1.6 Complexity
We denote the complexity classes PTime = Time[poly(n)] =

⋃
c∈N+ Time[nc], NPTime,

PSpace, ExpTime and NExpTime. For e ∈ N+, the e-exponential deterministic and
nondeterministic time classes are eExpTime = Time[expe2(poly(n))] and NeExpTime.
The complexity class Elementary is the union of the complexity classes eExpTime for
e ∈ N+.
The Grzegorczyk hierarchy E i for i ∈ N orders the primitive recursive functions by

means of the power of recursion needed. The basic functions are the zero function
zero(n) = 0, the successor function succ(n) = n + 1 and the projection functions
projui (n1, n2, . . . , nu) = ni. If u, v ∈ N, f : Nu → N and g1, g2, . . . , gu : Nv → N
are functions, their superposition is the function h : Nv → N defined by h(n̄) =
f(g1(n̄), g2(n̄), . . . , gu(n̄)) for n̄ ∈ Nv. If u ∈ N, f : Nu → N and g : Nu+2 → N,
their primitive recursion is the function h : Nu+1 → N defined by:

h(n̄, 0) = f(n̄)
h(n̄, i+ 1) = g(n̄, i, h(n̄, i))

for n̄ ∈ Nu. For i ∈ N, define the function Ei by E0(n) = n+ 1 and

Ei+1(n) = Eni (2) = Ei(Ei(. . . Ei︸ ︷︷ ︸
n

(2))).

7

1 Preliminaries

For i ∈ N, the i-th level of the Grzegorczyk hierarchy E i is the least set of functions con-
taining the basic functions, the functions Ek for k ∈ [0, i] and closed under superposition
and limited primitive recursion, that is a primitive recursion h : Nu+1 → N of the func-
tions f : Nu → N, g : Nu+2 → N, f, g ∈ E i, such that there is a function b : Nu+1 → N,
b ∈ E i bounding h: h(n̄) ≤ b(n̄) for all n ∈ Nu+1. A decision problem A ⊆ Ω∗ is in some
level of the Grzegorczyk hierarchy just in case its characteristic function occurs at that
level. The primitive recursive functions are partitioned by the Grzegorczyk hierarchy.
The complexity class Elementary coincides with the third level of the Grzegorczyk
hierarchy E3.
If A ⊆ Ω∗1 and B ⊆ Ω∗2 are decision problems, the problem A is polynomial-time

reducible to B (written A ≤PTime
m B) if there is a polynomial-time algorithm f : Ω∗1 → Ω∗2

such that a ∈ A iff f(a) ∈ B. Similar reductions where f might be in another complexity
class are defined analogously. The decision problems A and B are polynomial-time
equivalent (written A =PTime

m B) if A ≤PTime
m B and B ≤PTime

m A. In the context of
a decision problem, the size of an object is the number of bits required to represent it
through some standard encoding.
A decision problem is hard for a complexity class if any decision problem of that

complexity class is polynomial-time reducible to it. A decision problem is complete for
a complexity class if it is hard for that class and contained in that class.
We will need the following standard domino tiling problem [4, p. 403]: A domino

system is a triple D = (T,H, V), where T = [1, k] is a finite set of tiles and H,V ⊆
T × T are horizontal and vertical matching relations. A tiling of m ×m for a domino
system D with initial condition c0 =

〈
t01, t

0
2, . . . , t

0
n

〉
, where n ≤ m, is a mapping t :

[1,m]× [1,m]→ T such that:

• (t(i, j), t(i+ 1, j)) ∈ H for all i ∈ [1,m− 1] and j ∈ [1,m]

• (t(i, j), t(i, j + 1)) ∈ V for all i ∈ [1,m] and j ∈ [1,m− 1]

• t(i, 1) = t0i for all i ∈ [1, n].

It is well-known [5, 6] that there exists a domino system D0 for which:

• the problem asking whether there exists a tiling of m×m with initial condition c0

of length n, where m = n, is NPTime-complete.

• the problem asking whether there exists a tiling of m×m with initial condition c0

of length n, where m = 2n, is NExpTime-complete.

• the problem asking whether there exists a tiling of m×m with initial condition c0

of length n, where m = 22n , is N2ExpTime-complete.

• the argument extends to arbitrary exponential towers: the problem asking whether
there exists a tiling of m × m with initial condition c0 of length n, where m =
expe2(n) is NeExpTime-complete.

8

2 Counter setups
In this chapter we develop formulas over unary predicate signatures allowing us to cap-
ture discrete objects such as bits, bounded integers, vectors and permutations. We
employ these tools in the following chapters to obtain reductions and hardness bounds
between the satisfiability problems for different classes of logics with built-in equivalence
symbols. We call the signatures allowing us to encode an arbitrary bounded discrete
structure of a particular type setups. The constructions have a strong computer science
flavor in the sense that the structures are modelled as sequences of bits with additional
constraints and the formulas are constructible in deterministic polynomial time.

2.1 Bits
A bit setup B = 〈u〉 is a predicate signature consisting of a single unary predicate
symbol u. Recall that the set of bits is B = {0, 1}.
Definition 1. Let A be a B-structure. Define the function [u:data]A : A→ B by:

[u:data]Aa =
{

1 if A � u(a)
0 otherwise.

Definition 2. Let d ∈ B. Define the quantifier-free L1[B]-formula [u:eq-d](x) by:

[u:eq-d](x) =
{

u(x) if d = 1
¬u(x) otherwise.

Remark 1. If A is a B-structure, a ∈ A is an element and d ∈ B, then A � [u:eq-d](a)
iff [u:data]Aa = d.
Definition 3. Define the quantifier-free L2[B]-formulas [u:eq](x,y), [u:eq-01](x,y)
and [u:eq-10](x,y) by:

[u:eq](x,y) = u(x)↔ u(y)
[u:eq-01](x,y) = ¬u(x) ∧ u(y)
[u:eq-10](x,y) = u(x) ∧ ¬u(y).

Remark 2. If A is a B-structure and a, b ∈ A, then:
• A � [u:eq](a, b) iff [u:data]Aa = [u:data]Ab

• A � [u:eq-01](a, b) iff [u:data]Aa = 0 and [u:data]Ab = 1

• A � [u:eq-10](a, b) iff [u:data]Aa = 1 and [u:data]Ab = 0.

9

2 Counter setups

2.2 Counters
A t-bit counter setup for t ∈ N+ is a predicate signature C = 〈u1,u2, . . . ,ut〉 consisting of
t distinct unary predicate symbols. Recall that the set of t-bit numbers is Bt = [0, 2t−1].

Definition 4. Let A be a C-structure. Define the function [C:data]A : A→ Bt by:

[C:data]Aa =
∑

1≤i≤t
2i−1[ui:data]Aa.

Definition 5. Let d ∈ Bt be a t-bit number. Define the quantifier-free L1[C]-formula
[C:eq-d](x) by:

[C:eq-d](x) =
∧

1≤i≤t
[ui:eq-di](x).

Remark 3. If A is a C-structure, a ∈ A and d ∈ Bt, then A � [C:eq-d](a) iff
[C:data]Aa = d.
If A is a nonempty set and data : A → Bt is any function, there is a C-structure A

over A such that [C:data]A = data.

Definition 6. Define the quantifier-free L2[C]-formula [C:eq](x,y) by:

[C:eq](x,y) =
∧

1≤i≤t
[ui:eq](x,y).

Remark 4. If A is a C-structure and a, b ∈ A, then A � [C:eq](a, b) iff [C:data]Aa =
[C:data]Ab.

The bitstring a ∈ Bt encodes a number less than the number encoded by the bitstring
b ∈ Bt, if a 6= b and at the least position j ∈ [1, t] where they are different, the bitstring
a has value 0 and the bitstring b has value 1. That is, there is a position j ∈ [1, t] such
that the following two conditions hold:

aj = 0 and bj = 1 (Less1)
ak = bk for all k ∈ [j + 1, t]. (Less2)

Definition 7. Define the quantifier-free L2[C]-formula [C:less](x,y) by:

[C:less](x,y) =
∨

1≤j≤t
[uj:eq-01](x,y) ∧

∧
j<k≤t

[uk:eq](x,y).

Remark 5. If A is a C-structure and a, b ∈ A, then A � [C:less](a, b) iff [C:data]Aa <
[C:data]Ab.
The bitstring b ∈ Bt encodes the successor of the number encoded by the bitstring a,

if there is a position j ∈ [1, t] such that the following four conditions hold:

aj = 0 and bj = 1 (Succ1)
ai = 1 for all i ∈ [1, j − 1] (Succ2)
bi = 0 for all i ∈ [1, j − 1] (Succ3)

ak = bk for all k ∈ [j + 1, t]. (Succ4)

10

2.3 Vectors

Definition 8. Define the quantifier-free L2[C]-formula [C:succ](x,y) by:

[C:succ](x,y) =
∨

1≤j≤t
[uj:eq-01](x,y) ∧

∧
1≤i<j

[ui:eq-10](x,y) ∧
∧

j<k≤t
[uk:eq](x,y).

Remark 6. If A is a C-structure and a, b ∈ A, then:

A � [C:succ](a, b) iff [C:data]Ab = 1 + [C:data]Aa.

Definition 9. Let d ∈ Bt. Define the quantifier-free L1[C]-formula [C:less-d](x) by:

[C:less-d](x) =
∨

1≤j≤t
¬uj(x) ∧ ¬[uj:eq-dj](x) ∧

∧
j<k≤t

[uk:eq-dk](x).

Remark 7. If A is a C-structure, a ∈ A and d ∈ Bt, then A � [C:less-d](a) iff
[C:data]Aa < d.

Definition 10. Let d, e ∈ Bt. Define the quantifier-free L1[C]-formula [C:betw-d-e](x)
by:

[C:betw-d-e](x) = ¬[C:less-d](x) ∧ ([C:less-e](x) ∨ [C:eq-e](x)).

Remark 8. If A is a C-structure, a ∈ A and d, e ∈ Bt, then

A � [C:betw-d-e](a) iff d ≤ [C:data]Aa ≤ e.

Definition 11. Let d, e ∈ Bt. Define the L1[C]-sentence [C:allbetw-d-e] by:

[C:allbetw-d-e] = ∀x[C:betw-d-e](x).

Remark 9. If A is a C-structure and d, e ∈ Bt, then

A � [C:betw-d-e] iff for all a ∈ A, d ≤ [C:data]Aa ≤ e.

2.3 Vectors
Let n, t ∈ N+. Recall the set of n-dimensional t-bit vectors is Bnt . An n-dimensional
t-bit vector setup is a predicate signature V = 〈u11,u12, . . . ,unt〉 of (nt) distinct unary
predicate symbols. The counter setup V(p) of V at position p ∈ [1, n] is V(p) =
〈up1,up2, . . . ,upt〉.

Definition 12. Let A be a V-structure and a ∈ A. We refer to [V(p):data]Aa as the
value of the p-th counter at a. Define the function [V:data]A : A→ Bnt by:

[V:data]Aa =
(
[V(1):data]Aa, [V(2):data]Aa, . . . , [V(n):data]Aa

)
.

Definition 13. Let v = (d1, d2, . . . , dn) ∈ Bnt be an n-dimensional t-bit vector. Define
the quantifier-free L1[V]-formula [V:eq-v](x) by:

[V:eq-v](x) =
∧

1≤p≤n
[V(p):eq-dp](x).

11

2 Counter setups

Remark 10. If A is a V-structure, a ∈ A and v ∈ Bnt , then A � [V:eq-v](a) iff
[V:data]Aa = v.
If A is a nonempty set and data : A→ Bnt is any function, then there is a V-structure

A over A such that [V:data]A = data.

Definition 14. Let p, q ∈ [1, n] and let i ∈ [1, t]. Define the quantifier-free L1[V]-
formulas [V(pq):at-i-eq](x), [V(pq):at-i-eq-01](x) and [V(pq):at-i-eq-10](x) by:

[V(pq):at-i-eq](x) = upi(x)↔ uqi(x)
[V(pq):at-i-eq-01](x) = ¬upi(x) ∧ uqi(x)
[V(pq):at-i-eq-10](x) = upi(x) ∧ ¬uqi(x).

Remark 11. If A is a V-structure and a ∈ A, then:

• A � [V(pq):at-i-eq](a) iff [upi:data]Aa = [uqi:data]A, that is the values of the i-th
bit at positions p and q at a are equal

• A � [V(pq):at-i-eq-01](a) iff [upi:data]Aa = 0 and [uqi:data]Aa = 1, that is the
i-th bit at position p at a is 0 and the i-th bit at position q at a is 1

• A � [V(pq):at-i-eq-10](a) iff [upi:data]Aa = 1 and [uqi:data]Aa = 0, that is the
i-th bit at position p at a is 1 and the i-th bit at position q at a is 0.

Definition 15. Let p, q ∈ [1, n]. Define the quantifier-free L1[V]-formula [V(pq):eq](x)
by:

[V(pq):eq](x) =
∧

1≤i≤t
[V(pq):at-i-eq](x).

Remark 12. If A is a V-structure and a ∈ A, then:

A � [V(pq):eq](a) iff [V(p):data]Aa = [V(q):data]Aa.

Definition 16. Let p, q ∈ [1, n]. Define the quantifier-free L1[V]-formula [V(pq):less](x)
by:

[V(pq):less](x) =
∨

1≤j≤t
[V(pq):at-j-eq-01](x) ∧

∧
j<k≤t

[V(pq):at-k-eq](x).

Remark 13. If A is a V-structure and a ∈ A, then:

A � [V(pq):less](a) iff [V(p):data]Aa < [V(q):data]Aa.

Definition 17. Let p, q ∈ [1, n]. Define the quantifier-free L1[V]-formula

[V(pq):succ](x) =
∨

1≤j≤t

∧
1≤i<j

[V(pq):at-i-eq-10](x) ∧ [V(pq):at-j-eq-01](x)∧

∧
j<k≤t

[V(pq):at-k-eq](x).

Remark 14. If A is a V-structure and a ∈ A, then:

A � [V(pq):succ](a) iff [V(q):data]Aa = 1 + [V(p):data]Aa.

12

2.4 Permutations

2.4 Permutations
Let n ∈ N+. An n-permutation setup P = 〈u11,u12, . . . ,unt〉 is just an n-dimensional
t-bit vector setup, where t = ‖n‖ is the bitsize of n. Recall that the set Sn of all
permutations of [1, n] is a subset of Bnt .

Definition 18. Define the quantifier-free L1[P]-sentence [P:alldiff] by:

[P:alldiff] = ∀x
∧

1≤p<q≤n
¬[P(pq):eq](x).

Remark 15. If A is a P-structure then A � [P:alldiff] iff [P(p):data]Aa 6= [P(q):data]Aa
for all a ∈ A and p 6= q ∈ [1, n].

Definition 19. Define the quantifier-free L1[P]-sentence [P:perm] by:

[P:perm] = [P:betw-1-n] ∧ [P:alldiff].

Remark 16. If A is a P-structure then A � [P:perm] iff [P:data]Aa ∈ Sn for all a ∈ A.
If A is a nonempty set and data : A→ Sn is any function, then there is a P-structure

A � [P:perm] over A such that [P:data]A = data.

13

3 Equivalence relations
An equivalence relation E ⊆ A×A on A is a relation that is reflexive, symmetric and
transitive. The set of equivalence classes of E is EE = {E[a] | a ∈ A}.
Let E = 〈e〉 be a predicate signature consisting of a single binary predicate symbol e.

Define the L2[E]-sentence [e:refl] by:

[e:refl] = ∀xe(x,x).

Define the L2[E]-sentence [e:symm] by:

[e:symm] = ∀x∀y (e(x,y)→ e(y,x)) .

Define the L3[E]-sentence [e:trans] by:

[e:trans] = ∀x∀y∀z (e(x,y) ∧ e(y, z)→ e(x, z)) .

Define the L3[E]-sentence [e:equiv] by:

[e:equiv] = [e:refl] ∧ [e:symm] ∧ [e:trans].

Let A be an E-structure and let E = eA. Then E is reflexive iff A � [e:refl]; E is
symmetric iff A � [e:symm]; E is transitive iff A � [e:trans]; E is an equivalence on A
iff A � [e:equiv]. It can be shown that transitivity and equivalence cannot be defined in
the two-variable fragment.

3.1 Two equivalence relations in agreement
Definition 20. Let 〈D,E〉 be a sequence of two equivalence relations on A. The rela-
tion D is finer than the relation E if every equivalence class of D is a subset of some
equivalence class of E. Equivalently, D ⊆ E. Equivalently,

(∀a ∈ A)(∀b ∈ A) (D(a, b)→ E(a, b)) .

If D is finer than E, then E is coarser than D. The sequence 〈D,E〉 is a sequence of
equivalence relations on A in refinement if D is finer E.
The sequence 〈D,E〉 is a sequence of equivalence relations in global agreement if either

D is finer than E or E is finer than D.
The sequence 〈D,E〉 is a sequence of equivalence relations in local agreement if for

every a ∈ A, either D[a] ⊆ E[a] or E[a] ⊆ D[a]. Equivalently, no two equivalence classes
E[a] and D[b] properly intersect. Equivalently,

(∀a ∈ A) ((∀b ∈ A) (D(a, b)→ E(a, b)) ∨ (∀b ∈ A) (E(a, b)→ D(a, b))) .

15

3 Equivalence relations

Let E = 〈d, e〉 be a predicate signature consisting of the two binary predicate symbols
d and e. Let A is an E-structure and suppose that d and e are interpreted in A as
equivalence relations on A. Let D = dA and E = eA be the interpretations of the two
symbols.

Definition 21. Define the L2[E]-sentence [d, e:refine] by:

[d, e:refine] = ∀x∀y (d(x,y)→ e(x,y)) .

Then 〈D,E〉 is in refinement iff A � [d, e:refine].

Definition 22. Define the L2[E]-sentence [d, e:global] by:

[d, e:global] = [d, e:refine] ∨ [e,d:refine].

Then 〈D,E〉 is in global agreement iff A � [d, e:global].

Definition 23. Define the L2[E]-sentence [d, e:local] by:

[d, e:local] = ∀x (∀y (d(x,y)→ e(x,y)) ∨ ∀y (e(x,y)→ d(x,y))) .

Then 〈D,E〉 is in global agreement iff A � [d, e:local].

Lemma 1. If 〈D,E〉 is a sequence two equivalence relations on A, then it is in local
agreement iff L = D ∪ E is an equivalence relation on A.

Proof. The union of two equivalence relations on A is a reflexive and symmetric relation.
First suppose that D and E are in local agreement. We claim that L is transitive. Let

a, b, c ∈ A be such that (a, b) ∈ L and (b, c) ∈ L. Since D and E are in local agreement,
without loss of generality D[b] ⊆ E[b]. Since (a, b) ∈ L, either a ∈ D[b] ⊆ E[b] or
a ∈ E[b]. Similarly c ∈ E[b]. Therefore (a, c) ∈ E ⊆ L.

Next suppose that L is an equivalence relation, let b ∈ A and assume towards a
contradiction that D[b] 6⊆ E[b] and E[b] 6⊆ D[b]. There is some a ∈ D[b] \ E[b] and
c ∈ E[b] \D[b]. Then (a, b) ∈ D ⊆ L and (b, c) ∈ E ⊆ L, hence (a, c) ∈ L. Without loss
of generality (a, c) ∈ E. Since c ∈ E[b], we have a ∈ E[b] — a contradiction.

3.2 Many equivalence relations in agreement
Let e be a positive natural number.

Definition 24. Let 〈E1, E2, . . . , Ee〉 be a sequence of equivalence relations on A.
The sequence is in refinement if E1 ⊆ E2 ⊆ · · · ⊆ Ee.
The sequence is in global agreement if the equivalence relations form a chain under

inclusion, that is for all i, j ∈ [1, e], either Ei ⊆ Ej or Ej ⊆ Ei. Equivalently, there is a
(not necessarily unique) permutation ν ∈ Se such that Eν(1) ⊆ Eν(2) ⊆ · · · ⊆ Eν(e).
The sequence is in local agreement if for every element a ∈ A the equivalence classes

E1[a], E2[a], . . . , Ee[a] form a chain under inclusion. Equivalently, no two equivalence
classes Ei[a] and Ej [b] properly intersect.

16

3.2 Many equivalence relations in agreement

Let E = 〈e1, e2, . . . , ee〉 be a predicate signature consisting of e binary predicate
symbols. Let A be an E-structure and suppose that the symbols ei are interpreted as
equivalence relations on A. Let Ei = eA

i for i ∈ [1, e].

Definition 25. Define the L2[E]-sentence [e1, e2, . . . , ee:refine] by:

[e1, e2, . . . , ee:refine] = ∀x∀y
∧

1≤i<e
(ei(x,y)→ ei+1(x,y)) .

Then 〈E1, E2, . . . , Ee〉 is in refinement iff A � [e1, e2, . . . , ee:refine]. Note that this sen-
tence is constructible in deterministic polynomial time from the sequence of equivalence
symbols.

Definition 26. Define the L2[E]-sentence [e1, e2, . . . , ee:global] by:

[e1, e2, . . . , ee:global] =
∨
ν∈Se

[eν(1), eν(2), . . . , eν(e):refine].

Then 〈E1, E2, . . . , Ee〉 is in global agreement iff A � [e1, e2, . . . , ee:global]. Note that
the length of the formula [e1, e2, . . . , ee:global] grows exponentially as e grows.

Definition 27. Define the L2[E]-sentence [e1, e2, . . . , ee:local] by:

[e1, e2, . . . , ee:local] = ∀x
∨
ν∈Se
∀y

∧
1≤i<e

(eν(i)(x,y)→ eν(i+1)(x,y)).

Then 〈E1, E2, . . . , Ee〉 is in local agreement iff A � [e1, e2, . . . , ee:local]. Note that the
length of the formula [e1, e2, . . . , ee:local] grows exponentially as e grows.
Let E = 〈E1, E2, . . . , Ee〉 be a sequence of equivalence relations on A.

Theorem 3. The sequence E is in local agreement iff the union ∪S of any nonempty
subsequence S ⊆ E is an equivalence relation on A.

Proof. First suppose that the equivalence relations Ei are in local agreement. We show
that the union ∪S of arbitrary nonempty subsequence S = {Ei(1), Ei(2), . . . , Ei(s)}, where
1 ≤ i(1) < i(2) < · · · < i(s) ≤ e, is an equivalence relation by induction on s, the length
of S. If s = 1 this claim is trivial. Suppose s > 1. By the induction hypothesis,
D = ∪{Ei(1), Ei(2), . . . , Ei(s−1)} is an equivalence relation on A. We claim that D and
Ei(s) are in local agreement. Indeed, let a ∈ A be arbitrary and consider D[a] =
Ei(1)[a] ∪ Ei(2)[a] ∪ · · · ∪ Ei(s−1)[a] and Ei(s)[a]. Since all equivalences Ek are in local
agreement, either Ei(s)[a] ⊆ Ei(j)[a] for some j ∈ [1, s − 1], or Ei(j)[a] ⊆ Ei(s)[a] for all
j ∈ [1, s− 1]. In the first case Ei(s)[a] ⊆ D[a]; in the second case D[a] ⊆ Ei(s)[a]. Thus
D and Ei(s) are in local agreement. By Lemma 1, ∪S = D ∪ Ei(s) is an equivalence
relation on A.
Next suppose that the equivalences are not in local agreement. There is an element

a ∈ A such that {Ei[a] | i ∈ [1, e]} is not a chain. There are i, j ∈ [1, e] such that
Ei[a] 6⊆ Ej [a] and Ej [a] 6⊆ Ei[a]. Thus Ei and Ej are not in local agreement. By
Lemma 1, the union Ei ∪ Ej is not an equivalence relation on A.

17

3 Equivalence relations

Suppose that the sequence E = 〈E1, E2, . . . , Ee〉 is in local agreement.

Definition 28. An index set is an element I ∈ ℘+[1, e]. Define (E � ·) : ℘+[1, e]→ ℘+E
by:

(E � I) = {Ei | i ∈ I} .

That is, (E � I) just collects the equivalences having indices from I.
The level sequence L = 〈L1, L2, . . . , Le〉 of the sequence E is defined as follows. For

k ∈ [1, e]:
Lk = ∩

{
∪(E � I)

∣∣∣ I ∈ ℘k[1, e]
}
.

Remark 17. All Lk are equivalence relations on A.

Proof. Let k ∈ [1, e] and let K ∈ ℘k[1, e] be any k-index set. By Theorem 3, ∪(E � K) is
an equivalence relation on A. Since intersection of equivalence relations on A is again an
equivalence relation on A, the level Lk = ∩

{
∪(E � K)

∣∣∣ K ∈ ℘k[1, e]
}
is an equivalence

relation on A.

Lemma 2. The level sequence L = 〈L1, L2, . . . , Le〉 is a sequence of equivalence relations
on A in refinement.

Proof. Let i < j ∈ [1, e]. Let J ∈ ℘j [1, e] be any j-index set. We claim that Li ⊆
∪(E � J). Indeed, choose some i-index set I ⊂ J. By the definition of Li we have
Li ⊆ ∪(E � I) ⊆ ∪(E � J). Hence Li ⊆ ∩

{
∪(E � J)

∣∣ J ∈ ℘j [1, e]
}

= Lj .

Let a ∈ A. Since the sequence E = 〈E1, E2, . . . , Ee〉 is in local agreement, there is a
permutation ν ∈ Se such that:

Eν(1)[a] ⊆ Eν(2)[a] ⊆ · · · ⊆ Eν(e)[a]. (3.1)

Lemma 3. If ν ∈ Se is a permutation satisfying eq. (3.1), then Lν−1(i)[a] = Ei[a] for all
i ∈ [1, e].

Proof. Let k = ν−1(i), so ν(k) = i. We claim that Lk[a] = Ei[a]. First, consider the
k-index set K = {ν(1), ν(2), . . . , ν(k)}. By the definition of Lk, followed by eq. (3.1), we
have Lk[a] ⊆ ∪(E � K)[a] = Eν(k)[a] = Ei[a]. Next, let K ⊆ ℘k[1, e] be any k-index set.
By the pigeonhole principle, there is some k′ ≥ k such that ν(k′) ∈ K. By eq. (3.1) we
have:

Ei[a] = Eν(k)[a] ⊆ Eν(k′)[a] ⊆ ∪(E � K)[a].

Hence Ei[a] ⊆ ∩
{
∪(E � K)[a]

∣∣∣ K ∈ ℘k[1, e]
}

= Lk[a].

18

4 Reductions

In this chapter we provide polynomial-time reductions from the case of equivalence
symbols in global or local agreement to the case of equivalence symbols in refinement.

We restrict our attention to binary predicate signatures only consisting of unary and
binary predicate symbols. To denote various logics with built-in equivalence symbols,
we use the notation

LvpeEa

where:

• L is the ground logic

• v, if given, bounds the number of variables

• e, if given, specifies the number of built-in equivalence symbols

• a ∈ {refine, global, local}, if given, specifies the agreement condition between the
built-in equivalence symbols

• p, the signature power, specifies constraints on the signature:
– if p = 0, the signature consists of only constantly many unary predicate

symbols in addition to the built-in equivalence symbols
– if p = 1, the signature consists of unboundedly many unary predicate symbols

in addition to the built-in equivalence symbols
– if p is not given, the signature consists of unboundedly many unary and binary

predicate symbols in addition to the built-in equivalence symbols. This is
the commonly investigated fragment with respect to satisfiability of the two-
variable logics with or without counting quantifiers.

For example L1 is the monadic first-order logic, featuring only unary predicate sym-
bols. L01E is the first-order logic of a single equivalence relation. L22E is the two-
variable logic, featuring unary and binary predicate symbols and two built-in equivalence
symbols with no agreement condition between them. L2

12Elocal is the two-variable logic,
featuring unary predicate symbols and two built-in equivalence symbols in local agree-
ment. L1Eglobal is the monadic first-order logic featuring arbitrary many equivalence
symbols in global agreement.

When working with a concrete logic, for example L22Elocal, we implicitly assume an
appropriate generic predicate signature Σ for it. In the L22Elocal case for example, there
will be two built-in equivalence symbols d and e in Σ and in addition Σ contains arbitrary

19

4 Reductions

many unary and binary predicate symbols. The intended interpretation of the built-in
equivalence symbols is fixed by an appropriate condition θ. In this case:

θ = [d:equiv] ∧ [e:equiv] ∧ [d, e:local].

Note that the interpretation condition might in general be a first-order formula out-
side the logic in interest, as in this case, since for instance [d:equiv] uses the variables
x,y and z and the logic L22Elocal is a two-variable logic. Recall that when talking
about semantics, we include the intended interpretation condition in the definition of
Σ-structures.

4.1 Global agreement to refinement
In this section we demonstrate how (finite) satisfiability in logics featuring built-in equiv-
alence symbols in global agreement reduces to (finite) satisfiability in logics featuring
built-in equivalence symbols in refinement. Our strategy is to encode the permutation
of the built-in equivalence symbols in global agreement that turns them in refinement
into a permutation setup.
Let Σ be a predicate signature for the logics LeEglobal or LeErefine. The e built-in

equivalence symbols of Σ are e1, e2, . . . , ee.
Let ϕ be a Σ-sentence. The class of LeErefine-structures satisfying ϕ coincides with

the class of LeEglobal-structures satisfying

ϕ ∧ [e1, e2, . . . , ee:refine].

Hence:
(FIN-)SAT-LeErefine ≤PTime

m (FIN-)SAT-LeEglobal.

Since the formula [e1, e2, . . . , ee:refine] is constructible in deterministic polynomial time
from sequence of equivalence symbols:

(FIN-)SAT-LErefine ≤PTime
m (FIN-)SAT-LEglobal.

Consider the opposite direction. Let P = 〈u11,u12, . . . ,uet〉 be an e-permutation
setup (where t = ‖e‖).

Definition 29. Define the L2[P]-sentence [P:alleq] by:

[P:alleq] = ∀x∀y
∧

1≤i≤e
[P(i):eq](x,y).

Note that [P:alleq] is constructible in deterministic polynomial time from P.

Remark 18. If A is a P-structure, then A � [P:alleq] iff [P:data]Aa = [P:data]Ab for
all a, b ∈ A. If A is a nonempty set and v ∈ Bet is any e-dimensional t-vector, there is a
P-structure A over A such that A � [P:alleq] and [P:data]Aa = v for all a ∈ A.

20

4.1 Global agreement to refinement

Definition 30. Define the L2[P]-sentence [P:globperm] by:

[P:globperm] = [P:perm] ∧ [P:alleq].

Note that [P:globperm] is constructible in deterministic polynomial time from P.

Remark 19. If A is a P-structure then A � [P:globperm] iff there is a permutation
ν ∈ Se such that [P:data]Aa = ν for all a ∈ A. If A is a nonempty set and ν ∈ Se
is any permutation, there is a P-structure A over A such that A � [P:globperm] and
[P:data]Aa = ν for all a ∈ A.

Let L = 〈l1, l2, . . . , le〉+ P be a predicate signature consisting of the binary predicate
symbols lk in addition to the symbols from P. We intend to interpret the appropriate
levels using these new symbols.

Definition 31. For i ∈ [1, e], define the quantifier-free L2[L]-formula [L:eg-i](x,y) by:

[L:eg-i](x,y) =
∧

1≤k≤e
([P(k):eq-i](x)→ lk(x,y)) .

Note that [L:eg-i](x,y) is constructible in deterministic polynomial time given L and i.

Remark 20. Let A be an L-structure and suppose that A � [P:globperm] and that the
binary symbols lk are interpreted as equivalence relations on A in refinement. Recall
that there is a permutation ν ∈ Se such that [P:data]Aa = ν for all a ∈ A. Then for all
i ∈ [1, e]:

[L:eg-i]A = lAν−1(i).

In particular,
〈
[L:eg-1]A, [L:eg-2]A, . . . , [L:eg-e]A

〉
is a sequence of equivalence relations

on A in global agreement.

Proof. Let k = ν−1(i), so ν(k) = i and [P(k):data]Aa = i. Since ν is a permutation, for
every k′ ∈ [1, e]:

A � [P(k′):eq-i](a) iff [P(k′):data]Aa = i iff k′ = k. (4.1)

Let a, b ∈ A. First suppose that A � [L:eg-i](a, b). By eq. (4.1) we must have that
A � [P(k):eq-i](a), hence A � lk(a, b).
Now suppose that A � ¬[L:eg-i](a, b). There is some k′ ∈ [1, e] such that:

A � ¬
(
[P(k′):eq-i](a)→ lk′(a, b)

)
≡ [P(k′):eq-i](a) ∧ ¬lk′(a, b).

By eq. (4.1) we have k′ = k, hence A � ¬lk(a, b).

Let E = 〈e1, e2, . . . , ee〉 be a predicate signature consisting of the binary predicate
symbols ei. Let Σ be a predicate signature enriching E and not containing any symbols
from L. Let Σ′ = Σ ∪ L and L′ = Σ′ − E.

21

4 Reductions

Definition 32. Define the syntactic operation gtr : L[Σ]→ L[L′] by:

gtrϕ = ϕ′ ∧ [P:globperm],

where ϕ′ is obtained from ϕ by replacing all occurrences of a subformula of the form
ei(x, y) by the formula [L:eg-i](x, y), where x and y are (not necessarily distinct) vari-
ables and i ∈ [1, e]. Note that the operation can be performed in deterministic polynomial
time.

Remark 21. Let ϕ be a Σ-formula and let A be a Σ-structure. Suppose that A � ϕ
and that the symbols e1, e2, . . . , ee are interpreted in A as equivalence relations on A in
global agreement. Then there is a Σ′-enrichment A′ of A such that A′ � gtrϕ and that
the symbols l1, l2, . . . , le are interpreted in A′ as equivalence relations on A in refinement.

Proof. There is a permutation ν ∈ Se such that eA
ν(1) ⊆ eA

ν(2) ⊆ · · · ⊆ eA
ν(e). Consider an

enrichment A′ of A to a Σ′-structure where lA
′

k = eA
ν(k), so the interpretations of lk in

A′ are equivalence relations on A in refinement. We can interpret the unary predicate
symbols from permutation setup P in A′ so that A′ � [P:globperm] and [P:data]Aa = ν
for all a ∈ A. By Remark 20, for every i ∈ [1, e]:

[L:eg-i]A
′

= lA
′

ν−1(i) = eA′

ν(ν−1(i)) = eA′
i = eA

i .

Hence A′ � ∀x∀y (ei(x,y)↔ [L:eg-i](x,y)). Since A′ � ϕ we have A′ � gtrϕ.

Remark 22. Let ϕ be a Σ-formula and let A be an L′-structure. Suppose that A � gtrϕ
and that the symbols l1, l2, . . . , le are interpreted in A as equivalence relations on A in
refinement. Then there is a Σ′-enrichment A′ of A such that A′ � ϕ and that the symbols
e1, e2, . . . , ee are interpreted as equivalence relations on A in global agreement in A′.

Proof. Consider an enrichment A′ of A to a Σ′-structure where eA′
i = [L:eg-i]A. By

Remark 20, 〈eA′
1 , e

A′
2 , . . . , e

A′
e 〉 is a sequence of equivalence relations on A in global agree-

ment. For every i ∈ [1, e] we have A′ � ∀x∀y(ei(x,y) ↔ [L:eg-i](x,y)) by definition.
Since A′ � gtrϕ we have A′ � ϕ.

The last two remarks show that a LeEglobal-formula ϕ has essentially the same models
as the LeErefine-formula gtrϕ, so we have shown:

Proposition 1. The logic LeEglobal has the finite model property iff the logic LeErefine
has the finite model property. The corresponding satisfiability problems are polynomial-
time equivalent: (FIN-)SAT-LeEglobal =PTime

m (FIN-)SAT-LeErefine.

Since the translation gtr is in deterministic polynomial time, we have shown:

Proposition 2. The logic LEglobal has the finite model property iff the logic LErefine has
the finite model property. The corresponding satisfiability problems are polynomial-time
equivalent: (FIN-)SAT-LEglobal =PTime

m (FIN-)SAT-LErefine.

The reduction is two-variable first-order and uses additional (et) unary predicate sym-
bols for the permutation setup P, so it is also valid for the two-variable fragments L2

0eEa,
L2

1eEa and L2
1Ea for a ∈ {global, refine} (but not for the fragment L2

0Ea).

22

4.2 Local agreement to refinement

4.2 Local agreement to refinement
In this section we demonstrate how (finite) satisfiability in logics featuring built-in equiv-
alence symbols in local agreement reduces to (finite) satisfiability in logics featuring
built-in equivalence symbols in refinement. Our strategy is to start with the level equiv-
alences which form a refinement, and to encode a permutation specifying the local chain
structure for every element in the structure.
Let Σ be a predicate signature for the logics LeElocal and LeErefine. The e built-in

equivalence symbols of Σ are e1, e2, . . . , ee.
Let ϕ be a Σ-sentence. The class of LeErefine-structures satisfying ϕ coincides with

the class of LeElocal-structures satisfying

ϕ ∧ [e1, e2, . . . , ee:refine].

Hence:
(FIN-)SAT-LeErefine ≤PTime

m (FIN-)SAT-LeElocal.

Since [e1, e2, . . . , ee:refine] is constructible in deterministic polynomial time from the
sequence of equivalence symbols, we have:

(FIN-)SAT-LErefine ≤PTime
m (FIN-)SAT-LElocal.

Consider the opposite direction. Let E = 〈e1, e2, . . . , ee〉 be a predicate signature con-
sisting of the binary predicate symbols ei (later, we will need these to be not necessarily
interpreted as equivalences, but for now we will interpret them as such). Let A be an
E-structure and suppose that the symbols ei are interpreted in A as equivalence relations
on A in local agreement. Let Ei = eA

i for i ∈ [1, e]. Recall that for every a ∈ A there is
a permutation ν ∈ Se satisfying eq. (3.1):

Eν(1)[a] ⊆ Eν(2)[a] ⊆ · · · ⊆ Eν(e)[a]. (4.2)

Definition 33. The characteristic E-permutation of a in A is the antilexicographically
smallest permutation ν ∈ Se satisfying eq. (4.2). Define the function [E:chperm]A : A→
Se so that [E:chperm]Aa is the characteristic E-permutation of a in A.

Remark 23. Let a ∈ A, ν = [E:chperm]Aa and i < j ∈ [1, e]. Suppose that Eν(i)[a] =
Eν(j)[a]. Then ν(i) < ν(j).

Proof. Suppose not. For some i < j ∈ [1, e] we have ν(i) ≥ ν(j). Since ν is a permutation
and i 6= j, we have ν(i) > ν(j). Since Eν(i)[a] = Eν(j)[a], by eq. (4.2) we have Eν(k) =
Eν(i) for all k ∈ [i, j]. Consider the permutation µ ∈ Se defined by:

µ(k) =


ν(j) if k = i

ν(i) if k = j

ν(k) otherwise.

Clearly, µ is a permutation satisfying eq. (4.2) that is antilexicographically smaller than
ν — a contradiction.

23

4 Reductions

Remark 24. Let a, b ∈ A and let α = [E:chperm]Aa and β = [E:chperm]Ab. Let
i ∈ [1, e] and suppose that (a, b) ∈ Ei. Then α−1(i) = β−1(i).

Proof. Suppose not, so α−1(i) 6= β−1(i). Let p = α−1(i) and q = β−1(i). Without loss
of generality, suppose that p < q. Thus p is the position of i in the permutation α
and q > p is the position of i in the permutation β. By the pigeonhole principle, there
is k ∈ [1, e] that occurs after i in α and before j in β: p < α−1(k) and β−1(k) < q.
Since β is the characteristic E-permutation of b in A, by eq. (4.2) we have Ek[b] ⊆ Ei[b].
Since (a, b) ∈ Ei, we have Ek[b] ⊆ Ei[a]. Since Ek[b] ⊆ Ei[a] are equivalence classes,
Ek[a] ⊆ Ei[a]. Since k occurs after i in α, which is the characteristic E-permutation of
a in A, by eq. (4.2) we have Ek[a] = Ei[a]. By Remark 23, i < k. By the contrapositive
of Remark 23, Ek[b] = Ei[b] is impossible. Since k occurs before i in β, by eq. (4.2) we
have Ek[b] ⊂ Ei[b]. Hence

Ek[b] ⊂ Ei[b] = Ei[a] = Ek[a]

— a contradiction — since the equivalence classes Ek[b] and Ek[a] are either equal or
disjoint.

Let L = 〈L1, L2, . . . , Le〉 be the levels of E = 〈E1, E2, . . . , Ee〉. Recall that by
Lemma 2, the levels are equivalence relations on A in refinement.

Remark 25. Let a ∈ A, α = [E:chperm]Aa and let k ∈ [1, e]. Then Lk[a] = Eα(k)[a].

Proof. Since α satisfies eq. (4.2), by Lemma 3:

Lk[a] = Lα−1(α(k))[a] = Eα(k)[a].

Remark 26. Let a, b ∈ A, α = [E:chperm]Aa, β = [E:chperm]Ab and k ∈ [1, e]. Suppose
that (a, b) ∈ Lk. Then α(k) = β(k). That is, the elements connected at level k agree at
position k in their characteristic permutations.

Proof. By Remark 25, Lk[a] = Eα(k)[a], thus (a, b) ∈ Eα(k). By Remark 23,

k = α−1(α(k)) = β−1(α(k)).

Hence β(k) = α(k).

Let P = 〈u11,u12, . . . ,uet〉 be an e-permutation setup. Let L = 〈l1, l2, . . . , le〉 + P
be a predicate signature containing the binary predicate symbols lk (not necessarily
interpreted as equivalence relations) together with the symbols from P.

Definition 34. Define the L2[L]-sentence [L:fixperm] by:

[L:fixperm] = ∀x∀y
∧

1≤k≤e
(lk(x,y)→ [P(k):eq](x,y)) .

Note that [L:fixperm] is constructible in deterministic polynomial time from L.

24

4.2 Local agreement to refinement

Definition 35. Define the L2[L]-sentence [L:locperm] by:

[L:locperm] = [P:perm] ∧ [L:fixperm].

Note that [L:locperm] is constructible in deterministic polynomial time from L.

Remark 27. Let A be an L-structure and suppose that A � [L:locperm]. Let a, b ∈ A,
k ∈ [1, e] and suppose that A � lk(a, b). Let α = [P:data]Aa and β = [P:data]Ab be the
e-permutations at a and b, encoded by the permutation setup P. Then α(k) = β(k).

Proof. Since A � [L:fixperm] and A � lk(a, b), we have A � [P(k):eq](a, b), which means
α(k) = β(k).

Definition 36. For i ∈ [1, e], define the quantifier-free L2[L]-formula [L:el-i] by:

[L:el-i](x,y) =
∧

1≤k≤e
([P(k):eq-i](x)→ lk(x,y)) .

Note that [L:el-i](x,y) is constructible in deterministic polynomial time from L and i.

Remark 28. Let A be an L-structure and suppose that A � [L:locperm] and that the
binary symbols lk are interpreted in A as equivalence relations on A in refinement. Define
ν : A → Se by ν(a) = [P:data]Aa for a ∈ A. Let a ∈ A be arbitrary. Then for all
i ∈ [1, e]:

[L:el-i]A[a] = lAν(a)−1(i)[a].

Proof. Let Ei = [L:el-i]A and Li = lAi for every i ∈ [1, e]. Let i ∈ [1, e] be arbitrary.
Let α = ν(a) and k = α−1(i), so α = [P:data]Aa and α(k) = i. We have to show that
Ei[a] = Lk[a]. Since α is a permutation, for every k′ ∈ [1, e] we have:

A � [P(k′):eq-i](a) iff α(k′) = i iff k′ = k. (4.3)

First, suppose b ∈ Ei[a]. Then A � [L:el-i](a, b) and by eq. (4.3) we have A � lk(a, b),
hence b ∈ Lk[a].

Next, suppose b 6∈ Ei[a]. Then A � ¬[L:el-i](a, b), so there is some k′ ∈ [1, e] such
that A � ¬([P(k′):eq-i](a)→ lk′(a, b)) ≡ [P(k′):eq-i](a)∧¬lk′(a, b). By eq. (4.3) we have
k′ = k. Hence A � ¬lk(a, b), so b 6∈ Lk[a].

Remark 29. Let A and ν are declared as in Remark 28. Then the sequence of inter-
pretations 〈[L:el-1]A, [L:el-2]A, . . . , [L:el-e]A〉 is a sequence of equivalence relations on A
in local agreement.

Proof. Let Ei = [L:el-i]A and Li = lAi for every i ∈ [1, e]. Let i ∈ [1, e] be arbitrary. We
check that Ei is reflexive, symmetric and transitive.

• For reflexivity, let a ∈ A. By Remark 28, Ei[a] = Lk[a] for k = ν(a)−1(i). But
Lk[a] is an equivalence class, hence a ∈ Lk[a], so (a, a) ∈ Ei.

25

4 Reductions

• For symmetry, let a, b ∈ A and (a, b) ∈ Ei. Let k = ν(a)−1(i) so that i = ν(k).
By Remark 28, Ei[a] = Lk[a]. Thus A � lk(a, b) and by Remark 27, i = ν(a)(k) =
ν(b)(k). By Remark 28:

Ei[b] = [L:el-i]A[b] = lAν(b)−1(i)[b] = Lk[b] = Lk[a].

Since a ∈ Lk[a] = Ei[b], we have (b, a) ∈ Ei.

• For transitivity, continue the argument for symmetry. Let c ∈ Ei[b]. Then c ∈
Ei[b] = Lk[a] = Ei[a], thus (a, c) ∈ Ei.

By Remark 28, since the relations Lk are in refinement, we have that E1, E2, . . . , Ee are
in local agreement.

Let E = 〈e1, e2, . . . , ee〉 be a predicate signature consisting of binary predicate sym-
bols. Let Σ be a predicate signature enriching E and not containing any symbols from
L. Let Σ′ = Σ + L and L′ = Σ′ − E.

Definition 37. Define the syntactic operation ltr : L[Σ]→ L[L′] by:

ltrϕ = ϕ′ ∧ [L:locperm],

where ϕ′ is obtained from ϕ by replacing all occurrences of a subformula of the form
ei(x, y) by the formula [L:el-i](x, y), where x and y are (not necessarily distinct) variable
symbols and i ∈ [1, e]. Note that this translation can be performed in deterministic
polynomial time.

Remark 30. Let ϕ be a Σ-formula and let A be a Σ-structure. Suppose that A � ϕ
and that the symbols e1, e2, . . . , ee are interpreted in A as equivalence relations on A in
local agreement. Then there is a Σ′-enrichment A′ of A such that A′ � ltrϕ and that the
symbols l1, l2, . . . , le are interpreted in A′ as equivalence relations on A in refinement.

Proof. Since the binary symbols e1, e2, . . . , ee are interpreted as equivalence relations
on A in local agreement in A, we may define the levels L1, L2, . . . , Le ⊆ A×A and
the characteristic E-permutation mapping ν = [E:chperm]A : A → Se. Consider an
enrichment A′ of A where lA

′
i = Li. By Lemma 2, Li are equivalences on A in refinement.

We interpret the unary symbols from the permutation setup P so that [P:data]A
′
a = ν(a)

for all a ∈ A. By Remark 26, A′ � [L:fixperm]. By Remark 28, followed by Lemma 3,
for every i ∈ [1, e] and a ∈ A we have:

[L:el-i]A
′
[a] = lA

′

ν(a)−1(i)[a] = eA′

ν(a)(ν(a)−1(i))[a] = eA′
i [a].

By Remark 29, the interpretations [L:el-i]A
′
are equivalence relations. Since the inter-

pretation of the formula [L:el-i] has the same classes as the interpretation of the symbol
ei, we have A′ � ∀x∀y (ei(x,y)↔ [L:el-i](x,y)). Since A′ � ϕ we have A′ � ltrϕ.

26

4.3 Granularity

Remark 31. Let ϕ be a Σ-formula and let A be an L′-structure. Suppose that A �
ltrϕ and that the symbols l1, l2, . . . , le are interpreted as equivalence relations on A in
refinement in A. Then there is a Σ′-enrichment A′ of A such that A′ � ϕ and that
the binary symbols e1, e2, . . . , ee are interpreted as equivalence relations on A in global
agreement in A′.

Proof. Consider an enrichment A′ of A to a Σ′-structure where eA′
i = [L:el-i]A. By

Remark 29, eA′
i are equivalence relations on A in local agreement. For every i ∈ [1, e]

we have A′ � ∀x∀y (ei(x,y)↔ [L:el-i](x,y)) by definition. Since A′ � ltrϕ we have
A′ � ϕ.

The last two remarks show that a LeElocal-formula ϕ has essentially the same models
as the LeErefine-formula ltrϕ, so we have shown:

Proposition 3. The logic LeElocal has the finite model property iff the logic LeErefine has
the finite model property. The corresponding satisfiability problems are polynomial-time
equivalent: (FIN-)SAT-LeElocal =PTime

m (FIN-)SAT-LeErefine.

Since the translation ltr can be performed in deterministic polynomial time, we have:

Proposition 4. The logic LElocal has the finite model property iff the logic LErefine has
the finite model property. The corresponding satisfiability problems are polynomial-time
equivalent: (FIN-)SAT-LElocal =PTime

m (FIN-)SAT-LErefine.

The reduction is two-variable first-order and uses additional (et) unary predicate sym-
bols for the permutation setup P, so it is also valid for the two-variable fragments L2

0eEa,
L2

1eEa and L2
1Ea for a ∈ {local, refine}.

4.3 Granularity

In this section we demonstrate how to replace the finest equivalence from a sequence
of equivalences in refinement with a counter setup. This works if the structures are
granular, that is if the finest equivalence doesn’t have many classes within a single
bigger equivalence class.

Definition 38. Let 〈D,E〉 be a sequence of two equivalence relations on A in refinement.
Let g ∈ N+. The sequence is g-granular if every E-equivalence class includes at most g
D-equivalence classes.

Definition 39. Let g ∈ N+ and let 〈D,E〉 be g-granular. The function c : A→ [1, g] is
a g-granular coloring for the sequence, if two E-equivalent elements have the same color
iff they are D-equivalent. That is, for every (a, b) ∈ E we have c(a) = c(b) iff (a, b) ∈ D.

Remark 32. Let g ∈ N+ and let 〈D,E〉 be g-granular. Then there is a g-granular
coloring for the sequence.

27

4 Reductions

Proof. Let X be an E-class. Since D ⊆ E is g-granular, the set S = {D[a] | a ∈ X} has
cardinality at most g. Let ı : S ↪→ [1, g] be any injective function. Define the color c on
X as c(a) = ı(D[a]).

Remark 33. Let E ⊆ A×A be an equivalence relation on A, g ∈ N+ and c : A→ [1, g].
Then there is an equivalence relation D ⊆ E on A such that 〈D,E〉 is g-granular, having
c as a g-granular coloring.

Proof. Take D = {(a, b) ∈ E | c(a) = c(b)}.

Definition 40. Let g ∈ N+ and let t = ‖g‖ be the bitsize of g. A g-color setup
G = 〈u1,u2, . . . ,ut〉 is just a t-bit counter setup.

Let g ∈ N+ and let G = 〈u1,u2, . . . ,ut〉 be a g-color setup. Let Σ be a predicate
signature containing the binary symbols d and e and not containing any symbols from
G. Let Σ′ = Σ + G and Γ = Σ′ − {d}.

Definition 41. Define the quantifier-free L2[Γ]-formula [Γ:d](x,y) by:

[Γ:d](x,y) = e(x,y) ∧ [G:eq](x,y).

Note that [Γ:d](x,y) is constructible in deterministic polynomial time from Σ and G.

Definition 42. Define the syntactic operation grtr : L[Σ]→ L[Γ] by:

grtrϕ = ϕ′ ∧ [G:betw-1-g],

where ϕ′ is obtained from the formula ϕ by replacing all subformulas of the form d(x, y)
by [Γ:d](x, y), where x and y are (not necessarily distinct) variable symbols. Note that
this translation can be performed in deterministic polynomial time.

Lemma 4. Let A be a Σ-structure and suppose that the sequence of symbols 〈d, e〉 is
interpreted in A as a g-granular sequence 〈D,E〉. Suppose that A � ϕ. Then there is a
Σ′-enrichment A′ of A such that A′ � grtrϕ.

Proof. By Remark 32, there exists a g-granular coloring c : A → [1, g]. We interpret
the unary symbols in G so that [G:data]A = c. Since A′ is an enrichment of A, we have
A′ � ϕ. Let a, b ∈ A. Then A′ � [Γ:d](a, b) is equivalent to:

A′ � e(a, b) and A′ � [G:eq](a, b),

which is equivalent to:

(a, b) ∈ E and [G:data]A
′
a = [G:data]A

′
b,

which, since [G:data]A
′

= c is a g-granular coloring, is equivalent to:

(a, b) ∈ D.

Hence A′ � ∀x∀y(d(x,y)↔ [Γ:d](x,y)) and since A′ � ϕ, we have A′ � grtrϕ.

28

4.3 Granularity

Lemma 5. Let A be a Γ-structure and suppose that the binary symbol e is interpreted in
A as an equivalence relation on A. Suppose that A � grtrϕ. Then there is a Σ′-structure
A′ enriching A such that A′ � ϕ and the sequence of binary symbols 〈d, e〉 is interpreted
in A′ as a g-granular sequence 〈D,E〉.

Proof. Since A � [G:betw-1-g], we have [G:data]Aa ∈ [1, g] for all a ∈ A. Define
c : A→ [1, g] by c(a) = [C:data]Aa. By Remark 32, we can find D ⊆ E such that the se-
quence 〈D,E〉 is g-granular, having c as a g-granular coloring. Consider the Σ′-structure
A′, where dA′ = D. Since A′ is an enrichment of A � grtrϕ, we have A′ � grtrϕ. Let
a, b ∈ A. Then A′ � [Γ:d](a, b) is equivalent to:

A′ � e(a, b) and A′ � [G:eq](a, b),

which is equivalent to:
(a, b) ∈ E and c(a) = c(b),

which, since c is a g-granular coloring, is equivalent to:

(a, b) ∈ D.

Hence A′ � ∀x∀y (e(x,y)↔ [Γ:d](x,y)) and since A′ � grtrϕ, we have A′ � ϕ.

29

5 Monadic logics

In this chapter we investigate questions about (finite) satisfiability of first-order sentences
featuring unary predicate symbols and built-in equivalence symbols in refinement. It is
known that:

• The monadic first-order logic L1 has the finite model property and its (finite)
satisfiability problem is NExpTime-complete [7]

• The first-order logic of a single equivalence relation L01E has the finite model
property and its (finite) satisfiability problem is PSpace-complete [5]

• The first-order logic of two equivalence relations L02E lacks the finite model prop-
erty and both the satisfiability and finite satisfiability problems are undecidable [8].

Our strategy is to extract small substructures of structures and analyse them using
Ehrenfeucht-Fraïssé games. We prove that the logic L1eErefine has the finite model
property and its (finite) satisfiability problem is N(e+ 1)ExpTime-complete.
Let U(u) = 〈u1,u2, . . . ,uu〉 be an unary predicate signature consisting of the unary

predicate symbols ui. Let E(e) = 〈e1, e2, . . . , ee〉 be a binary predicate signature con-
sisting of the built-in equivalence symbols ej in refinement. Let Σ(u, e) = U(u) + E(e),
so Σ(u, e) is a generic predicate signature for the monadic first-order logic L1eErefine.

5.1 Cells
Let u, e ∈ N, e ≥ 1 and Σ = Σ(u, e) = 〈u1,u2, . . . ,uu, e1, e2, . . . , ee〉 be a predicate
signature. Abbreviate the finest equivalence symbol d = e1.

Definition 43. Define the quantifier-free L2[Σ]-formula [Σ:cell](x,y) by:

[Σ:cell](x,y) = d(x,y) ∧
∧

1≤i≤u
(ui(x)↔ ui(y)).

Note that [Σ:cell](x,y) can be constructed in deterministic polynomial time from Σ.
If A is a Σ-structure and D = dA, then the interpretation C = [Σ:cell]A ⊆ A×A is

an equivalence relation on A that refines D. The cells of A are the equivalence classes
of C. That is, a cell is a maximal set of D-equivalent elements satisfying the same
u-predicates.

Remark 34. Let A be a Σ-structure, r ∈ N, ā = a1a2 . . . ar ∈ Ar, b̄ = b1b2 . . . br ∈ Ar
and ai and bi are in the same A-cell for all i ∈ [1, r]. Suppose that ai = aj iff bi = bj for
all i, j ∈ [1, r]. Then ā 7→ b̄ is a partial isomorphism.

31

5 Monadic logics

Proof. Direct consequence of the fact that the cell equivalence relation refines the finest
equivalence relation D and that the elements in the same cell satisfy the same u-
predicates. The equality condition ensures that the mapping is a bijection.

Lemma 6. Let A be a Σ-structure and r ∈ N+. There is B ⊆ A such that B ≡r A and
every B-cell has cardinality at most r.

Proof. Let C ⊆ A×A be the A-cell equivalence relation. Execute the following process:
for every A-cell, if it has cardinality less than r, select all elements from that cell;
otherwise select r distinct elements from that cell. Let B ⊆ A be the set of selected
elements and let B = A � B. By construction, every B-cell has cardinality at most r.
We claim that A ≡r B. Let h = C ∩ (A × B) relates elements from A with elements
from B in the same cell. Note that for all a ∈ A:

|h[a]| = min(|C[a]| , r). (5.1)

For i ∈ [0, r] let Ii be the set of partial isomorphisms from A to B that have length i
and that are included in h. The set I0 is nonempty since it contains the empty partial
isomorphism. We claim that the sequence I0, I1, . . . ,Ir satisfies the back-and-forth
conditions of Theorem 1. Let i ∈ [0, r − 1] and let

p = ā 7→ b̄ = a1a2 . . . ai 7→ b1b2 . . . bi ∈ Ii

be any partial isomorphism.

1. For the forth condition, let a ∈ A. We have to find some b ∈ B such that āa 7→
b̄b ∈ Ii+1. If a = ak for some k ∈ [1, i], then b = bk is appropriate.
Suppose that a 6= ak for all k ∈ [1, i]. Let S ⊆ C[a] be the set of ā-elements in the
same A-cell as a:

S = {ak ∈ C[a] | k ∈ [1, i]} .

Note that |S| ≤ r − 1 and |C[a]| ≥ |S| + 1. By eq. (5.1), |h[a]| ≥ |S| + 1. Hence
there is an element b ∈ h[a] that is distinct from bk for all k ∈ [1, i] and this b is
appropriate.

2. For the back condition, let b ∈ B. We have to find some a ∈ A such that āa 7→
b̄b ∈ Ii+1. If b = bk for some k ∈ [1, i], then a = ak is appropriate.
Suppose that b 6= bk for all k ∈ [1, i]. Since b ∈ h[b], a = b is appropriate.

By Theorem 1, A ≡r B.

5.2 Organs
Let u, e ∈ N, e ≥ 2 and Σ = Σ(u, e) = 〈u1,u2, . . . ,uu, e1, e2, . . . , ee〉 be a predicate
signature. Abbreviate the finest two equivalence symbols d = e1 and e = e2.

32

5.2 Organs

Definition 44. Let A be a Σ-structure and let D = dA and E = eA. Recall that the
set of D-classes is ED. Two D-classes X,Y ∈ ED are organ-equivalent if they are
included in the same E-class (equivalently X × Y ⊆ E), and the induced substructures
(A � X) and (A � Y) are isomorphic. The organ-equivalence relation is O ⊆ ED × ED.
Since D refines E, organ-equivalence is an equivalence relation on ED. An organ is an
organ-equivalence-class. That is, an organ is a maximal set of isomorphic D-classes,
included in the same E-class.
For any two organ-equivalent D-classes (X,Y) ∈ O, fix an isomorphism

hXY : (A � X)↔ (A � Y)

consistently, so that hXX = idX , hY X = h−1
XY and if (Y,Z) ∈ O then hXZ = hY Z ◦ hXY .

Two elements a, b ∈ A are sub-organ-equivalent if (D[a], D[b]) ∈ O and hD[a]D[b](a) = b.
Since the isomorphisms hXY are chosen consistently, sub-organ-equivalence O ⊆ A×A
is an equivalence relation on A that refines E.

Remark 35. Let A be a Σ-structure, r ∈ N, ā = a1a2 . . . ar ∈ Ar, b̄ = b1b2 . . . br ∈ Ar,
ai and bi are sub-organ-equivalent for all i ∈ [1, r]. Suppose that A � d(ai, aj) iff
A � d(bi, bj) for all i, j ∈ [1, r]. Then ā 7→ b̄ is a partial isomorphism.

Proof. The condition about the finest equivalence symbol d ensures that the interpre-
tation of d is preserved. Since sub-organ-equivalence relates isomorphic elements, the
interpretation of the unary symbols and the formal equality is preserved. Since the
sub-organ-equivalence O ⊆ A×A refines the second finest equivalence relation E, the
interpretation of all remaining equivalence symbols ej is preserved.

Lemma 7. Let A be a Σ-structure and r ∈ N+. There is B ⊆ A such that B ≡r A and
every B-organ has cardinality at most r.

Proof. Let D = dA, E = eA and let A = ED be the set of D-classes. Let O ⊆ A×A
be the A-organ-equivalence relation on A. Execute the following process: for every A-
organ, if it has cardinality at most r, select all D-classes from that organ; otherwise
select r distinct D-classes from that organ (note that these will be isomorphic). Let
B ⊆ A be the set of selected D-classes. Let B = ∪B ⊆ A be the set of elements in the
selected classes and let B = (A � B). By construction, every B-organ has cardinality
at most r. We claim that A ≡r B. Let H = O ∩ (A× B) relates the D-classes with the
isomorphic D-classes from B in the same organ. Let h relates the elements of A with
their isomorphic elements from B. Note that for all elements a ∈ A:

|h[a]| = min(|O[D[a]]| , r). (5.2)

For i ∈ [0, r] let Ii be the set of partial isomorphisms from A to B that have length i
and that are included in h. The set I0 is nonempty since it contains the empty partial
isomorphism. We claim that the sequence I0, I1, . . . ,Ir satisfies the back-and-forth
conditions of Theorem 1. Let i ∈ [0, r − 1] and let

p = ā 7→ b̄ = a1a2 . . . ai 7→ b1b2 . . . bi ∈ Ii

be any partial isomorphism.

33

5 Monadic logics

1. For the forth condition, let a ∈ A. We have to find some b ∈ B such that āa 7→
b̄b ∈ Ii+1. If a ∈ D[ak] for some k ∈ [1, i], then b = hD[ak]D[bk](a) is appropriate.
Suppose a 6∈ D[ak] for all k ∈ [1, i]. Let S ⊆ O[D[a]] be the set of D-classes of
ā-elements in the same A-organ as D[a]:

S = {D[ak] ∈ O[D[a]] | k ∈ [1, i]} .

Note that |S| ≤ r− 1 and |O[D[a]]| ≥ |S|+ 1. By eq. (5.2), |h[a]| ≥ |S|+ 1. Hence
there is some b ∈ h[a] such that b 6∈ D[bk] for all k ∈ [1, i]. This b is appropriate.

2. For the back condition, let b ∈ B. We have to find some a ∈ A such that āa 7→
b̄b ∈ I. If b ∈ D[bk] for some k ∈ [1, i], then a = hD[bk]D[ak](b) is appropriate.
Suppose that b 6∈ D[bk] for all k ∈ [1, i]. Since b ∈ h[b], a = b is appropriate.

By Theorem 1, A ≡r B.

5.3 Satisfiability
In this section we will employ the results on cells and organs to bound the size of a small
substructure of a general structure.

Remark 36. Let u, e ∈ N, e ≥ 2 and consider the predicate signature Σ = Σ(u, e) =
〈u1,u2, . . . ,uu, e1, e2, . . . , ee〉. Abbreviate d = e1 and e = e2. Let r ∈ N+. There is
B ⊆ A such that B ≡r A and 〈dB, eB〉 is g-granular for g = g(u, r) = r.((r + 1)2u − 1).
Furthermore, this B has the property that every B-cell has cardinality at most r.

Proof. By Lemma 6, there is B′ ⊆ A such that B′ ≡r A and every B′-cell has cardinality
at most r. By Lemma 7, there is B ⊆ B′ such that B ≡r B′ and the B-organs have
cardinality at most r. Let D = dB and E = eB. Since every D-class includes at most
2u cells and is nonempty and every cell has cardinality at most r, there are at most(
(r + 1)2u − 1

)
nonisomorphic D-classes in B. Since every E-class includes at most r

isomorphic D-classes, we get that 〈D,E〉 is g-granular.

Corollary 1. Let u, e ∈ N, e ≥ 2 and consider Σ = Σ(u, e). Let ϕ be a L[Σ]-sentence
having quantifier rank r. By Lemma 4 and Lemma 5 about granularity, the formula ϕ
is essentially equisatisfiable with the formula grtrϕ, which is a Σ(u + ‖g(u, r)‖, e − 1)-
sentence. Note that ‖g(u, r)‖ is exponentially bounded in the length ‖ϕ‖ of the formula.
So we have a reduction:

(FIN-)SAT-L1eErefine ≤ExpTime
m (FIN-)SAT-L1(e− 1)Erefine.

If u is a constant independent of ϕ, then ‖g(u, r)‖ is polynomially bounded in ‖ϕ‖. So
we have a reduction:

(FIN-)SAT-L0eErefine ≤PTime
m (FIN-)SAT-L1(e− 1)Erefine.

34

5.4 Hardness with a single equivalence

Remark 37. Let u ∈ N and consider Σ = Σ(u, 1) = 〈u1,u2, . . . ,uu,d〉. Let r ∈ N+.
There is B ⊆ A such that A ≡r B and |B| ≤ g.r.2u for g = g(u, r) = r.((r + 1)2u − 1).

Proof. Let Σ′ = Σ + 〈e〉 be an enrichment of Σ with the built-in equivalence symbols
e. Consider an enrichment A′ of A to a Σ′-structure, where eA′ = A×A is interpreted
as the full relation on A. Then 〈dA′ , eA′〉 is a sequence of equivalence relations on A
in refinement. By Remark 36, there is B′ ⊆ A′ such that B′ ≡r A′ and 〈dB′ , eB′〉 is
g-granular. Consider the reduct B of B′ to a Σ-structure. Let D = dB and E = eB.
Since every B-cell has cardinality at most r and every D-class includes at most 2u cells,
we have that every D-class has cardinality at most r.2u. Since e was interpreted in A
as the full relation, it is also interpreted in B as the full relation, so there is a single
E-class—the whole domain B. Since the sequence 〈D,E〉 is g-granular, there are at
most g D-classes, so |B| ≤ g.r.2u.

Corollary 2. The logic L11E has the finite model property and its (finite) satisfiability
problem is in N2ExpTime.

Combining Corollary 2 with Corollary 1, we get by induction on e:

Proposition 5. For e ∈ N+, the logic L1eErefine has the finite model property and its
(finite) satisfiability problem is in N(e+ 1)ExpTime.
By Proposition 1 and Proposition 3, the same holds for L1eEglobal and L1eElocal.

Proposition 6. The logic L1Erefine has the finite model property and its (finite) satisfi-
ability problem is in the forth level of the Grzegorczyk hierarchy E4.
By Proposition 2 and Proposition 4, the same holds for L1Eglobal and L1Elocal.

Proposition 7. For e ≥ 2, the logic L0eErefine has the finite model property and its
(finite) satisfiability problem is in NeExpTime.
By Proposition 1 and Proposition 3, the same holds for L0eEglobal and L0eElocal.

5.4 Hardness with a single equivalence
In this section we show that the (finite) satisfiability of monadic first-order logic with a
single equivalence symbol L11E is N2ExpTime-hard by reducing the doubly exponential
tiling problem to such satisfiability. Our strategy is to employ a counter setup of u unary
predicate symbols to encode the exponentially many positions of a binary encoding of a
doubly exponentially bounded quantity, encoding the coordinates of a cell of the doubly
exponential tiling square.
Consider the counter setup C(u) = 〈u1,u2, . . . ,uu〉 for u ∈ N+. Recall that the

intention of a counter setup is to encode an arbitrary exponentially bounded value at
every element of a structure. Let D(u) = C(u) + 〈d〉 be a predicate signature enriching
C(u) with the built-in equivalence symbol d. We will define a system where every d-
equivalence class includes exponentially many cells. These cells will correspond to the
exponentially many positions of the binary encoding of a doubly exponential value for

35

5 Monadic logics

the d-class. The bit values at each cell position will be encoded by the cardinality of
that cell: bit value 0 if the cardinality of the cell is 1 and bit value 1 if the cardinality is
greater than 1. This will allow us to encode a doubly exponential value at each d-class.
Call the data [C:data]Aa, encoded by the counter setup at a the position of a.

Let A be a D = D(u)-structure.

Definition 45. Define the quantifier-free L2[D]-formula [D:pos-eq](x,y) by:

[D:pos-eq](x,y) = [C:eq](x,y).

Note that [D:pos-eq](x,y) is constructible in deterministic polynomial time from D.

Remark 38. A � [D:pos-eq](a, b) iff a and b are at the same positions (in possibly
distinct d-classes): [C:data]Aa = [C:data]Ab.

Definition 46. Define the quantifier-rank-1 L2[D]-formula [D:bit-0](x) by:

[D:bit-0](x) = ∀y (d(y,x) ∧ [D:pos-eq](y,x)→ y = x) .

Note that [D:bit-0](x) is constructible in deterministic polynomial time from D.

Remark 39. A � [D:bit-0](a) iff the cell of a has cardinality 1.

Definition 47. Define the quantifier-rank-1 L2[D]-formula [D:bit-1](x) by:

[D:bit-1](x) = ∃y (d(y,x) ∧ [D:pos-eq](y,x) ∧ y 6= x) .

Note that [D:bit-1](x) is constructible in deterministic polynomial time from D.

Remark 40. A � [D:bit-1](a) iff the cell of a has cardinality greater than 1.

Definition 48. Define the quantifier-free L2[D]-formula [D:pos-zero](x) by:

[D:pos-zero](x) =
∧

1≤i≤u
¬ui(x).

Note that [D:pos-zero](x) is constructible in deterministic polynomial time from D.

Remark 41. A � [D:pos-zero](a) iff the position of a is 0.

Definition 49. Define the quantifier-free L2[D]-formula [D:pos-largest](x) by:

[D:pos-largest](x) =
∧

1≤i≤u
ui(x).

Note that [D:pos-zero](x) is constructible in deterministic polynomial time from D.

Remark 42. A � [D:pos-largest](a) iff the position of a is the largest u-bit number Nu.

36

5.4 Hardness with a single equivalence

Definition 50. Define the quantifier-free L2[D]-formula [D:pos-less](x,y) by:

[D:pos-less](x,y) = d(x,y) ∧ [C:less](x,y).

Note that [D:pos-less](x,y) is constructible in deterministic polynomial time from D.

Remark 43. A � [D:pos-less](a, b) iff a and b are in the same d-class and the position
of a is less than the position of b.

Definition 51. Define the quantifier-free L2[D]-formula [D:pos-succ](x,y) by:

[D:pos-succ](x,y) = d(x,y) ∧ [C:succ](x,y).

Note that [D:pos-succ](x,y) is constructible in deterministic polynomial time from D.

Remark 44. A � [D:pos-succ](a, b) iff a and b are in the same d-class and the position
of b is the successor of the position of a.

Definition 52. Define the closed L2[D]-sentence [D:pos-full] by:

[D:pos-full] = ∀x∃y
(
d(y,x) ∧ [D:pos-zero](y)

)
∧

∀x
(
¬[D:pos-largest](x)→ ∃y[D:pos-succ](x,y)

)
.

Note that [D:pos-full] is constructible in deterministic polynomial time from D.

The first part of this formula asserts that every d-class has an element at position
0. The second part asserts that if a is an element at position p, that is not the largest
possible, there exists an element b in the same d-class at position p+1. Therefore in any
model of [D:pos-full], every d-class has 2u cells. For example, in particular, every d-class
has cardinality at least 2u. For the rest of the section, suppose that A � [D:pos-full].

Definition 53. For every u-bit number p ∈ Bu, define the L2[D]-formula [D:pos-p](x)
recursively by:

[D:pos-0](x) = [D:pos-zero](x)

and for p ∈ [0, Nu − 1]:

[D:pos-(p+ 1)](x) = ∃y
(
[D:pos-p](y) ∧ [D:pos-succ](y,x)

)
.

In this case, for the formula to be a two-variable formula, the formula [D:pos-p](y) is
obtained from [D:pos-p](x) by swapping all occurrences (not only the unbounded ones)
of the variables1 x and y. Note that [D:pos-p](x) is constructible in deterministic poly-
nomial time from D and p.

Remark 45. A � [D:pos-p](a) iff p is the position of a.
1this is reminiscent to the process of defining a standard translation of modal logic to the two-variable
first-order fragment

37

5 Monadic logics

Definition 54. Let A be a D-structure. Let D = dA. Define the function [D:Data]A :
ED → B2u, assigning a 2u-bit bitstring to any D-class X by:

[D:Data]ApX =
{

1 if [C:data]A(a) = (p− 1) implies A � [D:bit-1](a) for all a ∈ X
0 otherwise

for p ∈ [1, 2u].
Definition 55. Define the quantifier-rank-1 L2[D]-formula [D:Zero](x) by:

[D:Zero](x) = ∀y
(
d(y,x)→ [D:bit-0](y)

)
.

Note that [D:Zero](x) is constructible in deterministic polynomial time from D.
Remark 46. A � [D:Zero](a) iff the data at the class of a encodes 0: [D:Data]AD[a] = 0.

Definition 56. Define the quantifier-rank-1 L2[D]-formula [D:Largest](x) by:

[D:Largest](x) = ∀y
(
d(y,x)→ [D:bit-1](y)

)
.

Note that [D:Largest](x) is constructible in deterministic polynomial time from D.
Remark 47. A � [D:Largest](a) iff the data at the D-class of a encodes the largest 2u-bit
number: [D:Data]AD[a] = N2u.

Definition 57. LetM ∈ B2u be a t-bit number (where t ≤ 2u). Define the L2[D]-formula
[D:Eq-M](x) by:

[D:Eq-M](x) = ∀y
(

d(y,x)→
∧

0≤p<t

(
[D:pos-p](y)→ [D:bit-(Mp+1)](y)

)
∧

∀x
(
[D:pos-(t− 1)](y) ∧ [D:pos-less](y,x)→ [D:bit-0](x)

))
.

Note that [D:Eq-M](x) is constructible in deterministic polynomial time from D and M .
The first part of this formula asserts that the bits at the first t positions of the d-class

of x encode the numberM . The second part asserts that all the remaining bits at larger
positions are zeroes. Note that the length of this formula is polynomially bounded in t,
the bitsize of M . We have A � [D:Eq-M](a) iff the data at the D-class of a encodes M :
[D:Data]AD[a] = M .

Definition 58. Define the L6[D]-formula [D:Less](x,y) by:

[D:Less](x,y) = ∃x′∃y′
(

d(x′,x) ∧ d(y′,y)∧

(
[D:pos-eq](x′,y′) ∧ [D:bit-0](x′) ∧ [D:bit-1](y′)

)
∧ (Less1)

∀x′′
(
[D:pos-less](x′,x′′)→ ∃y′′

(
d(y′′,y′)∧

[D:pos-eq](y′′,x′′) ∧ ([D:bit-0](y′′)↔ [D:bit-0](x′′))
)))

. (Less2)

38

5.4 Hardness with a single equivalence

Note that [D:Less](x,y) is constructible in deterministic polynomial time from D.

Then A � [D:Less](a, b) iff [D:Data]AD[a] < [D:Data]AD[b]. By rearrangement and
reusing variables, this can be also written using just three variables (but not using just
two variables). Indeed, [D:Less](x,y) is logically equivalent to:

∃z
(

d(z,x) ∧ ∃x
(

x = z ∧ ∃z
(

d(z,y) ∧ ∃y
(

y = z∧

(
[D:pos-eq](x,y) ∧ [D:bit-0](x) ∧ [D:bit-1](y)

)
∧ (Less1)

∀z
(
[D:pos-less](x, z)→ ∃x

(
x = z ∧ ∃z

(
d(z,y) ∧ ∃y

(
y = z∧

[D:pos-eq](y,x) ∧ ([D:bit-0](y)↔ [D:bit-0](x))
))))))))

. (Less2)

Definition 59. Define the L6[D]-formula [D:Succ](x,y) by:

[D:Succ](x,y) = ∃x′∃y′
(

d(x′,x) ∧ d(y′,y)∧

(
[D:pos-eq](x′,y′) ∧ [D:bit-0](x′) ∧ [D:bit-1](y′)

)
∧ (Succ1)

∀x′′
(
[D:pos-less](x′′,x′)→ [D:bit-1](x′′)

)
∧ (Succ2)

∀y′′
(
[D:pos-less](y′′,y′)→ [D:bit-0](y′′)

)
∧ (Succ3)

∀x′′
(
[D:pos-less](x′,x′′)→ ∃y′′

(
d(y′′,y′)∧

[D:pos-eq](y′′,x′′) ∧ ([D:bit-0](y′′)↔ [D:bit-0](x′′))
)))

. (Succ4)

Note that [D:Succ](x,y) is constructible in deterministic polynomial time from D. By
rearrangement and reusing variables, this can be also written using just three variables
(but not using just two variables).

Remark 48. A � [D:Succ](a, b) iff [D:Data]AD[b] = 1 + [D:Data]AD[a].

Definition 60. Define the L3[D]-sentence [D:Full] by:

[D:Full] = ∃x[D:Zero](x) ∧ ∀x
(
¬[D:Largest](x)→ ∃y[D:Succ](x,y)

)
.

Note that this sentence is constructible in deterministic polynomial time from D.

Remark 49. If A satisfies [D:Full] then A contains a d-class of encoding any possible
data: for every M ∈ [0, N2u], there is a d-class X such that [D:Data]AX = M .

39

5 Monadic logics

Definition 61. Define the L4[D]-formula [D:Eq](x,y) by:

[D:Eq](x,y) = ∀x′∀y′
(
d(x′,x) ∧ d(y′,y)∧

[D:pos-eq](x′,y′)→ ([D:bit-0](x′)↔ [D:bit-0](y′))
)
.

Note that [D:Eq](x,y) is constructible in deterministic polynomial time from D. By
rearrangement and reusing variables, this can be also written using just three variables
(but not using just two variables).

Remark 50. A � [D:Eq](x,y) iff [D:Data]AD[a] = [D:Data]AD[b].

Definition 62. Define the L4[D]-sentence [D:Alldiff] by:

[D:Alldiff] = ∀x∀y
(
¬d(x,y)→ ∃x′∃y′

(
d(x′,x) ∧ d(y′,y)∧

[D:pos-eq](x′,y′) ∧ ¬([D:bit-0](x′)↔ [D:bit-0](y′))
))
.

Note that [D:Alldiff] is constructible in deterministic polynomial time from D. By rear-
rangement and reusing variables, this can be also written using just three variables (but
not using just two variables).

Remark 51. If A satisfies [D:Alldiff] then all D-classes in A encode different data.

Recall from Section 1.6 that an instance of the doubly exponential tiling problem is
an initial condition c0 =

〈
t01, t

0
2, . . . , t

0
n

〉
⊆ T = [1, k] of tiles from the domino system

D0 = (T,H, V), where H,V ⊆ T ×T are the horizontal and vertical matching relations.
We need to define a predicate signature capable enough to express a doubly exponential
grid of tiles. Consider the predicate signature

D =
〈
uH1 ,u

H
2 , . . . ,u

H
n ; uV1 ,u

V
2 , . . . ,u

V
n ; uT1 ,u

T
2 , . . . ,u

T
k ; d

〉
.

It has the following relevant subsignatures:

• DH =
〈
uH1 ,u

H
2 , . . . ,u

H
n ,d

〉
encodes the horizontal index of a tile

• DV =
〈
uV1 ,u

V
2 , . . . ,u

V
n ,d

〉
encodes the vertical index of a tile

• DHV =
〈
uH1 ,u

H
2 , . . . ,u

H
n ,u

V
1 ,u

V
2 , . . . ,u

V
n ,d

〉
encodes the combined horizontal

and vertical index of a tile; we need this to define the full grid

• DT =
〈
uT1 ,u

T
2 , . . . ,u

T
k

〉
encodes the type of a tile.

Let A be a D-structure satisfying [DHV :pos-full] and let D = dA. The sentence

[DHV :Full] ∧ [DHV :Alldiff] (5.3)

40

5.5 Hardness with many equivalences in refinement

asserts that the D-classes form a doubly exponential grid. The sentence

∀x

 ∨
1≤i≤k

uTi (x) ∧
∧

j∈[1,k]\{i}
¬uTj (x)

 (5.4)

asserts that every element has a unique type. The sentence

∀x∀y
(
d(x,y)→

∧
1≤i≤k

(uTi (x)↔ uTi (x))
)

(5.5)

asserts that all elements in a D-class have the same type—the type of the tile corre-
sponding to that D-class. For j ∈ [1, n], the sentence

∀x
(
[DH :Eq-(j − 1)](x) ∧ [DV :Zero](x)→ uTt0j

(x)
)

(5.6)

encodes the initial segment in the first row of the square. The sentence

∀x∀y
(
[DH :Succ](x,y) ∧ [DV :Eq](x,y)→

∨
(i,j)∈H

uTi (x) ∧ uTj (y)
)

(5.7)

encodes the horizontal matching condition. The sentence

∀x∀y
(
[DV :Succ](x,y) ∧ [DH :Eq](x,y)→

∨
(i,j)∈V

uTi (x) ∧ uTj (y)
)

(5.8)

encodes the vertical matching condition.
Combining [DHV :pos-full] with the formulas 5.3–5.8, which are constructible in deter-

ministic polynomial time, we may encode an instance of the doubly exponential tiling
problem as a (finite) satisfiability of a formula, so we have:

Proposition 8. The (finite) satisfiability problem for the monadic first-order logic with
a single equivalence symbol L11E is N2ExpTime-hard. More precisely, even the three-
variable fragment L3

11E has this property.

5.5 Hardness with many equivalences in refinement
The argument from the previous section can be iterated to yield the hardness of the
(finite) satisfiability of the monadic first-order logic with several built-in equivalence
symbols in refinement L1eErefine. Our strategy is to encode (e+1)-exponential numbers at
every equivalence class of the coarsest relation by thinking of the e-exponential numbers
at the classes of the second-to-coarsest relation as bit positions.
For e ∈ N+, consider the predicate signature E(e) = 〈e1, e2, . . . , ee〉 consisting of

the built-in equivalence symbols ei in refinement. Abbreviate the coarsest equivalence
symbol d = ee.

41

5 Monadic logics

Definition 63. Let e ∈ N+. An e-exponential setup is a uniform effective deterministic
polynomial time process for creating the following data structure. For every u ∈ N+,
there is a predicate signature D(e, u) having length polynomial in u, consisting of unary
predicate symbols and containing E(e). The following data is effectively defined:

E1 There is a L3[D(e, u)]-sentence [D(e, u):pos-full] that is constructible in determin-
istic polynomial time from D(e, u).

E2 If A is a D(e, u)-structure, A � [D(e, u):pos-full] and D = dA, then there is a
function [D(e, u):Data]A : ED → Bexpe2(u) that assigns an e-exponential bitstring
to every D-class.

E3 There is a L3[D(e, u)]-formula [D(e, u):Eq](x,y) that is constructible in determin-
istic polynomial time from D(e, u), such that for all a, b ∈ A:

A � [D(e, u):Eq](a, b) iff [D(e, u):Data]AD[a] = [D(e, u):Data]AD[b].

E4 There is a L3[D(e, u)]-formula [D(e, u):Zero](x) that is constructible in determin-
istic polynomial time from D(e, u), such that for all a ∈ A:

A � [D(e, u):Zero](a) iff [D(e, u):Data]AD[a] = 0.

E5 There is a L3[D(e, u)]-formula [D(e, u):Largest](x) that is constructible in deter-
ministic polynomial time from D(e, u), such that for all a ∈ A:

A � [D(e, u):Largest](a) iff [D(e, u):Data]AD[a] = Nexpe2(u) = expe+1
2 (u)− 1.

E6 There is a L3[D(e, u)]-formula [D(e, u):Less](x,y) that is constructible in deter-
ministic polynomial time from D(e, u), such that for all a, b ∈ A:

A � [D(e, u):Less](a, b) iff [D(e, u):Data]AD[a] < [D(e, u):Data]AD[b].

E7 There is a L3[D(e, u)]-formula [D(e, u):Succ](x,y) that is constructible in deter-
ministic polynomial time from D(e, u), such that for all a, b ∈ A:

A � [D(e, u):Succ](a, b) iff [D(e, u):Data]AD[b] = [D(e, u):Data]AD[a] + 1.

E8 For every expe2(u)-bit numberM , there is a L3[D(e, u)]-formula [D(e, u):Eq-M](x),
that is constructible in deterministic polynomial time from D(e, u), such that for
all a ∈ A:

A � [D(e, u):Eq-M](a) iff [D(e, u):Data]AD[a] = M.

The previous section defines a 1-exponential setup. Suppose that we have an e-
exponential setup having predicate signature D = D(e, u). Analogously to the previous
section, we will describe an (e+ 1)-exponential setup D′ = D(e+ 1, u) = D + 〈e〉 which

42

5.5 Hardness with many equivalences in refinement

is based on D, where e = ee+1 is the new coarsest built-in equivalence symbol in D′.
Define the following formulas:

[D′:pos-eq](x,y) = [D:Eq](x,y)
[D′:bit-0](x) = ∀y(e(y,x) ∧ [D′:pos-eq](y,x)→ d(y,x))
[D′:bit-1](x) = ∃y(e(y,x) ∧ [D′:pos-eq](y,x) ∧ ¬d(y,x))
[D′:pos-zero](x) = [D:Zero](x)
[D′:pos-largest](x) = [D:Largest](x)
[D′:pos-less](x,y) = e(x,y) ∧ [D:Less](x,y)
[D′:pos-succ](x,y) = e(x,y) ∧ [D:Succ](x,y)

[D′:pos-full] = ∀x∃y
(
e(y,x) ∧ [D′:pos-zero](y)

)
∧ (E1)

∀x
(
¬[D′:pos-largest](x)→ ∃y[D′:pos-succ](x,y)

)
[D′:pos-0](x) = [D′:pos-zero](x)

[D′:pos-(p+ 1)](x) = ∃y
(
[D′:pos-p](y) ∧ [D′:pos-succ](y,x)

)
for p ∈ [0, Nexpe2(u) − 1].

Let A be a D′-structure, A � [D′:pos-full] and let E = eA. Define the function
[D′:Data]A : EE → Bexpe+1

2 (u) assigning a expe+1
2 (u)-bit bitstring to any E-class X by:

[D′:Data]ApX =
{

1 if A � [D′:pos-(p− 1)](a) implies A � [D′:bit-1](a) for all a ∈ X
0 otherwise

(E2)
for p ∈ [1, expe+1

2 (u)].

43

5 Monadic logics

Define the following formulas:

[D′:Eq](x,y) = ∀x′∀y′
(
e(x′,x) ∧ e(y′,y)∧ (E3)

[D′:pos-eq](x′,y′)→ ([D′:bit-0](x′)↔ [D′:bit-0](y′))
)

[D′:Zero](x) = ∀y
(
e(y,x)→ [D′:bit-0](y)

)
(E4)

[D′:Largest](x) = ∀y
(
e(y,x)→ [D′:bit-1](y)

)
(E5)

[D′:Less](x,y) = ∃x′∃y′
(

e(x′,x) ∧ e(y′,y)∧ (E6)

(
[D′:pos-eq](x′,y′) ∧ [D′:bit-0](x′) ∧ [D′:bit-1](y′)

)
∧

∀x′′
(
[D′:pos-less](x′,x′′)→ ∃y′′

(
e(y′′,y′)∧

[D′:pos-eq](y′′,x′′) ∧ ([D′:bit-0](y′′)↔ [D′:bit-0](x′′))
)))

[D′:Succ](x,y) = ∃x′∃y′
(

e(x′,x) ∧ e(y′,y)∧ (E7)

(
[D′:pos-eq](x′,y′) ∧ [D′:bit-0](x′) ∧ [D′:bit-1](y′)

)
∧

∀x′′
(
[D′:pos-less](x′′,x′)→ [D′:bit-1](x′′)

)
∧

∀y′′
(
[D′:pos-less](y′′,y′)→ [D′:bit-0](y′′)

)
∧

∀x′′
(
[D′:pos-less](x′,x′′)→ ∃y′′

(
e(y′′,y′)∧

[D′:pos-eq](y′′,x′′) ∧ ([D′:bit-0](y′′)↔ [D′:bit-0](x′′))
)))

.

If M ∈ Bexpe+1
2 (u) is an expe+1

2 (u)-bit number, let t = ‖M‖ and define the formula:

[D′:Eq-M](x) = ∀y
(

e(y,x)→
∧

0≤p<t

(
[D′:pos-p](y)→ [D′:bit-Mp+1](y)

)
∧ (E8)

∀x
(
[D′:pos-(t− 1)](y) ∧ [D′:pos-less](y,x)→ [D′:bit-0](x)

))
.

This completes the definition of the (e+ 1)-exponential setup.
We can encode an instance of the (e + 1)-exponential tiling problem into a (finite)

satisfiability D-formula completely analogously to the previous section. Thus we have:
Proposition 9. The (finite) satisfiability problem for the monadic first-order logic with
e equivalence symbols in refinement L1eErefine is N(e+1)ExpTime-hard. Even the three-
variable fragment L3

1eErefine has this property.

44

5.5 Hardness with many equivalences in refinement

By Proposition 1 and Proposition 3, the same holds for L(3)
1 eEglobal and L

(3)
1 eElocal.

Proposition 10. The (finite) satisfiability problem for the monadic first-order logic
with many equivalence symbols in refinement L1Erefine is Elementary-hard. Even the
three-variable fragment L3

1Erefine has this property.
By Proposition 2 and Proposition 4, the same holds for L(3)

1 Eglobal and L
(3)
1 Elocal.

45

6 Two-variable logics
In this chapter we investigate questions about the complexity of satisfiability and finite
satisfiability of the two-variable first-order logic L2 with built-in equivalence symbols
in refinement. Recall that for this logic we are only interested in predicate signatures
restricted to only unary and binary predicate symbols and the formal equality.
The base case for L2 and the general case of several unrelated built-in equivalence

symbols have been studied. The following is known:

• The two-variable first-order logic L2 has the finite model property [9] and its (finite)
satisfiability problem is NExpTime-complete [10].

• The two-variable first-order logic with a single built-in equivalence symbol L21E
has the finite model property and its (finite) satisfiability problem is NExpTime-
complete [11].

• The two-variable first-order logic with two unrelated built-in equivalence symbols
L22E lacks the finite model property and both its satisfiability and finite satisfia-
bility problems are N2ExpTime-complete [12].

• The satisfiability and finite satisfiability problems for the two-variable first-order
logic with e built-in equivalence symbols L2eE are both undecidable for e ≥ 3 [13].

In this chapter we prove that the logic L2eErefine has the finite model property and its
(finite) satisfiability problem is in NExpTime for every e ≥ 0. We do this by defining
an auxiliary problem — the type realizability problem — which is formulated at the level
of abstraction of 2-types as opposed to the level of abstraction of formulas; this proves
more flexible for implementing our approach: we look at the different classes (galaxies)
of the coarsest equivalence symbol in a model, we transform them into instances of the
simpler problem featuring one less equivalence symbols and we include enough additional
information to allow us to reconstruct a big model from the traces of its galaxies.

6.1 Type realizability
Recall from Section 1.5 about normal forms that every L2-sentence ϕ can be reduced in
deterministic polynomial time to a sentence sctrϕ in Scott normal form:

∀x∀y(α0(x,y) ∨ x = y) ∧
∧

1≤i≤m
∀x∃y(αi(x,y) ∧ x 6= y),

where m ≥ 1, all the formulas αi are quantifier-free and use at most linearly many new
unary predicate symbols. The semantic connection between ϕ and sctrϕ is that they

47

6 Two-variable logics

are essentially equisatisfiable. More precisely, every model for ϕ of cardinality at least
2 can be enriched to a model for sctrϕ and also every model of sctrϕ (which by m ≥ 1
must have cardinality at least 2) is a model for ϕ. We refer to α0 as the universal part
of the formula sctrϕ and to αi for i ∈ [1,m] as the existential parts of sctrϕ.
For any formula sctrϕ in Scott normal form, we may replace its existential parts by

fresh binary predicate symbols: for i ∈ [1,m] let mi be a fresh binary predicate sym-
bol with intended interpretation ∀x∀y(mi(x,y) ↔ αi(x,y)). Since this is a universal
sentence, it can be added to the universal part α0. The symbols mi are the message
symbols. Hence sctrϕ can be transformed in deterministic polynomial time to the form:

∀x∀y(α(x,y) ∨ x = y) ∧
∧

1≤i≤m
∀x∃y(mi(x,y) ∧ x 6= y), (6.1)

where the universal part α is quantifier-free and over an extended signature. For conve-
nience, we make the existential parts part of the signature, so we can focus only on the
universal part. The following term is similar to the one defined in [14]:

Definition 64. A classified signature 〈Σ, m̄〉 for the two-variable first-order logic L2

is a predicate signature Σ together with a nonempty sequence m̄ = m1m2 . . .mm of
distinct binary predicate symbols from Σ having intended interpretation∧

1≤i≤m
∀x∃y(mi(x,y) ∧ x 6= y). (6.2)

That is, a classified signature automatically includes the existential parts, so 〈Σ, m̄〉-
structures automatically satisfy the the existential parts:

Definition 65. A structure A for the classified signature 〈Σ, m̄〉 is a structure for the
predicate signature Σ that satisfies the intended interpretation eq. (6.2) of the message
symbols. Note that A must have cardinality at least 2 by m ≥ 1.

Definition 66. The (finite) classified satisfiability problem for two-variable first-order
logic is: given a classified signature 〈Σ, m̄〉 and a quantifier-free L2[Σ]-formula α(x,y),
is there a (finite) 〈Σ, m̄〉-structure A satisfying eq. (6.1). Note that since A is a 〈Σ, m̄〉-
structure, it must automatically satisfy eq. (6.2) and must have cardinality at least
2. Denote the classified satisfiability problem by CL-SAT-L2 and its finite version by
FIN-CL-SAT-L2.

Remark 52. The problem of (finite) satisfiability reduces in nondeterministic polyno-
mial time to the problem of (finite) classified satisfiability:

(FIN-)SAT-L2 ≤NPTime
m (FIN-)CL-SAT-L2.

Proof. Note that (finite) satisfiability in the class of models of cardinality 1 is trivially
decidable in nondeterministic polynomial time — just guess the atomic 1-type (whose
size is polynomially bounded in the size of the predicate signature) of the unique element

48

6.1 Type realizability

of the structure and check (in deterministic polynomial time) that it satisfies the original
formula.
Scott normal form shows that (finite) satisfiability in the class of models of cardinality

at least 2 reduces in deterministic polynomial time to (finite) classified satisfiability.
Hence the following nondeterministic polynomial time procedure reduces an instance
(Σ, ϕ) of the (finite) satisfiability problem to an instance (〈Σ′, m̄〉 , α) of the (finite)
classified satisfiability problem: Guess if ϕ will be satisfiable in the class of models of
cardinality 1 or not. If you guessed so, extend Σ to Σ′ by adding a single message symbol
m1 and let α = (x = x) be a fixed predicate tautology. If you guessed otherwise,
transform ϕ into the form eq. (6.1) and let α be the universal part of that normal
form.

A type instance T ⊆ T[Σ] over the classified signature 〈Σ, m̄〉 is a nonempty set of
2-types that is closed under inversion. The set of 1-types included in the type instance T
is ΠT = {tpx τ | τ ∈ T}. Two 1-types π, π′ ∈ ΠT are connectable if some τ ∈ T connects
them. Connectability is symmetric, however it is not necessarily neither transitive nor
reflexive. A 1-type κ is a king type if it is not connectable with itself; the set of king
types over T is KT. A 1-type π that is not a king type is a worker type; the set of worker
types is WT. So we have ΠT = KT ∪WT.
If π ∈ ΠT, the neighbours T[π] ⊆ ΠT of π are defined by:

T[π] =
{

ΠT if π ∈WT is a worker type
ΠT \ {π} otherwise, that is if π ∈ KT is a king type.

Note that π ∈ T[π] iff π ∈WT is a worker type.
If A is a 〈Σ, m̄〉-structure, the type instance of A is:

T[A] =
{

tpA[a, b]
∣∣∣ a ∈ A, b ∈ A \ {a}} .

That is T = T[A] is the set of 2-types realized in A. Note that this is indeed a type
instance over 〈Σ, m̄〉: T[A] is nonempty since A has cardinality at least 2 and T[A] is
closed under inversion by construction. If T is the type instance of A, then A is a model
for T. An element realizing a king type is a king element. An element realizing a worker
type is a worker element.

Definition 67. The (finite) type realizability problem for L2 is the following: given a
classified signature 〈Σ, m̄〉 and a type instance T over 〈Σ, m̄〉, is there a (finite) model
for T. Denote the type realizability problem by TP-REALIZ-L2 and its finite version by
FIN-TP-REALIZ-L2.

Remark 53. Let 〈Σ, m̄〉 be a classified signature and let α(x,y) be a quantifier-free
L2[Σ]-formula. Let Tα ⊆ T[Σ] be the set of those 2-types that are consistent with
α(x,y) and the intended interpretation for classified signatures eq. (6.2). Then a 〈Σ, m̄〉-
structure A is a classified model for α(x,y) iff T[A] ⊆ Tα.

49

6 Two-variable logics

Recall that the number of possible 1-types or 2-types over Σ is exponentially bounded
in the cardinality of Σ and that the size of a 1-type or a 2-type over Σ is polynomially
bounded in the cardinality of Σ. Hence the (finite) classified satisfiability problem reduces
to the (finite) type realizability problem in nondeterministic exponential time:

(FIN-)CL-SAT-L2 ≤NExpTime
m (FIN-)TP-REALIZ-L2.

Lemma 8 (Model Characterization). Let A be a model for T. Then:

1. If τ ∈ T then some a ∈ A and b ∈ A \ {a} have tpA[a, b] = τ .

If a ∈ A and b ∈ A \ {a}, then tpA[a, b] = τ for some τ ∈ T.

Equivalently T =
{

tpA[a, b]
∣∣∣ a ∈ A, b ∈ A \ {a}}.

2. If π ∈ ΠT then some a ∈ A has tpA[a] = π.

If a ∈ A then tpA[a] = π for some π ∈ ΠT.

Equivalently ΠT =
{

tpA[a]
∣∣∣ a ∈ A}.

3. Let κ ∈ ΠT. Then κ ∈ KT iff a unique a ∈ A has tpA[a] = κ.

4. Let π ∈ ΠT. Then π ∈WT iff for every a ∈ A such that tpA[a] = π there is some
b ∈ A \ {a} having tpA[b] = π.

5. Let a ∈ A and let π = tpA[a].

If π′ ∈ T[π] then some b ∈ A \ {a} has tpA[b] = π′.

If b ∈ A \ {a} then tpA[b] = π′ for some π′ ∈ T[π].

We will be applying this lemma implicitly.

Proof. 1. By definition T = T[A] =
{

tpA[a, b]
∣∣∣ a ∈ A, b ∈ A \ {a}}.

2. If π ∈ ΠT then some τ ∈ T has tpxτ = π, so some a ∈ A and b ∈ A \ {a} has
tpA[a, b] = τ , so tpA[a] = π.

If a ∈ A, then note that A has cardinality at least 2 and let b ∈ A \ {a} be any
other element. Then tpA[a, b] = τ ∈ T, so π = tpA[a] = tpxτ ∈ ΠT.

3. First let κ ∈ KT, so some a ∈ A has tpA[a] = κ. Suppose towards a contradiction
that some b ∈ A \ {a} has tpA[b] = κ. Then τ = tpA[a, b] ∈ T connects κ with
itself — a contradiction.

Next suppose that π ∈ ΠT \KT = WT, so some τ ∈ T connects κ with itself. Then
some a ∈ A and b ∈ A \ {a} have tpA[a, b] = τ , so tpA[a] = tpA[b] = π, so there is
not a unique a ∈ A having tpA[a] = π.

50

6.1 Type realizability

4. First suppose that π ∈WT and that a ∈ A has tpA[a] = π. Since π 6∈ KT, such a
is not unique, so there is some b ∈ A \ {a} having tpA[b] = π.
Next suppose that π ∈ ΠT and that for every a ∈ A such that tpA[a] = π there is
some b ∈ A \ {a} having tpA[b] = π. Since π ∈ ΠT, some a ∈ A has tpA[a] = π, so
some b ∈ A \ {a} has tpA[b] = π, so there is not a unique a ∈ A having tpA[a] = π,
so π 6∈ KT, so π ∈WT.

5. Let a ∈ A and π = tpA[a].
First let π′ ∈ T[π]. If π′ 6= π, then some b ∈ A has tpA[b] = π′, so b ∈ A \ {a}. If
π′ = π, then π ∈WT is a worker type, so some b ∈ A \ {a} has tpA[b] = π = π′.
Next suppose that some b ∈ A \ {a} has tpA[b] = π′. If π′ 6= π, then π′ ∈ T[π]. If
π′ = π, then π must be a worker type, so π′ ∈ T[π] = ΠT.

Definition 68. Let T be a type instance over 〈Σ, m̄〉. A star-type σ ⊆ T over T is a
nonempty set of 2-types satisfying the following conditions:

(σx) If τ, τ ′ ∈ σ, then tpxτ = tpxτ
′. Denote tpxτ for any τ ∈ σ by π = tpxσ.

(σπy) If π′ ∈ T[π], then some τ ∈ σ has tpyτ = π′.

(σκy) If κ′ ∈ T[π] ∩KT and if τ, τ ′ ∈ σ have tpyτ = tpyτ
′ = κ′, then τ = τ ′.

(σm) If m ∈ m̄, then some τ ∈ σ has m(x,y) ∈ τ .

A star-type σ is a king star-type if tpxσ is a king type. Otherwise the star-type is a
worker star-type. Note that the size of a star-type is linear with respect to the size of
the type instance.

Remark 54. If σ is a star-type over T, then:

(σκy′) If κ′ ∈ T[π] ∩KT, then a unique τ ∈ σ has tpyτ = κ.

Proof. By (σπy), some τ ∈ σ has tpyτ = κ. By (σκy), such τ is unique.

Definition 69. Let A be a model for T and let a ∈ A. The star-type stpA[a] of a is
defined by:

stpA[a] =
{

tpA[a, b]
∣∣∣ b ∈ A \ {a}} .

Remark 55. Indeed σ = stpA[a] is a star-type over T in the sense of Definition 68.

Proof. The set σ is nonempty since A has cardinality at least 2. We check the conditions
for a star-type σ over T:

(σx) If τ, τ ′ ∈ σ, then τ = tpA[a, b] and τ ′ = tpA[a, b′] for some b, b′ ∈ A \ {a}. Then
tpxτ = tpxτ

′ = tpA[a].
Let π = tpxσ = tpA[a].

51

6 Two-variable logics

(σπy) If π′ ∈ T[π], then some b ∈ A \ {a} has tpA[b] = π′, so τ = tpA[a, b] ∈ σ has
tpyτ = π′.

(σκy) If κ′ ∈ T[π] ∩ KT, then κ′ 6= π. Suppose towards a contradiction that some
τ 6= τ ′ ∈ σ have tpyτ = tpyτ

′ = κ′. Then τ = tpA[a, b] and τ ′ = tpA[a, b′] for some
b 6= b′ ∈ A \ {a}. Then tpA[b] = tpA[b′] = κ′ — a contradiction.

(σm) Let m ∈ m̄. Since A is a 〈Σ, m̄〉-structure, some b ∈ A \ {a} has m(x,y) ∈
tpA[a, b] ∈ σ.

Definition 70. Let T be a type instance over 〈Σ, m̄〉. A certificate S for T is a nonempty
set of star-types over T satisfying the following conditions:

(Sτ) If τ ∈ T, then some σ ∈ S has τ ∈ σ, that is there is a star-type containing each
2-type.

(Sκ) If κ ∈ KT and if σ, σ′ ∈ S have tpxσ = tpxσ
′ = κ, then σ = σ′.

Remark 56. Let S be a certificate over T. Then:

(Sπ) If π ∈ ΠT, then some σ ∈ S has tpxσ = π.

(Sκ′) If κ ∈ KT, then a unique σ ∈ S has tpxσ = π.

Proof. (Sπ) If π ∈ ΠT, then some τ ∈ T has tpxτ = π, so by (Sτ) some σ ∈ S has
τ ∈ σ, so tpxσ = tpxτ = π.

(Sκ′) If κ ∈ KT, then by (Sπ) some σ ∈ S has tpxσ = κ. By (Sκ), such σ is unique.

Note that the size of a certificate may be exponential with respect to the size of the
type instance. However, we may extract polynomial certificates:

Lemma 9 (Certificate extraction). Let A be a model for the type instance T. For each
2-type τ ∈ T, let aτ ∈ A and bτ ∈ A \ {aτ} have tpA[aτ , bτ] = τ . Let

S =
{

stpA[aτ]
∣∣∣ τ ∈ T

}
.

Then S is a certificate for T. Note that the size of S is polynomially bounded with respect
to the size of T.

Proof. Since T is nonempty, S is nonempty. We check the conditions for S to be a
certificate for T:

(Sτ) If τ ∈ T, then τ = tpA[aτ , bτ] ∈ stpA[aτ] ∈ S.

52

6.1 Type realizability

(Sκ) Let κ ∈ KT and let σ, σ′ ∈ S have tpxσ = tpxσ
′ = κ. Then σ = stpA[aτ] and

σ′ = stpA[aτ ′] for some τ, τ ′ ∈ T. Then tpxτ = tpxτ
′ = κ. Then tpA[aτ] = tpxκ =

tpA[aτ ′]. Since κ is a king type, aτ = aτ ′ , so σ = σ′.

Theorem 4 (Certificate expansion). Let S be a certificate for the type instance T over
the classified signature 〈Σ, m̄〉. Then T has a finite model. More precisely, let t ≥ |T|
be a parameter. Then T has a finite model in which each worker type is realized at least
t times.

Proof. We adapt the standard strategy1 used in the proof of the finite model property
for the logic L2, as presented in [2]. We build a model A for T as follows. The domain
A of A is the union of the following disjoint sets of elements:

• The singleton set Aσ = {aσ} for every king star-type σ ∈ S, tpx σ ∈ KT. The
elements aσ are the kings.

• The three disjoint copies of t elements Aσ = Aσ0∪Aσ1∪Aσ2 for every worker star-type
σ ∈ S, tpx σ ∈ WT, where Aσi = {aσi1, aσi2, . . . , aσit} for i ∈ {0, 1, 2}. The elements
aσij are the workers.

Let σ : A → S denote the intended star-type of the elements: σ(a) = σ on Aσ. Let π :
A→ ΠT denote the intended 1-type of the elements: π(a) = tpx(σ(a)). We consistently
assign 2-types between distinct elements on stages.

Realization of kings We first assign 2-types consistently between the kings and any
other element. Let a ∈ A be any king, so a = aσ

′ for some king star-type σ′ ∈ S.
Let κ′ = π(a) = tpxσ

′ ∈ KT be the intended (king) type of a. Let b ∈ A \ {a} be
any other element and let σ = σ(b) and π = π(b) = tpxσ be its intended star-type
and 1-type, respectively. Since A contains a unique element for each king star-type,
σ 6= σ′. By (Sκ), π 6= κ′, so κ′ ∈ T[π]∩KT. By (σκy′), a unique τ ∈ σ has tpyτ = κ′.
We assign tpA[b, a] = τ . We must check that these assignments are consistent.
First, these assignments are symmetric over the kings. Suppose that b is a king, so
π = κ is a king type. Since κ′ 6= κ, κ ∈ T[κ′] ∩ KT. By (σκy′), a unique τ ′ ∈ σ′

has tpyτ
′ = κ and we would want to assign tpA[a, b] = τ ′. We claim that τ ′ = τ−1.

Indeed, by (Sτ), τ−1 ∈ σ′′ for some σ′′ ∈ S. Then tpxσ
′′ = tpx(τ−1) = κ, so by (Sκ),

σ′′ = σ. Then τ−1 ∈ σ has tpyτ
−1 = κ, so τ−1 = τ ′.

Next, these assignments cover σ′. Let τ ′ ∈ σ′ be any. Then by (Sτ), some σ ∈ S
has τ = τ ′−1 ∈ σ. If σ = σ′, then tpyτ

′ = tpxτ = tpxσ = κ, so τ ′ would connect
κ with itself — a contradiction. So σ 6= σ′. By (Sκ), π 6= κ, so κ ∈ T[π]. Then
by (σκy′), τ ∈ σ is the unique having tpyτ = κ. Since A contains some element for
each star-type, some b ∈ A \ {a} has σ(b) = σ, so we had assigned tpA[b, a] = τ .

1with the slight difference that our approach doesn’t need a court, since the information about it is
implicit in the certificate

53

6 Two-variable logics

Realization of workers Next we consistently assign 2-types between workers. Let
a ∈ A be any worker and let σ = σ(a) and π = π(a) be its intended star-type
and 1-type, respectively. Then a = aσij for some i ∈ {0, 1, 2} and j ∈ [1, t]. Let
i′ = (i+ 1 mod 3) ∈ {0, 1, 2} be the index of the next copy of the workers. Let τ ∈ σ
be any 2-type.
First suppose that tpyτ = κ′ ∈ KT is a king type. By (Sκ′), let σ′ ∈ S be the unique
star-type having tpxσ

′ = κ′ and let b = aσ
′ be the unique king having π(b) = κ′. Since

κ′ 6= π, κ′ ∈ T[π] and by (σκy′), τ ∈ σ is the unique having tpyτ = κ′. So we had
already assigned tpA[a, b] = τ during the realization of kings.

Next suppose that tpyτ = π′ ∈WT is a worker type. Let U =
{
η ∈ σ

∣∣∣ tpyη = π′
}
be

the set of all 2-types from σ parallel to τ . We simultaneously find distinct elements bη
that are distinct from a for the assignments tpA[a, bη] = η. By (Sτ), for each η ∈ U
there is some star-type σ′η ∈ S such that η−1 ∈ σ′η. Note that tpxσ

′
η = π′ is a worker

type. Since U ⊆ T we have |U| ≤ t, so there are enough distinct workers from the
next copy bη ∈ A

σ′η
i′ for the assignments tpA[a, bη] = η. These assignments do not clash

with each other, since they are made between consecutive copies of worker elements.

Completion Suppose that a 6= b ∈ A are any two distinct elements such that tpA[a, b]
has not yet been assigned. Then both π(a) and π(b) are worker types, so π(b) ∈
T[π(a)] = ΠT. By (σπy), some τ ∈ σ(a) has tpyτ = π(b), so we may assign tpA[a, b] =
τ . Note that this may extend the actual star-type of a and b, but this is appropriate.

The structure A is a 〈Σ, m̄〉-structure by (σm) and is a model for T by (Sτ).

Proposition 11. The type realizability problem for L2 coincides with the finite type
realizability problem and is in NPTime.

Proof. Let T be a type instance for the classified signature 〈Σ, m̄〉. Guess a polynomial
certificate for T. By Lemma 9 and Theorem 4, such a certificate exists iff T has a
model. The general version coincides with the finite version since the model constructed
in Theorem 4 is finite.

Corollary 3 ([10]). The logic L2 has the finite model property and its (finite) satisfia-
bility problem is in NExpTime.

6.2 Type realizability with equivalences
In this section we consider the logic L2eErefine featuring e ≥ 1 equivalence symbols
e1, e2, . . . , ee in refinement. By convention let e0 be the formal equality, so that L20Erefine
means L2. Abbreviate the coarsest equivalence symbol e = ee.

The following reductions carry over from the previous section:

(FIN-)SAT-L2eErefine ≤NPTime
m (FIN-)CL-SAT-L2eErefine

(FIN-)CL-SAT-L2eErefine ≤NExpTime
m (FIN-)TP-REALIZ-L2eErefine.

54

6.2 Type realizability with equivalences

We proceed to define new terms. The terminology is based on [14].
Let 〈Σ, m̄〉 be a predicate signature over L2eErefine. A 2-type τ ∈ T[Σ] is a galactic

type if e(x,y) ∈ τ . Otherwise, that is if (¬e(x,y)) ∈ τ , the 2-type τ is a cosmic type.
Let T be a type instance over 〈Σ, m̄〉. The sets of galactic and cosmic types in T are Tg

and Tc, respectively. Two 1-types π, π′ ∈ ΠT are cosmically connectable if some cosmic
τ ∈ Tc connects them. A 1-type ν is a noble type if it is not cosmically connectable
with itself; the set of noble types over T is NT. A 1-type π that is not a noble type is a
peasant type; the set of peasant types is PT. So we have ΠT = NT ∪ PT, KT ⊆ NT and
PT ⊆WT.
We think of the e-classes in a 〈Σ, m̄〉-structure as galaxies; of the whole structure as

the cosmos; of the galactic 2-types as characterizing the interactions in the interior of the
galaxies and of cosmic 2-types characterize the interactions between different galaxies.
Let A be a model for T. An element realizing a noble type is a noble element. An

element realizing a peasant type is a peasant element. We denote the galaxies of A by
GA = E eA. A galaxy X ∈ GA is a noble galaxy if it contains a noble element. Otherwise,
that is if every a ∈ X is a peasant, the galaxy X is a peasant galaxy. The sets of noble
and peasant galaxies are GAN and GAP , respectively. So we have GA = GAN∪GAP . If X ∈ GA is
a galaxy, denote tpA[X] =

{
tpA[a]

∣∣∣ a ∈ X} to be the set of 1-types realized by elements
of X.

Lemma 10 (Galaxy characterization). Let A be a model for T. Then:

1. If π ∈ ΠT then some X ∈ GA has π ∈ tpA[X].

If X ∈ GA then tpA[X] ⊆ ΠT, or equivalently every π ∈ tpA[X] has π ∈ ΠT.

2. Let X ∈ GA. Then X ∈ GAN iff tpA[X]∩NT 6= ∅, or equivalently iff some ν ∈ tpA[X]
has ν ∈ NT.

3. Let X ∈ GA. Then X ∈ GAP iff tpA[X] ⊆ PT, or equivalently iff every π ∈ tpA[X]
has π ∈ ΠT.

4. Let ν ∈ ΠT. Then ν ∈ NT iff a unique X ∈ GA has ν ∈ tpA[X].

5. Let π ∈ ΠT. Then π ∈ PT iff for every X ∈ GA such that π ∈ tpA[X] there is some
Y ∈ GA \ {X} having π ∈ tpA[Y].

We will be applying this lemma implicitly.

Proof. 1. If π ∈ ΠT, then some a ∈ A has tpA[a] = π, so X = eA[a] ∈ GA has
π ∈ tpA[X]. If some X ∈ GA has π ∈ tpA[X], then some a ∈ X has tpA[a] = π, so
π ∈ ΠT.

2. This follows by the definition of noble galaxy.

3. This follows by the definition of peasant galaxy.

55

6 Two-variable logics

4. If ν ∈ NT, then some X ∈ GA has ν ∈ tpA[X], so some a ∈ X has tpA[a] = ν.
Suppose towards a contradiction that some other Y ∈ GA \ {X} has ν ∈ tpA[Y],
so some b ∈ Y has tpA[b] = ν. Then τ = tpA[a, b] ∈ T is a cosmic type connecting
ν with itself — a contradiction.

Next suppose that π ∈ ΠT \ NT = PT, so some cosmic τ ∈ T connects π with
itself. Then some a ∈ A and b ∈ A \ {a} have tpA[a, b] = τ . Let X = eA[a] ∈ GA
and Y = eA[b] ∈ GA. Since τ is cosmic, X 6= Y . So we have that π ∈ tpA[X]
π ∈ tpA[Y] is realized in at least 2 galaxies.

5. First suppose that π ∈ PT and that X ∈ GA has π ∈ tpA[X]. Since π 6∈ NT, X is
not unique, so there must be some other Y ∈ GA \ {X} such that π ∈ tpA[Y].

Next let π ∈ ΠT and suppose that for every X ∈ GA such that π ∈ tpA[X] there
is some Y ∈ GA \ {X} having π ∈ tpA[Y]. Since π ∈ ΠT, some X ∈ GA has
π ∈ tpA[X]. Then some Y ∈ GA \ {X} has π ∈ tpA[Y], so π 6∈ NT, so π ∈ PT.

Note that a noble galaxy might contain a peasant element. We will define a class of
models — the nobly distinguished models — where this doesn’t happen. For this we first
define peasantly united models.

Definition 71. The model A for T is peasantly united if whenever π ∈ ΠT is a peasant
type that is realized in some peasant galaxy: π ∈ tpA[X] for some X ∈ GAP , then π is
also realized in some other peasant galaxy: π ∈ tpA[Y] for some Y ∈ GAP \ {X}.

Lemma 11 (Peasant unitedness). If the type instance T has a (finite) model, then it
has a (finite) peasantly united model.

Proof. Suppose that A is a (finite) model for T. We copy its peasant galaxies. We
describe the (finite) model A′ by describing its galaxies GA′ . The noble galaxies GA′N of
A′ coincide with the noble galaxies GAN of A. The peasant galaxies GA′P of A′ consist of two
copies X1, X2 of each peasant galaxy X ∈ GAP of A. This naturally induces the 1-type of
every a ∈ A′ and the 2-type between distinct elements that do not come from the two
copies of the same peasant galaxy. Already at this point, the partial structure A′ satisfies
the existential parts eq. (6.2), so it is a partial 〈Σ, m̄〉-structure. We proceed to complete
A′. Let X ∈ GAP be any peasant A-galaxy and let a1 ∈ X1 and b2 ∈ X2 be any elements
from the different copies of X in A′. Note that a, b ∈ X and let π = tpA′ [a] = tpA[a].
Since X is a peasant galaxy, π must be a peasant type, so some Y ∈ GA \ {X} has
π ∈ tpA[Y], so some a′ ∈ Y has tpA[a′] = π. Then τ = tpA[a′, b] is cosmic and the
assignment tpA′ [a1, b2] = tpA[a′, b] is appropriate. The model A′ is peasantly united by
construction: any peasant type that is realized in a peasant galaxy Xi is also realized in
the peasant galaxy X3−i.

Definition 72. The model A for T is nobly distinguished if every noble galaxy contains
only noble elements. That is if X ∈ GAN, then tpA[X] ⊆ NT.

56

6.2 Type realizability with equivalences

Definition 73. The (finite) nobly distinguished type realizability problem for the logic
L2eErefine is the following: given a classified signature 〈Σ, m̄〉 and a type instance T
over 〈Σ, m̄〉, is there a (finite) nobly distinguished model for T. Denote the nobly dis-
tinguished type realizability problem by ND-TP-REALIZ-L2eErefine and its finite version
by FIN-ND-TP-REALIZ-L2eErefine.

Let T be a type instance over 〈Σ, m̄〉. For every noble type ν ∈ NT, let pν be a new
unary predicate symbol. Let Σ′ = Σ + 〈pν | ν ∈ NT〉 be an enrichment of Σ featuring
these new symbols. Consider the following sets of literals over Σ′:

pν(x) = {pν(x)} ∪
{
¬pν

′(x)
∣∣∣ ν ′ ∈ NT \ {ν}

}
.

Let ⊥ be a special element and define the special set of literals:

p⊥(x) = {¬pν(x) | ν ∈ NT} .

If π ∈ ΠT is a 1-type and ρ ∈ NT ∪ {⊥}, let πρ be the following 1-type over Σ′:

πρ = π ∪ pρ(x).

We refer to πρ as the ρ-copy of π. If τ ∈ T and ρ, ρ′ ∈ NT∪{⊥}, let τρρ′ be the following
2-type over Σ′:

τρρ′ = τ ∪ pρ(x) ∪ pρ′(y).

So we have tpx(τρρ′) = (tpxτ)ρ and tpy(τρρ′) = (tpyτ)
ρ′
. Define the set T′ of 2-types

over 〈Σ′, m̄〉 as follows:

T′ =
{
τρρ′

∣∣ τ ∈ T, ρ, ρ′ ∈ NT ∪ {⊥}
}
.

Note that T′ is constructible in deterministic polynomial time from T.

Definition 74. A promotion for the type instance T over 〈Σ, m̄〉 is a type instance
T• ⊆ T′ over 〈Σ′, m̄〉 such that for every τ ∈ T there are some ρ, ρ′ ∈ NT ∪ {⊥} such
that τρρ′ ∈ T•.

Lemma 12 (Noble distinguishability). The type instance T has a (finite) model iff there
is some promotion T• for T that has a (finite) nobly distinguished model.

Proof. First, suppose that A is (finite) a model for T. By Lemma 11, without loss of
generality assume that A is peasantly united. We define a promotion T• for T and a
Σ′-enrichment A′ that is a nobly distinguished model for T•. For every noble galaxy
X ∈ GAN choose any noble type ν ∈ tpA[X] realized in it and define X = Xν . Define the
enrichment A′ as follows: for every a ∈ A:

1. If a ∈ Xν is an element of some noble galaxy, then let tpA′ [a] = tpA[a]ν .

2. Otherwise, if a ∈ X is an element of a peasant galaxy, then let tpA′ [a] = tpA[a]⊥.

57

6 Two-variable logics

Note that we have the following characterization of this construction: for every X ∈ GA′ :

1. If ν ∈ NT and πν ∈ tpA′ [X] for some π ∈ ΠT, then ν ∈ tpA[X].

Indeed, if πν ∈ tpA′ [X] then some a ∈ X has tpA′ [a] = πν , so by construction
X = Xν , so ν ∈ X.

2. If π ∈ ΠT and π⊥ ∈ tpA′ [X], then X ∈ GAP is a peasant galaxy and π ∈ tpA[X] is
a peasant type.

Indeed, if π⊥ ∈ tpA′ [X] then some a ∈ X has tpA′ [a] = π⊥, so by construction
X ∈ GAP and tpA′ [a] = tpA[a]⊥, so π = tpA[a] ∈ tpA[X] is a peasant type.

Let T• = T[A′] be the type instance of A′. By construction T• ⊆ T′. If τ ∈ T, then some
a ∈ A and b ∈ A \ {a} have tpA[a, b] = τ . Let tpA′ [a] = tpA[a]ρ and tpA′ [b] = tpA[b]ρ′ , so
τρρ′ = tpA′ [a, b] ∈ T•. So T• is a promotion of T.
We claim that π′ ∈ ΠT• is a noble type iff π′ = πν for some π ∈ ΠT and ν ∈ NT, or

equivalently:
NT• = {πν ∈ ΠT• | π ∈ ΠT, ν ∈ NT} .

First, suppose that πν ∈ ΠT• for some π ∈ ΠT and ν ∈ NT. Let X ∈ GA
′ be such that

πν ∈ tpA′ [X]. Suppose towards a contradiction that πν ∈ PT• is a peasant type. Then
there is some Y ∈ GA′ \ {X} such that πν ∈ tpA′ [Y]. Then by construction ν ∈ tpA[X]
and ν ∈ tpA[Y] — a contradiction.

Next, suppose that π⊥ ∈ ΠT• and let X ∈ GA′ be such that π⊥ ∈ tpA′ [X]. Then by
construction X ∈ GAP is a peasant galaxy and π ∈ tpA[X] is a peasant type. Since A is
peasantly united, there is some Y ∈ GAP \ {X} having π ∈ tpA[Y]. So by construction
π⊥ = tpA′ [Y], so π⊥ ∈ PT• .
Finally, we check that A′ is nobly distinguished. Indeed, let X ∈ GA′N be any noble

galaxy. Then some a ∈ X has tpA′ [a] ∈ NT• , so X = Xν for some noble ν ∈ NT. Let
b ∈ X be any. Then by construction tpA′ [b] = tpA[b]ν , so tpA′ [X] ⊆ NT• .

Next, suppose that T• is any promotion of T and that A′ is model for T•. Then the
reduct of A′ to a Σ-structure is a model for T by the promotion condition that if τ ∈ T
then τρρ′ ∈ T• for some ρ, ρ′ ∈ NT ∪ {⊥}.

Corollary 4. The (finite) type realizability problem is reducible in nondeterministic
polynomial time to the (finite) nobly distinguished type realizability problem.

(FIN-)TP-REALIZ-L2eErefine ≤NPTime
m (FIN-)ND-TP-REALIZ-L2eErefine.

Remark 57. Suppose that A is a nobly distinguished model for T. Then A is peasantly
united.

Proof. Suppose that π ∈ PT is a peasant type, X ∈ GAP is a peasant galaxy and π ∈
tpA[X]. Since π is a peasant type, some Y ∈ GA \ {X} has π ∈ tpA[Y]. Since A is nobly
distinguished, Y ∈ GAP is a peasant galaxy. Hence A is peasantly united.

58

6.3 Cosmic spectrums

6.3 Cosmic spectrums
Let T be a type instance over the L2eErefine-classified signature 〈Σ, m̄〉.

Definition 75. A cosmic spectrum ς = (ςII , ςIE , ςEI , ςEE) over T consists of four sets
of 2-types satisfying the following conditions:

(ςII) The set of internal types ςII ⊆ Tg is a set of galactic types that is closed under
inversion.

(ςIE) The set of boundary types ςIE ⊆ Tc is a nonempty set of cosmic types.

(ςEI) The set of inverted boundary types is: ςEI =
{
τ−1

∣∣∣ τ ∈ ςIE}.
(ςEE) The set of external types ςEE ⊆ T is a set of 2-types that is closed under inversion.

(ςT) We require that T = ςII ∪ ςIE ∪ ςEI ∪ ςEE .

(ςNP) The (nonempty) set Tpx ς = (tpx � ςIE) is the set of internal 1-types of ς. The
(nonempty) set Tpy ς = (tpy � ςIE) is the set of external 1-types of ς. We require
that either Tpx ς ⊆ NT, in which case ς is a noble cosmic spectrum, or Tpx ς ⊆ PT,
in which case ς is a peasant cosmic spectrum. Note that a 1-type may be both
internal and external.

For any 1-type π or a 2-type τ over Σ denote by π−e or τ−e the reducts of π and τ
to the language Σ− 〈e〉. That is, π−e ⊂ π and τ−e ⊂ τ consist of those literals that do
not feature e. Let in be a new unary predicate symbol and let Σ′ = Σ− 〈e〉+ 〈in〉 be
the predicate signature obtained from Σ by removing the coarsest equivalence symbol e
and adding the new predicate symbol in. Define the following 1-types and 2-types over
Σ′:

πI = π−e ∪ {in(x)}
πE = π−e ∪ {¬in(x)}
τII = τ−e ∪ {in(x), in(y)}
τIE = τ−e ∪ {in(x),¬in(y)}
τEI = τ−e ∪ {¬in(x), in(y)}
τEE = τ−e ∪ {¬in(x),¬in(y)} .

Note that we have tpx(τXY) = (tpxτ)X and tpy(τXY) = (tpyτ)Y for X ,Y ∈ {I, E}.

Definition 76. The spectral type instance Tς of the cosmic spectrum ς is a type instance
over the simpler L2(e− 1)Erefine-classified signature 〈Σ′, m̄〉 defined as follows:

Tς = Tς
II ∪ Tς

IE ∪ Tς
EI ∪ Tς

EE ,

where Tς
XY =

{
τXY

∣∣∣ τ ∈ ςXY} for X ,Y ∈ {I, E}. Note that Tς is constructible in
deterministic polynomial time from T and ς.

59

6 Two-variable logics

This is indeed a type instance, since Tς
IE is nonempty by (ςIE) and since Tς

II , (Tς
IE ∪

Tς
EI) and Tς

EE are closed under inversion by (ςII), (ςEI) and (ςEE). The size of a cosmic
spectrum over a type instance is linear with respect to the size of the type instance.
Define Πς

I = {πI | π ∈ Tpx ς} = (tpx � Tς
IE) to be the set of internal spectral 1-types

and Πς
E =

{
πE
∣∣∣ π ∈ Tpy ς

}
= (tpy � Tς

IE) to be the set of external spectral 1-types.

Definition 77. The cosmic spectrum ς is locally consistent if its spectral type instance
Tς has a model.

Definition 78. Let A be a nobly distinguished model for T such that E = eA 6= A×A
is not full on A (equivalently, there are at least 2 galaxies). If X ∈ GA is any galaxy,
the cosmic spectrum ς = cspA[X] of X is defined by:

ςII =
{

tpA[a, b]
∣∣∣ a ∈ X, b ∈ X \ {a}}

ςIE =
{

tpA[a, b]
∣∣∣ a ∈ X, b ∈ A \X}

ςEI =
{

tpA[a, b]
∣∣∣ a ∈ A \X, b ∈ X}

ςEE =
{

tpA[a, b]
∣∣∣ a ∈ A \X, b ∈ (A \X) \ {a}

}
.

Remark 58. Indeed ς = cspA[X] is a locally consistent cosmic spectrum over T in the
sense of Definition 77.

Proof. First we check that ς is a cosmic spectrum over T in the sense of Definition 75.

(ςII) If τ ∈ ςII , then τ = tpA[a, b] for some a ∈ X and b ∈ X \ {a}, so τ is galactic and
τ−1 = tpA[b, a] ∈ ςII , so ςII is closed under inversion.

(ςIE) First, since E is not full on A, there is some a ∈ X and b ∈ A\X, so tpA[a, b] ∈ ςIE ,
so ςIE is nonempty. Next, if τ ∈ ςIE then τ = tpA[a, b] for some a ∈ X and
b ∈ A \X, so τ is cosmic.

(ςEI) If τ ∈ ςIE , then τ = tpA[a, b] for some a ∈ X and b ∈ A\X, so τ−1 = tpA[b, a] ∈ ςEI .
If τ ∈ ςEI , then τ = tpA[a, b] for some a ∈ A\X and b ∈ X, so τ−1 = tpA[b, a] ∈ ςIE ,
so τ = τ ′−1 for τ ′ = τ−1 ∈ ςIE .

(ςEE) If τ ∈ ςEE , then τ = tpA[a, b] for some a ∈ A \ X and b ∈ (A \ X) \ {a}, so
τ−1 = tpA[b, a] ∈ ςEE and hence ςEE is closed under inversion.

(ςT) We have that ςII ∪ ςIE ∪ ςEI ∪ ςEE =
{

tpA[a, b]
∣∣∣ a ∈ A, b ∈ A \ {a}} = T since A

is a model for T.

(ςNP) First suppose that X is a noble galaxy. Let π ∈ Tpx ς, so some τ ∈ ςIE has
tpxτ = π, so some a ∈ X and b ∈ A \X has tpA[a, b] = τ , so π = tpA[a] is noble,
since A is nobly distinguished. Next suppose that X is a peasant galaxy. Similarly,
let π ∈ Tpx ς, so some τ ∈ ςIE has tpxτ = π, so some a ∈ X and b ∈ A \X has
tpA[a, b] = τ , so π = tpA[a] is peasant, since X is a peasant galaxy.

60

6.4 Locally consistent cosmic spectrums

We transform A to a 〈Σ′, m̄〉-structure A′ by forgetting the interpretation of e and by
interpreting inA′ = X. Then:

tpA′ [a, b] = tpA[a, b]II if a ∈ X, b ∈ X \ {a}
tpA′ [a, b] = tpA[a, b]IE if a ∈ X, b ∈ A \X
tpA′ [a, b] = tpA[a, b]EI if a ∈ A \X, b ∈ X
tpA′ [a, b] = tpA[a, b]EE if a ∈ A \X, b ∈ (A \X) \ {a} .

This shows that A′ is a model for Tς , so ς is locally consistent.

6.4 Locally consistent cosmic spectrums

Let ς be a locally consistent cosmic spectrum over T.

Lemma 13 (Spectral characterization). Let Aς be a model for the spectral type instance
Tς and let Xς = inAς be the set of internal spectral elements. Then:

Tς
II =

{
tpAς [a, b]

∣∣∣ a ∈ Xς , b ∈ Xς \ {a}
}

Tς
IE =

{
tpAς [a, b]

∣∣∣ a ∈ Xς , b ∈ Aς \Xς
}

Tς
EI =

{
tpAς [a, b]

∣∣∣ a ∈ Aς \Xς , b ∈ Xς
}

Tς
EE =

{
tpAς [a, b]

∣∣∣ a ∈ Aς \Xς , b ∈ (Aς \Xς) \ {a}
}

Πς
I =

{
tpAς [a]

∣∣∣ a ∈ Xς
}

Πς
E =

{
tpAς [a]

∣∣∣ a ∈ Aς \Xς
}
.

In other words:

1. If τ ∈ ςII then tpAς [a, b] = τII for some a ∈ Xς and b ∈ Xς \ {a}.
If a ∈ Xς and b ∈ Xς \ {a} then some τ ∈ ςII has tpAς [a, b] = τII .

2. If τ ∈ ςIE then tpAς [a, b] = τIE for some a ∈ Xς and b ∈ Aς \Xς .
If a ∈ Xς and b ∈ Aς \Xς then some τ ∈ ςIE has tpAς [a, b] = τIE .

3. If τ ∈ ςEI then tpAς [a, b] = τEI for some a ∈ Aς \Xς and b ∈ Xς .
If a ∈ Aς \Xς and b ∈ X then some τ ∈ ςEI has tpAς [a, b] = τEI .

4. If τ ∈ ςEE then tpAς [a, b] = τEE for some a ∈ Aς \Xς and b ∈ (Aς \Xς) \ {a}.
If a ∈ Aς \Xς and b ∈ (Aς \Xς) \ {a} then some τ ∈ ςEE has tpAς [a, b] = τEE .

5. Both Xς and Aς \Xς are nonempty.

61

6 Two-variable logics

6. If π ∈ Tpx ς then some a ∈ X has tpAς [a] = πI

If a ∈ X then tpAς [a] = πI for some π ∈ Tpx ς.

7. If π ∈ Tpy ς then some a ∈ Aς \Xς has tpAς [a] = πE

If a ∈ Aς \Xς then tpAς [a] = πE for some π ∈ Tpy ς.

We will be applying this lemma implicitly.

Proof. 1. If τ ∈ ςII then τII ∈ Tς
II ⊆ Tς , so some a ∈ Aς and b ∈ Aς \ {a} have

tpAς [a, b] = τII . We have that in(x) ∈ (tpxτ)I = tpx(τII) = tpAς [a], so a ∈ Xς .
Similarly, in(x) ∈ (tpyτ)I = tpy(τII) = tpAς [b], so b ∈ Xς \ {a}.

Next, suppose that a ∈ Xς and b ∈ Xς \ {a} and let τ ′ = tpAς [a, b]. Then
in(x) ∈ tpAς [a] = tpxτ

′ and in(x) ∈ tpAς [b] = tpyτ
′, so τ ′ = τII for some

τ ∈ ςII .

2. If τ ∈ ςIE then τIE ∈ Tς
IE ⊆ Tς , so some a ∈ Aς and b ∈ Aς \ {a} have tpA[a, b] =

τIE . We have that in(x) ∈ (tpxτ)I = tpx(τIE) = tpAς [a], so a ∈ Xς . Similarly,
(¬in(x)) ∈ (tpyτ)E = tpy(τIE) = tpA[b], so b ∈ Aς \Xς .

Next, suppose that a ∈ Xς and b ∈ Aς \ Xς . and let τ ′ = tpAς [a, b]. Then
in(x) ∈ tpAς [a] = tpxτ

′ and (¬in(x)) ∈ tpA[b] = tpyτ
′, so τ ′ = τIE for some

τ ∈ ςIE .

3. If τ ∈ ςEI then τ−1 ∈ ςIE , so some a ∈ Xς and b ∈ Aς\Xς have tpAς [a, b] = (τ−1)IE ,
so tpAς [b, a] = τEI .

If a ∈ Aς \Xς and b ∈ Xς then some τ ∈ ςIE has tpAς [b, a] = τIE , so tpAς [a, b] = τ ′EI
for τ ′ = τ−1 ∈ ςEI .

4. If τ ∈ ςEE then τEE ∈ Tς
EE ⊆ Tς , so some a ∈ Aς and b ∈ Aς \ {a} have tpAς [a, b] =

τEE . We have that (¬in(x)) ∈ (tpxτ)E = tpx(τEE) = tpAς [a], so a ∈ Aς \ Xς .
Similarly, (¬in(x)) ∈ (tpyτ)E = tpy(τEE) = tpAς [b], so b ∈ (Aς \Xς) \ {a}.

Next, suppose that a ∈ Aς \ Xς and b ∈ (Aς \ Xς) \ {a} and let τ ′ = tpAς [a, b].
Then (¬in(x)) ∈ tpAς [a] = tpxτ

′ and (¬in(x)) ∈ tpAς [b] = tpyτ
′, so τ ′ = τEE for

some τ ∈ ςEE .

5. ςIE is nonempty by (ςIE), so let τ ∈ ςIE be any. Then some a ∈ Xς and b ∈ Aς \Xς

have tpAς [a, b] = τIE , so in particular both Xς and Aς \Xς are nonempty.

6. If π ∈ Tpx ς then some τ ∈ ςIE has tpxτ = π, so some a ∈ Xς and b ∈ A \Xς have
tpA[a, b] = τIE , so tpAς [a] = πI .

Next, suppose that a ∈ Xς . Let b ∈ Aς \Xς , which is nonempty. Then tpAς [a, b] =
τIE for some τ ∈ ςIE . Then π = tpxτ ∈ Tpx ς. Then tpAς [a] = tpx(τIE) = πI .

62

6.4 Locally consistent cosmic spectrums

7. If π ∈ Tpy ς, then some τ ∈ ςIE has tpyτ = π, so some a ∈ Xς and b ∈ A \ Xς

have tpA[a, b] = τIE , so tpAς [b] = πE .
Next, suppose that b ∈ Xς . Let a ∈ Xς , which is nonempty. Then tpAς [a, b] = τIE
for some τ ∈ ςIE . Then π = tpyτ ∈ Tpy ς. Then tpAς [b] = tpy(τIE) = πE .

Remark 59. We have that ΠTς = Πς
I ∪Πς

E .

Proof. Let Aς be a model for Tς and let Xς = inAς be the set of internal spectral
elements. Then

ΠTς =
{

tpAς [a]
∣∣∣ a ∈ Aς} =

{
tpAς [a]

∣∣∣ a ∈ Xς
}
∪
{

tpAς [a]
∣∣∣ a ∈ Aς \Xς

}
= Πς

I ∪Πς
E

by Lemma 8 and by Lemma 13.

Remark 60. If τ ∈ ςII then tpxτ ∈ Tpx ς. If τ ∈ ςEE then tpxτ ∈ Tpy ς. Equivalently,
(tpx � ςII) ⊆ Tpx ς and (tpx � ςEE) ⊆ Tpy ς.

Proof. Let Aς be a model for Tς and let Xς = inAς be the set of internal spectral
elements.
If τ ∈ ςII then some a ∈ Xς and b ∈ Xς \ {a} have tpAς [a, b] = τII , so tpAς [a] =

tpx(τII) = (tpxτ)I , so tpxτ ∈ Tpx ς.
If τ ∈ ςEE then some a ∈ Aς \ Xς and b ∈ Aς \ Xς \ {a} have tpAς [a, b] = τEE , so

tpAς [a] = tpx(τEE) = (tpxτ)E , so tpxτ ∈ Tpy ς.

Remark 61. We have that ΠT = Tpx ς ∪ Tpy ς.

Proof. Let π ∈ ΠT be any 1-type, so some τ ∈ T has tpxτ = π. By (ςT) we have that
τ ∈ ςII ∪ ςIE ∪ ςEI ∪ ςEE . If τ ∈ ςII , then π ∈ Tpx ς by Remark 60. If τ ∈ ςIE , then
π ∈ Tpx ς by definition. If τ ∈ ςEI , then τ−1 ∈ ςIE , so π = tpxτ = tpy(τ−1) ∈ Tpy ς by
definition. If τ ∈ ςEE , then π ∈ Tpy ς by Remark 60.

Remark 62. If π ∈ Tpx ς and π′ ∈ Tpy ς, then some τ ∈ ςIE has tpxτ = π and
tpyτ = π′.

Proof. Let Aς be a model for Tς and let Xς = inAς be the set of internal spectral
elements. Then some a ∈ Xς has tpAς [a] = πI and some b ∈ Aς \Xς has tpAς [b] = πE .
Then tpAς [a, b] = τIE for some τ ∈ ςIE . Then tpxτ = π and tpyτ = π′.

Remark 63. If π ∈ PT is any peasant type, then π ∈ Tpy ς.

Proof. Let τ ∈ Tc be any cosmic type connecting the peasant type π with itself. Then
by (ςT), τ ∈ ςIE ∪ ςEI ∪ ςEE .
If τ ∈ ςIE , then π = tpyτ ∈ Tpy ς. If τ ∈ ςEI , then π = tpy(τ−1) ∈ Tpy ς. Suppose

that τ ∈ ςEE . Let Aς be a model for Tς and let Xς = inAς be the set of internal spectral
elements. Then tpAς [a, b] = τEE for some a ∈ Aς \ Xς and b ∈ (Aς \ Xς) \ {a}. Then
tpAς [a] = πE , so π ∈ Tpy ς.

63

6 Two-variable logics

Remark 64. If ν ∈ Tpx ς ∩NT is an internal noble type, then ν 6∈ Tpy ς.

Proof. Suppose towards a contradiction that ν ∈ Tpy ς. Then by Remark 62, some
τ ∈ ςIE has tpxτ = tpyτ = ν. By (ςIE), τ is cosmic — a contradiction.

Remark 65. If κ ∈ Tpx ς ∩ KT is an internal king type, then κI ∈ KTς is an internal
spectral king type.

Proof. Suppose towards a contradiction that κI is not a king type, so some τ ′ ∈ Tς

connects κI with itself. We must have that τ ′ ∈ Tς
II , so τ ′ = τII for some τ ∈ ςII , so τ

connects κ with itself — a contradiction.

Remark 66. If κ ∈ Tpy ς ∩ KT is an external king type, then κE ∈ KTς is an external
spectral king type.

Proof. Suppose towards a contradiction that κE is not a king type, so some τ ′ ∈ Tς

connects κE with itself. We must have that τ ′ ∈ Tς
EE , so τ ′ = τEE for some τ ∈ ςEE , so τ

connects κ with itself — a contradiction.

Remark 67. Suppose that ς is noble. Then:

1. If ν ∈ (Tpx ς) ∩WT is an internal worker type, then νI ∈ WTς is an internal
spectral worker type.

2. If π ∈ (Tpy ς) ∩WT is an external worker type, then πE ∈ WTς is an external
spectral worker type.

Proof. 1. Since ς is noble, by (ςNP) we have that ν must be noble. Since ν is noble
and is not a king type, there must be some galactic τ ∈ Tg connecting ν with itself.
Then by (ςT) we have τ ∈ ςII ∪ ςEE .
If τ ∈ ςII , then τII ∈ Tς

II connects νI with itself, so νI is a worker type.
If τ ∈ ςEE , then by Remark 60 ν ∈ Tpy ς. Then by Remark 62 some τ ∈ ςIE

connects ν with itself. But then τ is cosmic — a contradiction.

2. Since π is a worker type, π 6∈ Tpx ς and some τ ∈ T connects π with itself. Then
we must have that τ ∈ ςEE . Hence τEE connects πE with itself, so πE is an external
spectral worker type.

For any πς ∈ ΠTς or τς ∈ Tς , denote by π−in
ς and τ−in

ς the reducts of πς and τς to the
language Σ− 〈e〉 = Σ′ − 〈in〉. Define the following types over Σ:

πIς = πEς = π−in
ς ∪ {e(x,x)}

τIIς = τ−in
ς ∪ {e(x,x), e(y,y), e(x,y), e(y,x)}

τIEς = τ−in
ς ∪ {e(x,x), e(y,y),¬e(x,y),¬e(y,x)} .

That is, these are inverses of the previous operations: (πI)I = (πE)E = π for π ∈ ΠT
and (τII)II = (τIE)IE = τ for τ ∈ T.

64

6.4 Locally consistent cosmic spectrums

Definition 79. Let Aς be a model for Tς , and let Xς = inAς be the set of internal spectral
elements. Recall that both Xς and Aς \ Xς are nonempty. Transform (Aς � Xς) to a
model Xς for Σ by forgetting the interpretation of in and by interpreting eXς = Xς ×Xς

as the full relation on Xς . Call Xς the galaxy of the model Aς . Note that Xς is a Σ-
structure, but is not necessarily a 〈Σ, m̄〉-structure, since some message symbols might
be witnessed only by an element outside of Xς in Aς .
For any internal spectral element a ∈ Xς define its intended star-type σ(a) by:

σ(a) =
{

tpAς [a, b]II
∣∣∣ b ∈ Xς \ {a}

}
∪
{

tpAς [a, b]IE
∣∣∣ b ∈ Aς \Xς

}
.

Define the intended 1-type of a by: π(a) = tpx(σ(a)) = tpAς [a]I = tpXς [a].

Lemma 14. The intended star-type σ = σ(a) is a star-type over T.

Proof. Since Aς \Xς is nonempty, σ is nonempty. We verify the conditions for a star-type
over T:

(σx) If τ, τ ′ ∈ σ, then tpxτ = tpxτ
′ = tpAς [a]I = π(a). Let π = π(a) be the intended

1-type of a.

(σπy) Let π′ ∈ T[π]. We have to find some τ ∈ σ having tpyτ = π′. By Remark 61,
π′ ∈ Tpx ς ∪ Tpy ς.

First suppose that π′ 6= π. If π′ ∈ Tpx ς, then some b ∈ Xς has tpAς [b] = π′I
and since π′ 6= π we have b ∈ Xς \ {a}. Then τ = tpAς [a, b]II ∈ σ has tpyτ =
tpAς [b]I = (π′I)I = π′. If π′ ∈ Tpy ς, then some b ∈ Aς \Xς has tpAς [b] = π′E . Then
τ = tpAς [a, b]IE ∈ σ has tpyτ = tpAς [b]E = (π′E)E = π′.

Next suppose that π′ = π, so π is not a king type. So some τ ′ ∈ T connects π with
itself. By (ςT), τ ′ ∈ ςII ∪ ςIE ∪ ςEI ∪ ςEE .

If τ ′ ∈ ςII then some a′ ∈ Xς and b′ ∈ Xς \ {a′} have tpAς [a′, b′] = τ ′II . So
tpAς [a′] = tpx(τ ′II) = (tpxτ

′)I = π′I and tpAς [b′] = tpy(τ ′II) = (tpyτ
′)I = π′I .

Let b ∈ {a′, b′} \ {a}, which is nonempty. Then τ = tpAς [a, b]II ∈ σ has tpyτ =
tpAς [b]I = (π′I)I = π′.

If τ ′ ∈ ςIE then some a′ ∈ Xς and b′ ∈ Aς \ Xς have tpAς [a′, b′] = τ ′IE . So for
b = b′, tpAς [b] = tpy(τ ′IE) = (tpyτ

′)E = π′E . Then τ = tpAς [a, b]IE ∈ σ has
tpyτ = tpAς [b]E = (π′E)E = π′.

If τ ′ ∈ ςEI then some a′ ∈ Aς \ Xς and b′ ∈ Xς have tpAς [a′, b′] = τ ′EI . So for
b = a′, tpAς [b] = tpx(τ ′EI) = (tpxτ

′)E = π′E . Then τ = tpAς [a, b]IE ∈ σ has
tpyτ = (π′E)E = π′.

If τ ′ ∈ ςEE then some a′ ∈ Aς \Xς and b′ ∈ (Aς \Xς) \ {a′} have tpAς [a′, b′] = τ ′EE .
So for b = a′. tpAς [b] = tpx(τ ′EE) = (tpxτ

′)E = π′E . Then τ = tpAς [a, b]IE ∈ σ has
tpyτ = (π′E)E = π′.

65

6 Two-variable logics

(σκy) Suppose that κ′ ∈ T[π] ∩KT and that τ, τ ′ ∈ σ have tpyτ = tpyτ
′ = κ′.

If τ = tpAς [a, b]II for some b ∈ Xς\{a} and τ ′ = tpAς [a, b′]II for some b′ ∈ Xς\{a},
then tpAς [b] = tpAς [b′] = κ′I . Suppose towards a contradiction that b 6= b′, so
tpAς [b, b′] = τ ′′II for some τ ′′ ∈ ςII , so τ ′′ connects κ′ with itself — a contradiction.
Hence b = b′ so τ = τ ′.
If τ = tpAς [a, b]II for some b ∈ Xς\{a} and τ ′ = tpAς [a, b′]IE for some b′ ∈ Xς\{a},
then tpAς [b] = κ′I and tpAς [b′] = κ′E . Then tpAς [b, b′] = τ ′′IE for some τ ′′ ∈ ςIE , so
τ ′′ connects κ′ with itself — a contradiction.
If τ = tpAς [a, b]IE for some b ∈ Aς \Xς and τ ′ = tpAς [a, b′]IE for some b′ ∈ Aς \Xς ,
then tpAς [b] = tpAς [b′] = κ′E . Suppose towards a contradiction that b 6= b′, so
tpAς [b, b′] = τ ′′EE for some τ ′′ ∈ ςEE , so τ ′′ connects κ′ with itself — contradiction.
Hence b = b′ so τ = τ ′.

(σm) Let m ∈ m̄. Since Aς is a model for Tς , some b ∈ A\{a} has m(x,y) ∈ tpAς [a, b].
If b ∈ X, then m(x,y) ∈ tpA[a, b]II ∈ σ. If b ∈ A\X, then m(x,y) ∈ tpA[a, b]IE ∈
σ.

Lemma 15 (Type characterization). Let T be a type instance, ς be a locally consistent
cosmic spectrum over T, Aς be a model for the spectral type instance Tς , Xς be the set
of internal spectral elements of Aς and let Xς be the galaxy of Aς . Then:

1. If π ∈ Tpx ς then some a ∈ Xς has π(a) = π.
If a ∈ Xς then π(a) ∈ Tpx ς.
Equivalently Tpx ς = {π(a) | a ∈ Xς}.

2. If τ ∈ ςII then some a ∈ Xς and b ∈ Xς \ {a} have tpXς [a, b] = τ .
If a ∈ Xς and b ∈ Aς \Xς then tpXς [a, b] ∈ ςII .

Equivalently ςII =
{

tpXς [a, b]
∣∣∣ a ∈ Xς , b ∈ Xς \ {a}

}
.

3. If τ ∈ ςIE then some a ∈ Xς has τ ∈ σ(a).
If a ∈ Xς and τ ∈ σ(a) is cosmic, then τ ∈ ςIE .
Equivalently ςIE = {σ(a) | a ∈ Xς} ∩ Tc.

We will be applying this lemma implicitly.

Proof. 1. If π ∈ Tpx ς then some a ∈ Xς has tpAς [a] = πI , so π(a) = tpAς [a]I = π.
If a ∈ Xς then tpAς [a] = πI for some π ∈ Tpx ς, so π(a) = tpAς [a]I = π.

2. If τ ∈ ςII then some a ∈ Xς and b ∈ Xς \ {a} have tpAς [a, b] = τII , so tpXς [a, b] =
tpAς [a, b]II = τ .
If a ∈ Xς and b ∈ Xς \{a} then tpAς [a, b] = τII for some τ ∈ ςII , so tpXς [a, b] = τ .

66

6.4 Locally consistent cosmic spectrums

3. If τ ∈ ςIE then some a ∈ Xς and b ∈ Aς \ Xς have tpAς [a, b] = τIE , so τ =
tpAς [a, b]IE ∈ σ(a).
Let a ∈ Xς and let τ ∈ σ(a) be cosmic. Then τ = tpAς [a, b]IE for some b ∈ Aς \Xς ,
so τ ∈ ςIE .

Definition 80. A certificate S for the type instance T is a nonempty set of locally
consistent cosmic spectrums over T satisfying the following conditions:

(STc) If τ ∈ Tc then some ς ∈ S has τ ∈ ςIE .

(STg) If τ ∈ Tg then some ς ∈ S has τ ∈ ςII .

(Sν) If ν ∈ NT and ς, ς ′ ∈ S have ν ∈ Tpx ς and ν ∈ Tpx ς
′, then ς ′ = ς.

Remark 68. Let S be a certificate for the type instance T. If π ∈ ΠT then some ς ∈ S
has π ∈ Tpx ς.

Proof. Let π ∈ ΠT, so some τ ∈ T has tpxτ = π. If τ is cosmic, by (STc) some ς ∈ S
has τ ∈ ςIE , so π ∈ Tpx ς. If τ is galactic, by (STg) some ς ∈ S has τ ∈ ςII , so
by Remark 60 π ∈ Tpx ς.

Remark 69. Let S be a certificate for the type instance T. If ν ∈ NT, then a unique
ς ∈ S has ν ∈ Tpx ς.

Proof. Let ν ∈ NT. By Remark 68, some ς ∈ S has ν ∈ Tpx ς. By (Sν) such ς ∈ S is
unique.

Lemma 16 (Certificate extraction). Let A be a nobly distinguished model for the type
instance T over the L2eErefine-classified signature 〈Σ, m̄〉 such that E = eA is not full
on A. For each 2-type τ ∈ T let aτ 6= bτ ∈ A realize τ , that is tpA[aτ , bτ] = τ . Let

S =
{

cspA[E[aτ]]
∣∣∣ τ ∈ T

}
.

Then S is a certificate for T. Note that the size of S is polynomially bounded with respect
to the size of T.

Proof. That S is nonempty follows since E is not full on A. That the elements of S are
locally consistent cosmic spectrums follows from Remark 58. We check the conditions
for a certificate:

(STc) Let τ ∈ Tc be any cosmic type, let aτ ∈ A be the selected x-element for τ and let
ς = cspA[E[aτ]]. Then bτ ∈ A \ E[aτ] and so τ = tpA[aτ , bτ] ∈ ςIE .

(STg) Let τ ∈ Tg be any galactic type, and consider aτ and bτ . Then (aτ , bτ) ∈ E, so
τ = tpA[aτ , bτ] ∈ ςII for ς = cspA[aτ].

(Sν) Let ν ∈ NT be any noble type. Then a unique galaxy X realizes ν. Then if ς ∈ S
has ν ∈ Tpx ς, then ς = cspA[X].

67

6 Two-variable logics

Theorem 5 (Certificate expansion). Let S be a certificate for the type instance T over
the L2eErefine-classified signature 〈Σ, m̄〉. Then T has a finite model. More precisely, let
t ≥ |T | be a parameter. Then T has a finite model in which each worker type is realized
at least t times.

Proof. We use induction on e. We build a model A for T. Note that S is a nonempty
set of cosmic spectrums over T, and by (ςIE), T must contain a cosmic type. Hence any
model of T has at least 2 galaxies.

First for every ς ∈ S, we obtain a finite model Aς for Tς having the property that if ς
is noble then every worker type over Tς is realized at least (3t) times in Aς .

• First suppose e = 1. Let ς ∈ S be any locally consistent cosmic spectrum from
S. Consider the spectral type instance Tς . Let t′ = max {t, |Tς |}. Then Tς is
realizable over L2. By Lemma 9 the type instance Tς has a finite L2-model Aς in
which every worker type is realized at least (3t′) times, so also at least (3t) times.

• Next suppose e > 1 and the induction hypothesis for (e − 1). Let ς ∈ S be any
locally consistent cosmic spectrum from S, so Tς is realizable over L2(e− 1)Erefine.
By Lemma 12, some promotion Tς

• of Tς has a nobly distinguished L2(e− 1)Erefine-
model Bς

•. Note that since T is realizable and contains a cosmic type, Tς
• must

also contain a cosmic type, so Bς
• must have at least two galaxies. By Lemma 16,

there exists a certificate Sς• for Tς
• over L2(e− 1)Erefine. Let t′ = max {t, |Tς

•|}.
By induction hypothesis, Tς

• has a finite L2(e− 1)Erefine-model Aς• in which every
worker type is realized at least (3t′) times. Then the reduct Aς of Aς• to the
language of Tς is a finite model for Tς . If ς is noble, by Remark 67 any worker
type over T is realized at least (3t) times in Aς .

Let Xς be the galaxy of Aς . The galaxies of A are:

• A single copy of Xς for every noble ς ∈ S. These galaxies are the noble galaxies.

• 3t copies Xςij of Xς for every peasant ς ∈ S, where i ∈ {0, 1, 2} and j ∈ [1, t]. These
galaxies are the peasant galaxies.

Let σ(a) be the intended star-type of a and let π(a) = tpx(σ(a)) be the intended 1-type
of a for a ∈ A. Let Aπ = {a ∈ A | π(a) = π} be the set of elements having intended 1-
type π ∈ ΠT. Consider any noble ν ∈ NT. By Remark 69 a unique ς ∈ S has ν ∈ Tpx ς.
Note that ς is noble and Aν ⊆ Xς .
If κ ∈ KT is any king type, then since κ is noble, there is a unique ς ∈ S having

κ ∈ Tpx ς. By Remark 65, κI ∈ KTς is an internal spectral king type, so Aκ = {aκ} ⊆ Xς

is a singleton, so a = aκ is the unique a ∈ A having π(a) = κ.
If ν ∈ NT \KT is any noble type that is not a king type, then by Remark 67 νI ∈WTς

is an internal worker spectral type for the unique (noble) ς ∈ S having ν ∈ Tpx ς. So
Aν =

{
a ∈ Xς

∣∣∣ tpAς [a] = νI
}
and since there are at least 3t elements from Aς realizing

68

6.4 Locally consistent cosmic spectrums

the worker type νI , we may choose a partition Aν = Aν0 ∪ Aν1 ∪ Aν2 such that |Aνi | ≥ t
for i ∈ {0, 1, 2}.

If π ∈ PT is any peasant type, let Sπ = {ς ∈ S | π ∈ Tpx ς} be the set of (peasant)
cosmic spectrums including π. By Remark 68, Sπ is nonempty. Then:

Aπ =
{
a ∈ Xς

ij

∣∣∣ ς ∈ Sπ, i ∈ {0, 1, 2} , j ∈ [1, t], π(a) = π
}
.

By Lemma 15:

Aπ =
{
a ∈ Xς

ij

∣∣∣ ς ∈ Sπ, i ∈ {0, 1, 2} , j ∈ [1, t], tpAς [a] = πI
}
.

Consider the partition Aπ = Aπ0 ∪Aπ1 ∪Aπ2 , where:

Aπi =
{
a ∈ Xς

ij

∣∣∣ ς ∈ Sπ, j ∈ [1, t], π(a) = π
}
.

Then |Aπi | ≥ t and whenever π, π′ ∈ ΠT and i 6= i′ ∈ {0, 1, 2}, no a ∈ Aπi and a′ ∈ Aπ′i′
are in the same galaxy.

Realization of kings Let κ′ ∈ KT be any king type, let ς ′ ∈ S be the unique (noble)
cosmic spectrum having κ′ ∈ Tpx ς

′ and let a = aκ
′ ∈ Xς′ be the unique element in

A having π(a) = κ′. Let σ′ = σ(a) be the intended star-type of a, so κ′ = tpxσ
′.

Note that some 2-type is already assigned between a and each other element from the
galaxy Xς′ of a. Let b ∈ A \Xς′ be any element outside the galaxy of a. Let π = π(b)
and σ = σ(b) be the intended 1-type and star-type of b, respectively. Let Xς(ij) be the
galaxy of b, so π ∈ Tpx ς and b ∈ Xς

(ij) 6= Xς′ . By construction ς ′ 6= ς, since A contains
a unique noble galaxy for each noble cosmic spectrum from S and since ς ′ is noble.
Then κ′ 6∈ Tpx ς. Indeed, if κ′ ∈ Tpx ς then since κ′ ∈ Tpx ς

′, we have a contradiction
of (Sν). Then π 6= κ′, since π ∈ Tpx ς. So κ′ ∈ T[π] ∩ KT and by (σκy) there is
a unique τ ∈ σ having tpyτ = κ′. If τ is galactic, then τ ∈ ςII by construction, so
κ′ = tpyτ ∈ Tpx ς — a contradiction. So τ must be cosmic. Assign tpA[b, a] = τ . We
claim that this assignments are appropriate.
First, these assignments are symmetric between kings: suppose that b is a king and let
κ = π = π(b) 6= κ′ be its intended 1-type. Then κ ∈ T[κ′] ∩ KT and by (σκy), there
is a unique τ ′ ∈ σ(a) = σ′ such that tpyτ

′ = κ′. We claim that τ ′ = τ−1. Indeed,
since τ ∈ σ is cosmic we have τ ∈ ςIE , so τ−1 ∈ Tc, so some ς ′′ ∈ S has τ−1 ∈ ς ′′IE
by (STc). So κ = tpx(τ−1) ∈ Tpx ς

′′, so ς ′′ = ς. Then some a′ ∈ Xς has τ−1 ∈ σ(a′).
But then π(a′) = κ, so a′ = a. So τ−1 ∈ σ′ and since tpy(τ−1) = κ′ ∈ KT, by (σκy)
we must have τ ′ = τ−1.
Next, every τ ∈ σ′ = σ(a) is realized. If τ is galactic, then some b ∈ Xς \ {a} has
tpXς [a, b] = τ , so τ is realized within the galaxy of a. If τ is cosmic, then τ−1 is cosmic
and by (STc) some ς ∈ S has τ−1 ∈ ςIE . Then some b ∈ Xς has τ−1 ∈ σ(b), so some
b ∈ A \ Xς has τ−1 ∈ σ(b). But tpy(τ−1) = κ′ ∈ KT, so τ−1 ∈ σ(b) is the unique
having tpy(τ−1) = κ′, so we had assigned tpA[b, a] = τ−1.

69

6 Two-variable logics

Realization of workers Let π ∈WT be any worker type and let a ∈ Aπi be any element
having intended 1-type π. Let i′ = (i + 1 mod 3) ∈ {0, 1, 2} be the index of the next
copy of elements. Consider the cosmic spectrum ς ∈ S for a: if π is noble, then let
ς ∈ S be such that a ∈ Xς ; otherwise π is peasant so let ς ∈ S and j ∈ [1, t] be such
that a ∈ Xς

ij . Consider σ = σ(a) and let τ ∈ σ be any. If τ is galactic, then it is
realized between a and some other element in the galaxy of a. If tpyτ ∈ KT is a king
type, then we have already seen that it is realized during the realization of kings.

So only the case where τ is cosmic and π′ = tpyτ ∈WT is a worker type remains. Let
U =

{
η ∈ σ

∣∣∣ tpyη = π′
}
be the set of all 2-types parallel to τ in σ. Note that |U| ≤ t.

We simultaneously find distinct bη from the next copy of elements for the assignments
tpA[a, bη] = η: Since

∣∣∣Aπ′i′ ∣∣∣ ≥ t, there are enough such elements. We claim that every
element from Aπ

′
i′ is from a galaxy different than the galaxy of a. If π′ is a peasant

type, this is immediate by our remark right after we defined Aπ′i′ .

Next, suppose that π′ ∈ NT is a noble worker type. We claim that π′ 6∈ Tpx ς. Suppose
that π′ ∈ Tpx ς. Since τ ∈ σ is cosmic, we have that τ ∈ ςIE . Since tpyτ = π′, we
have π′ ∈ Tpy ς. By Remark 62, some (cosmic) τ ′ ∈ ςIE connects π′ with itself — a
contradiction. So π′ 6∈ Tpx ς, so each element from Aπ

′
i′ is not from the galaxy of a.

These assignments are consistent, since they have been made between elements from
consecutive copies.

Completion Suppose that a 6= b ∈ A are any elements that have not yet been assigned
a 2-type. Then a and b come from distinct galaxies. We claim that some cosmic τ ∈ Tc

has tpxτ = π and tpyτ = π′. Let π = π(a) and π′ = π(b) and let Xς be the galaxy
of a.

First suppose that π′ is noble. If π′ ∈ Tpx ς, then ς is noble, so b and a come from
the same galaxy — a contradiction. Otherwise π′ ∈ Tpy ς and by Remark 62 some
τ ∈ ςIE has tpxτ = π and tpyτ = π′.

Next suppose that π′ is peasant. Then by Remark 63 π′ ∈ Tpy ς and so by Remark 62
some τ ∈ ςIE has tpxτ = π and tpyτ = π′.

Remark 70. Let e ≥ 1 and let T be a type instance over the classified signature 〈Σ, m̄〉
over L2eErefine. Suppose that T contains no cosmic type. Then T has a (finite) model
over L2eErefine iff T has a (finite) model over L2(e− 1)Erefine.

Proof. The forward direction is immediate. For the backward direction, let e be the
coarsest equivalence symbol over Σ and suppose that A is a (finite) model for T over
L2(e− 1)Erefine. Since T contains no cosmic type and e(x,x) ∈ τ for every τ ∈ T, the
symbol e must be interpreted as the full relation on A. Hence A is a L2eErefine-structure,
so A is a (finite) model for T over L2eErefine.

70

6.4 Locally consistent cosmic spectrums

Proposition 12. Let e ≥ 0. The type realizability problem for L2eErefine coincides with
the finite type realizability problem for L2eErefine and is in NPTime.

Proof. We use induction on e. If e = 0, this is Proposition 11. Suppose that e ≥ 1
and assume the induction hypothesis for (e− 1). Consider any type instance T over the
classified signature 〈Σ, m̄〉 over L2eErefine.
First suppose that T contains no cosmic types. Then by Remark 70 T has a (finite)

model over L2eErefine iff T has a (finite) model over L2eErefine so the claim follows by
induction hypothesis.
Next suppose that T contains a cosmic type. Then guess a promotion T• of T and a

polynomial certificate S• for T• and declare that T has a (finite) model. By induction
hypothesis, the property that the certificate S consists of locally consistent cosmic spec-
trums can be verified in nondeterministic polynomial time. Let us check the correctness
of this procedure.

• If T has a (finite) model, then by Lemma 12 some promotion T• has a (finite)
nobly distinguished model. In this case since T is realizable and contains a cosmic
type, T• must contain a cosmic type, so any model of T• must contain at least two
galaxies. Let A• be a nobly distinguished model for T•. By Lemma 16, there is a
polynomial certificate S• for T•.

• Suppose that T• is a promotion for T and S• is a certificate for T•. By Theorem 5,
T• has a finite model A•. Then the reduct A of A• to the language of T is a finite
model for T.

Corollary 5. For any e ≥ 1, the logic L2eErefine has the finite model property and its
(finite) satisfiability problem is in NExpTime.
By Proposition 1 and Proposition 3, the same holds for L2eEglobal and L2eElocal.

Corollary 6. The logic L2Erefine has the finite model property and its (finite) satisfiability
problem is in N2ExpTime.
By Proposition 2 and Proposition 4, the same holds for L2Eglobal and L2eElocal.

71

Bibliography
[1] H.D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in Mathematical

Logic. Springer Berlin Heidelberg, 1999.

[2] E. Grädel and M. Otto. On logics with two variables. Theoretical computer science,
224(1):73–113, 1999.

[3] D. Scott. A decision method for validity of sentences in two variables. Journal of
Symbolic Logic, 27(377):74, 1962.

[4] I. Cervesato, H. Veith, and A. Voronkov. Logic for Programming, Artificial Intel-
ligence, and Reasoning: 15th International Conference, LPAR 2008, Doha, Qatar,
November 22-27, 2008, Proceedings. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2008.

[5] E. Boerger, E. Grädel, and Y. Gurevich. The classical decision problem. Perspectives
in mathematical logic. Springer, 1997.

[6] P. van Emde Boas. The convenience of tilings. Lecture Notes in Pure and Applied
Mathematics, pages 331–363, 1997.

[7] L. Löwenheim. Über Möglichkeiten im Relativkalkül. Mathematische Annalen,
76(4):447–470, 1915.

[8] A. Janiczak. Undecidability of some simple formalized theories. Fundamenta Math-
ematicae, 40(1):131–139, 1953.

[9] M. Mortimer. On languages with two variables. Mathematical Logic Quarterly,
21(1):135–140, 1975.

[10] E. Grädel, P.G. Kolaitis, and M.Y. Vardi. On the decision problem for two-variable
first-order logic. Bulletin of symbolic logic, 3(01):53–69, 1997.

[11] E. Kieroński. Results on the guarded fragment with equivalence or transitive rela-
tions. In Computer Science Logic, pages 309–324. Springer, 2005.

[12] E. Kieroński, J. Michaliszyn, I. Pratt-Hartmann, and L. Tendera. Two-variable first-
order logic with equivalence closure. SIAM Journal on Computing, 43(3):1012–1063,
2014.

[13] E. Kieronski and M. Otto. Small substructures and decidability issues for first-
order logic with two variables. In Logic in Computer Science, 2005. LICS 2005.
Proceedings. 20th Annual IEEE Symposium on, pages 448–457. IEEE, 2005.

73

Bibliography

[14] I. Pratt-Hartmann. The two-variable fragment with counting and equivalence.
Mathematical Logic Quarterly, 61(6):474–515, 2015.

74

	Abstract
	Preliminaries
	Syntax
	Semantics
	Games
	Types
	Scott normal form
	Complexity

	Counter setups
	Bits
	Counters
	Vectors
	Permutations

	Equivalence relations
	Two equivalence relations in agreement
	Many equivalence relations in agreement

	Reductions
	Global agreement to refinement
	Local agreement to refinement
	Granularity

	Monadic logics
	Cells
	Organs
	Satisfiability
	Hardness with a single equivalence
	Hardness with many equivalences in refinement

	Two-variable logics
	Type realizability
	Type realizability with equivalences
	Cosmic spectrums
	Locally consistent cosmic spectrums

